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ABSTRACT
The linear stability of one-dimensional detonations with one-reaction chemistry coupled with molecular vibration nonequilibrium is investi-
gated using the normal mode approach. The chemical kinetics in the Arrhenius form depend on an averaged temperature model that consists
of translational–rotational mode and vibrational mode. The Landau–Teller model is applied to specify the vibrational relaxation. A time ratio
is introduced to denote the ratio between the chemical time scale and the vibrational time scale in this study, which governs the vibrational
relaxation rate in this coupling kinetics. The stability spectrum of disturbance eigenmodes is obtained by varying the bifurcation parameters
independently at a different time ratio. These parameters include the activation energy, the degree of overdrive, the characteristic vibrational
temperature, and the heat release. The results indicate that the neutral stability limit shifts to higher activation energy on the vibrational
nonequilibrium side with a smaller time ratio, implying that the detonation is stabilized. A similar observation is seen at a lower degree of
overdrive. Compared with the above two parameters, the characteristic vibrational temperature plays a minor role in the stabilization of
detonation, and no change in the number of eigenmodes is identified throughout the selected range. By plotting the neutral stability curves
relating the heat release to the above parameters, the decreases in instability ranges are obviously seen under vibrational nonequilibrium. The
thermal nonequilibrium effect on detonation stability is clearly demonstrated. The analysis presented in this paper is ultimately justified by
comparing the results with numerical simulation.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0029468., s

I. INTRODUCTION

Detonation is a shock-induced supersonic wave in which the
reactants are ignited and burned such that the energy released
from the chemical reaction helps in sustaining self-propagation. A
well-known one-dimensional steady-state solution to describe such
a process is the Zel’dovich–von Neumann–Döring (ZND) model
developed in the mid-20th century1–3 in which the detonation struc-
ture is manifested by a single-step Arrhenius equation. A detona-
tion with the minimum self-propagation speed is known as the
Chapman–Jouguet (CJ) detonation, where an equilibrium sonic flow
can be found at the end of the reaction zone. However, detona-
tion waves in experiments often show a cell or diamond struc-
ture if propagating in a rectangular channel, which is attributed

to cellular instability.4 Due to the multi-dimensional nature of the
flow, triple points are formed by the interaction of the incident
shock and the Mach stem in which the shock propagates trans-
verse and is reflected between the collisions. The importance of
understanding the stability behavior of a detonation wave is thus
addressed. These studies are crucial in many engineering applica-
tions involving the transfer rate of energy in a detonation, particu-
larly in the design of an oblique detonation engine5–7 and rotating
detonation engine.8 An overview of the detonation stability the-
ory on the application in propulsion can be found in the work of
Stewart and Kasimov.9

The works on detonation stability theory began in the 1960s,
when Erpenbeck developed a linear stability analysis (LSA) to inves-
tigate the stability behavior of an idealized detonation. With the
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Laplace transform approach discussed in his work,10–12 the overall
linear stability of a detonation is first demonstrated mathematically
by analyzing the governing equations with perturbation involved
in the problem. The neutral stability boundary is provided in these
studies, but information regarding the number of unstable modes
and the growth rates and frequencies of the most unstable modes
are not provided in detail. Later, a normal mode approach was
developed to address the same problem13 in which the authors uti-
lized a numerical shooting algorithm under the acoustic bound-
ary condition at the end of the reaction. Through this algorithm,
growth rates and frequencies of the unstable modes and the cor-
responding neutral stability limit denoted by the zero growth rate
have been determined by solving the eigenvalues. The paramet-
ric study was also conducted by varying different parameters (i.e.,
change in activation energy and that in the degree of overdrive).
Following the work of Lee and Stewart,13 Sharpe14 derived a simi-
lar approach based on the normal mode analysis, and an asymptotic
solution of the ordinary differential equations for the linear pertur-
bations was revealed. Using their work on idealized detonation as the
basis, LSA in other forms of detonation was then being investigated;
for instance, the dynamics of the initial cellular detonation for-
mation process,15 pathological detonation,16 spinning detonation,17

and curved detonation.18 Notably, LSA cannot predict the pertur-
bation structure far from the stability limit, since the detonation at
this condition is very nonlinear and the prediction of bifurcations to
multi-mode and irregular oscillations becomes unfavourable.19 An
example of a mismatch in the detonability limit between the numeri-
cal calculation and LSA using a chain-branching reaction model was
reported by Short and Quirk.20 However, LSA remains a powerful
tool to study the detonation stability as the first step because this
method gives an excellent estimation of the neutral stability values
and frequencies near the stability limit without excessive computa-
tional cost. LSA can serve as the benchmark for validation of tested
cases.16

With the increase in computation power in recent decades, the
study of detonation stability has been extended from pure math-
ematical analysis to the numerical integration of time-dependent
reactive Euler equations because the nonlinearity of the problem can
be fully retained in the simulation. In addition, multi-dimensional
stability can be investigated separately during the interpretation
of the numerical results.21 However, simulating the case near the
stability limit may take a long time because the growth or decay
rate of the perturbation is slow. Very fine numerical temporal and
spatial resolutions may be required during numerical integration,
which can be formidable. Nevertheless, numerical simulation has
been adopted by many researchers to study different detonation
problems with reaction chemistry involving chain-branching kinet-
ics22,23 and pulsating detonation.19,24 As mentioned before, both the
analysis from the normal mode approach and that from numer-
ical integration should show be in fair agreement near the sta-
bility limit, which is relatively linear in nature. Analytical studies
(through LSA) and numerical simulations of the detonation stabil-
ity problem are therefore commonly conducted at the same time
so that the results from different approaches can be compared for
validation.25–28

Concurrently, the modeling of detonation chemistry has been
kept updated by researchers to imitate the actual chemical kinet-
ics occurring in experiments. The study of Taylor et al.29 on the

determination of ignition time scale and vibrational time scale in a
stoichiometric H2/air detonation revealed that the vibrational relax-
ation mechanism does not need to be at an equilibrium state right
after the onset of the reaction because the two time scales could
be comparable with each other. For instance, the ratio of the igni-
tion delay time over the vibrational relaxation time is less than 3 for
H2 under the post-shock state of a Chapman–Jouguet detonation
(i.e., at 28 atm and 1540 K) with the stoichiometric H2–air mix-
ture at 1 atm and 300 K initially. Under this background, Shi et al.30

simulated both one-dimensional and two-dimensional H2/O2 deto-
nation diluted with argon at vibrational equilibrium and nonequi-
librium, respectively. They found that both the half-reaction length
and the computed detonation cell size are enlarged if vibrational
relaxation is considered, and the comparable cell size with experi-
ments indicates that this relaxation mechanism should be included
in future studies related to gaseous detonation. In addition, the
significance of vibrational relaxation in flame ignition and super-
sonic scramjet combustion has also been reported recently in the
literature.31–33 From a theoretical perspective, Uy et al.34,35 pro-
posed an extended ZND model with a vibrational relaxation mech-
anism introduced in the one-step chemical kinetics, denoted as
the chemical–vibrational coupling mechanism. They revealed that
the energy transfer between the translational–rotational mode and
the vibrational mode indeed reduced the overall chemical reaction
rate, leading to an enlargement of the half-reaction length com-
puted under the vibrational nonequilibrium assumption. A critical
time ratio τc/v defined as the chemical reaction time scale τc vs
vibrational relaxation time scale τv was introduced in their work,
below which vibrational nonequilibrium should be considered in
the analysis.

