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Abstract

In this paper, we propose a quantum algorithm
for recommendation systems which incorporates the
contextual information of users to the personalized
recommendation. The preference information of
users is encoded in a third-order tensor of dimension
N which can be approximated by the truncated ten-
sor singular value decomposition (t-svd) of the sub-
sample tensor. Unlike the classical algorithm that
reconstructs the approximated preference tensor us-
ing truncated t-svd, our quantum algorithm obtains
the recommended product under certain context by
measuring the output quantum state correspond-
ing to an approximation of a user’s dynamic pref-
erences. The algorithm achieves the time complex-
ity O(

√
kNpolylog(N)), compared to the classical

counterpart with complexity O(kN3), where k is the
truncated tubal-rank.

Keywords: context-aware recommendation sys-
tems, t-svd; quantum singular value estimation;
quantum Fourier transform

1 Introduction

Machine learning is a branch of artificial intelligence
and is increasingly ubiquitous in various areas such
as natural language processing, data mining, bio-
logical analysis, etc. However, a major deficiency
of many machine learning algorithms is their high
computational and storage cost when processing big
data. On the other hand, quantum computer is con-
sidered as one of the most promising and emerging
technologies, and its development has made great
progress in recent years. Considering high demand-

∗Corresponding author: guofeng.zhang@polyu.edu.hk

ing computational power of machine learning and
the fast development of quantum technology, re-
searchers are developing a new interdisciplinary re-
search field, quantum machine learning.

Quantum machine learning explores the inter-
action between quantum computing and machine
learning, by investigating how quantum techniques,
e.g., superposition and entanglement, can be used
to speed up some classical machine learning prob-
lems. Successful examples are quantum support vec-
tor machine (QSVM) [36], quantum principle com-
ponent analysis (QPCA) [22], among others. In
most cases, quantum computing is supposed to deal
with quantum data, as commented in [3]. Hence,
the classical data should be preprocessed into quan-
tum data using some methods like QRAM [10, 18]
so that quantum algorithms can proceed as desired.
As quantum features such as parallelism and entan-
glement can be used to accelerate some computa-
tional procedures which classical operations are gen-
erally regarded as inefficient, it is reasonable to as-
sume that the performance of quantum computers
outperforms classical computers on certain machine
learning problems.

Tensor refers to a multi-dimensional array of num-
bers, thus it can represent more complex structures
of higher-order data. Applications involving tensors
include image deblurring, video recovery, denoising,
data completion, multi-partite quantum systems,
networks and machine learning [19, 58, 59, 9, 60, 20,
32, 31, 40, 39, 14, 55, 33, 34, 37, 57, 53, 15, 25], due to
the flexibility of tensors in representing data. Some
of these applications make use of various tensor de-
compositions including CANDECOMP/PARAFAC
(CP) [7], TUCKER [51], higher-order singular value
decomposition (HOSVD) [8, 55, 11], tensor-train de-
composition (TT) [29], and tensor singular value de-
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composition (t-svd) [19, 59, 25]. A review of the
applications of tensor networks in quantum physics
can be found in [28].

Plenty of research has been carried out on t-svd in
the last decade. The concept of t-svd was first pro-
posed by Kilmer and Martin [19] for third-order ten-
sors. Later, Martin et al. [26] extended it to higher-
order tensors. The t-svd algorithm is superior to
TUCKER and CP decompositions in the sense that
it extends the familiar matrix svd strategy to ten-
sors, thus avoiding the loss of information inherent
in flattening tensors used in TUCKER and CP de-
compositions. Compared with HOSVD, t-svd also
has optimality properties similar to the truncated
svd for matrices, hence t-svd is shown to have bet-
ter performance than HOSVD when applied to facial
recognition [12], tensor completion [58, 45]. Another
advantage of t-svd is that it can be obtained by com-
puting matrix svd in the Fourier domain; the similar
idea allows other matrix factorization techniques like
QR decomposition to be extended to tensors easily.

It is well known that truncating k-term matrix svd
provides the best rank-k approximation of a matrix
in both `2 norm and Frobenius norm. This raises
a question whether the truncated tensor decompo-
sitions also have the similar optimality. The CP
decompostion expresses a tensor as a sum of outer
products of vectors (rank-1 tensor), and CP-rank is
defined as the minimal number of rank-1 tensor nec-
essary to construct the tensor, but calculating the
CP-rank and the rank-k CP approximation are nu-
merically unstable. Also, truncated Tucker decom-
position does not yield the best fit of the original ten-
sor [56]. In contrast, the t-svd gives an optimal ap-
proximation of a tensor in Frobenius norm [56]. Un-
fortunately, the cost of computing t-svd factorization
is prohibitively expensive especially for very high di-
mensional tensors, e.g., the cost is O(N4 +N3logN)
for a third-order tensor with dimension N . There-
fore, much work focuses on computing low-rank ten-
sor approximations based on t-svd with compara-
tively low cost. For example, randomized tensor
low-rank representations based on the t-svd can give
the nearly optimal approximation with complexity
O(kN3 +N3logN) for a third-order tensor with di-
mension N [56].

The quantum algorithm that we propose in this
work implements a machine learning task, namely,
context-aware recommendation systems in which

preference information is encoded in a third-order
tensor. For recommendation systems modeled by an
m×n preference matrix, Kerenidis and Prakash de-
signed a quantum algorithm that offers recommen-
dations by just sampling from an approximated pref-
erence matrix [18]. Therefore, the running time is
onlyO(poly(k)polylog(mn)) if the preference matrix
has a good rank-k approximation. To achieve this,
they projected a state corresponding to a user’s pref-
erences to the approximated row space spanned by
singular vectors whose corresponding singular val-
ues are greater than the prescribed threshold. After
measuring this projected state in a computational
basis, they got recommended product indices for the
input user.

In recommendation systems algorithms, most
model-based Collaborative Filtering approaches, e.g.
matrix factorization, fail to model context informa-
tion [16]. Context is an important factor to con-
sider in personalized recommendation systems. In
[54], it is demonstrated by an experiment that when
a recommendation system is modeled by a tensor
whose third dimension is context (e.g. time), ac-
curacy could be improved compared to the non-
contextual modeling. Hence, most recent research
has focused on developing context-aware recom-
mendation systems modeled by tensors; see, e.g.,
[46, 59, 35, 16]. The classical third-order tensor rec-
ommendation systems algorithms based on tensor
factorizations, such as the truncated t-svd [59] and
the truncated HOSVD (T-HOSVD) [46], all have the
computational complexity at least O(kN3).

Taking into account the effectiveness of third-
order tensor modeling and high cost of the truncated
t-svd algorithm, in this paper we extend Kerenidis
and Prakash’s algorithm [18] from matrices to third-
order tensors and propose a quantum context-aware
recommendation systems algorithm based on trun-
cated t-svd factorization. In general, a user’s pref-
erence in a certain context is very likely to affect
the recommendation for him/her at other contexts.
As the quantum Fourier transform (QFT) used in
our t-svd algorithm is performed to bind a user’s
preferences in different context together, our quan-
tum algorithm is well suited to context-aware rec-
ommendation systems. The general idea of our al-
gorithm is to approximate the observed preference
tensor using truncated matrix svd in the Fourier do-
main. Similar to the low-rank assumption adopted
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in quantum 2D recommendation systems [18], we ex-
ploit low structural and informational complexity of
the data, expressed as low tubal-rank hypothesis of
the underlying data, by which it is feasible to pre-
dict the missing entries. Moreover, taking advantage
of the quantum parallelism, the quantum singular
value estimation of all frontal slices after QFT can
be performed parallelly, which dramatically reduces
the time complexity to O(N

√
kpolylog(N)).

In Section 4, our numerical experiments show that
the truncated t-svd is better than T-HOSVD and
TT decompositions when applied to context-aware
recommendation systems. In fact, our quantum
algorithm suits the context-aware recommendation
systems model very well since it is not necessary to
reconstruct the entire tensor. All we need is to rec-
ommend products that a user prefers, which corre-
sponds to measuring certain times a quantum state
representing a user’ approximated preference, so our
quantum algorithm can provide good recommenda-
tions with much lower complexity.

The rest of this paper is organized as follows. Pre-
liminaries are given in Section 2. In Section 3, we
propose our main algorithm, quantum context-aware
recommendation systems algorithm. In Section 4,
we numerically validate the classical counterpart of
our model with real datasets. At last, we compare
Tang’s 2D quantum-inspired recommendation sys-
tems with our algorithm in Section 5 and we con-
clude the paper in Section 6.

2 Preliminaries

We first introduce some preliminary material on ten-
sors and notations in Section 2.1. In Section 2.2, we
review the definition of t-product and the classical
(namely, non-quantum) t-svd algorithm proposed by
Kilmer et al. [19] in 2011. Then in Section 2.3, we
briefly review the quantum singular value estima-
tion algorithm (QSVE) proposed by Kerenidis and
Prakash [18].

2.1 Tensor background and notation

An order-p tensor A can be represented as a multi-
dimensional array of data, i.e.,

A = (ai1i2···ip) ∈ CN1×N2×···×Np .

