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Abstract—This paper investigates a human-machine cooperative
trajectory planning and tracking control approach for automated
vehicles. The proposed method is developed based on a novel al-
gorithm of cooperative human-machine rapidly-exploring random
(HM-RRT) for path planning, together with the risk assessment of
driver behavior. First, the driver’s behaviour is assessed according
to the information of the predicted vehicle trajectory, the identified
safe driving area and the driving risks evaluated in both lateral
and longitudinal directions. Based on the driver’s expected driving
task, when driving risks are identified by real-time assessment,
then the human-machine cooperation is activated during trajectory
planning. By HM-RRT, the newly developed safety assurance
mechanism for path planning, the cooperative trajectory is then
generated, which incorporates the driver’s desire and actions and
automation’s corrective actions, to ensure the safety, stability and
smoothness of the human-vehicle system. The simulation and
experimental results show that the proposed HM-RRT algorithm
can effectively improve the convergence rate and reduce the
computation load, comparing to the conventional method. Beyond
this, the proposed human-machine cooperation approach is able to
simultaneously ensure the safety, stability and smoothness of the
vehicle and largely reduce human-machine conflicts in real-time
applications, demonstrating its feasibility and effectiveness.

Index Terms—Human-machine cooperation, trajectory planning,
HM-RRT, tracking control, automated driving

I. INTRODUCTION

IN recent years, automated driving has been gaining increas-
ing attention from both academia and industry, as it has a

great potential to reduce traffic accidents, optimize transporta-
tion efficiency, and improve our mobility experience [1, 2].
Although fully autonomous driving is seen as the ultimate goal,
highly automated driving with human-in-the-loop is considered
to arrive sooner. Thus, in the foreseeable future, the cooperation
between human driver and automation functionalities will play
an important role in the development of automated driving
technologies [3, 4].

Advanced driver assistance system (ADAS) is a promising
means to improve the system performance and reduce the work-
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load of human drivers [5, 6]. It can assist the driver with specific
driving tasks. For example, an adaptive cruise control system
can automatically apply braking to keep a reference speed
and safe distance away from the vehicle ahead [7]. A forward
collision avoidance (FCA) system will provide automatic control
of the vehicle in case of an imminent forward collision [8]. In
these systems, the driver still retains in the control loop and
interacts with the automation at the control level.

Although ADAS have many advantages, how to ensure
vehicle safety via allocating the control authority to human
driver and automation system remains a challenge. An effective
approach for achieving such driver-automation collaboration is
shared control [9]. In the shared control system, the automation
continuously supports the driver on control action to follow
a reference path, achieving a predefined driving task. Based
on the modality of the human-machine interface, the shared
control can be divided into visual, auditory and haptic forms.
The performance improvement of visual and auditory supports
in shared control is limited, as they are usually provided as
a warning to the human driver when the risk level exceeds a
threshold [10]. By using the haptic interface, such as a haptic
force or torque applied on a joystick or a steering wheel,
the automation can continuously assist the human driver by
providing a corrective control input [11, 12].

Despite the above promising aspects, conflicts would also
inevitably occur between the human driver and automation
when there is a deviation in their control inputs during shared
control [13]. For example, during shared control when the driver
steers the vehicle from the lane centre to avoid crashing to
an undetected obstacle, yet the automation system keeps the
vehicle moving along with the lane centre line. In this case,
the human driver has to exert extra torque to override the
automation control and execute his or her intended trajectory,
resulting in the increased driver control effort and driving risk
[14]. Another classic example is that, although the directions of
the driver and automation’s control inputs are the same during
shared control, the amounts of their executed control inputs
are different, which also leads to conflicts between the human
and machine. Moreover, the frequent conflict between human
and machine would deteriorate the subjective driving experience
and vehicle control performance [15]. Thus, vehicle safety and
smoothness are expected to be enhanced via shared control,
however, the conflicts during human-machine collaboration are
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unexpected and should be addressed [16].
There are some ways to solve the aforementioned human-

machine conflict problem. One simple and practical way is to
directly shut off automation’s support or reduce the level of
support when conflicts occur [15]. Besides, Billings applies the
principle of human-centred automation to minimize the human-
machine conflicts [17]. This approach allows the human driver
to hold the highest authority, and the automation’s action is gen-
erated based on the human driver’s intention. [18] investigates
the concept of arbitration in order to make an equitable decision
for human-machine cooperation in emergencies. The outcome
is able to mitigate the conflict by offering the human driver as
much the degree of freedom in control as possible. However,
the human-machine conflict is oriented from the expectation
mismatch in the higher-level task of trajectory planning, rather
than the deviation of control inputs between the human driver
and the automation. [19] proves that the collaboration between
human driver and automation at the planning level can ef-
fectively reduce human-machine conflicts. Nevertheless, so far
very few studies investigate the human-machine collaboration
in trajectory planning [20].

Currently, most of the publications in the area of trajectory
planning mainly focus on collision-free trajectory generations by
considering vehicle dynamics and surrounding traffic informa-
tion. The geometry-based approach is well known for its strong
ability in reasoning and calculation efficiency. There mainly
four types of the geometry-based approach, i.e. the Dubin
curve [21], Bezier curve [22, 23], spline [24] and polynomial
curves [25]. Besides, the numerical optimization-based methods
find feasible trajectories based on the differential cost function
and constraints [26]. By solving the formulated optimization
problem, an optimal trajectory can be obtained. However, the
complex driving conditions may result in a non-convex opti-
mization problem which is computationally difficult to be solved
[27]. The graph-search approaches can construct a graphical
discretization of the vehicle’s state space and generate a cluster
of trajectory candidates based on the predefined patterns. Then,
the optimal trajectory can be selected based on a certain cost
function. The popular used graph-search methods include the
Hybrid A? [28], Dijkstra algorithm [29], D?-lite [30] and
Anytime Weighted A? [31]. Rapidly-exploring Random Trees
(RRT) is a powerful tool to find feasible trajectories in complex
and dynamic environments [32]. However, the algorithm is very
time-consuming due to a large number of iterations needed,
and meanwhile, the path generation does not consider the
traffic rules [33, 34]. In general, research in human-machine
cooperation in trajectory planning of automated driving has
rarely been seen.