Referring to the works discussed above on the effect of differ-
ent chemical kinetics in detonation stability analysis, it is interesting
to know if the proposed chemical–vibrational coupling mechanism
in gaseous detonation would also play a role in stabilizing the det-
onation propagation. In particular, a shift of the neutral stability
boundary is expected because the overall chemical reaction rate will
be changed at different states of vibrational nonequilibrium. This
work will mainly adopt LSA to analytically determine the unstable
mode of the related detonation near the stability limit. Note that
due to the nonlinearity in the real reactive flow systems, the related
stability analysis is suggested to be conducted further using numer-
ical simulation with detailed chemistry, which will be studied in the
future. For reference, Han et al.36 have utilized a similar approach
in the investigation of one-dimensional detonation stability under
different Ar dilution in the H2–O2 mixture.

This paper has three objectives. First, the governing equations
of the detonation, including the vibrational relaxation model, are
presented, and the steady one-dimensional solutions of these equa-
tions are considered. The linearized equations are then determined
with the introduction of small perturbations. A comparison of the
normal mode result at the equilibrium state with that found in the
literature is demonstrated for validation. Second, the normal mode
linear stability spectra at different states of nonequilibrium denoted
by τc/v are presented by varying four parameters: the activation
energy in the chemical model, the degree of overdrive, the charac-
teristic vibrational temperature, and the heat release in the relaxation
model. The unstable mode and the stability limit for each state are
identified. Finally, the governing equations are solved numerically
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such that the results can be compared with those from LSA. Justifi-
cations of using both analytical and numerical approaches to study
detonation stability with vibrational–chemical coupling kinetics are
provided, and a critical τc/v under which vibrational relaxation
becomes significant is suggested.

II. GOVERNING EQUATIONS
In this section, the formulation of reactive Euler equations

in the normalized one-dimensional forms with the inclusion of
the vibrational relaxation mechanism in the single-step Arrhenius
model is presented first. Then, the steady-state solution is obtained
accordingly in Subsection II B and served as the input of the linear
stability analysis discussed in Subsection II C.

A. Single-step Arrhenius kinetics
with vibrational relaxation

The governing equations to describe a reaction flow inside a
channel are given as

Dυ
Dt
− υ∇ ⋅ ul = 0,

Dul

Dt
+ υ∇ ⋅ p = 0,

De
Dt

+ p
Dυ
Dt
= 0, (1)

where υ, u, p, and e are the specific volume (i.e., reciprocal of the
density ρ), the fluid velocity, the pressure, and the specific internal
energy, respectively. Superscript l denotes the coordinate system in
the laboratory frame reference. The material derivative is written as

D
Dt
=

∂

∂tl
+ ul

∂

∂xl
,

which is one-dimensional with a single velocity component ul only.
The corresponding internal energy with vibrational energy included
to manifest the vibrational nonequilibrium effect is expressed as
follows (in nondimensional form):

e =
pυ
γ − 1

− λβ + ε,Ttr = pυ, (2)

ε =
η

exp(η/Tv) − 1
, (3)

where γ, λ, β, ε, η, Ttr, and Tv denote the specific heat ratio, reac-
tion progress variable for the product, heat release, specific vibra-
tional energy, characteristic vibrational temperature, translational–
rotational temperature, and vibrational temperature, respectively.
To facilitate the analysis of the vibrational–chemical coupling
effect on the detonation stability, the specific internal energy
is separated into three parts in Eq. (2), i.e., the translational–
rotational mode of energy [the first term on the right-hand side
of Eq. (2)], the heat addition per unit mass due to the chemi-
cal reaction (the second term), and the specific vibrational energy
(the third term).

The translational–rotational mode of energy is assumed to be in
equilibrium immediately after the shock, while the vibrational mode
of energy still undergoes a significant relaxation. The translational–
rotational temperature Ttr is correlated with pressure and specific
volume by the equation of state. The specific vibrational energy is
expressed as a function of the characteristic vibrational tempera-
ture η and corresponding vibrational temperature Tv, which follows

the literature from statistical thermodynamics.37 To facilitate a sim-
ple theoretical analysis, it is assumed that the reactant and product
share the same characteristic vibrational temperature to evaluate the
vibrational energy. Taking stochiometric combustion of a hydrogen
and oxygen mixture as an example, H2 (dimensional characteristic
vibrational temperature ϕ̄ = 5989 K) only makes up a small por-
tion of the overall vibrational energy due to its much lower mass
fraction and larger ϕ̄ compared to O2 (ϕ̄ = 2250 K). As the prod-
uct, H2O is a nonlinear triatomic molecule with three nondegen-
erate modes of vibration, including the symmetric stretching (ϕ̄
= 5266 K), antisymmetric deformation (ϕ̄ = 2297 K), and antisym-
metric stretching (ϕ̄ = 5409 K) modes, of which the antisymmetric
deformation mode contributes most to the vibrational energy due
to the fact that the maximum detonation temperature is commonly
about 3000 K. Therefore, it is reasonable to assume a single ϕ̄ (or
η) for both the reactant and product to simplify the analysis. The
effect of various species on detonation stability will be addressed in
a future study by using direct numerical simulations with detailed
mechanisms.

To describe a chemical reaction within the reaction zone, λ = 0
indicates the unburned reactant state, whereas λ = 1 represents the
completion of the reaction. The normalized chemical reaction rate
can then be modeled by a single-step Arrhenius equation and is
given as

Dλ
Dt
= r = K(1 − λ) exp(−

ϑ
Tavg
), (4)

Tavg =
√
TtrTv, (5)

where ϑ is the activation energy and K is the pre-exponential fac-
tor for the reaction. Together with Park’s two-temperature model38

expressed in Eq. (5) in which Tavg is the averaged temperature
of Ttr and Tv, the vibrational–chemical coupling kinetics can be
manifested in the simplest manner for analysis. Comparison with
recent quasi-classical trajectory calculations of key hydrogen–air
combustion reactions revealed that Parks’ model can underestimate
the reaction rate constants under strongly nonequilibrium condi-
tions;39 however, the overall trend can be well captured. In this sense,
using the geometric average of Ttr and Tv with the power of 0.5
as the controlling temperature is relevant and thus adopted here to
account for the effect of vibrational nonequilibrium on a single-step
reaction.

For the modeling of the energy transfer rate rε between
the translational–rotational mode and the vibrational mode, the
Landau–Teller model is utilized in this paper as

Dε
Dt
= rε =

εeq − ε
τv

, (6)

where τv is the vibrational relaxation time scale. εeq is the equilibrium
vibrational energy, which is associated with the local translational–
rotational energy [thus, the corresponding value can be obtained
by replacing Tv with Ttr in Eq. (3)]. Note that the total vibrational
energy equation for both the reactant and product is considered
such that there is no vibrational–vibrational energy exchange in the
source term. Furthermore, the addition or removal of the vibra-
tional energy due to chemical reactions is also eliminated by using
a single η (or ϕ̄) and the nonpreferential model,40 which assumes
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that molecules are created or destroyed at the average vibrational
energy. Within the reaction zone, the corresponding Tv in each
time step can be iterated through Newton’s method with the known
ε and Ttr.

