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Ex-ante Tourism Forecasting Assessment 

 

ABSTRACT  

 

Although numerous studies have focused on forecasting international tourism demand, 

minimal light has been shed on the factors influencing the accuracy of real-world ex-ante 

forecasting. This study evaluates the forecasting errors across various prediction horizons by 

analyzing the annually published forecasts of the Pacific Asia Tourism Association (PATA) 

from 2013 to 2017, comprising 765 origin-destination pairs covering 31 destinations in the 

region. The regression analysis shows that the variation in tourism demand and gross 

domestic product (GDP), covariation between tourism demand and GDP, order of lagged 

variables, origin, destination, and forecasting method all have significant effects on the 

forecasting accuracy over different horizons. This suggests that tourism forecasting should 

account for these factors in the future.  

 

Keywords: International Tourism Demand, Forecasting Errors, Data Characteristics, 

Forecasting Horizons, Ex-ante Forecasts 
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1. Introduction 

The latest statistics released by the World Travel and Tourism Council (WTTC) show that 

when considering the direct, indirect, and induced effects on the economy (World Travel & 

Tourism Council (WTTC) 2020), the travel and tourism industry contributed 10.3% to total 

global gross domestic product (GDP) and accounted for 10.4% of global employment in 

2019. Given the importance of the tourism industry to the global economy, tourism 

policymakers, development experts, and industry practitioners have paid increasing attention 

over the past few decades to the management of the tourism sector’s contributions throughout 

the world, and particularly in developing countries.  

 

The perishability of tourism goods and services means there is a need for accurate and 

comprehensible tourism-demand forecasts (Archer 1987). Forecasts are crucial for 

government agencies and business stakeholders to develop effective policies and appropriate 

marketing strategies for promoting a destination’s tourism and economic development. Most 

tourism-related investments, such as infrastructure and hotels, are long-term investments. 

Stakeholders increasingly make decisions based on long-term tourism demand forecasts, 

although, for daily operations, tourism and hospitality businesses use short-term demand 

forecasts to allocate resources for revenue management.  

 

The importance of accurate tourism-demand forecasts has led to numerous efforts to improve 

the accuracy of forecasting methods. Several groups of researchers have reviewed the 

methodological developments and forecasting applications of tourism-demand modeling and 

forecasting practices over the past five decades, such as Witt and Witt (1995), Li, Song and 

Witt (2005), Song and Li (2008), Wu, Song and Shen (2017), and Song, Qiu and Park (2019). 
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Scholars generally agree that no single forecasting method can consistently outperform all 

other methods (Song and Li 2008, Athanasopoulos et al. 2011, Gunter and Önder 2016) and 

that most tourism-demand forecasting studies have focused on ex-post forecasts. Ex-post 

forecasts use the actual values of explanatory variables over the forecasting period to predict 

the dependent variables and to evaluate their accuracy when econometric models are applied. 

Ex-post forecasts are useful when assessing the performance of a particular econometric 

forecasting method because the error from predicting explanatory variables is not mixed with 

the forecast error of the dependent variable. Ex-ante forecasts, in contrast, use the predicted 

values of explanatory variables. Ex-ante forecasts are generated in a real-world context where 

no prior information on any influencing variable over the forecasting period is incorporated 

into the forecast generation. Hence, ex-ante forecasts have more direct implications for real-

world forecasting. However, the performance of ex-ante tourism forecasting has been largely 

overlooked. In addition, tourism forecasting assessments previously focused on comparing 

different forecasting techniques and less on the factors that influence the accuracy of tourism 

forecasts (Peng, Song and Crouch 2014).  

 

To bridge the above research gap, this study presents the first attempt to explore the 

determinants of ex-ante forecasting accuracy over different forecasting horizons using the 

2013–2017 five-year forecasts published annually by the Pacific Asia Travel Association 

(PATA). The identified determinants (factors) will aid in developing and improving the 

accuracy of future forecasting models. Furthermore, the findings of this study will assist 

tourism practitioners in evaluating the reliability of forecasts and thus in making effective 

decisions. Most importantly, the identification of these factors will guide real-world 

forecasting and reduce the risk of real-world decision failures caused by poor demand 

forecasts. 
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The remainder of this paper is structured as follows. Section 2 briefly reviews the forecasting 

methods applied in the tourism field. Section 3 introduces the method and data used in this 

study. Section 4 presents the findings and discussion. Section 5 concludes with a summary of 

the implications and addresses the study’s limitations. 
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2. Literature Review 

Tourism forecasting studies have primarily used quantitative forecasting methods, such as 

non-causal time-series models, causal econometric models, and artificial intelligence (AI)-

based models.  

 

2.1 Time Series Models 

 

The most widely used non-causal time-series models include Naïve I, Naïve II, exponential 

smoothing (ES) models, and autoregressive moving average (ARMA) family models (Wu, 

Song and Shen 2017). These are often considered benchmarks for evaluation and comparison 

purposes. Benefitting from this flexibility in practice, more advanced techniques have been 

applied to develop further time-series models to improve forecasting accuracy. 

Athanasopoulos and de Silva (2012) extended the ES method to a multivariate setting and 

found that multivariate models are superior to their univariate counterparts. Chen, Li, Wu, 

and Shen (2019) developed a multi-series structural time series model to forecast seasonal 

tourism demand in Hong Kong. They found that their method achieved higher accuracy than 

the ARIMA and ES methods. Apergis, Mervar, and Payne (2017) applied a Fourier 

transformation to quarterly ARIMA models, generating an improved ARIMA model that 

outperformed other time series methods.  