To further advance the shared control technology and mitigate
human-machine conflicts, in this paper, we propose a novel
methodology of human-automation cooperation by uniquely
considering the driver behaviors in a newly developed cooper-
ative trajectory planning algorithm. The proposed approach al-
lows for a continuous adaption of the vehicle trajectory planning

to the varying performance of the human driver. As a result, the
human driver still retains the main authority of trajectory plan-
ning, while the automation accommodates the human driver’s
desire but compensates human driver’s undesired behaviour to
ensure vehicle safety when needed. The contributions of this
paper are three folds: 1) A novel cooperative trajectory planning
and tracking method is proposed to address the issue of human-
machine conflict; 2) A novel HM-RRT algorithm is proposed to
significantly decrease the number of iterations and improve the
computation efficiency of the traditional RRT algorithm, leading
to an accelerated convergence rate in trajectory planning; 3)
The proposed approach can effectively integrate the trajectory
planning module and tracking control module, which further
improves the computational efficiency of the planning and
control algorithms for autonomous driving.

The remainder of the paper is structured as follows. The
high-level system methodology and algorithm architecture are
illustrated in Section II. The decision-making module of human-
machine cooperation, which consists of the safe area identi-
fication, risk assessment of driver behavior, and the trigger
mechanism of human-machine cooperation, is described in
Section III. The novel HM-RRT-based cooperative trajectory
planning and tracking algorithm is designed in Section IV. The
testing, validation and results are presented in Section V. Section
VI concludes this paper.

II. THE HIGH-LEVEL SYSTEM ARCHITECTURE

The proposed human-machine cooperative trajectory planning
and tracking algorithm is depicted in Fig. 1. As shown in Fig.
1a, the Red vehicle is the controlled ego vehicle (denoted in
short as ego). Three obstacle vehicles, including the preceding,
leader and follower, are considered in this study. The high-level
structure of the proposed approach is represented in Fig. 1b.
Based on the sensing information of the traffic environment and
the predicted intentions of surrounding vehicles, the decision-
making module of the automated driving system makes an
appropriate decision on the driving mode (e.g. lane-keeping or
lane-changing), which further determines the target lane ytarget
and the desired velocity vtarget. The design of the decision-
making module is not involved in the present research, and
we mainly focus on the downstream trajectory planning and
tracking via human-machine cooperation. At each step of the
trajectory planning, the human driver’s input, uh = [ah, δh]T , is
implemented to the constant turn rate and acceleration (CTRA)
model for predicting the vehicle’s motion. δh and ah are the
steering wheel angle and vehicle acceleration provided by the
human driver, respectively. If the predicted vehicle motion gen-
erated by the driver action is judged as safe and reasonable, then
no support from the automation will be provided in trajectory
planning and tracking control, and the Human driver owns the
full authority on vehicle control. However, when the driver’s
control input is assessed as risky, then the automation system
will be activated, and the newly developed HM-RRT algorithm
will be utilized to generate an additional corrective control
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Fig. 1: The architecture of the proposed human-machine cooperative trajectory planning and tracking approach.

signal ua, together with uh, to control the ego moving safely
within a bounded space. More specifically, the constrained
Delaunay Triangulations (CDT) technique is adopted to identify
the bounded safe space for the ego to travel, and the artificial
potential field (APF) and the dynamic potential field (DPF) are
applied to evaluate the driving behavior of human driver in the
lateral and longitudinal directions, separately. In this way, the
human driver’s intention and preferences are embedded into the
trajectory planning level, and the automation collaborates with
the human driver in a more harmonic manner, and the human-
machine conflicts can be effectively reduced. More details of
the key functionality modules and algorithms are discussed
subsequently.

III. THE TRIGGER MECHANISM OF THE HUMAN-MACHINE
COOPERATION

In this section, the prediction method of the vehicle motion
based on the driver’s inputs is firstly introduced. Then, the
identification of the safe space for driving is developed, and
this is the foundation for risk assessment of human driver’s
behavior. Finally, the trigger mechanism of the human-machine
cooperation is designed, and the corresponding control input do-
main Udomain, which is used for the HM-RRT-based trajectory
planning and tracking algorithm, is also determined.

A. Prediction of vehicle states using the CTRA model

In this subsection, vehicle’s future trajectory is predicted
under the human driver’s control input uh = [ah δh]T by
using the bicycle model and the CTRA model [35]. In the
CTRA model, the following assumptions are made: the vehicle
operates in a circular path between two consecutive time steps,
and the yaw rate and acceleration of the vehicle within the
two time steps are kept constant. For the control vector uh,
the corresponding yaw rate r, yaw angle ψ and lateral velocity
vx of the vehicle can be calculated based on the bicycle model,
which will be described in Section IV-A. Based on r, ψ and
vx, and considering the heading angle of the road ψroad, the
CTRA model is utilized to predict vehicle’s trajectory over a

time horizon. The following equation describes the kinematics
of the CTRA vehicle model:

ξ(k + τp) =



x⊕(k) + ∆x⊕(τp)

y⊕(k) + ∆y⊕(τp)

ψ(k)− ψroad + τpr

vx(k) + ahτp

ah

r(k)

(1)

with

∆x⊕(τp) =
1

r2
[(vxrf + ahrτp) sin(ψ?(k) + τpr)

+ ah cos(ψ?(k) + τpr)

− vxr sin(ψ?(k))− ah cos(ψ?(k))]

and

∆y⊕(τp) =
1

r2
[(−vxrd − ahrτp) cos(ψ?(k) + τpr)

+ ah sin(ψ?(k) + τpr)

+ vxr cos(ψ?(k))− ah sin(ψ?(k))].

where ψ?(k) = ψ(k) − ψroad, ξ = [x⊕ y⊕ ψ vx ah r]T is
the state vector. x⊕ and y⊕ represent the vehicle’s position.
τp is the prediction horizon. It should be noted that a small
prediction horizon may lead to a result that the predicted
trajectory is close to the current trajectory. However, a large
prediction horizon may result in over-shoots of the predicted
trajectory. In this work, we set τp = 0.5s. The predicted
position xh,ppred = (x⊕(τp), y

⊕(τp)) and predicted longitudinal
velocity xh,vxpred = vx(τp) are used to generate a trajectory, where
subscript pred denotes prediction, and superscript h represents
human driver, and p and vx denote the position and longitudinal
velocities, respectively.