Notably, following the stability analysis by Short and Stewart,15

the density, pressure, temperature, and velocity in the above equa-
tions are normalized with respect to the corresponding dimensional
thermodynamic properties and sound speed (cs) at the post-shock
state (subscript as s) in an appropriately defined steady detonation
wave. For the length scale, the steady half-reaction length L1/2 is
chosen for normalization, which is defined as the distance from the
shock to the point where half of the reactant is consumed under the
equilibrium condition, and for time, L1/2/cs. Note that the frozen
vibrational energy state is introduced right behind the shock, and the
vibrational–chemical coupling is activated as the flow moves inward
[the same state assumption is presented in Eq. (11) later]. The scaled
activation energy ϑ, heat release β, and characteristic vibrational
temperature η are defined as

ϑ =
γĒa
cs2 ,β =

γQ̄
cs2 ,η =

ϕ̄
Ts

(7)

for dimensional activation energy Ēa, heat release Q̄, and character-
istic vibrational temperature ϕ̄.

Meanwhile, in this study, a time ratio τc/v discussed in the work
of Uy et al.34,35 is adopted again to demonstrate different degrees of
vibrational nonequilibrium and is defined as follows:

τc/v
≡
τc
τv

, (8)

where τc denotes the time needed for one-half of the reactant to
be consumed and is a fixed chemical reaction time scale depend-
ing on the parameters in the chemical model. Accordingly, τv can be
determined by varying τc/v during the analysis.

Although using the post-shock state parameters for scaling can
provide a better description of the detonation structure and the
stability behavior than using the pre-shock state, which has been
illustrated in the work of Short and Stewart,15 the scaled activation
energy, heat release, and characteristic vibrational temperature by
the pre-shock state quantities, Ea, Q, and ϕ, introduced by Erpen-
beck,12 will be adopted for a clear demonstration of the results in
Secs. III and IV because Ea, Q, and ϕ will be independent of the
detonation speed. Ea, Q, and ϕ are defined as

Ea =
γĒa
c0

2 ,Q =
γQ̄
c0

2 ,ϕ =
ϕ̄
T0

, (9)

where c0 and T0 are the dimensional pre-shock sound speed and pre-
shock temperature, respectively. Notably, the same practice of using
the definitions of Erpenbeck12 for detonation stability presentation
has also been implemented in their work.15

B. The steady one-dimensional solution
A steady one-dimensional solution can be obtained through the

Rankine–Hugoniot analysis of the reactive flow model presented in
Subsection II A. For convenience, a superscript ∗ is added to spec-
ify the steady variables. Following the analysis by Erpenbeck12 and
He et al.,41 the Rayleigh line and the Hugoniot curve can be derived
by integrating Eq. (1) at the steady state. Assuming that the steady

detonation propagates to the left at a speed of D∗s (normalized by
the dimensional post-shock sound speed cs), the corresponding flow
path at the shock-attached coordinate system can be described as
X = xl + D∗s tl. The flow Mach number M∗s right behind the shock
can then be formulated as

M∗s
2
=
(γ − 1)M∗2 + 2

2γM∗2 − (γ − 1)
, (10)

whereM∗ is the detonation Mach number normalized by the dimen-
sional pre-shock sound speed c0 of the initial reactants.

The corresponding steady variables immediately behind the
shock are given as the shock boundary conditions as follows:

υ∗ = p∗ = T∗ = 1, u∗ =M∗s , λ∗ = 0, ε∗ = 0. (11)

Note that ε∗ is assumed to be 0 such that the vibrational energy
mode of reactants is activated immediately after the shock. By apply-
ing these dimensionless variables, the Rankine–Hugoniot relation is
rewritten accordingly in terms of the specific volume υ∗ and pres-
sure p∗ across the shock profile and is presented in the following
(nondimensionalized with respect to the post-shock state):

υ∗ =
γM∗s

2 + 1
M∗s 2
(γ + 1)

[1 ∓ wξ(λ∗, ε∗)], (12)

p∗ =
γM∗s

2 + 1
γ + 1

[1 ± γwξ(λ∗, ε∗)], (13)

ξ(λ∗, ε∗) =

√

1 +
ε∗ − λ∗β

Ω
, Ω =

γ(1 −M∗s
2
)

2

2M∗s 2
(γ2 − 1)

,w =
1 −M∗s

2

γM∗s 2 + 1
.

(14)
The change in λ∗ and ε∗ across the profile can be evaluated by a
single-step Arrhenius model with the two-temperature model and
the Landau–Teller relaxation equation, i.e., Eqs. (4)–(6), respec-
tively. The roots with ∓ signs in Eq. (12) [± signs in Eq. (13),
correspondingly] denote the strong and weak detonation solu-
tions, respectively. In this study, strong detonation solution is
adopted.

To specify a detonation with different degrees of overdrive, the
detonation velocity D∗ is determined as follows:

f = (
D∗

D∗CJ
)

2

, (15)

where D∗CJ is the Chapman–Jouguet (CJ) detonation velocity at
the equilibrium state evaluated in terms of γ and Q. The newly
established Zel’dovich–von Neumann–Döring (ZND) profile with
vibrational energy included is then fully defined.

Figure 1 shows changes in variables across the steady CJ det-
onation wave with Q = 50 (or β = 10.39), Ea = 50 (or ϑ = 10.39),
γ = 1.2, ϕ = 20 (or η = 4.16), and f = 1. The vibrational equilib-
rium case (eq) and nonequilibrium cases (Neq) at τc/v = 3, 5, and
7 are selected for demonstration. The equilibrium case (eq) serves
as a reference with an immediate establishment of vibrational equi-
librium right after the shock, and therefore, the two temperatures
Ttr
∗ and Tv

∗ are identical across the profile (equal to 1 at X = 0 as
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FIG. 1. Steady ZND profiles for Q = 50,
Ea = 50, γ = 1.2, ϕ = 20, and f = 1 for
the vibrational equilibrium case (eq; solid
curve) and nonequilibrium cases (Neq)
with τc/v = 3 (dotted curve), τc/v = 5
(dashed curve), and τc/v = 7 (dashed-
dotted curve).

shown). However, the Tv
∗ profile starts from 0 at X = 0 for other

τc/v cases, as the vibrational mode is assumed to be excited only
after the shock is encountered in these profiles. Recalling the def-
inition of τc/v

≡ τc/τv in Eq. (8), a small τc/v implies that the det-
onation is under significant vibrational nonequilibrium and vice
versa, which can be manifested in terms of the slowest chemical
reaction rate by λ∗ in the ZND profile at τc/v = 3 compared with
the other cases. Note that the asymptotic solutions at the down-
stream state and the initial upstream values remain the same for
all cases because the change in τc/v will vary the steady detonation
wave structure within the zone but not the end state or initial state
properties.

C. One-dimensional linear stability analysis
A normal mode linear stability analysis for the steady detona-

tion solution has been conducted by introducing one-dimensional
perturbations. A shock-attached coordinated system is first defined
as follows:

x = xl + D∗s t
l
− ψ(t), (16)

where ψ(t) represents the perturbation to the shock location. Per-
turbations to the steady detonation structure are then sought in the
following forms:

z = z∗(x) + z′(x) exp(αt), ψ = ψ′exp(αt), (17)
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where

z = [υ,u, p, λ, ε]T. (18)

Re(α) represents the growth rate of the disturbance, whereas Im(α)
represents the frequency of the disturbance. The linearized pertur-
bation equations for the complex perturbation eigenfunction z

′
(x)

are then constructed by substituting (16) and (17) into Eqs. (1)–(7)
(normalized with the post-shock parameters) and are written in the
following forms:

A∗ζx + (α ⋅ I + C∗)ζ − αz∗x = 0, (19)

ζ = z′/ψ′, (20)

where I is the identity matrix and the matrices A∗ and C∗ are
expressed as

A∗ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u −υ 0 0 0
0 u υ/γ 0 0
0 γp u 0 0
0 0 0 u 0
0 0 0 0 u

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∗

, (21)

C∗ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−ux υx 0 0 0
px/γ ux 0 0 0
C31 px C33 C34 C35
−rυ λx −rp −rλ −rε
−rε,υ εx −rε,p 0 −rε,ε

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∗

, (22)

where

C31 =
(γ − 1)

υ
[
βr − rε
υ
− (βrυ − rε,υ)], (23)

C33 = γux −
(γ − 1)

υ
(βrp − rε,p),

C34 = −
(γ − 1)

υ
βrλ,

C35 =
(γ − 1)

υ
(rε,ε − βrε).