The order of a tensor is the number of modes; for
example, A ∈ CN1×N2×N3 is a third-order tensor of
complex numbers with dimension Ni for mode i, i =
1, 2, 3, respectively. In this way, a matrix A can be
regarded as a second-order tensor, and a vector x
is a first-order tensor. A third-order tensor can be
imagined as a cube of data, and a slice of a tensor
can be regarded as a matrix defined by fixing one
index. We use terms frontal slice A(:, :, i), horizontal
slice A(i, :, :) and lateral slice A(:, i, :) (see FIG.1) to
specify which index in three modes is fixed. A tube
of size 1× 1×N3 can be regarded as a vector and it
is defined by fixing all indices but the last one, e.g.,
A(i, j, :) is the (i, j)-th tube of A.

Figure 1: (a) frontal slices, (b) horizontal slices, (c) lat-
eral slices of a third-order tensor. (d) A lat-
eral slice as a vector of tubes.

Notation. In this paper, to facilitate the distinc-
tion between vectors, matrices, and higher-order ten-
sors, we use different representations based on their
types. Script letters are used to denote higher-order
tensors (A, B, · · · ). Capital nonscript letters are
used to represent matrices (A, B, · · · ), and vec-
tors are written as boldface lower case letters (x,
y, · · · ). We use A(i) to denote the i-th frontal slice
A(:, :, i) for short. DFT(u) refers to performing the
discrete Fourier transform (DFT) on u, which is
computed by the fast Fourier transform represented
in Matlab notation fft(u). The tensor after DFT
along the third mode of A is denoted by Â, i.e.,
Â = fft(A, [], 3). Hence we have A = ifft(Â, [], 3).
The m-th frontal slice of Â is Â(m). There are three
types of product we would like to clarify here: u~v
refers to the circular convolution between vectors u
and v, � is the Hadamard product and A∗B repre-
sents the t-product between tensors A and B.

2.2 The t-svd algorithm and t-product

In this subsection, we provide the definition of
a new type of multiplication between tensors, t-
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product, and give corresponding definitions of iden-
tical, transpose, and orthogonal tensors from [19].
Then we give a t-svd algorithm based on t-product.

Definition 1. circular convolution [48]
Let u, v ∈ RN . The circular convolution between u
and v produces a vector x of the same size, defined
as

x ≡ u~ v , circ(u)v,

where

circ(u) =


u0 uN−1 · · · u1
u1 u0 · · · u2
...

...
. . .

...
uN−1 uN−2 · · · u0

 .
Theorem 1. Cyclic Convolution Theorem [48]
Given u,v ∈ RN , let x = u ~ v, and ~ refers to

the circular convolution. We have

DFT(x) = DFT(u)�DFT(v), (1)

where � is the Hadamard product.

If a tensor A ∈ RN1×N2×N3 is regarded as an
N1 × N2 matrix of tubes of dimension N3, whose
(i, j)-th entry (a tube) is A(i, j, :), then based on
the definition of circular convolution between vec-
tors, the t-product between tensors can be defined.

Definition 2. t-product [19]
Let M ∈ RN1×N2×N3 and N ∈ RN2×N4×N3. The

t-product M∗N is an N1×N4×N3 tensor, denoted
by A, whose (i, j)-th tube A(i, j, :) is the sum of the
circular convolution between corresponding tubes in
the i-th horizontal slice of the tensorM and the j-th
lateral slice of the tensor N , i.e.,

A(i, j, :) =

N2−1∑
k=0

M(i, k, :) ~N (k, j, :). (2)

According to Theorem 1 and Definition 2, we have

DFT(A(i, j, :))

=

N2−1∑
k=0

DFT(M(i, k, :))�DFT(N (k, j, :)), (3)

for i = 0, · · · , N1−1; j = 0, · · · , N4−1. Let Â be the
tensor whose (i, j)-th tube is DFT(A(i, j, :)). Then
equation (3) becomes Â(i, j, :) =

∑N2−1
k=0 M̂(i, k, :

)� N̂ (k, j, :), which can also be written in the form
Â(i, j, l) =

∑N2−1
k=0 M̂(i, k, l)N̂ (k, j, l) for the l-th

frontal slices of these tensors. Therefore, Â(l) =
M̂ (l)N̂ (l). The following theorem summarizes the
idea stated above.

Theorem 2. [19] For tensorsM∈ RN1×N2×N3 and
N ∈ RN2×N4×N3, the equivalence relation

A =M∗N ⇐⇒ Â(l) = M̂ (l)N̂ (l) (4)

holds for l = 0, · · · , N3 − 1. Moreover, for another
tensor T ∈ RN4×N5×N3, we have

A =M∗N ∗ T ⇐⇒ Â(l) = M̂ (l)N̂ (l)T̂ (l), (5)

for l = 0, · · · , N3 − 1.

Definition 3. tensor Frobenius norm [19]
The Frobenius norm of a third-order tensor A =

(aijk) is defined as ||A||F =
√∑

i,j,k |aijk|2.

Definition 4. tensor transpose [19]
The transpose of a tensor A ∈ RN1×N2×N3, denoted
as AT , is obtained by transposing all the frontal slices
and then reversing the order of the transposed frontal
slices 1 through N3 − 1.

Definition 5. identity tensor [19]
The identity tensor I ∈ RN1×N1×N3 is a tensor
whose first frontal slice I(0) is an N1 × N1 identity
matrix and all the other frontal slices are zero ma-
trices.

Definition 6. orthogonal tensor [19]
A tensor U ∈ RN1×N1×N3 is an orthogonal tensor if
it satisfies UT ∗ U = U ∗ UT = I.

Theorem 3. tensor singular value decomposi-
tion (t-svd) [19]
For A ∈ RN1×N2×N3, its t-svd is given by A = U ∗
S ∗ VT , where U ∈ RN1×N1×N3 and V ∈ RN2×N2×N3

are orthogonal tensors, and every frontal slice of
S ∈ RN1×N2×N3 is a diagonal matrix (FIG.2).
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Algorithm 1 t-svd for third-order tensors [19]

Input: A ∈ RN1×N2×N3

Output: U ∈ RN1×N1×N3 ,S ∈ RN1×N2×N3 ,V ∈
RN2×N2×N3

Â = fft(A, [], 3);
for i = 0, · · · , N3 − 1 do

[U, S, V ] = svd(Â(:, :, i));
Û(:, :, i) = U ; Ŝ(:, :, i) = S; V̂(:, :, i) = V ;

end for
U = ifft(Û , [], 3);S = ifft(Ŝ, [], 3);V = ifft(V̂, [], 3).

Figure 2: The t-svd of A ∈ RN1×N2×N3 .

Definition 7. tubal-rank [19]
The tubal-rank of a tensor A ∈ RN1×N2×N3

is the number of nonzero tubes S(i, i, :), i =
0, · · · ,min(N1, N2)− 1, in t-svd factorization.

Remark 1. In the t-svd literature, the diagonal el-
ements of the tensor S are called the singular values
of A. Moreover, the l2 norms of the nonzero tubes
S(i, i, :) are in descending order, i.e.,

||S(0, 0, :)||2 ≥ ||S(1, 1, :)||2 ≥ · · ·
≥||S(min(N1, N2)− 1,min(N1, N2)− 1, :)||2.

However, it should be noticed that the diagonal ele-
ments of S may be unordered and even negative due
to the inverse DFT. As a result, when doing tensor
truncation in Section 3 to get quantum recommenda-
tion systems, we use Ŝ instead of S as the diagonal
elements of the former are non-negative and ordered
in descending order.

Definition 8. multi-rank [19]
The multi-rank of a tensor A ∈ RN1×N2×N3 is a vec-
tor in RN3 whose i-th entry equals to the rank of
Â(:, :, i).

Many important applications of the t-svd algo-
rithm, such as data compression and completion,
utilize the optimality of truncated t-svd in the sense
that it gives an optimal approximation of a tensor

measured by the Frobenius norm. The following the-
orem describes this property, which is the theoretical
basis of our quantum algorithm for recommendation
systems to be developed in Sections 3.2.

Lemma 1. [19, 56] Suppose the t-svd of the tensor
A ∈ RN1×N2×N3 is A = U ∗ S ∗ VT . Then we have

A =

min(N1,N2)−1∑
i=0

U(:, i, :) ∗ S(i, i, :) ∗ V(:, i, :)T ,

where the matrices U(:, i, :) and V(:, i, :) and the vec-
tor S(i, i, :) are regarded as tensors of order 3. For
1 ≤ k < min(N1, N2), define Ak ,

∑k−1
i=0 U(:, i, :

) ∗ S(i, i, :) ∗ V(:, i, :)T . Then

Ak = arg min
Ã∈Mk

||A − Ã||F ,

where Mk = {X ∗ Y|X ∈ RN1×k×N3 ,Y ∈
Rk×N2×N3}. Therefore, ||A − Ak||F is the the-
oretical minimal error, given by ||A − Ak||F =√∑min(N1,N2)−1

i=k ||S(i, i, :)||22.