B. Identification of the safe driving space

In this subsection, the CDT technique is adopted to identify
a safe driving space for the vehicle. The safe space is used
for assessing the risk of the driver’s control behavior (refer to
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Section III-C for details), and it is leveraged as the configuration
space in the proposed HM-RRT to explore (refer to Section IV
for details). One advantage of the CDT method is that it requires
much less data storage of environment information than other
cellular methods. Given a driving task, i.e. lane changing or lane
keeping, as illustrated in Fig. 2, the obstacle vehicles and road
boundaries are described by line segments. Then the feasible
driving region can be partitioned into multiple triangles. The
safe space can be considered as a polygon, which consists of
a sequence of triangles connecting the starting point to the end
region. The starting point is set as the ego’s current position.
The end region is defined as the position, which is a pre-defined
distance do away from the target vehicle (i.e. the preceding
during lane-keeping and from the leader in the lane change
task). It should be noted that the safe area in the lateral direction
is also bounded by the traffic rules. In the case of lane-keeping,
the ’width’ of the safe space cannot exceed the width of the
current lane (the distance between the white dash line and the
lower black solid line). And in the case of lane-changing, it can
not exceed the width of two lanes.

Road boundary Constrained Delaunay triangulation

Safe spaceBoundary of safe area

𝑑!

Follower

PrecedingEgo

Leader

𝑑!

Follower

PrecedingEgo

Leader

Direction of travel

Direction of travel

(a) Lane changing

(b) Lane keeping

Fig. 2: Safe space identification based on the CDT technique in
different driving tasks.

The steps of identifying the safe space C can be summarized
in Algorithm 1. The boundaries of the safe space C are
considered as non-overcome boundaries. The vehicle should not
drive closely to the upper boundary and lower boundary. More
details can be found in [36].

C. Risk assessment of the driver’s control behavior

In this subsection, the risk assessment of driver’s control
behavior in both lateral and longitudinal directions is illustrated.
First, we utilize the APF method to measure how close the vehi-
cle’s predicted position is to the boundaries of C in the lateral
direction. The following equation describes the calculation of
the generated repulsive potential of the boundaries:

Algorithm 1: GenerateSpace()
For a given driving task, identify Sp and Fp, and

discrete the driving region into N constrained
Delaunay triangles T = {T1, T2, · · · , TN};

Identify the triangle Sp ∈ Ts, 1 ≤ s ≤ N , and
Fp ∈ Tf , 1 ≤ f ≤ N, f 6= s ;

Construct an adjacent matrix DN×N to represent the
relationship between any pair of triangles. D(i, j) = 1
represents that triangle Ti and Tj are adjacent.
Otherwise, D(i, j) = 0

Start with Ts, based on the matrix D, search for the
triangle which is adjacent to Ts, repeat this process
until we find Tf .

Based on the driving mode, calculate the intersection
between a set of triangles and road boundaries.

U l(xh,ppred) =

{
0, rb > dc + vw

2

αf exp
(
− r2b
σ2
y

)
, Otherwise

(2)

where rb is the minimum distance from the vehicle’s predicted
position to the lower bound or the upper bound of the safe space.
vw is the vehicle’s width, and dc is the safety margin. αf is the
coefficient for adjusting the magnitude of the potential field. σy
stands for the convergence coefficient along the direction of Y .
Eq. (2) indicates that when the vehicle’s predicted position keeps
a distance away from the boundaries, the repulsive potential
will be around zero. And the value of the repulsive potential is
negatively correlated to the distance. Here, we set a threshold,
denoted by U l̄, for the lateral repulsive potential. If U l(xh,ppred) is
greater than U l̄, the vehicle’s motion under the driver’s steering
input is considered risky, and a modification of xh,ppred is needed.
The repulsive force enforces the point xh,ppred to move away from
the boundary. The corresponding repulsive force can be given
by the negative gradient of Eq. (2):

~F = −5U l =

{
0, rb > dc + vw

2
2αfrb
σ2
y

exp
(
− r2b
σ2
y

)
, Otherwise

(3)

Algorithm 2 describes the gradient descent procedure used
in the generation of xa,pgoal for the HM-RRT algorithm. xa,pgoal
is the goal position of automation in each replanning cycle
and λ is a small incremental distance. To avoid frequent
oscillations in the trajectory and to ensure the smoothness of
the planned trajectory, the curvature of xa,pgoal is constrained as
Judge(κg) = |κg(t)| < κgmax (Line 2). The calculation of κg

will be introduced in Section IV-A.
In the longitudinal direction, the Dynamic potential field

(DPF) method is used to evaluate the ego’s motion risk with
consideration of the relative position and velocity between the
ego vehicle and obstacle vehicles.
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Algorithm 2: GenerateGoal()

xa,pgoal ← xh,ppred
while U l(xa,pgoal) > U l̄& Judge(κg) ≥ κgmax do

~F ← Potential Gradient (xa,pgoal);

xa,pgoal ← xa,pgoal + λ(
~F

|~F |
);

end

Ud(∆veo,∆xoe) = Ueo · Urd

Ueo = α
exp[η(∆veo) cos(θ)− I]

2πI0[η(∆veo)]

Urd = Af · exp

ñ
− (∆x⊕oe)

2b

2σ2b
x

ô
η(∆veo) = sign(∆veo)|∆veo|

(4)

where Ueo stands for the potential field related to the relative ve-
locity ∆veo = xh,vxe,pred−x

h,vx
o,pred, o ∈ {p, l, f}. p, l and f denote

the proceeding, leader and follower, respectively. xh,vxi,pred, i ∈
{e, p, l, f} denotes the corresponding predicted velocity. Urd
represents the potential field associated with the longitudinal
relative distance ∆x⊕oe = x⊕o (τp) − x⊕e (τp), o ∈ {p, l, f}.
x⊕i (τp), i ∈ {e, p, l, f} denotes the predicted longitudinal posi-
tion. The calculation of xh,vxi,pred and x⊕i (τp), i ∈ {e, f, l, p} have
been described in Eq. (1). θ is the relative heading angle between
two vehicles, and θ = π × (1 + min(−sign(xe − xo), 0)). α
is the maximum value of the potential field of Ueo. Af is the
maximum value of the potential field of Urd. σx stands for
the convergence coefficient along the direction of X . b is the
coefficient for changing the shape. I0(·) is the modified Bessel
function of order 0. By introducing Ueo, the potential field value
can be drifted to the direction ∆veo.

Fig. 3: Schematic diagram of the dynamic potential field de-
signed based on the relative velocity and distance between
vehicles.