The derivatives of r(υ, p, λ, ε) [i.e., Eq. (4)] in C∗ are

rυ =
rϑ

2υTavg
, rp =

rϑ
2pTavg

, (24)

rλ = −K exp(−
ϑ

Tavg
), rε =

∂r
∂Tv
⋅
∂Tv

∂ε
,

where

∂r
∂Tv
=

rϑ
2TvTavg

,
∂Tv

∂ε
=
T2

v [exp(ϕ/Tv) − 1]2

ϕ2 exp(ϕ/Tv)
.

The derivatives of rε(υ, p, ε) [i.e., Eq. (6)] in C∗ are

rε,υ =
δ
τvυ

, rε,p =
δ
τvp

, rε,ε = −
1
τv

, (25)

δ =
ϕ2

pυ
exp(ϕ/pυ)

[exp(ϕ/pυ) − 1]2
.

From the linearization of the Rankine–Hugoniot shock rela-
tion, the perturbation shock condition is derived as follows:

υ′ =
4α

(γ + 1)M∗2M∗s
ψ′, u′ =

2(1 + M∗2
)α

(γ + 1)M∗2 ψ′, (26)

p′ = −
4γM∗s α
γ + 1

ψ′, λ′ = 0, ε′ = 0

which can be expressed in terms of ζ [Eq. (20)],

ζ(0) =
⎡
⎢
⎢
⎢
⎢
⎢
⎣

4α
(γ + 1)M∗2M∗s

,
2(1 + M∗2

)α

(γ + 1)M∗2 ,−
4γM∗s α
γ + 1

, 0, 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

T

. (27)

Finally, a boundary condition is applied at the end of the reac-
tion zone such that no acoustic wave propagates upstream from
infinity.9,15 This acoustic radiation condition42 is illustrated in the
form of

u′ −
υ∗b
γc∗b

p′ = 0, (28)

which again can be expressed by the second and third terms of ζ,

ζ2(∞) −
υ∗b
γc∗b

ζ3(∞) = 0, (29)

where υ∗b and c∗b are the unperturbed specific volume and isen-
tropic sound speed in the burned reactant. This condition is imple-
mented when λ∗ approaches 1 at x =∞, where the detonation with
the present vibrational–chemical coupling model should reach the
equilibrium state.

To solve the linearized perturbation equations in Eq. (19) and
determine the complex eigenvalues α and eigenfunction z

′
(x), a two-

point boundary value solution technique is adopted based on the
numerical shooting method described in Lee and Stewart.13 The
shooting begins from an initial guess of α and then, with the given
initial condition in Eqs. (27) and (19), is integrated from the shock
position toward the end state denoting the equilibrium point in the
reaction zone. A two-variable Newton–Raphson iteration is applied
such that α is iterated until the acoustic radiation condition in
Eq. (28) is satisfied. A tolerance of 10−7 in real eigenfunctions at the
boundary is allowed in this study.

III. NUMERICAL METHOD
One of the important results obtained from LSA is the neutral

stability limit. To verify the results near the stability boundary based
on this analytical approach, the numerical simulation is utilized in
this study such that the results from the two approaches can be com-
pared. With the steady ZND solution discussed in Subsection II B as
the given initial condition, the reactive Euler equation, i.e., Eq. (1),
is integrated numerically by the conservation element and solution
element (CE/SE) scheme with second-order accuracy.43 This numer-
ical scheme has a characteristic of unifying the treatment of both

Phys. Fluids 32, 126101 (2020); doi: 10.1063/5.0029468 32, 126101-6

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

FIG. 2. Shock pressure history of one-dimensional piston-supported detonation
with Q = 50, Ea = 50, γ = 1.2, and f = 1.6 for grid resolutions of 10/L1/2 (black solid
curve), 20/L1/2 (red dotted curve), 40/L1/2 (green dashed curve), and 80/L1/2
(blue dashed-dotted curve), respectively.

space and time and thus has been applied extensively in the fields
of gaseous detonation,30,44 hypersonic flows,45–48 and shock/droplet
(bubble) interactions.49–54

Based on the study by Sharpe and Falle19 on the convergence of
the stability boundary, an effective numerical grid resolution of 128
points per half-reaction zone length (128/L1/2) was implemented to
resolve the detonation wave structure. Similar to their work, a zero
gradient condition was applied at the boundary with at least 1000
L1/2 behind the initial shock position so that the boundary effect
was eliminated.

For validation of the code, a case of piston-supported detona-
tion in one dimension reported by Shen and Parsani55 was simu-
lated, withQ = 50, Ea = 50, γ = 1.2, and f = 1.6, as shown in Fig. 2. The
percentage errors of the periods of oscillation computed in our code
compared with those from tje study of Shen and Parsani55 for grid
resolutions of 10/L1/2, 20/L1/2, 40/L1/2, and 80/L1/2 do not exceed
0.01%. Good validation is demonstrated.

IV. STABILITY ANALYSIS RESULTS
Based on the algorithm developed in Sec. II, a comparison of

the normal mode result with that in the literature is presented in
Subsection IV A first. Then, parametric studies on the change in
the activation energy Ea, the degree of overdrive f, the characteris-
tic vibrational temperature ϕ, and the heat release Q are presented
in Subsections IV B–IV E, respectively. Fianlly, the result from
LSA is compared with that computed by numerical simulation in
Subsection IV F for validation.

A. Comparison of normal mode result with literature
As discussed in the work of Kabanov and Kasimov,56 the results

obtained from the LSA in terms of complex eigenvalues vary with
different scales in works of other researchers, although they share
the same physical interpretation. In this section, a comparison of the
unstable spectra for fundamental modes between the present work
(following the scales by Short and Stewart15) and the normal-mode
results from the literature is presented for parameters γ = 1.2, Q = 50,

TABLE I. Comparison of the unstable spectra for the fundamental modes between
the present work and the normal mode results summarized in Erpenbeck scales at
γ = 1.2, Q = 50, and f = 1. The corresponding eigenvalues α consist of the real part
[i.e., Re(α)] and the imaginary part [i.e., Im(α)].

Present work based on Results of Kabanov and
Short and Stewart scales15 Kasimov56 in Erpenbeck scales

Ea Re(α) Im(α) Re(α) Im(α)

50 0.726 0.000 1.743 0.000
0.039 0.000 0.084 0.000

26 0.016 0.218 0.037 0.522
25.26 0.000 0.220 0.000 0.530

and f = 1 under the thermal equilibrium state [without considering
the existence of vibrational energy ε in Eq. (2)].