2.3 Quantum singular value estimation

Kerenidis and Prakash [18] proposed a quantum al-
gorithm to estimate the singular values of a matrix,
named by the quantum singular value estimation
(QSVE). With the introduction of a data structure,
see Lemma 2 below, in which the rows of the ma-
trix are stored, the QSVE algorithm can prepare the
quantum states corresponding to the rows of the ma-
trix efficiently.

Lemma 2. [18, Theorem 5.1] Consider a
matrix A ∈ RN1×N2 with ι nonzero en-
tries. Let Ai be its i-th row, and sA =

1
||A||F [||A0||2, ||A1||2, · · · , ||AN1−1||2]

T . There
exists a data structure storing the matrix A in
O(ιlog2(N1N2)) space such that a quantum al-
gorithm having access to this data structure can
perform the mapping UP : |i〉 |0〉 → |i〉 |Ai〉, for
i = 0, · · · , N1 − 1 and UQ : |0〉 |j〉 → |sA〉 |j〉, for
j = 0, · · · , N2 − 1 in time polylog(N1N2).

The explicit description of the QSVE is given in
[18] and the following lemma summarizes the main
ideas.

Lemma 3. [18, Theorem 5.2] Let A ∈ RN1×N2 and
x ∈ RN2 be stored in the data structure as mentioned
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in Lemma 2. Let the singular value decomposition of
A be A =

∑r−1
l=0 σl |ul〉 〈vl|, where r = min(N1, N2).

The input state |x〉 can be represented in the eigen-
states of A, i.e. |x〉 =

∑N2−1
l=0 βl |vl〉. Let ε > 0

be the precision parameter. Then there is a quan-
tum algorithm, denoted as USVE, that runs in time
O(polylog(N1N2)/ε) and achieves

USVE (|x〉 |0〉) =

N2−1∑
l=0

βl |vl〉 |σl〉

with probability at least 1− 1/poly(N2), where σl is
the estimated value of σl satisfying |σl−σl| ≤ ε||A||F
for all l.

3 Quantum algorithm for recom-
mendation systems modeled by
third-order tensors

In this section, we will first introduce the notation
adopted in this section and then give an overview
of Algorithm 2. In Section 3.1, the main ideas and
assumptions of the algorithm are summarized. In
Section 3.2, we explain each step of our algorithm
in detail, followed by a summary in Algorithm 2.
Error analysis is given in Section 3.3 and complexity
analysis is conducted in Section 3.4.

The preference information of users is stored in a
third-order tensor A ∈ RN×N×N , called the prefer-
ence tensor, whose three modes represent user(i),
product(j) and context(t) respectively. The tube
A(i, j, :) is regarded as the rating scores of the user
i for the product j under different contexts. For
user i in context t, the entry A(i, j, t) takes value 1
indicating the product j is “good” and value 0 other-
wise. In this sense, a triplet (i, j, t) is called a good
recommendation if A(i, j, t) = 1 or a bad recom-
mendation otherwise. Let tensor T be the random
tensor obtained by sampling from the tensor A with
probability p and T̂ be the tensor obtained by per-
forming the QFT along the third mode of T . We
use T̂ (m) to denote the m-th frontal slice of tensor
T̂ . T̂

(m)
≥τm is formed by projecting T̂ (m) onto the space

spanned by the singular vectors whose correspond-
ing singular values are greater than the threshold
τm. T̂≥τ denotes the tensor whose m-th frontal slice

is T̂
(m)
≥τm . Here, the threshold τ of tensor T̂ actu-

ally denotes a list of thresholds {τ0, · · · , τN−1} since

different frontal slices T̂ (m) have their corresponding
thresholds τm. T≥τ denotes the tensor obtained by
performing the inverse QFT along the third mode of
T̂≥τ .

3.1 Main ideas

We will propose Algorithm 2 which recommends a
product j to a user i at a certain context t0. The
algorithm is inspired by the matrix recommendation
systems method [1, 18] and a tensor reconstruction
algorithm [59]. The main ideas are summarized in
the following flow chart:

T (i, :, :)
QFT−−−→ T̂ (i, :, :)

tube−−−→ T̂ (i, :,m)
approximation−−−−−−−−−→

T̂≥τ (i, :,m)
stack up−−−−−→ T̂≥τ (i, :, :)

iQFT−−−→ T≥τ (i, :, :).

Suppose there is a hidden preference tensor A
which is assumed to have a low tubal-rank k. This
low tubal-rank assumption is also adopted in the
classical truncated t-svd data completion problem
[58, 45]. In practical applications, only a part of
the entries of A can be observed. Our goal is to
predict the missing entries and recommend product
which has a high predicted value. This partially
observed tensor is called the subsample tensor T
which is sparse in general. Here, we use the sub-
sampling method proposed in [1] to get T , which
is also adopted in [18]. Specifically, Tijt = Aijt/p
with probability p and Tijt = 0 otherwise, where p
is called the subsampling probability. Clearly, the
expectation E(T ) = A. In this sense, our algorithm
can be understood as an approximate reconstruction
of the hidden preference tensor A, of which we are
only given a sample ratings in the form of the sparse
tensor T .

Our algorithm recommends products according to
the low tubal-rank tensor T≥τ which can be proved
to an approximation of the hidden preference tensor
A. Inspired by the t-svd, this approximation process
is conducted under the Fourier domain, as shown in
the above flow chart. Next we explain each step
of the flow chart in detail. Given a state |T (i, :, :)〉
representing the observed preference information of
user i, we first perform QFT on its last register, ob-
taining the state |T̂ (i, :, :)〉. For each T̂ (m), which is
the m-th frontal slice of the tensor T̂ , we perform
the modified QSVE on this matrix using the input
state |T̂ (i, :,m)〉 and truncate the resulting singu-
lar values with threshold τm, m = 0, · · · , N3 − 1
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obtaining the state |T̂≥τ (i, :,m)〉. Stacking tubes
T̂≥τ (i, :,m) (m = 0, . . . , N − 1) yields the horizon-
tal slice T̂≥τ (i, :, :) which can be regarded as an ap-
proximation of T̂ (i, :, :). After the inverse QFT on
T̂≥τ (i, :, :), the horizontal slice T≥τ (i, :, :) is obtained.
We prove in Section 3.3 that T≥τ (i, :, :) is an approx-
imation of T (i, :, :), hence it can approximate user i’s
preference A(i, :, :).

The approximation tensor T≥τ is non-sparse in
general, thus we can get a recommended index based
on the non-zero entries of T≥τ . For a given context
t, our algorithm provides a recommended product
index j for a user i by just measuring the output
quantum state |T≥τ (i, :, :)〉 in the computational ba-
sis. In Theorem 5, we provide an upper bound on
the probability of the pair (i, j, t) being a bad rec-
ommendation. This upper bound could be small by
taking reasonable values for the related parameters.

Assumption 1. The following assumptions are
used in Algorithm 2.

1. Every frontal slice of the subsample tensor T ∈
RN×N×N is stored in the data structure as men-
tioned in Lemma 2.

2. For all i,m = 0, · · · , N−1, we assume the tubes
A(i, :,m) satisfy

1

1 + γ

||A||2F
N2

≤ ||A(i, :,m)||22 ≤ (1 + γ)
||A||2F
N2

(6)

for a given γ > 0.

The second assumption indicates that users are all
typical users, that is, the number of preferred prod-
ucts of users is close to the average in any context
m. These assumptions are also adopted in [18] for
matrices, where they explain the rationality of these
assumptions.

3.2 The algorithm

Given the hidden preference tensor A, the sampling
probability p , the assumed low tubal-rank k, and the

precision ε
(m)
SVE of the modified QSVE on each T̂ (m),

Algorithm 2 outputs the state corresponding to the
approximation of the i-th horizontal slice A(i, :, :).
The quantum circuits of Algorithm 2 is shown in
FIG. 3. In what follows we explain the steps of this
algorithm.

The dynamic preference tensor A ∈ RN×N×N
can be interpreted as the preference matrix A(:, :, t)
evolving over the context t. It is reasonable to be-
lieve that the tubes A(i, :, 0), · · · ,A(i, :, N − 1) are
related to each other because the preference of the
same user i in different contexts is mutually influ-
enced. Considering these relations, we merge tubes
in the same horizontal slice together through the
QFT after getting the subsample tensor T . In other
words, in Step 1, the QFT is performed on the last
register of the input state

|T (i, :, :)〉 =
1

||T (i, :, :)||F

N−1∑
j,t=0

T (i, j, t) |j〉d |t〉e (7)

to get

|T̂ (i, :, :)〉

=
1

||T (i, :, :)||F

N−1∑
m=0

||T̂ (i, :,m)||2 |T̂ (i, :,m)〉d |m〉e ,

(8)

where ω = e2πi/N and

|T̂ (i, :,m)〉

=
1√

N ||T̂ (i, :,m)||2

N−1∑
j,t=0

ωtmT (i, j, t) |j〉 . (9)

Note that ||T̂ (i, :, :)||F = ||T (i, :, :)||F , since the
Frobenius norm does not change under the Fourier
transform. In FIG. 3, the input state |T (i, :, :)〉 is
represented in lines d and e with dlogNe qubits, and
the QFT is denoted as F in line e. The quantum
cost and circuit for QFT are given in Appendix E.1.