Another trend in time-series forecasting is the use of augmenting explanatory variables that 

can discern the dynamics of tourism demand. ARMAX, for instance, is an extension of the 

traditional ARMA models that incorporates exogenous variables (X) as predictors. Pan and 

Yang (2017) adopted ARMAX to analyze search engine queries, website traffic, and weekly 

weather information to predict a destination’s weekly hotel-occupancy rates. Their findings 
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suggested that ARMAX was superior to its ARMA counterpart. Park, Lee, and Song (2017) 

extended the SARIMA model by augmenting it with a Google trends index. Their model 

showed better out-of-sample forecasting of Japanese inbound tourist arrivals to South Korea 

than in-sample forecasting based on the mean squared error (MSE) and the mean absolute 

error. An important implication of their study was that multivariate models with appropriately 

selected exogenous variables are likely to outperform standard time-series models such as 

SARIMA or Holt-Winters. Thus, these studies’ findings suggest that the forecasting accuracy 

of time series augmented with explanatory variables is often superior to that of univariate 

time-series models (Jiao and Chen 2019). 

 

2.2 Econometric Models 

 

Econometric models enable the causal relationship between tourism demand and its 

determinants to be examined and they are generally found to have good forecasting 

performance. Thus, they have been widely used in tourism demand-forecasting research and 

practice over the past five decades. Among various econometric models, the auto-regressive 

distributed lag model (ADLM) and the error correction model (ECM) are important for 

analyzing and forecasting tourism demand. Song, Qiu, and Park (Song, Qiu and Park 2019) 

reviewed 111 studies and found nearly half used the ADLM (26) and ECM (24) models. 

They also found both models were accurate, with 16 out of 26 ADLM models having the best 

forecasting performance and 17 out of 24 ECM models outperforming competing models.  

 

In addition to the ADLM and ECM, the vector autoregressive (VAR) model and the vector 

error-correction model represent another form of model extension (Song and Witt 2006, 

Wong, Song and Chon 2006, Gunter and Önder 2016). They introduce temporal dynamics 
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into static single equation models. Attempts have been made to improve the forecasting 

accuracy of traditional VAR models. For example, Assaf, Li, Song, and Tsionas (2019) 

developed a Bayesian global vector autoregression model that outperformed traditional VAR 

models.  

 

More advanced forecasting models have been developed over the past two decades. They 

include the time-varying parameter model by Song and Wong (2003) and Page, Song and Wu 

(2012), the linear almost ideal demand system (LAIDS) model by Li, Song and Witt (2004) 

and De Mello and Fortuna (2005), the spatial panel models by Yang and Zhang (2019) and 

Long, Liu and Song (2019), forecasting combination by Li, Song and Witt (2006) and Li et 

al. (2019), judgmental forecasting by Lin, Goodwin and Song (2014) and Song, Gao and Lin 

(2013), and mixed frequency data models by Hirashima, Jones, Bonham and Fuleky (2017) 

and Wen et al. (2020). The newly developed methods have shown their superiority in 

forecasting practice. 

 

2.3 Artificial Intelligence Models 

 

In the past two decades, AI models have received increasing attention from tourism scholars 

for their ability to capture nonlinear relationships and patterns among time series and 

exogenous variables in tourism-demand forecasting (Law and Au 1999, Law 2000). Five 

main types of AI-based models are recorded in the literature: artificial neural networks 

(ANNs), the rough sets approach, support vector machines, fuzzy time series, and grey theory 

(Jiao and Chen 2019). Variations of ANN models are the most widely applied AI methods in 

forecasting tourism demand (Palmer, Montano and Sesé 2006, Chen, Lai and Yeh 2012). 

Support vector regression (SVR) models are also frequently used. Chen and Wang (2007) 
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found that the forecasting performance of SVR models is better than that of the ANN and 

ARIMA models. Hong, Dong, Chen, and Wei (2011) integrated genetic algorithms into an 

SVR model, which yielded a model with better forecasting accuracy. Fuzzy time series 

models have also been used and show good performance in short-term forecasting (Yu and 

Schwartz 2006, Wang and Hsu 2008). 

 

Each AI model has its own merits and drawbacks. It is logical to combine AI models to form 

a new model with fewer limitations. Pai, Hung, and Lin (2014) developed a novel forecasting 

system by combing SVR and fuzzy methods and showed that their system was more accurate 

in generating inbound tourism forecasts. 

 

2.4 Tourism Forecasting Comparison 

 

Over the past few decades, scholars have endeavored to develop tourism forecasting methods 

and have compared their performance with that of previous methods. For example, the 

forecasting performance of noncausal time-series models has been compared with that of 

causal econometric models, but neither has been shown to be universally superior. Li, Song, 

and Witt (2005) found that dynamic econometric models generally produce more accurate 

forecasts than other forecasting models. Based on a meta-analysis of the forecasting accuracy 

of various models, Kim and Schwartz (2013) found that econometric models outperform 

noncausal time-series models overall. Using a similar meta-regression model, Peng, Song, 

and Crouch (2014) examined the possible determinants of forecasting errors, concluding that 

dynamic econometric models tended to exhibit the lowest level of forecast errors if other 

factors (such as tourism origin, destination, time period, sample size and demand measure) 

were controlled.  
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AI-based methods are much less popular than time series and econometric models, and their 

forecasting performance is often compared with that of time series models. Claveria and 

Torra (2014) used data from Catalonia as an example to show that the ARIMA model was 

superior to the ANN model in tourism forecasting. Akın (2015) compared the seasonal 

ARIMA, SVR, and ANN models and revealed that SVR was the most accurate. Volchek, 

Liu, Song, and Buhalis (2019) showed that the ANN model was more accurate than a mixed-

frequency model in the short term for forecasting the number of visitors to museums in 

London.  

 

The inconclusive findings derived from the above comparisons imply that forecasting 

accuracy is determined by many factors: the method used for estimating a model, the 

selection of model specification, and the diversified characteristics of the data (e.g., the 

length of the sample time series, the length of the forecasting horizon and the data 

frequency). Goodwin and Wright (1993) found that comparative forecasting performance 

depends on various factors, such as the nature of the time series (e.g., trend, seasonality, 

noise, instability, and forecasting horizon) and situational characteristics. Peng et al. (2014) 

collected forecasting errors calculated from ex-post forecasts based on reports from published 

studies and used meta-regression to explore the influencing factors of forecasting errors. One 

concern related to that study is that the data used for calculating forecasting errors were 

derived from different data sources using different estimation and forecasting methods. Thus, 

measurement errors could not be excluded. In addition, the forecasting errors in Peng et al. 