Table I shows the comparison of the results at the selected Ea
range. Referring to the study by Sharpe,14 the eigenvalues of this
particular parameter setting would split into two purely real eigen-
values at Ea > 35 in which one would go to zero asymptotically and
the other one would increase as Ea increases. Therefore, the fun-
damental mode consists of two sets of eigenvalues at Ea = 50. By
comparing the eigenvalues obtained in the two scales, the conversion
factor from the present work to the factor summarized by Kabanov
and Kasimov in the Erpenbeck scale is ∼2.4. Based on the analysis by
Kabanov and Kasimov,56 the conversion factor can be deduced from
the ratio of the nondimensional pre-exponential factor K in both
scales. Following their approaches, the numerical value of this fac-
tor is evaluated to be 2.403, which fits with the estimation from the
corresponding eigenvalues obtained with the two scales here. Note
that part of the data [i.e., values of Re(α) and Im(α)] obtained in the
present work has been compared with that in the work of Short and
Stewart15 on the two-dimensional linear stability analysis to ensure
that the results are validated.

As mentioned in Subsection II A above, the difference of the
scale in the present work from the Erpenbeck scale is that the lat-
ter scale is nondimensionalized with the pre-shock state parameters.
Although the use of the post-shock state for normalization is bet-
ter in describing the detonation structure, the eigenvalues obtained
in the Erpenbeck scales near the stability boundary can closely pre-
dict the disturbance frequency. For instance, based on the Im(α)
obtained at the neutral stability limit Ea = 25.26 in LSA, the period
of oscillation in this case is expected to be 2π/0.53 = 11.855, which
is fairly close to the averaged period of oscillation determined from
the same case using the numerical simulation, i.e., 11.860. In this
context, the interpretation of the results in Erpenbeck scales is also
included in the following discussion as necessary.

B. Linear spectrum migration by varying activation
energy at different τc/v

Figure 3 shows the relationship of the frequency and the growth
rate of the fundamental mode and first overtone in terms of the
imaginary part and the real part of the eigenvalue, respectively.
Additionally shown is the dependence of the growth rate on Ea at
τc/v = 3 and τc/v = 5 with γ = 1.2, Q = 50, ϕ = 20, and f = 1. For the

Phys. Fluids 32, 126101 (2020); doi: 10.1063/5.0029468 32, 126101-7

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

FIG. 3. Stability spectrum showing (a)
Im(α) vs Re(α) and (b) Re(α) vs Ea for
τc/v = 3 and (c) Im(α) vs Re(α) and
(d) Re(α) vs Ea for τc/v = 5. The solid
curve represents the fundamental mode,
and the dashed curve represents the first
overtone. γ = 1.2, Q = 50, ϕ = 20, and f
= 1.

fundamental mode, the neutral stability limit (denoted as the zero
growth rate) is at Ea = 27.32 for the case of τc/v = 3, whereas the
corresponding limit is at Ea = 27.12 for the case of τc/v = 5, below
which the detonation is stable under the one-dimensional perturba-
tion. As Ea increases, the growth rate increases accordingly, while
the corresponding frequency approaches zero at Ea = 48.25 and Ea
= 46.82 for τc/v = 3 and τc/v = 5, respectively. A further increase
in Ea from these points would lead to the bifurcation of the fun-
damental eigenmode into two real nonoscillatory eigenvalues—one
that decreases asymptotically to zero and the other that increases
with Ea. The overall features in these stability spectra are qualita-
tively the same with the linear stability analysis of idealized detona-
tion.14 However, both the neutral stability limit and the bifurcation
point are shifted. The change in the limit can be attributed to the
additional energy exchange mechanism for vibrational relaxation in
Eq. (6) and thus leads to the change in the reaction rate along the
profile overall. Nevertheless, the change from one oscillatory mode
to two nonoscillatory modes or vice versa along the spectra is always
captured, and the reason is that we are using the same Arrhenius
reaction model to describe the product and heat formation in the
linear stability analysis. The similarity in stability behavior could
also be found in the LSA related to pathological detonation, where
an endothermic reaction in Arrhenius form is added in the system
instead.16

The behavior of the first overtone is relatively different from
that of the fundamental mode. As presented by the dashed lines in
Fig. 3, the growth rate of the first overtone increases with reducing

frequency when Ea is beyond its neutral stability limit. No bifurca-
tion of eigenvalues is shown in this mode throughout the selected
Ea range. By comparing the stability spectra between the fundamen-
tal mode and the first overtone, the growth rate of the first overtone
always has a steeper slope as Ea increases. In addition, migrations
of the curves are observed at different τc/v cases. For instance, the
frequency is 1.27 for τc/v = 3 at Ea = 33, whereas it is 1.37 for
τc/v = 5 at the same Ea. Nevertheless, the overall trends are simi-
lar as τc/v varies. From the previous finding by Sharpe (1999), the
presence of the first overtone is also observed in the linear stabil-
ity analysis of pathological detonation considering one-dimensional
perturbation. It is expected that more high frequency modes are
observed in the case with two-dimensional perturbations. Never-
theless, the main focus in this work is on the longitudinal insta-
bility only, and thus, further high frequency modes would not be
discussed here.

Regarding the neutral stability limit captured in the fundamen-
tal mode, Fig. 4 shows the relationship of the imaginary part and the
real part of eigenvalues and the dependence of the growth rate on Ea
in the range of 25 < Ea ≤ 50 at τc/v = 3, 5, 7, 9, 275, and 700. As seen,
the neutral stability limit [i.e., Re(α) = 0] shifts to a higher Ea value
as τc/v decreases. Recalling the definition of τc/v

≡ τc/τv in Eq. (7),
this implies that under the same activation energy Ea, the growth
rate of the fundamental mode decreases when vibrational relaxation
is significant. In other words, the detonation is stabilized at lower
τc/v. On the other hand, the bifurcation point at which the unstable
mode splits into two [i.e., Im(α) = 0] moves to a smaller Re(α) as
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FIG. 4. Stability spectrum showing (a)
Im(α) vs Re(α) and (b) Re(α) vs Ea with
the fundamental mode only at τc/v = 3
(dotted curve), τc/v = 5 (dashed curve),
τc/v = 7 (dashed-dotted curve), τc/v = 9
(solid curve), τc/v = 275 (solid-Δ curve),
and τc/v = 700 (solid-∇ curve). γ = 1.2,
Q = 50, ϕ = 20, and f = 1.

τc/v decreases. This indicates that splitting occurs at a lower growth
rate, also implying that detonation is stabilized under significant
vibrational nonequilibrium.

From the stability analysis in the previous literature,13,14 it is
found that the mechanism of detonation instability is related to the
induction time scale and a longer induction time tends to bring
about the detonation instability. More recent work by Ng et al.57

revealed that the detonation stability is sensitive not only to the
induction process but also to the reaction process involving energy
deposition. A stability parameter χ was introduced in their work,
which is proportional to the ratio of induction length ΔI to the
exothermic reaction length ΔR. If the ratio χ is small, a stable system
is presented and vice versa. In the meanwhile, from the analysis by
Uy et al.34 based on the same chemical–vibrational coupling mech-
anism used in this paper, an increase in the half-reaction length
(thus ΔR) is always observed when τc/v decreases, and the induction
time length shows little change with τc/v. Therefore, the computed χ
∝ ΔI/ΔR should be smaller compared to the case of vibrational equi-
librium. The increase in the half-reaction length with decreasing
τc/v can be also seen in the λ∗ profile of Fig. 1 above. Apparently,
the half-reaction length is elongated and the chemical reaction is
in a much gradual manner under vibrational nonequilibrium. By
using the concept of stability parameter χ in the analysis, the stabi-
lization effect of vibrational relaxation on detonation is explained.
The sensitivity of detonation instability to temperature fluctua-
tions also become smaller under the state of vibrational nonequi-
librium due to the presence of energy mode exchange between the
translational–rotational mode and vibrational mode. Consequently,
the flow instability is more resistant to the disturbance.