In Step 2, a controlled operator

U =
N−1∑
m=0

U
(m)
SVE ⊗ |m〉 〈m|

e (10)

is performed on the state |T̂ (i, :, :)〉, where U
(m)
SVE

denotes the modified quantum singular value esti-
mation process on the matrix T̂ (m) with the input

|T̂ (i, :,m)〉. As U
(m)
SVE follows similar steps of QSVE,

its circuit is also similar to that of QSVE given in

FIG. 8. The detailed process of U
(m)
SVE is described

in Theorem 4 and Appendix A. The quantum cost
of implementing the operator U is analyzed in Ap-
pendix E.3. Because of the quantum parallelism,
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the operator U performed on the superposition state

|T̂ (i, :, :)〉 is thus equivalent to U
(m)
SVE performed on

each of the components |T̂ (i, :,m)〉 as a single input,
i.e.,

U |T̂ (i, :, :)〉 =
1

||T (i, :, :)||F
N−1∑
m=0

||T̂ (i, :,m)||2
(
U

(m)
SVE |T̂ (i, :,m)〉d

)
|m〉e . (11)

Next, we focus on U
(m)
SVE |T̂ (i, :,m)〉d in (11). Sup-

pose
N−1∑
j=0

σ̂
(m)
j û

(m)
j v̂

(m)†
j is the svd of T̂ (m), we first

express |T̂ (i, :,m)〉 under the basis of v̂
(m)
j , j =

0, · · · , N − 1, i.e.,

|T̂ (i, :,m)〉 =

N−1∑
j=0

β
(im)
j |v̂(m)

j 〉 , (12)

then we perform the modified QSVE U
(m)
SVE on T̂ (m),

The detail of this operation is further illustrated in
the following theorem.

Theorem 4. Given every frontal slice of T stored in
the data structure as mentioned in Lemma 2, there

is a quantum algorithm, denoted as U
(m)
SVE, that uses

the input |T̂ (i, :,m)〉 in the form (12) and outputs
the state ∑

j

β
(im)
j |v̂(m)

j 〉
d
|σ̂(m)
j 〉

b
(13)

with probability at least 1 − 1/poly(N), where v̂
(m)
j

is the right singular vector of T̂ (m), and σ̂
(m)
j is

an estimate of σ̂
(m)
j satisfying |σ̂(m)

j − σ̂
(m)
j | ≤

ε
(m)
SVE||T̂ (m)||F . The running time to implement U

(m)
SVE

is O
(
NpolylogN/ε

(m)
SVE

)
.

Proof. See the proof in Appendix A.

Remark 2. It should be noticed that the process

U
(m)
SVE proposed in Theorem 4 is distinct from the

traditional QSVE technique stated in Section 2.3.
Specifically, Theorem 4 shows that we can estimate
the singular values of T̂ (m) if every frontal slice of
original subsample tensor T (k) is stored in the data
structure, m, k = 0, · · · , N − 1. The proof of Theo-
rem 4 presents a detailed illustration of the procedure

of U
(m)
SVE.

Similar with the quantum singular value decom-
position for matrices [38] that the output allows sin-
gular values and associated singular vectors to be re-
vealed in a quantum form, the state in (13) also finds
the estimated singular values of T̂ (m) and store them
in the third register, superposed with correspond-
ing singular vectors. Therefore, combining (11) and
(13), the state after Step 2 is

1

||T (i, :, :)||F

∑
m,j

||T̂ (i, :,m)||2β(im)
j |v̂(m)

j 〉
d
|σ̂(m)
j 〉

b
|m〉e

, |ξ1〉 , (14)

In Steps 3-5, our goal is to project each tube
T̂ (i, :,m) onto the subspace spanned by the right

singular vectors v̂
(m)
j corresponding to singular val-

ues greater than the threshold τm. As shown in FIG.
3, in Step 3, we first add an ancillary register |0〉a
and then apply a unitary operator

V =

N−1∑
m=0

V (m) ⊗ |m〉 〈m|e (15)

acting on the registers b and a controlled by the reg-
ister e, where V (m) is a 2-qubit conditional rota-
tion gate that maps |h〉b |0〉a → |h〉b |1〉a if h < τm
and |h〉b |0〉a → |h〉b |0〉a otherwise. Therefore, after
Step 3, we get

|ξ2〉 =
1

||T (i, :, :)||F

N−1∑
m=0

||T̂ (i, :,m)||2 ∑
j:σ̂

(m)
j ≥τm

β
(im)
j |v̂(m)

j 〉
d
|σ̂(m)
j 〉

b
|0〉a

+
∑

j:σ̂
(m)
j <τm

β
(im)
j |v̂(m)

j 〉
d
|σ̂(m)
j 〉

b
|1〉a

 |m〉e .
(16)

In Step 4, we apply the inverse modified QSVE

which is denoted as U
(m)†
SVE in FIG. 3, and discard

the register b. Then we measure line a, i.e. the
last register of (16), and postselect the outcome |0〉a,
getting

|ξ3〉 =
1

α

N−1∑
m=0

∑
j,≥τm

β
(im)
j ||T̂ (i, :,m)||2 |v̂(m)

j 〉
d
|m〉e ,

(17)
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where α =

√√√√N−1∑
m=0

∑
j,≥τm

||T̂ (i, :,m)||22 · |β
(im)
j |2. The

probability that we obtain the outcome |0〉 in Step
4 is

||T̂≥τ (i, :, :)||2F
||T (i, :, :)||2F

, (18)

where T̂≥τ denotes the tensor whose m-th frontal

slice is T̂
(m)
≥τm obtained by truncating T̂ (m) with

threshold τm. Hence, based on amplitude am-
plification, we have to repeat the measurement

O
(
||T (i,:,:)||F
||T̂≥τ (i,:,:)||F

)
times to ensure the success prob-

ability of getting the outcome |0〉 is close to 1.
Comparing (12) with (17), we find that the unnor-

malized state
∑

j,≥τm β
(im)
j ||T̂ (i, :,m)||2 |v̂(m)

j 〉 can

be seen as an approximation of T̂ (i, :,m), m =
0, · · · , N − 1. Hence, |ξ3〉 corresponds to an approx-
imation of |T̂ (i, :, :)〉 .

In Step 5, we perform the inverse QFT, denoted
as F † in line e of FIG. 3, on |ξ3〉 in (17) to get the
final state

|ξ4〉 =
1

α
√
N

N−1∑
t,m=0

∑
j,≥τm

β
(im)
j ω−tm

||T̂ (i, :,m)||2 |v̂(m)
j 〉

d
|t〉e , (19)

which corresponds to an approximation of T (i, :, :),
and thus it can also be regarded as an approximation
of A(i, :, :).

In the last step, user i is recommended a prod-
uct j varying with different contexts as needed by
measuring the output state |ξ4〉. For example, if we
need the recommended index at a certain context t0,
we can first measure the last register of |ξ4〉 in the
computational basis and postselect the outcome |t0〉
in line e, as is shown in FIG. 3, obtaining the state
propositional to (unnormalized)

N−1∑
m=0

∑
j,≥τm

β
(im)
j ω−t0m||T̂ (i, :,m)||2 |v̂(m)

j 〉
d
. (20)

We next measure this state in the computational ba-
sis to get an index j which is proved to be a good
recommendation for user i at context t0.

Algorithm 2 is summarized below, whose circuit
is shown in FIG. 3.

Algorithm 2 Quantum algorithm for recommenda-
tion systems modeled by third-order tensors

Require: Assumption 1, a user index i, the state
|T (i, :, :)〉 corresponding to the preference informa-

tion of user i, precision ε
(m)
SVE, the truncation thresh-

old τm, m = 0, · · · , N − 1, and a context t0.
Output: the recommended index j for the user

i at the context t0.

1: Perform the QFT on the last register of the input
state |T (i, :, :)〉, to obtain |T̂ (i, :, :)〉 in (8).

2: Perform the modified QSVE on the matrix T̂ (m)

parallelly, using the input |T̂ (i, :, :)〉 with preci-

sion ε
(m)
SVE, m = 0, · · · , N−1, to get the state |ξ1〉

defined in (14).
3: Add an ancilla qubit |0〉a and apply a unitary

transformation V in (15) to obtain the state |ξ2〉
in (16).

4: Apply the inverse modified QSVE and discard
the register b, then measure the ancilla register
a in the computational basis and postselect the
outcome |0〉, then delete the register a, obtaining
the state |ξ3〉 in (17).

5: Perform the inverse QFT on the register e, to
get |ξ4〉 in (19).

6: Measure the register e in the computational ba-
sis and postselect the outcome |t0〉. Then mea-
sure the register d in the computational basis to
get the index j.