(2014) were ex-post errors generated based on the actual values of the explanatory variables 

in the model. Ex-ante forecasts, which are often used in a practical setting, are computed 

based on the explanatory variables’ predicted values. Thus, the evaluation of ex-ante 

https://scholar.google.com/citations?user=po_M4YIAAAAJ&hl=en&oi=sra
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forecasting performance could bring more direct and useful practical implications. Despite its 

importance, however, ex-ante tourism forecasting has been largely overlooked. Song, Li, 

Witt, and Athanasopoulos (2011) and Athanasopoulos et al. (2011) are exceptions as they 

evaluated both ex-post and ex-ante forecasting performance. However, they did not explore 

the factors influencing forecast errors. Thus, in this study, we aim to bridge this gap in the 

literature.  

 

This study is designed to examine the factors influencing ex-ante forecasting errors using a 

large set of visitor arrival forecasts in a real forecasting exercise published by Pacific Asia 

Travel Association (PATA) across different years. The research team was commissioned by 

PATA in 2013 to produce annual visitor forecasts for the following five years. The research 

team has full access to all real-world forecasts. To the best of our knowledge, this is the first 

empirical study to address the aforementioned challenges of tourism forecasting directly. 

Crucially, the ex-ante arrivals forecasts over different years and across different origin-

destination pairs were generated using the same econometric forecasting methods and 

consistent data sources and measurement. Therefore, the forecasts are highly comparable, and 

the findings are more robust and generalizable than those of many previous studies.  
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3. Method and Data 

 

3.1 Method 

 

The choice of an error measure can affect the ranking of forecasting methods (J. Armstrong 

2001a). The two most frequently used error measures to measure tourism-forecasting 

accuracy are the MAPE and the root mean square error (RMSE) adopted in this study. These 

measures can be used to examine the size of forecast errors in both relative (percentage) and 

absolute (volume) terms. It is important to use more than one measure of errors, as no single 

measure has been shown to provide an unambiguous indication of forecast accuracy (J. 

Armstrong 2001b, Mathews and Diamantopoulos 1986). 

 

There is a consensus in the general forecasting literature regarding the influencing factors of 

forecasting accuracy, which mainly include the forecasting horizon, data availability, level of 

aggregation, type of product, and historical stability of data series (Schnaars 1984). However, 

opinions diverge about how some of these factors affect forecasting accuracy. Most scholars 

agreed that the longer the forecasting horizon, the less accurate the forecast, but this finding 

is situationally based on the selection of forecasting methods. The findings on how data 

availability affects forecasting accuracy are inconsistent, but generally longer data series are 

more likely to result in more accurate forecasts (Schnaars 1984). Most studies argued that one 

of the key determinants of forecasting accuracy is the stability of the data series over time. 

Forecasts obtained from unstable series are highly likely to be inaccurate.  

 

Based on the literature, this study investigates the factors influencing forecasting accuracy in 

the context of tourism from 1 step ahead to 21 steps ahead, using Equation (1), as follows: 
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ln𝑌 = 𝑐 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝜀        (1) 

 

where 𝑌 is the dependent variable to measure forecasting errors (two error measures are used: 

MAPE and RMSE); ln is the natural logarithm; 𝛽1 to 𝛽3 are the estimated coefficient vectors; 

𝑋1 to 𝑋3 are the vectors of the influencing factors; 𝑐 represents the constant term; and 𝜀 is the 

vector of error terms. Equation (1) is estimated by applying the median (or least absolute 

deviations) regression with robust standardized deviations, the estimated coefficients of 

which minimize the sum of the absolute value of the residuals. Compared with the ordinary 

least square (OLS) method, the median regression is more robust against heteroscedasticity, 

and the residuals do not have to follow the normal distribution.  

 

The magnitude and fluctuation of visitor arrivals have significant effects on forecasting 

errors; thus, the geometric means of the coefficient of variation (CV) of the historical visitor 

arrivals in the short term (VC_Arr_s) and long term (VC_Arr_l) of the five years are included 

in 𝑋1. CV is calculated based on the last eight data points (i.e., eight quarters) of the historical 

data to measure the series’ short-term variations. The full-sample arrivals are used to measure 

the long-term variations. The income level of the source markets has been shown to be the 

most influential determinant of tourism demand (Song and Li 2008, Wu, Song and Shen 

2017). This suggests that the variation in income series may also result in the fluctuation of 

the arrivals series. Thus, the geometric means of the CV of source markets’ GDP 

(VC_GDP_s & VC_GDP_l) and its covariance with tourism demand in the short term 

(VC_Arr_GDP_s) and long term (VC_Arr_GDP_l) are included as explanatory variables. 

The calculation of short-term and long-term covariances is similar to the calculation of the 

variation in the visitor-arrivals series, which means that the last eight data points and the full-
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sample series of the arrivals are used to compute the variables VC_Arr_GDP_s and 

VC_Arr_GDP_l, respectively. To capture the effect of the demand volume on forecasting 

accuracy, we use the average of the last data point of the arrivals series (Last_Arr) collected 

during the PATA project in 2013–2017. Data characteristics are also considered as the 

determinants of forecasting accuracy (Goodwin and Wright 1993). Thus, 𝑋2 is composed of 

two variables: the average length of historical data (Length_h) and the average maximized 

order of the lagged variables (Num_lag). These two variables examine the influence of the 

sample size on forecasting accuracy. 