For the case of τc/v = 275 and τc/v = 700, the two stability spectra
overlapped with each other in Fig. 4. Indeed, both the stability limit
and the bifurcation point in the spectrum remain unchanged when
τc/v
> 275. The assumption of the thermal equilibrium state should

then be valid beyond this critical time ratio, and the corresponding
neutral stability limit is found at Ea = 26.45.

C. Linear spectrum migration by varying
the overdriven factor at different τc/v

An increase in the degree of overdrive f in both numerical sim-
ulation and LSA is known to be crucial in stabilizing detonation

propagation and has been reported in the literature.13,25 Therefore,
a variation in the stability spectrum with f for the selected τc/v is
examined in this section and is presented in Fig. 5 with γ = 1.2, Q
= 50, ϕ = 20, and Ea = 50. As expected, the detonation becomes sta-
ble at large f, and the corresponding neutral stability limit for the
fundamental mode is at f = 1.555 for τc/v = 5 and at f = 1.582 for
τc/v = 10. Initially, two unstable nonoscillatory modes are observed
at f = 1. As f increases, the two unstable modes converge to a sin-
gle unstable eigenmode, which becomes oscillatory [i.e., with Im(α)
> 0]. The convergence points for τc/v = 5 and τc/v = 10 are at f
= 1.0292 and f = 1.0488, respectively. With further increases in
f, the growth rate of the unstable mode decreases asymptotically
to zero, whereas the frequency increases until the neutral stabil-
ity limit is reached. The overall stability behavior is similar to that
displayed in Subsection IV B, but the trend is developed in the
opposite way.

Considering the stability spectrum for the first overtone, the
corresponding growth rate decreases almost linearly to zero as f
increases, with a decay rate much faster than that of the funda-
mental mode. In contrast to the tendency with varying Ea (Sub-
section IV B), the frequency increases slightly with decreasing
growth rate.

To closely examine the migration of the stability spectra for
the fundamental mode under different τc/v, the studied cases (i.e.,
τc/v = 5, 10, 20, 252 and 700) are grouped and presented in Fig. 6,
under a range of 1 ≤ f ≤ 1.7. Generally, the decrease in τc/v shifts
the neutral stability limit to lower f. In other words, the detonation
is stabilized due to the vibrational nonequilibrium effect under the
same f. Moreover, a shift of the convergence point to smaller Re(α)
at lower τc/v is observed in the dependence of the growth rate and
the frequency of the fundamental mode in Fig. 6(a), and thus, the
stabilization under the vibrational nonequilibrium effect is further
revealed. In summary, it is shown again that the decrease in τc/v

can stabilize the detonation propagation, and the presence of vibra-
tional nonequilibrium would lead to the decrease in the stability
limit in f.

Finally, two cases of very large τc/v (i.e., τc/v = 252 and 700)
are presented in the same figure, and the overlapping of these two
spectra indicates that no further shift of the limit is identified if τc is
much larger than τv. Above τc/v = 252 for these particular parameter
sets, the detonation can be treated as in the thermal equilibrium state
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FIG. 5. Stability spectrum showing (a)
Im(α) vs Re(α) and (b) Re(α) vs f for τc/v

= 5 and (c) Im(α) vs Re(α) and (d) Re(α)
vs f for τc/v = 10. The solid curve rep-
resents the fundamental mode, and the
dashed curve represents the first over-
tone. γ = 1.2, Q = 50, ϕ = 20, and Ea

= 50.

FIG. 6. Stability spectrum showing (a)
Im(α) vs Re(α) and (b) Re(α) vs f with
the fundamental mode only at τc/v = 5
(dotted curve), τc/v = 10 (dashed curve),
τc/v = 20 (solid curve), τc/v = 252 (solid-Δ
curve), and τc/v = 700 (solid-∇ curve). γ
= 1.2, Q = 50, ϕ = 20, and Ea = 50.

throughout the reaction profile. The corresponding neutral stability
limit is f = 1.62.

D. Linear spectrum migration by varying
the characteristic vibrational temperature
at different τc/v

When the detonation is under vibrational nonequilibrium,
vibrational temperature ϕ is used to characterize the vibrational
energy content inside the system. The change in ϕ under different
τc/v for the fundamental mode is therefore worth investigating in

this study, and two unstable conditions are considered in the analy-
sis with γ = 1.2, Q = 50, and f = 1: the case at Ea = 30, where only one
unstable oscillatory mode exists, and the case at Ea = 50, where two
nonoscillatory unstable modes are observed [see Fig. 4(b)].

Figure 7 shows the dependence of the growth rate on ϕ at Ea
= 50 for τc/v = 5, 10, and 20. Since the unstable mode here is nonoscil-
latory, Im(α) is always zero under this condition. The difference in
the growth rate between the two unstable modes is narrowed when
ϕ decreases. The increase in τc/v generally moves the upper unstable
mode to a higher level [for example, Re(α) = 0.45 for ϕ = 50 at τc/v

= 5 and Re(α) = 0.58 for ϕ = 50 at τc/v = 20], while the influence on
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FIG. 7. Stability spectrum showing Re(α) vs ϕ with the fundamental mode only
for τc/v = 5 (dotted curve), τc/v = 10 (dashed curve), and τc/v = 20 (solid curve). γ
= 1.2, Q = 50, Ea = 50, and f = 1.

the lower unstable mode is relatively weak. In particular, the change
in the lower unstable mode is within 0.05 in the selected ϕ range for
all three cases of τc/v, but the change in the upper unstable mode
can be over 0.5. In other words, the upper unstable mode is sen-
sitive to the change in vibrational nonequilibrium, while the lower
unstable mode is not. Referring to Sharpe’s work on LSA in ideal-
ized detonation,14 the larger value of Re(α) computed in the fun-
damental mode would always represent the maximum growth rate
and become the most unstable mode. Therefore, the upper unsta-
ble mode dominates the denotation instability. The high sensitivity
of the upper unstable mode to vibrational relaxation prevails. Addi-
tionally, the growth rate of the upper unstable mode is suppressed
at low τc/v, denoting that the detonation is again stabilized at the
vibrational nonequilibrium state. Notably, although the convergence
tendency of the growth rates for these two unstable eigenmodes
along with the decrease in ϕ is similar to that in Fig. 4(b) (with
Ea), they do not converge to a single one, even at ϕ = 1, which is
very small.

For the case of a single oscillatory unstable mode near the sta-
bility limit, Fig. 8 shows the relationship between the frequency and
growth rate at Ea = 30 for τc/v = 5, 10, and 20 with ϕ ranging from
1 to 50. Similar to the case at Ea = 50, no neutral stability limit is
found under the selected ϕ range, but a minimum growth rate [or
minimum Re(α)] of the fundamental mode is determined around
ϕ = 10 for all three τc/v cases. Below this minimum growth rate,
a further decrease in ϕ would lead to an increase in the growth
rate again as the frequency [or Im(α)] decreases. Comparatively,
the growth rate increases comparably faster if ϕ increases beyond
the minimum growth rate point, with the frequency increases first
and then decreases accordingly. In general, the stability spectrum
shifts to higher Re(α) as τc/v increases, which again agrees with the
observations in Fig. 4(b).