Fig. 3 gives an example of the potential energy distribution
based on the relative distance and velocity difference in a lane

keeping task. When the ego moves faster than the preceding, the
potential field value is significantly increased with the decrease
of the relative distance. To quantitatively evaluate the risk of
the ego’s motion, we define the maximum DPF with respect to
the potential field in the condition of a minimum safe distance,
as shown below:

Ūdeo =

ß
I, Udeo ≤ 0

Ud(∆veo, sign(x⊕oe)d
s
eo), Otherwise

dseo =
|(xh,vxe,pred)

2 − (xh,vxo,pred)
2|

2ā

+ max(xh,vxo,pred, x
h,vx
e,pred)(tr +

ti
2

) + do

o ∈ {f, l, p}.
(5)

where dseo represents the minimum safe distance. ā is the
maximum deceleration for all vehicles. tr is the reaction time of
a driver, and ti is the build-up time of vehicle deceleration. do
is the minimum clearance distance. If the longitudinal motion
is evaluated as risky and unacceptable, then a support from the
automation in longitudinal direction will be needed. It should
be noted that the calculation of DPF depends on the different
driving tasks, and this will be further explained in the next
subsection.

D. The trigger mechanism of the automation

The automation’s control input is firstly defined as ua =
[aa, δa] ∈ Udomain = Adomain ×∆domain. Adomain is the set
of the assisted lateral acceleration, while ∆domain is the set of
assisted steering wheel angle from automation. Let na and nδ be
given positive integers, and they specify the numbers of feasible
acceleration and steering angle per interval, respectively. We
consider the following class of control inputs:

IF driving task is ′lane keeping′ ,Then,

Adomain =

ß
{aa| iaāna , ia = 1, · · · , na}, if Udep ≥ Ūdep

{0}, Otherwise.

IF driving task is ′lane changing′ ,Then,
Adomain =

{aa| ia×āna
, ia = 1, · · · , na}, if Udef ≥ Ūdef&Udel < Ūdel

{aa| ia×ana
+ a, , ia = 1, · · · , na}, if Udef < Ūdef&Udel ≥ Ūdel

{0}, Otherwise.
(6)

and

∆domain =®
{δa| iδ×(δ̄−δ)

M , iδ = 1, · · · , nδ}, if xa,pgoal 6= xh,ppred
{0}, Otherwise.

(7)

where aa and δa are the acceleration and steering angle provided
by automation, respectively. ā is the minimum value of a. In
Eq. (6), the calculation of the DPF is based on the driving task.
More specifically, the obstacle vehicle is the proceeding in the
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lane keeping maneuver, while the follower and the leader in the
adjacent lane are considered as the obstacle vehicles in the lane
changing maneuver. In Eq. (7), δ̄ and δ denote the saturation
levels of the front wheel angle δa. It should be noticed that
if Udomain = (0, 0), the human driver’s driving behavior is
acceptable with low risk, and no support from the automation
in trajectory planning and tracking is needed. Then the vehicle
can be fully controlled by human driver in this replanning cycle,
i.e.,

Occurrence Auto =

ß
0, if Udomain = (0, 0)
1, Otherwise.

(8)

where Occurrence Auto indicates the occurrence of the sup-
port given by automation. In the case of Occurrence Auto = 1,
automation is required to be triggered and to collaborate with
human driver in trajectory planning and tracking. The HM-
RRT algorithm is then activated and used to generate the
modified trajectory cooperatively planned by the driver and the
automation.

IV. HM-RRT-BASED COOPERATIVE TRAJECTORY
PLANNING AND TRACKING

In this section, the newly developed HM-RRT-based co-
operative trajectory planning and tracking algorithm will be
introduced in detail. First, we extend the HM-RRT algorithm by
considering the kinematic and dynamic behaviors of the vehicle.
In this way, there is no need to design a tracking controller
as the planning and execution are interleaved. Then, the tree
trimming procedure and its usage in trajectory replanning under
a dynamic environment will be discussed. The tree trimming-
and-regrowing procedure is expected to highly improve the
computation efficiency.

Notation: The index h and a represent the human driver and
automation, respectively. The superscripts (·)p and (·)s denote
the position and vehicle’s status, respectively. The symbols x̄
and x represent the upper bound and lower bound of the variable
x. The variables which are used in the HM-RRT algorithm are
summarized in TABLE I.

TABLE I: Variables used in HM-RRT algorithm

Variable Parameter
xrand the random node in the configuration space
xnear the nearest node of the tree to the xrand

xcand a set of new node candidates
xRcand ⊂ xcand the remaining node candidates after selection

xnew the new node added to the tree

A. HM-RRT algorithm

In this work, we develop the novel HM-RRT, a real-time algo-
rithm which incorporates the constrained Delaunay triangulation
and artifical potential field into the existing RRT. Algorithm 3
illustrates the implementation of the HM-RRT algorithm, and
the main procedures of the algorithm are discussed as follows.

Algorithm 3: GrowHMRRT()

Inputs : xinit,∆t, Udomain, C, xh,ppred, T =(V,E)

1 xa,pgoad ←GenerateGoal(C, xh,ppred)
2 while

∣∣∣xa,pnew − xa,pgoal∣∣∣ > d do
3 xa,prand ← RandomState(C, xa,pgoal)

4 xanear ← NearestNeighbor(xa,prand, T )
5 xaCnew ← GenerateNew(xanear, Udomain,∆t)
6 xaCCnew ←JudgeNew(xaCnew, C, κ)
7 xanew ← OptimalNew(xaCCnew, x

a,p
goal)

8 uanew ← IdentifyControl(xanew, xaCCnew)
9 T ← add vertex(xanew, u

a
new, T )

10 T ← add edge(xanear, x
a
new, u

a
new, T )

11 end
12 return T .

1) xinit: The state space is represented by the set X ∈ Rn,
n ∈ N. x ∈ X is a particular configuration of the ego and
x = [xa,p xa,s]. Superscript a is the abbreviation of automation
and s represents vehicle states, including the heading angle ψ,
yaw rate r, longitudinal velocity vx and lateral velocity vy . A
tree T = (V,E) constitutes of a set of vertices V ⊂ X sampled
from configuration space and edges E that connect these vertices
together.

2) Sampling: The function RandomState() returns indepen-
dently and identically distribute samples from the triangulation
Ti (∈ C = {Ts, · · · , Tf}) to which xa,pgoal belongs. In this
way, the searching speed and convergence rate are effectively
improved.