Figure 3: Circuit for Algorithm 2, and the process of

U
(m)
SVE is given in the proof of Theorem 4 in

Appendix A.

3.3 Error analysis

In this section, the i-th horizontal slice of the tensor
T≥τ is proved to be an approximation of A(i, :, :).
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Then sampling from the matrix T≥τ (i, :, :) yields
good recommendations for user i; see Theorem 5.
The following two lemmas, Lemmas 4 and 5, are used
in the proof of Theorem 5. The proofs of Lemma 5
and Theorem 5 can be found in Appendices B and
C respectively.

Lemma 4. [18] Let Ã be an approximation of the
matrix A such that ||A − Ã||F ≤ ε||A||F . Then, the
probability that sampling from Ã provides a bad rec-
ommendation is

Pr
(i,j)∼Ã

[(i, j)bad] ≤
(

ε

1− ε

)2

. (21)

Lemma 5. Let A ∈ RN×N be a matrix and Ak be the
best rank-k approximation such that ||A − Ak||F ≤
ε||A||F . If the threshold for truncating the singular

values of A is chosen as σ = ε||A||F√
k

, then

||A−A≥σ||F ≤ 2ε||A||F . (22)

Theorem 5. Let Assumption 1 holds. For each m =

0, . . . , N−1, assume ε(m) satisfies ||T̂ (m)−T̂ (m)
k ||F ≤

ε(m)||T̂ (m)||F . Define τm = ε(m)||T̂ (m)||F√
k

. Algorithm

2 outputs the state |T≥τ (i, :, :)〉 corresponding to an
approximation of A(i, :, :) such that there are at least
(1− δ)N users, of which each user i satisfies

||A(i, :, :)− T≥τ (i, :, :)||F ≤ ε||A(i, :, :)||F (23)

with probability at least p1 = 1 − e−ζ
2
(

1
p
−1

) ||A||2F
3N(1+γ) ,

where δ, γ, ζ ∈ (0, 1). The precision ε in (23) is

ε = 10(1+ζ)(1−p)δ+11ε0(1+γ)
10δp , where p is the subsam-

pling probability and ε0 = 2 max
m

ε(m). Moreover, let

t be chosen uniformly from 0 to N−1. The probabil-
ity that sampling according to T≥τ (i, :, t) (equivalent
to measuring the state |T≥τ (i, :, t)〉 in the computa-
tional basis) provides a bad recommendation is

Pr
t∼UN ,j∼T≥τ (i,:,t)

[(i, j, t)bad] ≤
(

ε

1− ε

)2

(24)

It should be noted that by taking reasonable val-
ues for the parameters δ, γ, ζ, p, our algorithm can
produce good recommendations with high probabil-
ity, in other words, the probability p1 is close to 1
and the precision ε could be comparatively small.

3.4 Complexity analysis

The complexity of Algorithm 2 is given by the fol-
lowing result.

Theorem 6. With notation given in Theorem 5, for
at least (1− δ)N users, Algorithm 2 outputs an ap-
proximation state of |A(i, :, :)〉 with time complexity

O
(√

kNpolylog(N)(1+γ)

min
m

ε(m)(1+ε)
√
p

)
. For suitably chosen values

of parameters δ, ζ, γ, p and ε(m), the running time of

Algorithm 2 is O
(√

kNpolylog(N)
)
.

The proof of Theorem 6 can be found in Appendix
D.

4 Simulations

In this section, we numerically validate our model
with recommendation systems tasks. As we do not
have a large-scale quantum computer, to validate our
quantum algorithm, we investigate the performance
of its classical counterpart, namely, truncated t-svd
[19], on real datasets in the classical computer. Due
to the closeness, the testing results should be true
for a fault-tolerant quantum computer.

4.1 Experimental setting

We choose three multiverse recommendation sys-
tems algorithms that are based on tensor decom-
positions: T-HOSVD [21], TT decomposition [29],
a Collaborative Filtering method (TF & SGD) [16],
and compare them to truncated t-svd. All the exper-
iments are performed under Windows 10, Python 3.7
and MATLAB R2016b running on a desktop (Intel
Core i7 @ 3.60 GHz, 32.0G RAM). In each experi-
ment we repeat 10 times and average the results.

In order to evaluate the performance of differ-
ent methods, we compare the relative square error
(RSE) defined in dB, mean absolute error (MAE),
and root mean square error (RMSE), which are de-
fined as follows

RSE = 20 log10(‖T≥τ −A‖F /‖A‖F ), (25)

MAE =
1

K

∑
i,j,k

Dijk
∣∣∣(T≥τ )ijk −Aijk

∣∣∣ , (26)

RMSE = ‖T≥τ −A‖F /
√
K, (27)
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where K is the total number of observed ratings,
D ∈ {0, 1}N1×N2×N3 is a binary tensor with nonzero
entries Dijk whenever Aijk is observed. These three
measures are widely used in the recommendation
systems literature.

4.2 Data

We test these four algorithms on two real datasets:
Yahoo! Webscope Movies and Movielens, which are
described as follows:

• For Yahoo! Webscope Movies dataset1 with
7642 users, 11915 movies and 221K ratings in
a {1, · · · , 5} scale, we select the first 800 users
and 4623 corresponding movies. Besides, the
original Yahoo! Webscope Movies dataset con-
tains user age and gender features. We choose
user’s year of birth as the third dimension and
consider it as the context variable. Therefore,
the size of resulting tensor is 800 × 4623 × 51
with 23782 nonzero entries.

• Movielens2 is the benchmark dataset in rec-
ommendation systems. Here we choose the
”Movielens-latest-small” dataset, which has 610
users, 9742 movies and 100K ratings with a
timestamp. For preprocessing the data, we
divide the timestamps that users give ratings
into 60 timeslots, obtaining a third-order ten-
sor A ∈ R610×9742×60 in which the three modes
represents users, movies, and time respectively.

4.3 Comparison result

In FIGs. 4 and 5, the RSE, MAE, and RMSE val-
ues obtained by different methods are plotted for
Yahoo! Webscope Movies and Movielens datasets
respectively with 80% sampling probability. We first
compare truncated t-svd, T-HOSVD, and TT meth-
ods since they do not require optimization and they
all follow similar procedures. T-HOSVD is com-
posed of a core tensor and unitary matrices storing
the principal compoments of each mode. TT decom-
position represents a tensor as the link structure of
each core tensor. The truncation rank is (k, k, k)
for k ranging from 5 to 50. Here, (k, k, k) refers
to the multi-rank of t-svd, the multilinear rank of

1Webscope v1.0, http://research.yahoo.com/
2grouplens.org/datasets/movielens

T-HOSVD, and the TT rank of TT decomposition.
We can observe that the RSE values obtained by
truncated t-svd are much lower than those obtained
by T-HOSVD and TT decompositions. When k is
greater than 20 (for Yahoo!) or 8 (for Movielens),
the RMSE and MAE values of truncated t-svd are
also lower than T-HOSVD and TT.

Moreover, to validate the effectiveness of our al-
gorithm, we also evaluate the average probability
of providing a bad recommendation, denoted as
Pr[bad], when we sample according to T≥τ . Here,
we calculate Pr[bad] by

Pr[bad] =
1

N

N−1∑
i=0

(
εi

1− εi

)2

, (28)

where εi = ‖T≥τ (i, :, :)−A(i, :, :)‖F /‖A(i, :, :)‖F
and N refers to the number of users in the dataset.
Our theoretical basis is Lemma 4 and Theorem 5.
The curves of Pr[bad] are plotted in the bottom right
of FIGs. 4 and 5. In summary, truncated t-svd has
better performance than T-HOSVD and TT when
applied to context-aware recommendation systems
datasets.

Figure 4: The comparison results on Yahoo! Web-
scope Movies dataset. The top-left, top-right
and bottom-left figures plot the RSE, MAE,
RMSE against truncation rank k respectively.
The bottom-right figure shows that the aver-
age probability of providing a bad recommen-
dation.
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Figure 5: The comparison results on Movielens dataset.

In [16], the authors introduce a Collaborative Fil-
tering method based on Tensor Factorization (TF
& SGD) in Multiverse Recommendation model. To
train this model, they minimize the regularized risk
function by stochastic gradient descent (SGD). Due
to the use of SGD algorithm, the computational cost
is increased and the algorithm can be sensitive to ini-
tial guess. We compare the MAE values and average
running time of truncated t-svd and TF & SGD on
Yahoo! Webscope Movies dataset; see FIG. 6. For
TF & SGD, the regularization parameters for fac-
tor matrices and core tensor are all set as 0.1, and
their initial learning rates are all set as 0.001. The
multilinear rank is set as dU = dM = dC = k. We
can observe that the MAE values of TF & SGD is
comparatively stable with k. When k ≥ 14, the
truncated t-svd performs better than TF & SGD in
MAE. Moreover, the average running time of trun-
cated t-svd is only around one fifth to one third of
the time of TF & SGD.

Figure 6: The MAE and average running time of trun-
cated t-svd and TF & SGD algorithms on Ya-
hoo! Webscope Movies dataset.