Recalling the definition of the vibrational relaxation mecha-
nism in Eq. (6), the relaxation rate depends heavily on the vibrational
time scale τv or the time ratio τc/v instead of ϕ in the analysis. The
low sensitivity of the change in the half-reaction length to ϕ under

FIG. 8. Stability spectrum showing Im(α) vs Re(α) of the fundamental mode only
for τc/v = 5 (dotted curve), τc/v = 10 (dashed curve), and τc/v = 20 (solid curve) in
the range of ϕ from 1 to 50. γ = 1.2, Q = 50, Ea = 30, and f = 1.

the vibrational nonequilibrium state has been previously reported in
the work of Uy et al.34 Together with the findings in the two tested
conditions, it is suggested that ϕ plays only a slight role in stabilizing
the detonation whenever the state is under thermal nonequilibrium.
Accordingly, no critical time ratio τc/v and no change in the number
of unstable modes are determined in this part.

E. Neutral stability curve by varying the heat release
at different τc/v

The instability regime is always shown varying with the heat
release Q in different literature studies,13,15,56 and thus, the neutral
stability curves relating Q with Ea and that of Q with f are presented
in Figs. 9 and 10, respectively, with different τc/v cases (τc/v = 3, 7, and
700 for illustration), while γ = 1.2 and ϕ = 20 are fixed. In a typical
Q–Ea neutral stability curve, the region outside the envelope of the
curve is determined to be stable, whereas the region enclosed by the
curve represents is unstable. It is similar for the case of a typical Q–f

FIG. 9. The neutral stability curve with Q vs Ea at τc/v = 3 (dotted curve), τc/v = 7
(dashed curve), and τc/v = 700 (solid curve). γ = 1.2, ϕ = 20, and f = 1.
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FIG. 10. The neutral stability curve with Q vs f at τc/v = 3 (dotted curve), τc/v = 7
(dashed curve), and τc/v = 700 (solid curve). γ = 1.2, ϕ = 20, and Ea = 50.

neutral stability curve. As discussed before, τc/v
> 300 (in this case

would be τc/v = 600 or 700) is served as a reference to demonstrate
the vibrational equilibrium case.

Referring to the inset of Fig. 9, the detonation is always sta-
ble below Ea = 14, which has also been determined in the previous
literature.13 On the other hand, for the Q–f neutral stability curves
presented in Fig. 10, a stable condition is always found at above f
= 3.5. Furthermore, it is illustrated that the unstable region becomes
smaller across the selected Q range with decreasing τc/v in both
Figs. 9 and 10. Also, the increase in critical Ea and the decrease in
critical f as τc/v decreases are clearly seen. The critical points on
the neutral stability curves in Fig. 9 for τc/v = 700, 7, and 3 are at
Q = 10 and Ea = 14.25, 14.72, and 15.10, respectively, while those
in Fig. 10 are at Q = 10 and f = 3.05, 2.83, and 2.68, respectively.
In other words, in the low Q range (below 10) under vibrational
nonequilibrium, larger amounts of exothermicity are required to
generate instability by increasing the activation energy or decreas-
ing degree of overdrive, while it is vice versa for the case in the
high Q range.

It is known that the specific ratio γ is closely related to the types
of molecules and the microscopic states of the molecules37 (includ-
ing the translational, rotational, and vibrational energy modes), and
the effect of γ on the detonation stability under molecular vibra-
tional equilibrium/nonequilibrium conditions is also examined here
by comparing the corresponding neutral stability curves. Figure 11
shows the Q–Ea curves with different γ, i.e., γ = 1.1, 1.2, 1.3, and 1.4
under vibrational equilibrium (τc/v = 600) and vibrational nonequi-
librium (τc/v = 3). As seen, for different γ, instability regions reduce
when vibrational relaxation is considered (i.e., τc/v = 3). This implies
that the vibrational nonequilibrium effect can always play a role in
stabilizing the detonation, regardless of the types of molecules con-
sidered in the system. Further clarification on the detonation stabil-
ity in different types of reactive flow systems will be provided with
numerical simulations in the future.

Figure 12 shows the neutral curves relating Q with ϕ at differ-
ent τc/v, while γ = 1.2, f = 1, and Ea = 26. The stability behavior
is quite different from that discussed in Figs. 9–11. The unstable
region in Fig. 12 is bounded by the two neutral stability curves, while
other regions are stable. As seen, the unstable region again becomes

FIG. 11. The neutral stability curve with Q versus Ea at τc/v = 3 (dotted curve) and
τc/v = 600 (solid curve) for γ = 1.1 (blue), γ = 1.2 (black), γ = 1.3 (red), and γ = 1.4
(green) respectively. ϕ = 20 and f = 1.

smaller when τc/v decreases, and the stabilization effect with the con-
sideration of vibrational relaxation is identified. Moreover, the two
neutral curves of τc/v = 3 and 7 almost lie horizontally through-
out the selected ϕ range, indicating that the variation in ϕ would
not bring a large change in the stability behavior, compared to the
change in Q. As seen, the detonation is always unstable at 10 < Q
< 40 under the selected ϕ range. The trend of the neutral curves
agrees with the discussion in Subsection IV D that ϕ plays a minor
role in the detonation stability when vibrational nonequilibrium
is significant.

The features found in the neutral stability curves confirm with
the short summaries made in the previous subsections. That is, the
detonation is stabilized when vibrational relaxation is introduced
in the chemical kinetics, and the instability region occupied in the
neutral stability curves are shrunk clearly. At the limit Q → 0, the
detonation is always inert to the perturbation, and this condition
has also been reported in the literature.15,56 Since the change in the

FIG. 12. The neutral stability curve with Q vs ϕ at τc/v = 3 (dotted), τc/v = 7
(dashed), and τc/v = 700 (solid). γ = 1.2, f = 1, and Ea = 26.
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value of Q would solely affect the chemical reaction rate evaluated
in the Arrhenius model [i.e., Eq. (4)], it provides an insight that the
stabilization effect by vibrational relaxation (shift of the neutral sta-
bility boundary in Ea and f ) always exists regardless of the chemical
reaction rate.

F. Comparison with stability analysis results
computed by numerical scheme

Many studies have revealed that both the neutral stability lim-
its and the corresponding frequencies predicted in LSA match those
computed in numerical simulation near the stability boundary.16 To
justify the LSA findings in this study, simulation is conducted in
selected cases for which the neutral stability limits and periods of
oscillation between the two approaches are compared. Notably, Sub-
sections IV B–IV D have demonstrated an extreme case of very high
τc/v (i.e., τc/v = 700) representing the state of thermal equilibrium
with the predicted neutral stability limit, and these are also verified
in this section.