3) Nearest Neighbor: The function NearestNeighbor() re-
turns the node v ∈ V in T , and that is the nearest to the
configuration xa,prand ∈ X in terms of the Euclidean distance.
It should be noticed that xa,srand := ∅.

4) Generate new node candidates: The conventional RRT is
to choose the control that pulls the new node toward the random
node. However, in our proposed new method, considering the
vehicle dynamics, GenerateNew() returns a sequence of new
node candidates (xacand,i, i = 1, · · · , ne, ne = na × nδ),
which are generated by trying all possible control inputs
(aa, δa) ∈ Udomain. The state variables of the vehicle model
are [x⊕, y⊕, ψ, r, vx, vy]. The dynamics of the vehicle can be
modeled as:

v̇x = rvy + aa + ah,

v̇y = −rvx +
2

m
(Fcf cos(δa + δh) + Fcr),

ṙ =
2

Iz
(lfFcf − lrFcr),

ẋ⊕ = vx cosψ − vy sinψ,

ẏ⊕ = vx sinψ + vy cosψ.

(9)

where m and Iz denote the vehicle’s mass and yaw inertia,
respectively. lf and lr represent the distance from the CM of
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the vehicle to the front and rear axles, respectively. Rw is the
radius of the wheel. Fcm = −Cαmαm, (m ∈ {f, r}) denote
the lateral tyre forces at the front and rear wheels, respectively.
Cαm(m = f, r) denote the stiffness coefficients pf the front and
rear tires. αf ≈ vy+lfr

vx
− δf and αr ≈ vy−lrr

vx
denote the slip

angle of the front and rear tires, respectively. For simplification,
the vehicle dynamic model can be rewritten as a compact form:
x(k + 1) = VehicleControl(x(k), ua(k), uh(k)).

5) Feasibility judgement: The state distributions of the new
node candidates must be dynamically feasible. Here, we con-
sider the kinematic and dynamic behaviors of the vehicle. It
can limit the search space via constraints but still maintain
the richness of the feasible solutions. Therefore, we design the
function JudgeNew() to remove the undesired nodes from the
set of new nodes. To ensure the stability of the vehicle, we take
the yaw rate into account [5]:

|xrcand,i| ≤
µg

vx
, i = 1, · · · , ne (10)

where, µ is the constant coefficient of the road adhesion, and g
is the gravitational constant. In addition, the new node should
be within the safe space identified, i.e.,

xa,pcand,i ⊂ C, i = 1, · · · , ne (11)
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Fig. 4: The procedure of removing bad nodes of xcand

Besides, we use curvature to remove undesired nodes to
further smooth the path. As shown in Fig. 4, there are 3 new
candidate nodes: xa,pcand,i, x

a,p
cand,j and xa,pcand,m connecting xa,pnear.

xa,pnear far is the parent node of xa,pnear. As xa,pcand,m is out of the
safe space C, it should be discarded according to Eq. (11). To
ensure the smoothness of the steering maneuver, we calculate
the curvature of the node (κe) of (xa,pnear far, x

a,p
near, x

a,p
cand,ne

).
If κie is larger than the threshold, the generated new node will
be discarded (e.g. xa,pcand,i). More details will be described as
follows.

The calculation of κie, i = 1, · · · , ne is given by:

κie :=
x′′y′ − x′y′′

((x′)2 + (y′)2)3/2
, i = 1, · · · , ne (12)

where (x, y) = (xa,pnear far, x
a,p
near, x

a,p
cand,i). xnear far is the

parent of xnear in the tree. The details on the calculation of
curvature can be found in [37]. The curvature κe should satisfy
the following conditions:

|κie| ≤ min{κturnmax , κ
accel
max }, for i = 1, · · · , ne. (13)

where κturnmax and κaccelmax can be calculated by

κturnmax =
1√

l2r + l2 cot2 δ̄
;

κaccelmax =
alatmax
v2
x

(14)

where, l is the vehicle wheelbase, and alatmax is the maxi-
mum lateral acceleration. After all the undesired nodes are
discarded, the remaining new nodes constitute xRcand =
{xRcand,1, · · · , xRcand,nc}, 1 ≤ nc ≤ ne.

6) New node selection: To select the optimal xnew, we
design a cost function as follows:

c(j) = w1 × ||xa,pRcand,j − x
a,p
rand||+ w2(θnear,j + θRcand,j)

j = 1, · · · , nc
(15)

where, || · || is the Euclidean norm. The first term represents
the Euclidean distance between xnear,j and xRcand,j , j =
1, · · · , nc. The second term is related to the orientation
change between two consecutive nodes. w1 and w2 are the
weights on the Euclidean distance and smoothness of the path.
θnear,j , θRcand,j ∈ [0, π] should satisfy the following criteria:

θnear =
xa,ψ̃near ·

−−−−−−−−−→
xa,pnearx

a,p
Rcand,j

||
−−−−−−−−−→
xa,pnearx

a,p
Rcand,j ||

,

xa,ψ̃near =
î
cosxa,ψ̃near sinxa,ψ̃near

ó
,

θRcand,j =
xa,ψ̃Rcand,j ·

−−−−−−−−−→
xa,pnearx

a,p
Rcand,j

||
−−−−−−−−−→
xa,pnearx

a,p
Rcand,j ||

,

xa,ψ̃Rcand,j =
î
cosxa,ψ̃Rcand,j sinxa,ψ̃Rcand,j

ó
(16)

Based on the above cost funtion, the optimal xnew is selected
by calculating the cost from each xRcand,j , j = 1, · · · , nc to
the random node and the nearest node, which can be described
by function OptimalNew(). The corresponding control inputs
[aa, δa] 6= ∅ are obtained by IdentifyControl() as shown in the
Line 8 of the Algorithm 3. xanew and uanew are then added to
the tree T .

Remark 4.1: A good property of the proposed HM-RRT is
that the tree growth can be strongly biased towards the goal
position by considering the kinematic and dynamic behaviors
of the vehicle. It should be noted that planning and execution
are interleaved. At each replanning cycle, the execution phase
consists of the generation of a smooth trajectory and tracking
of the generated trajectory.

B. Dynamic replanning based on HM-RRT

As described above, during each replanning cycle, if the
automation assistance is needed, the automation creates a tree,
executing the returned path for one step. Then a new tree
is repeatedly generated at the next replanning cycle until the
driving task is finished. To quickly find the feasible and smooth
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path, we let the new tree be an extension based on the previous
tree. The new tree can reuse the information from the previous
planning episode. By doing so, the computational burden can
be significantly reduced.