 

Similar to Peng et al. (2014), dummy variables are included in vector 𝑋3, such as the location 

of the destination (D_Americas & D_Asia), the location of the source markets (S_Americas, 

S_Europe, S_Asia, and S_Pacific), the travel distance (Inter_Dummy) between the destination 

and the origin market and the types of forecasting methods (ADL-ECM). The following ADL-

ECM model is adopted in this study:  

 

∆ ln 𝑉𝑖,𝑗,𝑡 = 𝜆0 + ∑ 𝜓𝑖,𝑗,𝑞∆ ln 𝑉𝑖,𝑗,𝑡−𝑞

𝑚1

𝑞=1
+ ∑ 𝜓𝑌𝑖,𝑟

∆ ln 𝐺𝐷𝑃𝑖,𝑡−𝑟

𝑚2

𝑟=1
  

+ ∑ 𝜓𝑃𝑖,𝑗,𝑤
∆ ln 𝑅𝑃𝑖,𝑗,𝑡−𝑤

𝑚3

𝑤=1
+ 𝜆1 ln 𝑉𝑖,𝑗,𝑡−1 + 𝜆2 ln 𝐺𝐷𝑃𝑖,𝑡−1

+ 𝜆3 ln 𝑅𝑃𝑖,𝑗,𝑡−1 

 

+ ∑ 𝜃𝑑𝐷𝑢𝑚𝑚𝑖𝑒𝑠
𝐷

𝑑=1
+ 𝑢𝑖,𝑗,𝑡 (2)  

 

where 𝑉𝑖,𝑗 is the visitor arrivals from source market i to destination j, 𝐺𝐷𝑃𝑖 stands for the 

gross domestic product of the source market to represent the income level, and 𝑅𝑃𝑖,𝑗 is the 

relative price between the source market i and destination j adjusted by the exchange rate. 

Dummy variables are also included to reflect the impact of one-off events on demand, such as 
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the September 11 terrorist attacks in 2001 and SARS in 2003. 𝑙𝑛 and ∆ are natural logarithm 

and difference calculator, respectively. The Akaike Information Criterion is used to select the 

lag orders. The ADL-ECM model can capture the short-run effect and also the long-run 

relationships among variables. In particular, income and price elasticities can be calculated 

accordingly, and have important practical implications for destination management 

organizations. Although the ADL-ECM model requires strict cointegration relationship 

among variables, it is selected as the primary forecasting method to generate tourism demand 

forecasts in the PATA regional forecasting project because its forecasts have informative, 

practical implications. According to Song, Qiu, and Park (2019), the ADL-ECM model is 

also the most frequently used and best performing model in the tourism demand forecasting 

literature in the last five decades. More technical details of the ADL-ECM model can be 

found in the studies of Song and Lin (2010), Song, Gao, and Lin (2013), and Lin, Liu, and 

Song (2015).  

 

The settings of the dummy variables are as follows. If the country of origin is in the 

Americas, its value is set to one and is zero otherwise. The settings of Europe, Asia, and the 

Pacific are similar, with Africa used as the reference group. A similar rule is applied to the 

setting of destination dummies. As the PATA visitor forecasts focus on the inbound arrivals 

to the Asia and Pacific region, there are only two vectors in the destination dummies: the 

Americas and Asia. The Pacific region is used as the reference group. The dummy variable is 

set to unity if the country of origin and country of destination are located on different 

continents and is zero otherwise. The number of times that the ADL-ECM is applied in the 

five rounds of forecasting exercise is taken to represent the effect of the methodology on 

forecasting accuracy. 
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3.2 Data 

 

The forecasts used in this study are obtained from the annual reports of PATA Visitor 

Forecasts (2013, 2014, 2015, 2016, 2017). We use 5-year-ahead quarterly forecasts of visitor 

arrivals for more than 30 destinations (over 1,000 destination-origin pairs) in the Asia Pacific 

region. The actual visitor arrivals data across five years from 2013 to 2017 (i.e., actual values 

of 21 quarterly visitor arrivals) are available to enable calculation of 1-quarter-ahead to 21-

quarters-ahead forecasting errors (i.e., MAPE and RMSE) for 765 origin-destination pairs 

covering 31 destinations.  

 

The descriptive statistics of the forecast errors are presented in Table 1. An examination of 

the degree of accuracy across the two criteria (MAPE and RMSE) shows that the overall 

accuracy tends to decline as the forecasting horizon extends. The error ranges and standard 

deviations in Table 1 show that MAPE is more sensitive than RMSE. The GDP index (2010 

= 100) used in the PATA reports to generate the forecasts is also used to calculate the 

covariance in 𝑋1. All vectors in 𝑋1 and 𝑋2 take the natural logarithm, except the maximized 

order of lagged variables, the magnitude of which would be quite similar after logarithmic 

transformation. 

 

[Insert Table 1 about here] 
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4. Findings and Discussion 

Forty-two regression models are run, with 2 dependent variables (MAPE and RMSE) and 21 

forecasting horizons. Due to space constraints, selected results are presented in Figure 1 and 

Tables 2 and 3. The Pseudo 𝑅2, proposed by Koenker and Machado (1999), is used to 

evaluate the models’ goodness-of-fit. Table 2 shows that the highest Pseudo 𝑅2 of the MAPE 

models is exhibited by the 1-step-ahead model (0.24), and the value then decreases over 

horizons to reach 0.04 in the 21-steps-ahead model. The same pattern can be observed in the 

RMSE models. The 3-step-ahead model fits the data best, as shown by its Pseudo 𝑅2 of 0.76, 

and also decreases as the forecasting horizon extends. In the 21-steps-ahead RMSE model, 

the explanatory variables can explain approximately 52% of the variation in the data. The 

Pseudo 𝑅2 of the models decreases as the forecasting horizon extends, suggesting that 

forecasting longer-term visitor arrivals is associated with higher uncertainty. The relatively 

low Pseudo 𝑅2 values are not a concern here, as our focus in this study is to identify the key 

determinants of forecasting errors, which means that the statistical significance of individual 

independent variables’ coefficients is more important. Consistent with the findings of Peng et 

al. (2014), the Pseudo 𝑅2 values also indicate that the relative errors are more difficult to 

explain than absolute errors, which may be attributable to information loss during 

transformation of the absolute errors to relative indexes by dividing by an absolute term. 