5 Relations with Tang’s algo-
rithms

In this section, we compare our 3D quantum algo-
rithm with Tang’s 2D quantum-inspired recommen-
dation systems algorithm. For a 2D recommenda-
tion system modeled by an N × N matrix, Tang’s
quantum-inspired algorithm [47] was shown to have
complexity O(poly(k)polylog(N)), an exponential
speedup compared to other classical methods, only
polynomially slower than Kerenidis and Prakash’s
quantum algorithm [18]. This raised the question
of whether Tang’s algorithm was actually useful in
practice. In order to study its practical performance,
Lloyd et al. investigated Tang’s 2D recommendation
systems algorithm [2]. They commented that Tang’s
algorithm is only advantageous for preference ma-
trix with extremely large dimension, very low rank
and low condition number. However, it remains un-
clear whether such kind of datasets actually exists
in practice. They also found that Tang’s algorithm
takes more time and suffers higher inaccuracies than
the classical exact diagonalization method. Kereni-
dis and Prakash [17] also commented that this high
dependence on the rank and other parameters makes
Tang’s algorithm impractical. Therefore, it is un-
likely that Tang’s algorithm can replace Kerenidis
and Prakash’s algorithm in practical 2D recommen-
dation systems.

Moreover, both Tang and Kerenidis and Prakash’s
algorithms are for 2D recommendation systems, and
our proposed quantum algorithm, Algorithm 2, is
for 3D recommendation systems. To our best knowl-
edge, there is no previous work on quantum-inspired
classical algorithm of 3D recommendation systems.
Clearly, this is a very interesting and practically
important problem. Hence, here we would like to
share our understandings on how to extend Tang’s
quantum-inspired techniques to third-order recom-
mendation systems.

To our understanding, there are at least two dif-
ficulties in extending quantum-inspired classical al-
gorithms from 2D to 3D recommendation systems.
First, as the product that a user prefers in a cer-
tain context is very likely to affect the recommen-
dation for him/her at other contexts, the relations
among different frontal slices (a matrix of users ×
products) of the preference tensor should be taken
into account. Our quantum algorithm addresses this

12



problem very well because the QFT is performed to
combine a user’s preferences in different contexts.
On the other hand, if we extend Tang’ idea to third-
order recommendation systems, the immediate idea
is to apply Tang’s 2D recommendation systems algo-
rithm to every frontal slice of the preference tensor,
but this idea fails to consider the preference corre-
lations among different contexts for a certain user.
In order to take this factor into consideration, the
rough idea is to apply DFT to each horizontal slice
of the preference tensor in order to achieve the same
effect as QFT. It is easy to see that the complexity of
this step is O(N3log(N)). If we choose any unitary
transformation to substitute DFT, which is adopted
in the transformed t-svd [45], the complexity will be
O(N3.3). In either case, the complexity of this step
alone exceeds that of our quantum algorithm for 3D
recommendation systems. Therefore, how to control
the complexity of quantum-inspired classical algo-
rithms for 3D recommendation systems is the first
obstacle we need to overcome. Another difficulty
is how to guarantee that the designed quantum-
inspired algorithm is useful in practice, or suitable
for real datasets.

6 Conclusion

In this paper, we proposed the first quantum al-
gorithm for context-aware recommendation systems
modeled by third-order tensors. Moreover, we
showed that this quantum algorithm can provide
good recommendations varying with contexts and
run in expected time O(

√
kNpolylog(N)) for some

suitable parameters. The numerical simulation vali-
dates our algorithm.
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15203619, No. 15506619) and Shenzhen Funda-
mental Research Fund, China under Grant No.
JCYJ20190813165207290.

A The proof of Theorem 4

Before proving Theorem 4, we would like to sketch
the proof first. According to Assumption 1, each
frontal slice T (k) is stored in the binary tree struc-
ture. Hence, based on the proof of Lemma 3 in [18],

the states |T (i, :, k)〉, corresponding to the i-th row
of T (k), can be prepared efficiently by operators Pk.
Based on these operators, two new isometries P̂m
and Q̂m are constructed in order to perform QSVE
on T̂ (m). The detail of the proof is given below.

Proof. Since every T (k), k = 0, · · · , N−1, is stored in
the binary tree structure, the quantum computer can
perform the following mapping in O(polylog(N))
time, as shown in Theorem 5.1 in [18]:

UPk : |i〉 |0〉

→ |i〉 |T (i, :, k)〉 =
1

||T (i, :, k)||2

N−1∑
j=0

Tijk |i〉 |j〉 ,

(29)

where T (i, :, k) is the i-th row of T (k).
Define the degenerate operator Pk ∈ RN2×N re-

lated to UPk as

Pk : |i〉 → |i〉 |T (i, :, k)〉 . (30)

That is,

Pk =
N−1∑
i=0

|i〉 |T (i, :, k)〉 〈i| . (31)

Based on the efficiently implemented operator
UPk , we define another operator

UP̂m ,
1√
N

N−1∑
k=0

ωkmUPk. (32)

It can be easily seen that the opera-
tor UP̂m achieves the state preparation of

the rows of the matrix T̂ (m), i.e., UP̂m =
1√
N

∑N−1
k=0

∑N−1
i=0 ωkm |i〉 |T (i, :, k)〉 〈i| 〈0| =∑

i |i〉 |T̂ (i, :,m)〉 〈i| 〈0|, where |T̂ (i, :,m)〉 is the

state of the i-th row of T̂ (m). Similarly, the isometry
corresponding to UP̂m is P̂m =

∑
i |i〉 |T̂ (i, :,m)〉 〈i|.

It can be easily shown that P̂m is an isometry since
P̂ †mP̂m = IN . Since UPk can be implemented in
time O(polylog(N)), UP̂m can be implemented in
time O(NpolylogN) using the linear combination
of unitaries (LCU) technique [6, 43, 24, 44, 23].

The LCU technique was first proposed by Long
in their work [23] in a more general form, and Shao
summarized this result in [44]. The problem of
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LCU can be formulated as follows: Given αi ∈ C
and unitary operators Ui, i = 0, 1, · · · , N − 1,
implement linear operator L =

∑N−1
j=0 αjUj .

The algorithm stated in [6] implements L in
time O((Tin + logN)N maxj |αj |/||L |ψ〉 ||), where
|ψ〉 is any given initial state and Tin is the
time to implement U0, U1, · · · , UN−1. In our
case, Tin = NpolylogN , αj = ωkm/

√
N and

the input state is chosen as |ψ〉 =
∑N

i=0 |i〉 |0〉.
Thus, ||L |ψ〉 || = || 1√

N

∑N−1
k=0 ω

kmUPk |ψ〉 || =

|| 1√
N

∑N−1
k=0

∑N−1
i=0 ωkm |i〉 |T (i, :, k)〉 || =

√
N .

Therefore, the complexity to implement UP̂m is
O(NpolylogN).

Next, we define the mapping

UQ̂m : |0〉 |j〉 → |sT̂ (m)〉 |j〉

=
1

||T̂ (m)||F

∑
i

||T̂ (i, :,m)||2 |i〉 |j〉 ,

(33)

where sT̂ (m) is a vector whose i-th entry is ||T̂ (i,:,m)||
||T̂ (m)||F

.

Similar with UP̂m , the corresponding isometry is de-

fined as Q̂m =
∑

j |sT̂ (m)〉 |j〉 〈j| satisfying Q̂†mQ̂m =
IN , which can be verified easily.

Now we perform QSVE on the matrix T̂ (m). First,

the factorization T̂ (m)

||T̂ (m)||F
= P̂ †mQ̂m can be easily ver-

ified. Second, we can prove that 2P̂mP̂
†
m − IN2 is a

reflection and it be implemented through UP̂m . Ac-
tually,

2P̂mP̂
†
m − IN2

=2
∑
i

|i〉 |T̂ (i, :,m)〉 〈i| 〈T̂ (i, :,m)| − IN2

=UP̂m

[
2
∑
i

|i〉 |0〉 〈i| 〈0| − IN2

]
U †
P̂m
, (34)

where 2
∑

i |i〉 |0〉 〈i| 〈0| − IN2 is a reflection. The

similar result holds for 2Q̂mQ̂
†
m − IN2 .

Now denote

Wm =
(

2P̂mP̂
†
m − IN2

)(
2Q̂mQ̂

†
m − IN2

)
. (35)

Let T̂ (m) =
∑r−1

i=0 σ̂
(m)
i û

(m)
i v̂

(m)†
i be the singular

value decomposition of T̂ (m). We can prove that

the subspace spanned by {Q̂m |v̂(m)
i 〉 , P̂m |û

(m)
i 〉} is

invariant under the unitary transformation Wm:

WmQ̂m |v̂(m)
i 〉 =

2σ̂
(m)
i

||T̂ (m)||F
P̂m |û(m)

i 〉 −Q |v̂
(m)
i 〉 ,

WmP̂m |û(m)
i 〉 =(

4σ̂2i
||T̂ (m)||F

− 1

)
P̂m |û(m)

i 〉 −
2σ̂i

||T̂ (m)||F
Q̂m |v̂(m)

i 〉 .