(a) replanning cycle 𝑡 = 𝑘

𝑥!"!#

𝒙𝒈𝒐𝒂𝒍
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(b) replanning cycle 𝑡 = 𝑘 + 1
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Fig. 5: The tree trimming procedure.

1) Tree Trimming: For a certain replanning cycle, a path
is generated by the HM-RRT (shown as the black solid line
in Fig. 5a), and the waypoints of the path are represented
as σ = {xinit, xfirst, xsecond, · · · , xgoal}. The corresponding
control inputs are ν = {uinit, ufirst, usecond, · · · , ugoal}. By
implementing control input ufirst of the automation and consid-
ering human driver’s input uh, the vehicle moves towards xa,pfirst
(shown as the blue point in Fig. 5a). The replanning occurs
again, and xafirst is considered as xainit (Fig. 5b). Typically, the
current tree is abandoned, and a new tree is grown from the
updated xainit. This would be very time-consuming and may
lead to discotinuity of the trajectory. In this work, we partially
keep the current tree for trajectory planning without replanning
from scratch. More specifically, we set the childnodes of the
previous xainit (the black point in Fig. 5a) as invalid exception
σ and its childnodes. These invalid nodes need to be trimmed
(Fig. 5a). xafirst and its childnodes remaining in the tree are set
as valid. The corresponding control actions are also stored in the
remaining tree. At the next replanning cycle, as xainit 6= xafirst
due to the measurement error and disturbance, the tree at xafirst
is copied and pasted to xainit by the function RepmatTree().
The tree can be easily regenerated at xainit by implementing the
stored control actions. Then, the tree at xainit will grow until
the new xagoal is reached again (Fig. 5d). In this way, a new
trajectory can be quickly found with less computing, instead
of completely abandoning the old tree and growing a new one.
As a result, the proposed approach is much more efficient than
replanning from scratch in a dynamic driving environment. The
pseudocode for trimming the tree is presented in Algorithm 4.

2) Dynamic replanning: In summary, the pseudocode for
human-machine cooperative trajectory planning and tracking is
summarized in Algorithm 5. Determine() is used to identify
whether the driving task is finished or not. In practice, human-
machine cooperation can be terminated by manually shutting
down the automation assistance system. Alternatively, the coop-
eration mode can be disengaged once the vehicle’s states satisfy

Algorithm 4: TrimHMRRT()
Inputs : T = (V,E), σ

1 for each xi ∈ V&xi ∈ {Child(xinit)− xfirst} do
2 Mark xi as INVALID
3 xj = Child(xi)
4 while xj 6= ∅ do
5 Mark xj as INVALID;
6 xj ← Child(xj);
7 end
8 end
9 Delete all the INVALID nodes and edges from the tree

10 return T .

some pre-defined conditions. FeasiblePath() returns a path
which consists of waypoints σ and corresponding control inputs
ν. The ego can move multiple steps ahead by implementing the
control sequence. It should be noted that the number of steps is
correlated to the sampling time, the vehicle’s initial conditions
and the value range of control inputs. In this work, we set
the step number as 1. Function VehicleControl() describes the
execution phase of vehicle motion, which has been introduced
in Section IV-A4. CTRA() returns the predicted vehicle states
based on the driver’s behavior, which has been detailed in
Section III-A.

Algorithm 5: Main()/ Cooperative trajectory planning
and tracking for autonomous driving

Inputs : Driving task, xinit, k,∆t, uh
1 Initialize: T .V ← {xinit, uinit}, T .E ← ∅,;
2 while Determine(Driving mode)=true do
3 if Occurence Auto == 1 then
4 T ←RepmatTree(T , xinit)
5 T ←GrowHMRRT(T , C, xh,ppred, xinit,∆t)
6 [σ υ]←FeasiblePath(T )
7 T ← TrimHMRRT(σ, T )
8 xinit ← VehicleControl(xinit, vfirst, uh)
9 else

10 xinit ← VehicleControl(xinit, ∅, uh)
11 end
12 Udomain ← ControlDomain(Driving mode,

xinit, x
h
pred)

13 C ←GenerateSpace(Driving mode, xinit)
14 xh,ppred ← CTRA(xinit, uh)

15 end

V. TESTING, VALIDATION AND RESULTS

In this section, the superiority of the proposed HM-RRT
over the conventional RRT algorithm is first demonstrated
through testing in Case 1. In Case 1, we compare the number
of the generated nodes in each replanning cycle by using
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different methods. In Case 2, the feasibility and effectiveness
of the proposed human-machine cooperative trajectory plan-
ning approach are further demonstrated under different driving
scenarios. Finally, the experimental tests are conducted on a
driving simulator to demonstrate the feasibility and real-time
implementation capability of the proposed algorithm.

Fig. 6: The driving scenario of Case 1

A. Testing Case 1

1) Testing scenario: The driving scenario is a road with 2
lanes, as shown in Fig. 6. The ego (red vehicle) aims to change
the lane and follows the leader (green vehicle) in the adjacent
lane. The sampling time is 0.01s and the initial position of
the ego is (0, 0). The parameters of the APF model and the
DPF model are provided in TABLE II. To better demonstrate
the advantage of the trimming-and-regrow procedure, we set

occurrence Auto as 1. The driver’s behavior and performance
are assessed based on a driver-vehicle model, which will be
described in the Case 2. The constrains of the vehicle plant are:
−20◦× π

180 ≤ δa ≤ 20◦× π
180 and −2 [m/s2] ≤ aa ≤ 2 [m/s2].

TABLE II: Potential field parameters

Parameter Value Parameter Value
αf 30 σy 1.1
σx 10 b 2
Af 2 d0 0.8[m]

2) Testing results: Firstly, we demonstrate the benefits of the
proposed method by using RandomState() in sampling proce-
dure (as listed in Line 3 of Algorithm 3). Let n be the number
of steps executed by the HM-RRT and the traditional RRT. For
a fair comparison, the parameters of both algorithms are set as
the same. The only difference is that in the conventional RRT,
the random sample is selected from the whole safe space (C).
The comparison results are shown in Fig. 7. It indicates that
by using RandomState(), there is a lesser dispersion of the
samples in the identified safe space at the same time step. The
average computation time of the proposed algorithm is around
0.0043s, which is less than that of the traditional RRT algorithm
(0.0145s). Therefore, the proposed HM-RRT is proved to be
able to provide a solution with a faster convergence rate and
less computational load, comparing to the conventional RRT.