 

[Insert Figure 1, Tables 2 and 3 about here] 

 

Across various forecasting horizons, 11 out of 17 variables show more significant effects in 

MAPE models than in RMSE models (See Figure 1). In particular, the absolute values of 

visitor arrivals in the most recent period have a positive and significant effect on RMSEs for 

all 21 horizons, indicating that the absolute forecasting errors are highly related to the number 
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of visitor arrivals. When the MAPEs are calculated, the indexes are divided by absolute 

terms. Thus, the influence of the number of visitor arrivals on MAPEs and RMSEs varies. 

Due to the aforementioned information loss, the absolute magnitude of the effect in the 

MAPE models is smaller than that in the RMSE models. As the forecasting horizon extends, 

the elasticities of the visitor arrivals of the last period in the MAPE models range from -0.09 

for the 1-step-ahead forecasts to -0.05 for the 21-steps-ahead forecasts. The coefficients in the 

RMSE models are much larger, ranging from 0.87 to 0.99. 

 

The variation in the number of visitor arrivals has a significant influence on forecasting 

accuracy. There is a positive relationship between the short-term variation in visitor arrivals 

and the forecasting error in the 1-step-ahead to 21-steps-ahead horizons, except for the 12-, 

15-, 19-, 20-, and 21-steps-ahead forecasts in the MAPE models. When using the RMSE to 

measure forecast errors, the variation in visitor arrivals in the short-term mainly influences 

the short-term forecasting accuracy, particularly that of the 2- to 4-step-ahead horizons.  

 

The long-term variation in visitor arrivals plays a more important role than the short-term 

variation. The significant relationship between the CV of visitor arrivals in the long term and 

forecasting accuracy can be seen across all the 21-steps-ahead horizons of the MAPE models, 

aside from the first three horizons. In the RMSE models, significant relationships can be 

identified in 16 out of 21 estimations, which is more than with short-term variation. Thus, the 

greater the fluctuation in visitor arrivals in the long run, the larger the forecasting errors, and 

the more difficult it is to produce accurate forecasts. 

 

The variation in the GDP of a source market is a significant determinant of MAPE in the first 

seven horizons and the 3- and 4-steps-ahead RMSE models. Similar patterns are found in the 
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short-term interactions between the variations in visitor arrivals and GDP in the MAPE and 

RMSE models. Given the significant role of the short-term variation in visitor arrivals, it 

could be argued that the variation in GDP seems to moderate the effect of the variation in 

visitor arrivals on forecasting accuracy. In other words, given the same level of fluctuations 

of visitor arrivals in the short term, the stronger the fluctuation of GDP, the larger the 

forecasting error would be (see Figure 2). The correlation is particularly true for the short-

term forecasts: the moderating effect of GDP on the relationship between the variation in 

visitor arrivals in the short-term strengthens and forecasting errors become stronger as the 

variation in visitor arrivals increases. However, the effect of short-term GDP variation and its 

moderating effect on the errors declines significantly from the 7-steps-ahead horizon onward. 

There are only 2 significant GDP variations and corresponding interactions in the remaining 

14 MAPE models and 2 significant GDP variations in the RMSE models. The interaction 

terms are not found to be significant in the last 14 RMSE models. 

 

In contrast, only 3 out of 21 models identify significant variations in GDP in the long-term in 

the MAPE models and in two cases in the RMSE models. Eight (ten) significant moderating 

effects are found in the relationship between the variations in visitor arrivals and forecasting 

errors in the long-term in MAPE (RMSE) models. However, such significant relations are 

mostly found in the 16- to 21-steps-ahead forecasts. Four cases are found in the MAPE 

models and five in the RMSE models. In contrast to these short-term findings, variations in 

arrivals and GDP in the long term moderate the errors in the long-term forecasting period. 

This confirms that the variations in the dependent and independent variables are key 

determinants of forecasting accuracy. 

 

[Insert Figure 2 about here] 
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The variable significantly influenced only one fifth to one fourth of the errors in the 21 

horizons, but that does not mean that the length of a historical series is not an important 

influencing factor of forecasting accuracy. In fact, the length of a historical time series has a 

negative effect on the forecasting errors in 3 and 5 of the 21 MAPE and RMSE models, 

respectively. The earliest starting date for the PATA projects can be traced back to 1995; 

thus, a sufficient sample size was available to build the forecasting models and generate the 

forecasts. However, the extension of the historical data does not further improve forecasting 

accuracy, despite it doing so when there are far fewer observations. 

 

Errors decrease for most forecasting horizons in the MAPE (19 out of 21) and RMSE (15 out 

of 21) models when higher lag-orders of the variables are introduced into the forecasting 

models. More historical information is required to estimate models and generate forecasts as 

more lagged variables are included in a model. This finding suggests that the inclusion of 

more lagged terms can improve accuracy. One key feature of the ADL-ECM is its ability to 

capture the dynamic behaviors in tourism demand (such as habit persistence) by including the 

lagged variables (Song and Witt, 2000). Thus, this finding provides clear justification for the 

theoretical foundation of the widely applied ADL-ECM model in tourism forecasting 

practice.  

 

The destination regions and the source market have limited effects on forecasting accuracy. 

The MAPE models show that compared with the benchmark of African source markets, an 

average of only 4 out of the 21 horizons give significant differences in forecast errors for the 

Americas, Europe, Asia, and the Pacific. In models where significant effects of the source 

market region are found, American source markets are forecasted more accurately in the short 
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run, whereas Asian markets are associated with larger forecasting errors in the long run 

compared to African markets. The rapid and sustained growth of emerging markets such as 

China and India add great uncertainty to forecasting. Some unexpected regional events such 

as the 2015 MERS pandemic in South Korea and the 2015 earthquake in Nepal resulted in 

large decreases in the forecasting accuracy for these destinations. This results in larger errors 

in forecasting compared to more mature markets. This finding is strongly supported by the 

results of the RMSE models, particularly in long-run forecasts. Seven out of 10 horizons have 

significantly larger errors in Asian markets than in African markets when forecasts are more 

than 12 steps ahead. A higher number of significant effects are found in the RMSE models, as 

MAPE is a relative error measure and some information is likely to be lost when it is divided 

by the actual value.  