The matrix Wm can be calculated under an or-
thonormal basis using the Schmidt orthogonaliza-
tion. It is a rotation in the subspace spanned by its

eigenvectors |ω(m)
i± 〉 with correspondent eigenvalues

e±iθ
(m)
i , where θ

(m)
i is the rotation angle satisfying

cos(θ
(m)
i /2) =

σ̂
(m)
i

||T̂ (m)||F
, (36)

that is,

Q̂m |v̂(m)
i 〉 =

√
2
(
|ω(m)
i+ 〉+ |ω(m)

i− 〉
)
,

P̂m |û(m)
i 〉 =

√
2
(
eiθi/2 |ω(m)

i+ 〉+ e−iθi/2 |ω(m)
i− 〉

)
.

Here, we choose the input state |T̂ (i, :,m)〉 repre-
sented in (12), then

Q̂m |T̂ (i, :,m)〉 =

N−1∑
j=0

√
2β

(im)
j

(
|ω(m)
i+ 〉+ |ω(m)

i− 〉
)
.

(37)

Performing the phase estimation on Wm with run-

ning time O
(
NpolylogN/ε

(m)
SVE

)
, and computing the

estimated singular value of T̂ (m) through oracle with
a computable function f(x) = ||T̂ (m)||F cos(x/2).

According to the relations between θ
(m)
i and σ̂

(m)
i

in (36), we obtain

N−1∑
j=0

√
2β

(im)
j

(
|ω(m)
i+ 〉 |θ

(m)
i 〉+ |ω(m)

i− 〉 |−θ
(m)
i 〉

)
|σ(m)
i 〉 .

(38)

we next uncompute the phase estimation procedure
and then apply the inverse of UQ̂m to obtain the
desired state (13) in Theorem 4.

B The proof of Lemma 5

Proof. Let σi denote the singular value of A and l
be the largest integer for which σl ≥ ε||A||F√

k
. By the

triangle inequality, ||A − A≥σ||F ≤ ||A − Ak||F +
||Ak − A≥σ||F . If k ≤ l, it’s easy to conclude that

14



||Ak − A≥σ||F ≤ ||A − Ak||F ≤ ε||A||F . If k > l,

||Ak−A≥σ||2F =
∑k

i=l+1 σ
2
i ≤ kσ2l+1 ≤ k

(
ε||A||F√

k

)2
≤

(ε||A||F )2. In either case, we have ||A − A≥σ||F ≤
2ε||A||F .

C The proof of Theorem 5

Proof. Based on Lemma 5 in the main text, if
the best rank-k approximation satisfies ||T̂ (m) −
T̂
(m)
k ||F ≤ ε(m)||T̂ (m)||F , then

||T̂ (m) − T̂ (m)
≥τm ||F ≤ 2ε(m)||T̂ (m)||F ≤ ε0||T̂ (m)||F

(39)

for m = 0, · · · , N−1. By summing both sides of (39)
over m, we get

||T̂ − T̂≥τ ||2F =
N−1∑
m=0

||T̂ (m) − T̂ (m)
≥τm ||

2
F ≤ ε20||T̂ ||2F .

(40)

Since the inverse QFT along the third mode of the
tensor T cannot change the Frobenius norm of its
horizontal slice, (40) can be be re-written as

||T − T≥τ ||2F ≤ ε20||T ||2F . (41)

Moreover, noticing that ||T − T≥τ ||2F =∑N−1
i=0 ||T (i, :, :) − T≥τ (i, :, :)||2F , we have

E
(
||T (i, :, :)− T≥τ (i, :, :)||2F

)
≤ ε20||T ||2F

N . Due to
Markov’s Inequality ([41, Proposition 2.6]), for
δ ∈ (0, 1),

Pr

(
||T (i, :, :)− T≥τ (i, :, :)||2F >

ε20||T ||2F
δN

)
≤

E
(
||T (i, :, :)− T≥τ (i, :, :)||2F

)
δN

ε20||T ||2F
≤ δ (42)

holds. That means at least (1− δ)N users i satisfy

||T (i, :, :)− T≥τ (i, :, :)||2F ≤
ε20||T ||2F
δN

. (43)

Notice E
(
||T ||2F

)
= ||A||2F /p. Using the Cher-

noff bound, we have Pr
(
||T ||2F > (1 + θ)||A||2F /p

)
≤

e−θ
2||A||2F /3p for θ ∈ [0, 1], which is exponentially

small. Here, we choose θ = 1/10, then ||T ||2F ≤
11||A||2F /10p.

Based on the second assumption in Assumption 1,
we sum both sides of (6) for m and i respectively,
obtaining

1

1 + γ

||A||2F
N

≤ ||A(i, :, :)||2F ≤ (1 + γ)
||A||2F
N

, (44)

and

1

1 + γ

||A||2F
N

≤ ||A(m)||2F ≤ (1 + γ)
||A||2F
N

. (45)

Then, (43) becomes

||T (i, :, :)− T≥τ (i, :, :)||2F ≤
11ε20(1 + γ)

10δp
||A(i, :, :)||2F .

(46)

Meanwhile, since

E
(
||A(i, :, :)− T (i, :, :)||2F

)
=

(
1

p
− 1

)
||A(i, :, :)||2F ,

then

Pr
(
||A(i, :, :)− T (i, :, :)||2F > ν||A(i, :, :)||2F

)
≤ e−ζ

2
(

1
p
−1

) ||A||2F
3N(1+γ) , (47)

where ν = (1 + ζ)
(
1
p − 1

)
and ζ ∈ (0, 1). That

means with probability at least p1,

||A(i, :, :)− T (i, :, :)||2F ≤ ν||A(i, :, :)||2F . (48)

Combining (46) and (48) together and by triangle
inequality, we obtain

||A(i, :, :)− T≥τ (i, :, :)||F ≤ ε||A(i, :, :)||F . (49)

According to Lemma 4, the probability that sam-
pling according to T≥τ (i, :, :) provides a bad recom-
mendation is

Pr
t∼UN ,j∼T≥τ (i,:,t)

[(i, j, t)bad] ≤
(

ε

1− ε

)2

. (50)

D The proof of Theorem 6

Proof. According to Theorem 4, the modified QSVE
algorithm performed on the frontal slice T̂ (m) takes

time O
(
Npolylog(N)/ε

(m)
SVE

)
.
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In Step 5 of Algorithm 2, we need to repeat the

measurement O
(
||T (i,:,:)||F
||T̂≥τ (i,:,:)||F

)
times in order to en-

sure the probability of getting the outcome |0〉 in
this step is close to 1. For most users, we can prove
that ||T (i,:,:)||F

||T̂≥τ (i,:,:)||F
is bounded and the upper bound is

a constant for appropriate parameters. The proof is
in the following.

Since E
(
||T (i, :, :)||2F

)
=
||T (i,:,:)||2F

p ≤ (1 + γ)
||A||2F
pN ,

then by Chernoff bound,

||T (i, :, :)||2F ≤
2(1 + γ)||A||2F

pN
(51)

holds with probability close to 1. Moreover, by The-
orem 5, there are at least (1 − δ)N users satisfy-
ing ||A(i, :, :) − T≥τ (i, :, :)||F ≤ ε||A(i, :, :)||F , then
(1 + ε)||A(i, :, :)||F ≤ ||T≥τ (i, :, :)||F ≤ (1 + ε)||A(i, :
, :)||F . Since the Frobenius norm is unchanged under
the Fourier transform, we get

(1 + ε)||T̂(i)||F ≤ ||T̂≥τ (i, :, :)||F ≤ (1 + ε)||T̂(i)||F .
(52)

Therefore,

||T̂≥τ (i, :, :)||2F ≥ (1 + ε)2||T̂(i)||2F ≥
(1 + ε)2

1 + γ

||A||2F
N

.

(53)

Combining (51) and (53) together, we can con-

clude that for at least (1− δ)N users, ||T (i,:,:)||F
||T̂≥τ (i,:,:)||F

is

bounded, that is,

||T (i, :, :)||F
||T̂≥τ (i, :, :)||F

≤

(1 + γ)
2||A||2F
pN

(1+ε)2

1+γ
||A||2F
N

1/2

=

√
2(1 + γ)

(1 + ε)
√
p
.

(54)

The precision for the singular value estimation al-
gorithm on the matrix ||T̂ (m)||F can be chosen as

ε
(m)
SVE = τm

||T̂ (m)||F
. Therefore, the total time complex-

ity of Algorithm 2 is

(logN)4 · Npolylog(N)

min
m

ε
(m)
SVE

· ||T (i, :, :)||F
||T̂≥τ (i, :, :)||F

≤(logN)4Npolylog(N) max
m

||T̂ (m)||F
τm

·
√

2(1 + γ)

(1 + ε)
√
p

u
√
kNpolylog(N)(1 + γ)

min
m

ε(m)(1 + ε)
√
p

.