Besides, the results shown in Fig. 8 illustrate the trajectory
planning in replanning cycle from k = 19 to k = 22,
which reveals the benefits offered by the trimming-and-regrow

(a) k = 1, n = 8, T = 0.00147s (b) k = 15, n = 1207, T = 0.00948s (c) k = 40, n = 3095, T = 0.00202s

(d) k = 1, n = 500, T = 0.01702s (e) k = 15, n = 1892, T = 0.01412s (f) k = 40, n = 3476, T = 0.01244s

Fig. 7: The performance of the HM-RRT (a-c) and traditional RRT (d-f) on trajectory planning. (k: the time step, n: the number
of execution steps

).
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(a) k = 19, n = 1785, w = 499 (b) k = 20, n = 1785, w = 408 (c) k = 21, n = 1785, w = 403 (d) k = 22, n = 1785, , w = 367

Fig. 8: The example trimming and regrowing procedures of the HM-RRT (k: the time step, n: the number of execution steps, w:
the number of the nodes in the tree)

.

procedure of the Algorithm 4. w denotes the number of nodes in
the tree. It shows that n remains the same in these replanning
cycles, which means that no new node is generated in these
successive steps. In each step, a new tree is obtained only by
trimming the unnecessary branches from the tree generated in
the previous replanning cycle. The computation load is therefore
significantly reduced.

B. Testing Case 2

In Case 2, the feasibility and effectiveness of the proposed
cooperative trajectory planning algorithm are extremely tested
in the different driving scenarios. We compare the proposed
human-machine cooperation method with the manual control
approach, in which only human drivers perform the driving task.

1) Driving scenario 1: The driving course is designed as a
straight road in an urban scenario with two lanes. The human
driver can be modelled as an optimization controller and the
lateral & longitudinal control behaviors can be described as:

δ̇d = − 1

Th
δd +

RgGh
Th

(y⊕target − y⊕)

+
RgGhτh
Th

(y⊕target − vxψ − vy)

aa =Kp(vx − vtarget) +Kd(v̇x − v̇target).

(17)

where y⊕target is the target lateral position of the vehicle, and y⊕

is the current vehicle’s lateral position. Rg is the gear ratio of
the steering system. Gh is the steering proportional gain, Th is
time delay of the driver’s response, while τh is a derivative time
constant of the driver’s steering. vtarget is the target velocity of
the vehicle, and it is set equal to the leader’s velocity. Kp and
Kd are non-negative and denote the coefficients of the propor-
tional and derivative terms, respectively. The identification of
the human driver parameters Kp, Kd, Th, Gh and τh can be
obtained by experiments and the details are given in Appendix
A.

Fig. 9 shows an example result of the comparison between the
two control approaches with a human participant. As observed
in Fig. 9b, under the proposed approach, the human driver holds
the entire control authority and performs his expected trajectory
most of the time. The automation is only triggered only when
human driving is assessed as risky, and it collaborates with

(a) The cooperative trajectory planning
(https://youtu.be/kPxHdDdDNpA)
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Fig. 9: Testing results in the driving scenario 1
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human driver on trajectory planning and tracking control by
executing aa and δa. In this way, safety and ride comfort are
guaranteed, while the human-machine conflicts are effectively
reduced. As a result, the cooperatively planned trajectory is
much smoother than that of manual driving, which can be
reflected from the variation of the vehicle’s velocity (Fig. 9a). In
addition, the stability and handling performance of the vehicle
is also guaranteed, as shown in Fig. 9c.

2) Driving scenario 2: The driving course is designed as a
highway, where all the vehicles are with high velocities. Fig.
10a shows the cooperatively planned trajectory (marked as a
blue circle) and the manual trajectory (marked as a yellow
circle). It can be found that the automation assists the human
driver in the lateral direction at the very early stage and in the
longitudinal direction during X = 40− 50[m], X = 78[m] and
X = 90[m]. The occurrence of lateral assistance is because the
human driver sharply steers the hand wheel at the beginning
of the lane-change process. The lateral driving risk is then
increased, triggering the intervention of the automation. The
longitudinal assistance is to prevent the vehicle’s velocity from
exceeding the reference value vtarget.

(a) The cooperative trajectory planning
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(b) Control actions of the automation

Fig. 10: Testing results of the driving scenario 2
(https://www.youtube.com/watch?v=QuFoY3YSvIs).

Fig. 10b shows that the longitudinal velocity exceeds the
reference velocity (vtarget = 32 m/s) after X = 40[m],

and the automation starts providing control actions (ax) to the
vehicle. Thus, the velocity is decreased afterwards. In contrast,
the velocity of manual driving is continuously increased after
X = 40[m]. It shows that the automation can successfully en-
sure the vehicle’s safety during the execution of the driving task.
In addition, the proposed algorithm shows strong robustness to
the highly dynamic driving situation.

3) Driving scenario 3: In this driving scenario, we consider
a corner case, that the follower is aggressive and accelerates to
prevent the ego from changing the lane. In this case, the ego
will stop changing the lane and execute lane-keeping, and it
will restart lane-change after the feasibility of a lane-change is
confirmed again. It should be noted that the follower vehicle will
be the new leader after restarting the lane-change maneuver.
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Fig. 12: The control actions of the automation in the driving
scenario 3.

Fig. 11 shows the entire cooperative path, which includes
lane-change, lane-keeping, and re-lane changing. In the be-
ginning, the ego tends to change the lane by operating the
steering wheel. As the follower accelerates, and the driving
risk is continuously increased (between X = 3[m] ∼ 12[m]
shown in Fig. 12a). The automation starts assisting the human
driver in both the lateral and longitudinal directions until the
human driver quits the lane-change task. The human driver
starts driving the vehicle in the current lane and following the
preceding vehicle. It should be noted that in the lane-keeping
maneuver, the ytarget is the centre line of the current lane,
and vtarget is the velocity of the preceding. After X = 85[m]
when reaching a safe distance between the ego and follower,
the human driver starts changing the lane. At the same time, the
automation is responsible for providing the support if necessary
(between X = 85 ∼ 105[m] in Fig. 12b). It should be noted
that there is a collision between the ego and road boundary
around X = 105[m]. However, with the help of the automation,

Fig. 11: Testing result in driving scenario 3 (https://www.youtube.com/watch?v=mGNyWPs9dG0)



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 12

the ego can successfully change the lane without any collision
happening in the cooperative driving. The testing results show
that the proposed algorithm can also provide a safe path under
the emergency driving situation.