 

The influence of destination region on forecasting accuracy is also limited. There are only 

two (two) horizons in the Americas and nine (five) horizons in Asia that have significantly 

different forecasting errors regarding the Pacific destinations in the MAPE (RMSE) model. In 

general, this shows that the forecasting errors between American and Pacific destinations are 

similar. The limited significant horizons indicate that American destinations such as the USA 

and Canada can achieve higher forecasting accuracy because these markets are more mature. 

Compared with Pacific destinations, Asian markets are more difficult to forecast because of 

the higher frequency of unexpected factors such as political tension and natural disasters in 

some destinations and source markets. 

 

Inter- and intra-continental travel is used as a dummy variable to represent travel distance. 

The estimation results show that travel distance may not play an important role in 

determining forecasting accuracy. A significant effect is found in only 5 and 4 out of 21 
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horizons of the MAPE and RMSE models, respectively. Following the increased use of ADL-

ECM over the five years, no evidence is found that the forecasts become more accurate, as 

half of the coefficients of the MAPE and RMSE models in the 21 horizons are significant. 

This supports Witt and Witt (1995): there is no single model that is always superior. It also 

shows the necessity of using combined forecasts to obtain more accurate forecasting results 

(Song et al. 2009).  
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5. Conclusions and Implications 

 

This study investigates the influencing factors of ex-ante forecasting accuracy based on 

PATA’s real-world visitor forecasting project. The forecasts of 765 origin-destination pairs 

covering 31 destinations in the Asia Pacific region are used as the main source of data to 

compute forecasting accuracy and further examine its determinants.  

 

The main findings are summarized as follows. First, as the forecasting horizon extends, the 

uncertainty increases, which means that forecasting becomes increasingly difficult in the 

more distant future. Second, the fluctuation of visitor arrivals tends to decrease forecasting 

accuracy, and the fluctuation of GDP further strengthens this negative effect. Third, the 

inclusion of a higher lag-order of the variables in a forecasting model is likely to result in 

more accurate forecasts, suggesting that the lagged effect of both the tourism demand 

variable and its determinants should not be ignored in future forecasting practice. Fourth, 

forecasting visitor arrivals in Asian markets tends to be more difficult than in other regions. 

The difficulty is possibly attributable to the rapid growth and dynamism of the emerging 

Asian markets being affected by multiple factors, such as political instabilities and market-

specific features, which add to the difficulty of generating accurate forecasts. Last, the 

methods used to estimate and forecast tourism demand may not lead to accurate forecasting.  

 

The findings of this study are consistent with those of Peng, Song, and Crouch (2014), who 

concluded that forecasting method selection, sample size, and destination-origin pairs 

significantly affected forecasting accuracy. Such findings have been observed in the 

forecasting practice of other industries, such as the manufacturing industry (Tokle and 

Krumwiede, 2006). Extensive efforts have been made over the past few decades to improve 
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forecasting accuracy in tourism research, but few studies have investigated the determinants 

of accuracy. Thus, an important contribution of this study is its use of ex-ante forecasts 

produced in a real-world forecasting setting to examine the influencing factors of forecasting 

errors across various horizons. The most important original quality of this study is its attempt 

to explore the relationship between forecasting accuracy and variations in its explanatory 

variables, which innovatively extends the literature on tourism demand and informs the 

forecasting practice in the tourism industry. 

 

Econometric models such as ADL-ECM can capture regular fluctuations in tourism demand 

in line with economic cycles. However, when a severe external shock (e.g., an economic or 

social crisis, or a natural disaster) takes place in either an origin market or a destination, the 

pre-established long-run relationship between tourism demand and its determinants will not 

be applicable in the short term. No quantitative model is capable of capturing such 

unexpected shocks in a timely manner, resulting in a loss of accuracy in the short term. As 

argued by Witt and Witt (1995), no single model can outperform others in every case. 

Forecasting accuracy varies across different models when facing an unexpected shock; the 

forecasting performance of certain econometric models tend to be more robust to high 

volatility in some tourism data.  

 

Generally, the performance of the ADL-ECM model is fairly satisfactory. However, if an 

unexpected crisis or shock occurs, such as the COVID-19 pandemic, the forecasting model 

adopted before the crisis may fail to predict tourism demand during and shortly after the 

crisis. Alternatively, newly emerged forecasting models that can use mixed-frequency data to 

better reflect data volatility could be more appropriate than traditional econometric models. 

Interval forecasts and forecasting combination techniques (Li et al., 2019) are also 
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recommended for practitioners to reduce forecasting failures and improve forecasting 

accuracy. In addition, integration of judgmental forecasting methods with econometric 

models (Lin, Goodwin, and Song, 2014) that combine the opinions and expertise of experts 

under alternative scenarios with the quantitative forecasting techniques could also be useful 

to improve forecasting accuracy when the tourism system is subject to significant external 

shocks, such as COVID-19. 

 

Scholars can use the findings in this study to improve forecasting accuracy, which will enable 

tourism practitioners to make better investment decisions. Government and industry 

stakeholders should also be more cautious when using the forecasting results generated from 

historical data with higher levels of variability or when using long-term forecasts. The 

accuracy of the forecasting will be lower than that generated from stationary data or short-

term forecasts. They should also be more cautious when using predictions of visitor arrivals 

from or to the Asian markets. It is also important to note that the persistent application of one 

forecasting method may not improve forecasting accuracy. 

 

One limitation of this study is that only two methods were included in the PATA visitor 

forecasting project, ADL-ECM and exponential smoothing with state space models, with 

ADL-ECM predominantly used for producing the original forecasts. The findings would be 

more comprehensive if more forecasting methods, particularly combined forecasting models, 

were included in real-world forecasting exercises. Moreover, the error measures were 

calculated from 1-step- to 21-steps-ahead forecasts, which implies a time span of only five 

consecutive years. The factors influencing the forecasting accuracy over the longer term 

could be investigated if longer error series are available.  
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Although both the relative error (MAPE) and the absolute error (RMSE) were used in this 

study, the findings of these two measures are not always consistent. This difference can be 

explained by the fact that these error measures are mathematically calculated. Thus, they 

differ in their sensitivity to marginal changes. These error measures are also not applicable to 

all conditions. In particular, they may suffer from a skewed distribution when the forecasts 

are close to zero (Armstrong and Collopy 1992, Hyndman and Koehler 2006). Therefore, 

more error measures should be introduced in future research to provide a more 

comprehensive analysis and further strengthen the findings.  
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Table 1. Descriptive Statistics of Forecasting Errors 

 MAPE RMSE 

Forecasting 

Horizons 
Minimum Maximum Mean 

Std. 