Here, we sort out the relations between these pa-
rameters. Given the assumed low tubal-rank k, the
precision for every frontal slice after Fourier trans-
form ε(m) is settled, then the precision for QSVE

ε
(m)
SVE and the truncation threshold τm are determined

subsequently. At last, the relative error ε and the
complexity of Algorithm 2 relate to all these param-
eters.

E The quantum cost

Defining the cost of quantum circuits is not an easy
task due to the fact that each quantum computer
model may have a different cost for a given quantum
gate. Here, the quantum cost of a reversible gate is
defined to be the number of 1×1 and 2×2 reversible
gates or quantum logic gates required in its design.
The quantum costs of all reversible 1× 1 and 2× 2
gates are taken as unity [4, 42, 49, 50]. The cost of a
circuit is calculated by summing up the costs of the
gates composing the circuit. First, we analysize the
quantum cost of QFT and QSVE circuits, then we
analyze the cost of each gate in FIG. 3.

E.1 The cost of QFT

The QFT under an orthonormal basis |x〉 ∈
{|0〉, . . . , |N − 1〉} is defined as the linear operator
with the following action on the basis vectors:

QFT : |x〉 → 1√
N

N−1∑
k=0

ωx·k|k〉,

where ω = e
2πi
N . The inverse QFT is then defined as

QFT† : |k〉 → 1√
N

N−1∑
x=0

ω−k·x|x〉.

The circuit of QFT, shown in FIG. 7, is composed
of a total number of O

(
dlogNe2

)
H gates, CNOT

gates, and controlled phase gate Rm (see [27, Section
5.1]), where

H =
1√
2

(
1 1
1 −1

)
, Rm =

(
1 0

0 e
2πi
2m

)

with m = 2, · · · , n, n = dlogNe.
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Figure 7: The circuit of QFT.

E.2 The cost of QSVE

The QSVE algorithm, originally proposed in [18],
is introduced in the preliminary part of the
manuscript. The QSVE algorithm and its circuit
are respectively given in Algorithm 3 and FIG. 8 be-
low. In what follows, we focus on the quantum cost
of this algorithm.

Let A ∈ RN×N be a matrix with singular value
decomposition A =

∑
i σiuiv

T
i stored in the binary

tree data structure introduced in Lemma 2. In Step
2 of Algorithm 3, the unitary UQ corresponding to
Q is defined as

UQ : |0〉 |j〉 → |Ã, j〉 =
1

‖A‖F

∑
i∈[N ]

‖Ai‖ |i, j〉 (55)

for j = 0, · · · , N − 1, where Ã is a vector whose i-th
row is Ãi = ‖Ai‖ for i ∈ [N ]. Since Ã is stored in a
classical binary tree with depth dlogNe, UQ can be
implemented by performing dlogNe controlled rota-

tions on |0〉⊗dlogNe (see [18, Appendix A]). To imple-
ment each controlled rotation

∑
θ̃∈{0,1}⊗dlogNe |θ̃〉〈θ̃|⊗

e−iY θ̃ with Pauli Y matrix Y =

[
0 −i
i 0

]
, we use one

rotation controlled on each qubit of the first register
which can be implemented with cost O(dlogNe) (see
[52, Lemma 2]). Therefore, the cost of implementing
UQ in Step 2 is

∑
dlogNe dlogNe2, i.e., O(dlogNe3).

Algorithm 3 Quantum singular value estimation

Input: A ∈ RN×N , x ∈ RN in the data structure
in Lemma 2, precision parameter ε > 0.

1: Create |x〉 =
∑

i αi |vi〉
2: Append a first register

∣∣0dlogme〉 and create the
state |Qx〉 =

∑
i αi |Qvi〉 as in (55).

3: Perform phase estimation with precision param-
eter 2ε > 0 on the input |Qx〉 for the unitary W
and obtain

∑
i αi

∣∣Qvi, θi〉 .
4: Compute σi = cos

(
θi/2

)
‖A‖F where θi is the

estimate from phase estimation, and uncompute
the output of the phase estimation.

5: Apply the inverse of the transformation in Step
2 to obtain

∑
i αi |vi〉 |σi〉.

|0〉 H

|0〉

UQ W20 W21 W2w

F† Uf

U
†
Q

· · ·

Figure 8: The circuit of QSVE algorithm. Uf is a
unitary operator implemented through or-
acle with a computable function f(x) =
||A||F cos(x/2). w = logN − 1.

In Step 3, we can prove that the quantum cost
of implementing the unitary W is O(NdlogNe3).
To be specific, notice that W = U · V, where
V = 2QQT − IN2 , U = 2PP T − IN2 =
UP (2

∑
i |i〉|0〉〈i|〈0| − IN2)U †P , and UP : |i〉 |0〉 →

|i, Ai〉 for i ∈ [N ]. The unitary operator
2
∑

i |i〉|0〉〈i|〈0| − IN2 can be realized by the cir-
cuit shown in FIG. 9. Since each row of the ma-
trix A is stored in the classical binary tree structure,
UP can be implemented with cost O(NdlogNe3), as
compared to the cost O(dlogNe3) of implementing
UQ. To summarize, a total cost of O(NdlogNe3)
is required to implement W if we ignore less signif-
icant cost. Next, we perform phase estimation on
W . When the singular values of W is precise to the
dlogNe-th bit, the total number of rotation gate in-
vocations is O

(
dlogNe2

)
(See [5, Section 5.2]). The

sequence of controlled-W 2j , j = 0, · · · , dlogNe − 1
operations in the phase estimation procedure can be
implemented using O(dlogNe3) gates by the mod-
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ular exponentiation technique (see [27, Box 5.2]).
Thus, the cost of Step 3 is O(NdlogNe3), which
dominates the cost of QSVE algorithm.

Figure 9: Quantum circuit to run
2
∑

i |i〉
⊗n |0〉 〈i|⊗n 〈0| − I⊗(n+1) for the

input state with n+ 1 qubits. The block Z is
the Pauli Z gate.

To summarize, the quantum cost of QSVE is
O(NdlogNe3).

E.3 The cost of the circuit in FIG. 3 for
Algorithm 2

As discussed in Appendix E.1, the circuit of QFT
in Step 1 of Algorithm 2 is composed of O(dlogNe2)
H gates, CNOT gates, and 2-qubit controlled phase
gates.

In Step 2, we give a rough estimation of the
cost of the controlled-unitary operator U defined
in (10). Current standard methods for realizing
controlled-unitary gates rely on the decomposition

of U
(m)
SVE into a set of 1 × 1 and 2 × 2 reversible

gates. Specifically, based on the method proposed
in [61], the number of additional operations required

to add a control to each U
(m)
SVE will generally be

far less than the cost of the constructed U
(m)
SVE, so

we next focus on estimating the cost of achieving

U
(m)
SVE,m = 0, · · · , N − 1. The most costy step of

this process lies in constructing the operator UP̂m in
(32), m = 0, · · · , N − 1. According to the analysis
in the paragraph above (33), implementing all UPk
in (29) for k = 0, · · · , N − 1 occupies the major cost
of achieving UP̂m ,m = 0, · · · , N − 1, which takes a

total of O(N2dlogNe3) 1 × 1 and 2 × 2 reversible
gates, since the cost of each UPk is O(NdlogNe3)
based on the cost of UP analyzed in Appendix E.2.
To summarize, the quantum cost of implementing
the operator U is O(N2dlogNe3).

In conclusion, the quantum cost of implementing
Algorithm 2 is O(N2dlogNe3), which is mainly con-
centrated in achieving the operator U if we ignore

the insignificant cost, such as the cost of implement-
ing the operator V in (29). Actually, it is reasonable
that the cost of Algorithm 2 is N times more ex-
pensive than that of the QSVE algorithm proposed
in [18]. The cost of the QSVE algorithm on ma-
trix A ∈ CN×N mainly concentrates on the cost of
quantum access to classical data with N rows of A
stored in N binary trees. By contrast, our algorithm
deals with tensor T ∈ RN×N×N whose N2 tubes are
assumed to be stored in N2 binary trees, so our al-
gorithm needs N times more gates than the QSVE
algorithm to quantum access to the data structure.

Since implementing the physical operations de-
pends on many factors, such as the initial quantum
circuit, the quantum computer to be performed on,
or the Hamiltonian of the system, the cost presented
here is not necessarily the true cost but it provides
a reference value. Also, it is not necessarily minimal
because it can be decreased by finding more efficient
quantum circuits.

The number of 1 × 1 and 2 × 2 reversible gates
required by our quantum algorithm scales polyno-
mially with the dimension of the preference tensor,
which presents a big obstacle to practical realization.
In fact, not only our algorithm and the QSVE algo-
rithm, but also some benchmark algorithms, such as
the HHL algorithm [13], appear too expensive to be
executed efficiently by a quantum computer and are
not likely to be feasible in the Noisy Intermediate-
Scale Quantum (NISQ) era; see [30, Sections 6.6 and
6.7], [44, Section 1.10]. Finally, we point out most
quantum machine learning algorithms focus on the
time complexity rather than their quantum cost; see,
e.g., [13, 36, 17, 6, 37].
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