
1

Asymptotically Optimal Path Planning for Ground
Surveillance by a Team of UAVs

Andrey V. Savkin and Hailong Huang

Abstract—This letter addresses a path planning problem for a
team of mobile robots such as unmanned aerial vehicles (UAVs)
patrolling a ground region for surveillance. An effective navi-
gation algorithm is developed and proved to be asymptotically
optimal in the sense that the ratio of the revisit period of the
algorithm and the minimum possible revisit period converges to
1 as the area of the region tends to infinity. Illustrative examples
and comparisons with an existing method show the efficiency of
the developed approach.

Index Terms—Mobile robots, unmanned aerial vehicles, UAVs,
aerial surveillance, sweep coverage, path planning, navigation,
aerial drones, coverage control, marine surface vehicles.

I. INTRODUCTION

Mobile robots have become a popular tool for monitoring
and surveillance of targets in various military and civilian
applications including ground traffic surveillance, inspection
of agricultural fields, infrastructure monitoring and inspec-
tion, natural disaster areas surveillance, rescue missions, and
ground monitoring for security purposes. In such surveillance
applications, a typical situation is that a team of flying
robots such as unmanned aerial vehicles (UAVs), equipped
with ground-facing cameras, monitors a ground region. One
common approach to such surveillance problems is to deploy
the minimum number of robots in steady positions to cover a
given ground region completely, so that any point of the region
is monitored by at least one robot at any time [1], [2]. Another
challenging class of problems consists of scenarios where the
surveillance ground region is too large for the given number
of robots, therefore, all the region cannot be monitored all
the time. In this case, the robots should patrol the region so
that any point of the region is surveyed at some time. Such
problems can be viewed as so-called sweep coverage problems
of robotics where a path planning algorithm for mobile robots
to visit the whole monitored area should be developed [3],
[4]. As in sweep coverage problems, any point of the region
is covered not all the time but periodically, a natural problem
statement is to develop a navigation algorithm that minimizes
the maximum revisit time or period for the whole region.

Previous research work has investigated this problem for
ground robots. Most approaches first decompose the free
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region and then compute a global solution. There are two pop-
ular approaches for decomposition: grid-based and cellular-
based [5]. In grid-based approaches, the region is represented
as a grid map, and then a spanning tree is built for path plan-
ning [6]. The main difficulty is the efficiency, which depends
on the resolution of the map. The cellular decomposition splits
the region into non-overlapping cells, and the widely used
method is the boustrophedon decomposition [7]. This method
takes some critical points on the boundary of obstacles for
decomposition. Other methods such Voronoi diagram have also
been used for cellular decomposition [8]. The main demerit
of these approaches is the obtained cells may be unbalanced,
which leads to various revisit times of the cells.

This letter addresses the revisit period minimization problem
and develops an algorithm for navigating a team of UAVs
so that every point of a given ground region is periodically
surveyed. The result of this manuscript reminds in spirit the
main result of [1] where a method for static deployment of
UAVs over a ground region was proposed. We prove that the
proposed algorithm is asymptotically optimal in the sense that
the ratio of the revisit period of the algorithm and the minimum
possible revisit period converges to 1 as the area of the
ground region tends to infinity. Asymptotic optimality cannot
be achieved by the aforementioned methods. The comparison
with a grid-based benchmark method shows that the proposed
method achieves short paths, especially for large-scale regions.
Moreover, it is a construction method requiring a much lower
computation load than other existing methods.

We formally state the problem in Section II. The proposed
algorithm and the main result are given in Section III. Sec-
tion IV contains illustrative examples and comparisons with
another method. A brief conclusion is given in Section V.

II. PROBLEM STATEMENT

Let p ∈ R2 be the vector of Cartesian coordinates on the
ground plane. Moreover, let D be a given bounded, closed and
Lebesgue measurable region [9] of the ground plane. There
are n UAVs labelled 1, 2, . . . , n that flying over D at a given
altitude a > 0. We assume that the motion of each UAV is
described by the equation

ṗi(t) = vi(t) (1)

where pi(t) is the coordinates of the projection of the current
position of the UAV i to the ground plane, and vi(t) is the
current UAV velocity vector. We assume that ∥vi(t)∥ ≤ V ,
where V > 0 is given, and ∥·∥ denotes the standard Euclidean
vector norm. This motion model is suitable for rotary-wing
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UAVs, and it allows the UAVs to make sharp turns. It enables
the UAVs to follow the designed paths, as they may have
sharp corners as seen later. Moreover, UAVs are equipped with
ground facing video cameras with a given observation angle
0 < α < π, which defines the visibility cone of UAVs, so that
the UAV i at time t can only see points P of the ground that
are inside of the circle of radius

r := tan(
α

2
)a (2)

centred at pi(t), see Fig. 1.
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Fig. 1: The visibility cone.