Deviation 
Minimum Maximum Mean 

Std. 

Deviation 

1 0.013 2.779 0.139 0.162 9.151 857071 10076.2 46997.14 

2 0.015 1.140 0.151 0.118 7.410 1238623 14467.2 70022.65 

3 0.021 1.412 0.161 0.130 10.382 902453 14953.9 61668.08 

4 0.017 2.255 0.181 0.153 9.474 1275227 16880.3 78481.87 

5 0.025 3.786 0.208 0.214 7.567 1813867 18941.2 92589.39 

6 0.016 3.161 0.221 0.211 6.015 1905185 22120.9 106220.43 

7 0.009 3.355 0.235 0.206 8.291 2401922 22005.4 111678.69 

8 0.016 4.794 0.260 0.302 8.605 2339709 23825.6 116770.47 

9 0.017 2.651 0.271 0.269 5.673 2823941 25926.3 130506.48 

10 0.014 4.587 0.288 0.308 6.674 2906007 27696.6 138675.37 

11 0.004 4.947 0.311 0.369 9.535 4066720 29347.9 174901.21 

12 0.022 7.294 0.330 0.428 3.622 4452778 33539.0 197010.59 

13 0.005 5.405 0.345 0.465 3.419 5092787 34023.9 213091.79 

14 0.001 5.501 0.358 0.443 3.890 5406538 35219.4 224151.54 

15 0.005 6.075 0.378 0.474 3.323 5383603 33594.7 215201.32 

16 0.009 9.696 0.396 0.593 3.955 6067054 38046.2 248615.54 

17 0.000 7.596 0.403 0.570 4.847 6457312 36959.1 258390.28 

18 0.000 14.616 0.421 0.789 0.477 7713609 36214.1 296965.29 

19 0.002 9.553 0.429 0.733 0.640 7333226 37281.2 286492.88 

20 0.001 8.447 0.436 0.673 1.374 8309122 40458.6 325258.63 

21 0.000 24.286 0.478 1.224 0.492 8542534 40861.0 335432.47 
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Table 2. Regression Results of MAPE with Selected Forecasting Horizons 

Variable 1 2 3 4 8 12 16 21 

lnLast_Arr -0.09*** -0.08*** -0.10*** -0.08*** -0.06*** -0.04** -0.05*** -0.05** 
 [-6.33] [-5.39] [-7.42] [-5.91] [-3.93] [-2.31] [-2.65] [-2.04] 

lnVC_Arr_s 0.72*** 1.07*** 0.50** 0.63*** 0.40* 0.31 0.58** 0.70 
 [3.15] [5.25] [2.05] [3.25] [1.68] [1.23] [2.13] [1.61] 

lnVC_Arr_l -0.24 0.28* 0.16 0.39** 0.42** 0.70*** 0.70*** 0.45* 
 [-1.18] [1.74] [0.94] [2.44] [2.14] [3.51] [3.07] [1.66] 

lnVC_GDP_s 0.27** 0.30*** 0.26** 0.24*** 0.16 0.06 0.11 0.19 
 [2.53] [3.67] [2.56] [2.84] [1.59] [0.53] [1.02] [0.94] 

lnVC_GDP_l -0.20* 0.06 -0.15* -0.10 0.02 0.17 0.12 0.12 
 [-1.90] [0.66] [-1.76] [-1.17] [0.17] [1.47] [0.90] [0.65] 

lnVC_Arr_GDP_s 0.10* 0.20*** 0.09 0.12** 0.06 0.02 0.06 0.13 
 [1.77] [3.84] [1.54] [2.41] [1.01] [0.38] [0.75] [1.16] 

lnVC_Arr_GDP_l -0.18* 0.04 -0.01 0.00 0.08 0.20** 0.23** 0.16 
 [-1.95] [0.50] [-0.17] [0.05] [0.91] [2.18] [2.10] [1.21] 

lnLength_h -0.41*** -0.27* 0.04 -0.21 -0.43*** -0.35 -0.32 0.04 
 [-3.08] [-1.93] [0.23] [-1.37] [-2.61] [-1.52] [-1.31] [0.12] 

Num_lag -0.09*** -0.15*** -0.09*** -0.15*** -0.13*** -0.11** -0.12*** -0.11** 
 [-2.70] [-5.35] [-2.93] [-5.22] [-4.06] [-2.24] [-2.63] [-2.10] 

S_Americas -0.35** -0.27* -0.07 -0.21* -0.00 0.16 -0.02 0.17 
 [-2.43] [-1.94] [-0.49] [-1.84] [-0.02] [0.68] [-0.05] [0.58] 

S_Europe -0.30** -0.21* -0.18 -0.18* -0.13 0.03 -0.20 -0.10 
 [-2.47] [-1.65] [-1.35] [-1.70] [-0.77] [0.15] [-0.69] [-0.39] 

S_Asia -0.04 0.05 0.14 0.01 0.19 0.25 0.06 0.22 
 [-0.31] [0.34] [1.07] [0.11] [1.13] [1.16] [0.20] [0.78] 

S_Pacific -0.34** -0.17 -0.19 -0.14 -0.23 -0.08 -0.13 -0.24 
 [-2.16] [-1.05] [-1.20] [-1.12] [-1.15] [-0.32] [-0.38] [-0.81] 

D_Americas -0.09 -0.04 -0.03 0.04 -0.13 -0.24** -0.08 -0.13 
 [-0.88] [-0.46] [-0.32] [0.56] [-1.53] [-2.11] [-0.71] [-0.89] 