4) Driving scenario 4: As illustrated in the previous driving
situation, all the obstacle vehicles are assumed to stay in their
current lanes. And a driving scenario, in which the leader
changes its lane when the ego changes its lane, is designed to
test the effectiveness of the proposed algorithm in the complex
driving scenario.

(a) Lane-changing at k = 1

(b) Lane-changing at k = 14

(c) Lane-changing at k = 15

(d) Lane-changing at k = 60
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(e) Occurrence of the automation

Fig. 13: Testing results of driving scenario 4
(https://www.youtube.com/watch?v=DjdIJ4zD1uk).

Fig. 13 shows the cooperative path generated in the driving
scenario 4. It shows that at the beginning, the ytarget is the

longitudinal position of the leader, and vtarget is the leader’s
velocity. As the values of ytarget and vtarget are decreased, the
automation starts providing extra control effort in order to obtain
the desirable driving performance. After the leader crosses the
lane line, the automation re-defines the target position and
velocity. The target vehicle then becomes from the leader to
the leader-preceding. The automation stops providing extra
effort afterwards. The testing results indicate that the proposed
algorithm can identify the changes in the driving scenario in
real time. It is able to recalculate the safe area, continuously
estimate the driving risk, and provide support if necessary in
the complex driving situation.
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Fig. 15: An example of the coopera-
tive path generated in experimental test
(https://www.youtube.com/watch?v=46E5hZP2ETw).

C. Human-in-the-loop Experimental Validation

In this subsection, the effectiveness of the proposed approach
is further validated through human-in-the-loop experiments on
a driving simulator.

1) Experimental design: The experiments are conducted on
a human-in-the-loop driving simulator as shown in Fig. 14a.
The platform consists of a computer equipped with an NVIDIA
GTX 2080 Super GPU, three joint head-up monitors, a Logitech
G29 steering wheel suit, and a driver seat.

In the experiment, the driving course was set to be a straight
urban road with two lanes, as shown in Fig. 14c. The participant

Monitor

Steering wheel

PedalDriver seat

leader

preceding

ego

follower

(a) (b) (c)

Fig. 14: The experimental platform: (a) driving simulator, (b) experimental participant, (c) driving course
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Fig. 17: The tree creation by RepmatTree() at t = 1.13

was asked to execute a lane-change task when he or she was
ready. The sampling time is 0.01s and the prediction horizon
is 0.5s. The driver’s inputs were measured through the steer-
ing wheel angle, brake and acceleration pedal positions. The
vehicle’s states, including longitudinal and lateral acceleration,
velocity, and position, were recorded. The study protocol and
consent form were approved by the Nanyang Technological
University Institutional Review Board (protocol number IRB-
2018-11-025).

2) Experimental results: Fig. 15a shows an example of the
generated cooperative path, and it lasts for 21s. Fig. 15b indi-
cates the occurrence of the automation in the driving. The red
square indicates the occurrence of the automation’s support in
the lateral direction, and the black cross indicates the occurrence
of the support in lateral & longitudinal directions. The green
circle represents the occurrence of the support in the longitudinal
direction. The Fig. 15c and Fig. 15d show the corresponding
control actions of the automation. With the support of the
automation, the human driver successfully changed the lane.
It should be noted that the automation supports the human
driver for around 6s in the driving. It can significantly reduce
human-machine conflicts and ensure driving safety and stability
simultaneously.

In addition, Fig.16 indicates that with the support of the
automation, the controlled vehicle’s longitudinal velocity can
successfully track the reference velocity (vl) and maintain the

lateral velocity in a stable range.
Fig. 17 shows the tree creation by using RepmatTree() at

t = 1.13. It shows that the xfirst is very close to xinit,
and the relative distance is 0.0129[m]. Therefore, the tree
trimming-and-regrow procedure can be successfully applied in
cooperative driving. In addition, the average computation time
is 0.00745s for each planning cycle, which means that the
proposed algorithm has a good real-time implementation ability,
assisting human drivers timely.

VI. CONCLUSION

This paper investigates a human-machine cooperative tra-
jectory planning and tracking control approach for automated
vehicles. First, a novel HM-RRT algorithm is designed for
improving the efficiency of path planning. Next, based on the
identification of the safe driving area and assessment of the
human driving risks, the trigger mechanism of the human-
machine cooperation is developed. By using the HM-RRT,
cooperative trajectory planning is realized via human-machine
collaboration, which incorporates the driver’s desire and actions
and automation’s corrective actions. Experimental validation is
conducted on a real-time driving simulator. Results show that
the proposed HM-RRT algorithm can effectively improve the
convergence rate and reduce the computation load during path
planning. Beyond this, the proposed human-machine cooper-
ative trajectory planning approach is able to simultaneously
ensure the safety, stability and smoothness of the vehicle and
largely reduce human-machine conflicts. Future work will be
focusing on the improvement of the proposed algorithms and
their implementation on a real vehicle platform.
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APPENDIX

A. Human vehicle model
To identify the driver parameters, a lane-changing experiment with

5 participants (mean age at 26.5) are conducted in a real-time driving
simulator, as shown in Fig. 14a. The driving course is designed as a
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straight road in urban scenario with two lanes. The parameters of the
driving scenario are set as the same as those in Fig. 6. The participants
are asked to change the lane when they feel necessary. All participants
are briefed on the task requirements by an experimental instructor
before trials, and they are allowed to practice firstly to get familiarised
with the simulator operation. Each participant is required to drive for
30 minutes. The driver’s inputs are measured through the steering
wheel angle, and brake and accelerator pedal positions. The vehicle’s
states, including the longitudinal and lateral accelerations, velocity, and
position are recorded. The identification results of the driver model with
the five participants are given in TABLE III.

TABLE III: Identification results of the driver parameters.

Param. Kp Kd Th Gh τh Fit %
Driver 1 -0.72 -0.22 0.26 0.14 1.34 88.94
Driver 2 -0.9 -0.21 0.33 0.14 1.33 80.53
Driver 3 -0.75 -0.22 0.24 0.12 1.14 82.28
Driver 4 -0.79 0.26 0.24 0.10 1.74 74.53
Driver 5 -0.77 0.60 0.50 0.06 1.29 73.76

The parameters of Driver 2 are used in the Case 1 and Case 2 to
demonstrate the effectiveness of the proposed algorithm.
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