Table II shows a comparison of the neutral stability limit and
the period of oscillation obtained from both the analytical and
numerical approaches for the selected eight cases with γ = 1.2,
Q = 50, and ϕ = 20. The Ea at the neutral stability limit for the first
four cases are under the thermal equilibrium state (i.e., case I) and
under the thermal nonequilibrium state for τc/v = 5 (i.e., case II),
τc/v = 7 (i.e., case III), and τc/v = 9 (i.e., case IV), whereas the other
four present the variations of f at the neutral stability limit under
the thermal equilibrium state (i.e., case V) and under the thermal
nonequilibrium state for τc/v = 5 (i.e., case VI), τc/v = 10 (i.e., case
VII), and τc/v = 20 (i.e., case VIII). Notably, to construct the thermal
equilibrium simulation, the vibrational relaxation mechanism, i.e.,
Eq. (6), was neglected in the chemical kinetics, while the vibrational
energy term, i.e., Eq. (3), was calculated with Tv = Ttr. A similar
treatment has been conducted in the numerical simulation of one-
dimensional hydrogen–oxygen detonation diluted with argon.30 For

TABLE II. Comparison of the neutral stability limit and the period of oscillation com-
puted by linear stability analysis and numerical simulation, respectively. γ = 1.2, Q
= 50, and ϕ = 20. NSL—Neutral stability limit and PO—period of oscillation. Case I:
f = 1 is fixed at thermal equilibrium. Case II: f = 1 is fixed at thermal nonequilibrium
with τc/v = 5. Case III: f = 1 is fixed at thermal nonequilibrium with τc/v = 7. Case IV: f
= 1 is fixed at thermal nonequilibrium with τc/v = 9. Case V: Ea = 50 is fixed at thermal
equilibrium. Case VI: Ea = 50 is fixed at thermal nonequilibrium with τc/v = 5. Case
VII: Ea = 50 is fixed at thermal nonequilibrium with τc/v = 10. Case VIII: Ea = 50 is
fixed at thermal nonequilibrium with τc/v = 20.

Linear stability analysis Numerical simulation

Case NSL PO NSL PO

I Ea = 26.46 10.63 Ea = 26.47 10.64
II Ea = 27.13 12.14 Ea = 27.14 12.15
III Ea = 26.99 11.77 Ea = 27.02 11.74
IV Ea = 26.90 11.54 Ea = 26.92 11.51
V f = 1.62 8.02 f = 1.62 8.03
VI f = 1.555 9.51 f = 1.554 9.52
VII f = 1.582 8.80 f = 1.581 8.83
VIII f = 1.60 8.46 f = 1.598 8.43

FIG. 13. Shock pressure history at Ea = 26.47 under the thermal equilibrium state
computed by numerical simulation. γ = 1.2, Q = 50, ϕ = 20, and f = 1.

reference, a shock pressure history of the case with Ea = 26.47 under
the thermal equilibrium state is presented in Fig. 13, representing
the neutral stability limit for case I. The period of oscillation is then
identified by averaging the period between peak amplitudes and is
calculated to be 10.64. Note that the initial damping in Fig. 13 is due
to the numerical startup error, and a stable configuration is achieved
after a long-time evolution.22

Regarding the LSA result subjected to the changes in Ea and f,
the cases with τc/v = 700 denoting the thermal equilibrium state are
presented in cases I and V for comparison, while the cases with τc/v

= 5, 7, 9, 10, and 20 are presented in other cases denoting the state of
thermal nonequilibrium. The period of oscillation PO in LSA can be
calculated through the following expression:

PO =
2π

Im(α)
, (30)

where Im(α) is on the Erpenbeck scale for easy demonstration. Note
that the discussion of different scales in LSA has been presented in
Subsection IV A above. The conversion factors to the Erpenbeck
scale in this study are 2.403, 2.886, 2.907, 2.921, and 2.937 for f
= 1, 1.555, 1.582, 1.60, and 1.62, respectively. For instance, Im(α)
obtained in case I at Ea = 26.46 is 0.245, and the period of oscillation
can then be evaluated by 2π/(0.246 × 2.403) equal to 10.63.

As shown in Table II, the data from the two approaches
matched closely with each other, and the difference is at most
0.03. Hence, the discussion in LSA is well validated in this study
considering vibrational–chemical coupling chemistry.

V. CONCLUSIONS
A linear stability analysis of one-dimensional detonation with a

vibrational–chemical coupling mechanism is investigated using the
normal mode approach. With the introduction of the time ratio τc/v

denoting the chemical reaction time scale vs the vibrational relax-
ation time scale, the chemical kinetics are constructed such that an
Arrhenius reaction rate is coupled with the vibrational relaxation
rate using Park’s averaged two-temperature model. The activation
energy Ea in the Arrhenius model, the degree of overdrive f, the
heat release Q, and the characteristic vibrational temperature ϕ are
chosen for a parametric study with γ = 1.2 kept constant.
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On the change in Ea with different τc/v, it is shown that both
the fundamental mode and the first overtone are observed in the
analysis. The appearance of the first overtone may be attributed to
the multi-chemical kinetics involved in the reaction model, analo-
gous to the LSA findings of pathological detonation in the literature.
When τc/v decreases, shifts of the neutral stability limit and the bifur-
cation point (with a corresponding lower growth rate) to a higher Ea
are observed. This finding implies that the detonation is stabilized
under vibrational or thermal nonequilibrium. Through the analysis
of the ratio of induction length to the exothermic reaction length
at different τc/v, the stabilization effect due to vibrational relaxation
is explained. On the other hand, neither the neutral stability limit
nor the bifurcation point would be shifted in the stability spectrum
when τc/v

≥ 275, and this critical condition reveals that the detona-
tion is under the state of thermal equilibrium. The vibrational time
scale is sufficiently small compared with the chemical time scale at
this stage, and equilibrium is quickly established immediately after
the start of the reaction. The corresponding neutral stability limit is
at Ea = 26.46.

For detonations with different degrees of overdrive f, both the
fundamental mode and the first overtone are demonstrated in the
analysis again. As reported in the previous literature, an increase in
f would stabilize the detonation, and thus, a neutral stability limit
should be obtained at f > 1. By decreasing τc/v, the neutral stabil-
ity limit shifts to the lower f accordingly. Since both the increase in
f and the decrease in τc/v provide the stabilization effect in detona-
tion propagation, the introduction of vibrational relaxation in the
analysis contributed to the shift of both the stability limit and the
bifurcation point. The critical τc/v above which the detonation is at
thermal equilibrium is at τc/v = 252, and the corresponding neutral
stability limit is at f = 1.62.

Regarding the sensitivity study to the change in ϕ, two test con-
ditions are implemented in the analysis—one has a single unstable
oscillatory eigenmode and the other has two unstable nonoscillatory
eigenmodes. For the case with a single unstable mode, a minimum
growth rate is found at approximately ϕ = 10 for all selected τc/v, and
a shift of the stability spectrum to a lower growth rate with decreas-
ing τc/v is again observed. Similarly, a shift of the upper eigenmode to
the lower level with decreasing τc/v is manifested clearly in the other
tested case, but little effect on the shift of the lower eigenmode is
shown under the change in ϕ. Overall, ϕ shows little effect on stabi-
lizing the detonation compared with that of the variation in Ea and f,
and no change in the number of eigenmodes is observed throughout
the selected ϕ ranges.

To examine the change in instability regimes at different heat
release Q, neutral stability curves of Q–Ea, Q–f, and Q–ϕ are pre-
sented as τc/v varies. Among all the curves, the instability regions
become smaller accordingly when τc/v decreases, confirming that the
detonation is stabilized under the significant vibrational nonequi-
librium. In addition, another Q–Ea curves with different γ are pre-
sented under the vibrational equilibrium/nonequilibrium state. The
stabilization effect is always observed regardless of the choice of γ.
The change in the value of Q would affect the chemical reaction rate
evaluated in the Arrhenius model only, while the stabilization effect
by vibrational relaxation remains.

To justify the normal mode result from LSA, numerical sim-
ulation is conducted on selected cases to see if the neutral stability
limit and the period of oscillation computed match with that from

the analytical approach. A conversion between the Erpenbeck scale
and the scale utilized in this study is necessary for easy demonstra-
tion. As shown, the difference between the two results is at most
0.03 in either the neutral stability limit or the period of oscillation.
Therefore, the analysis of vibrational–chemical coupling kinetics in
this report is well validated.
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