D_Asia 0.11 0.07 0.09 0.10 0.19** 0.17 0.24** 0.15 
 [1.23] [0.96] [1.21] [1.56] [2.03] [1.59] [2.40] [0.94] 

Inter_Dummy 0.04 -0.01 -0.06 -0.12* 0.09 0.12 0.11 0.20 
 [0.45] [-0.06] [-0.66] [-1.75] [0.87] [1.15] [1.22] [1.25] 

ADLM 0.04* 0.05*** 0.04* 0.07*** 0.05** 0.06** 0.06** 0.06* 
 [1.86] [2.90] [1.66] [3.14] [2.44] [1.99] [1.99] [1.72] 

Constant 0.43 0.74 -1.55** -0.01 0.83 0.64 1.08 -0.53 
 [0.59] [1.07] [-2.03] [-0.01] [1.06] [0.60] [0.91] [-0.34] 

Pseudo R2 0.24 0.22 0.19 0.22 0.17 0.11 0.10 0.04 

Note: Figures in brackets are t values; *, ** and *** represent significance at the 10%, 5% and 

1% levels, respectively. 
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Table 3. Regression Results of RMSE with Selected Forecasting Horizons 

Variable 1 2 3 4 8 12 16 21 

lnLast_Arr 0.87*** 0.91*** 0.90*** 0.90*** 0.92*** 0.95*** 0.93*** 0.90*** 

 [52.26] [52.87] [70.11] [64.18] [51.99] [35.95] [43.64] [28.79] 

lnVC_Arr_s -0.05 0.63** 0.60*** 0.55** 0.49* 0.49 0.52 -0.42 

 [-0.19] [2.55] [3.52] [2.53] [1.75] [1.45] [1.40] [-0.88] 

lnVC_Arr_l 0.27 0.32 0.27* 0.43* 0.36 0.73*** 0.95*** 0.71** 

 [1.29] [1.59] [1.80] [1.87] [1.56] [3.01] [4.00] [2.40] 

lnVC_GDP_s -0.09 0.11 0.30*** 0.18** 0.15 0.01 0.06 -0.38* 

 [-0.70] [1.03] [3.33] [1.97] [1.28] [0.03] [0.42] [-1.70] 

lnVC_GDP_l 0.05 0.03 -0.14 0.06 0.06 0.36** 0.31* 0.38** 

 [0.37] [0.27] [-1.39] [0.48] [0.49] [2.31] [1.75] [2.10] 

lnVC_Arr_GDP_s -0.07 0.01 0.12*** 0.11** 0.07 0.06 0.07 -0.14 

 [-1.22] [1.52] [2.76] [2.05] [0.96] [0.73] [0.74] [-1.10] 

lnVC_Arr_GDP_l 0.07 0.03 -0.01 0.06 0.09 0.21 0.28** 0.29** 

 [0.71] [0.40] [-0.11] [0.63] [0.78] [1.79] [2.15] [2.22] 

lnLength_h -0.12 0.15 -0.08 -0.29** -0.37** -0.67*** -0.64** -0.13 

 [-0.69] [0.78] [-0.61] [-1.96] [-2.07] [-2.88] [-2.31] [-0.38] 

Num_lag -0.14*** -0.15*** -0.11*** -0.12*** -0.11*** -0.06 -0.06 -0.07 

 [-5.13] [-3.75] [-3.73] [-3.96] [-2.66] [-1.42] [-1.19] [-1.20] 

S_Americas -0.23* -0.42*** -0.23 -0.20 0.03 0.32 0.23 0.35 

 [-1.85] [-3.40] [-1.00] [-0.93] [0.15] [1.19] [0.92] [1.04] 

S_Europe -0.22* -0.30*** -0.28 -0.27 -0.16 0.14 0.04 -0.03 

 [-1.72] [-2.58] [-1.19] [-1.23] [-1.04] [0.53] [0.17] [-0.08] 

S_Asia 0.14 -0.02 0.07 0.03 0.25 0.52* 0.40* 0.58* 

 [1.07] [-0.17] [0.28] [0.13] [1.51] [1.92] [1.85] [1.86] 

S_Pacific -0.22 -0.20 -0.18 -0.26 -0.11 0.21 0.09 0.04 

 [-1.38] [-1.55] [-0.72] [-1.16] [-0.58] [0.79] [0.32] [0.12] 

D_Americas 0.09 0.04 -0.04 0.02 -0.06 -0.12 -0.10 0.25 

 [0.84] [0.38] [-0.44] [0.21] [-0.57] [-1.06] [-0.82] [1.40] 

D_Asia -0.09 -0.17* 0.02 0.04 0.07 0.19* 0.18* 0.07 

 [-0.87] [-1.97] [0.22] [0.50] [0.74] [1.86] [1.74] [0.41] 

Inter_Dummy -0.06 -0.11 -0.03 -0.08 -0.07 0.19 0.19* 0.18 

 [-0.67] [-1.33] [-0.36] [-0.96] [-0.68] [1.48] [1.65] [0.96] 

ADLM 0.04 0.03 0.07*** 0.06*** 0.04 0.05* 0.07** 0.04 

 [1.48] [1.21] [3.23] [2.62] [1.32] [1.79] [2.12] [0.93] 

Constant 12.10*** 12.57*** 13.39*** 14.31*** 14.85*** 15.96*** 16.14*** 12.02*** 

 [15.09] [13.38] [22.29] [18.28] [16.18] [15.43] [12.57] [7.17] 

Pseudo R2 0.72 0.74 0.76 0.75 0.73 0.68 0.64 0.52 

Note: Figures in brackets are t values; *, ** and *** represent significance at the 10%, 5% and 

1% levels, respectively.  



38 

 

 

Figure 1. Frequencies of Significant Variables across 21 Horizons in MAPE and RMSE 

Models  
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Figure 2. The Moderating Effect of the Variation in GDP on the Relationship between 

the Variation in Visitor Arrivals and the Forecasting Error 
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