Let I(P ) be the set of all time intervals [m,M ] where
0 ≤ m < M , during which the point P ∈ D is not seen from
any of n UAVs. Moreover, let

β(P ) := sup
[m,M ]∈I(P )

(M −m), β(D) := sup
P∈D

β(P ). (3)

Problem Statement: Our objective is to develop a path
planning algorithm for n UAVs satisfying (1) that solves the
following revisit period optimization problem

β(D) → min . (4)

Remark II.1. It is clear that the revisit period β(D) is some
measure of the quality of surveillance of the ground region D
by n UAVs flying over D, in the sense that the smaller β(D),
the shorter the maximum time during which some point of D
is not seen by any UAV. So our objective is to navigate the
UAVs to minimize β(D).

III. PATH PLANNING ALGORITHM

Definition III.1. Let l be a straight line on the ground plane.
A closed planar set E is said to be l−convex if the intersection
of any straight line parallel to l with E is either empty or a
single point or a closed interval, see Fig. 2.
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Fig. 2: Illustration of an l−convex closed planar set E .

Remark III.1. Any convex set is l−convex for any l.

Assumption III.1. There exist straight lines l1, . . . , ln such
that D can be partitioned into n closed, bounded and
li−convex regions Di, i = 1, . . . , n with equal areas. More-
over, any Di has piecewise smooth boundary of length Li.

The proposed path planning algorithm for a region D
satisfying Assumption III.1, consists of the following steps.

Step A1: We take li and Di from Assumption III.1.
Step A2: For any i, we build a sequence of straight lines

parallel to li at the distance 2r between any two closest to
each other lines, where r is defined by (2), see Fig. 3.
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Fig. 3: Illustration of constructing the closed paths for UAVs.

Step A3: Since Di is bounded and li−convex, the intersec-
tion of Di with the corresponding family of parallel straight
lines consists of several parallel segments Si,1, Si,2, . . . , Si,k(i)

(some of them maybe single points). We start at some end of
Si,1 and move along this segment until we reach the boundary
of Di. Then we move along the boundary until we reach Si,2,
and then we move along Si,2 in the opposite direction until
we reach the boundary again, see Fig. 3.

Step A4: We repeat Step A3 again and again until we reach
the end of Si,k(i), see Fig. 3.

Step A5: We connect the final point of our path on Si,k(i)

with the initial point of our path on Si,1 by some curve inside
Di (if possible by a straight line). Since the length of the
boundary is Li, there always exists a path no longer than Li

2 .
Step A6: For each i, the UAV i is flying along the closed

path constructed in A1–A5 with the maximum speed V .
Notice that the algorithm A1–A6 is close to various lawn

mowing type path planning algorithms of robotics, see e.g.
[10]. We will analyse optimality of the path planning algorithm
A1–A6. Let γ > 1 be some number. Introduce the region Dγ

obtained from the region D by the linear transformation that
maps any point P ∈ D to the point (γx, γy), see Fig. 4. So
the region Dγ is similar to D but larger. It is also obvious that

A(Dγ) = γ2A(D) (5)

where A(·) denotes the area of a region.
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Fig. 4: Constructing region Dγ from region D.

Furthermore, consider some family F(γ) of paths con-
structed by Steps A1–A6 over Dγ for all γ > 1. Let β̂(γ)
be the value of β(Dγ) defined by (3) with UAVs flying along
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the paths F(γ). Let β0(γ) be the minimal possible value of
β(Dγ) for all flying paths of UAVs over the ground region Dγ .
It is clear that since the region Dγ increases as γ increases,
both β̂(γ) and β0(γ) tend to infinity as γ tends to infinity.

Definition III.2. A family F(γ) of UAV paths in the regions
Dγ is said to be asymptotically optimal, if

lim
γ→∞

β̂(γ)

β0(γ)
= 1. (6)

In other words, path planning is asymptotically optimal, if as
the ground region becomes larger, the quality of surveillance
with these paths defined by (3) becomes close to the best
possible quality of surveillance.
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Fig. 5: r−neighbourhood of curve C (set S).

Theorem III.1. Let F(γ) be the family of UAVs paths in the
regions Dγ constructed by the path planning algorithm A1–
A6. Then F(γ) is asymptotically optimal. Moreover,

lim
γ→∞

β̂(γ)

γ2
=

A(D)

2nV r
(7)

where A(·) denotes the area of a region.

Proof. First we prove that the family of UAVs paths F(γ)
constructed by A1–A6 satisfies (7). Indeed, let Hi(γ) be the
sum of the lengths of all segments parallel straight lines built
in Diγ in Step A2. Then it is obvious that

lim
γ→∞

A(Diγ)

2rHi(γ)
= 1. (8)

Since A(Diγ) = γ2A(Di) =
γ2A(D)

n , (8) implies that

lim
γ→∞

γ2A(D)

2rnHi(γ)
= 1. (9)

Furthermore, it is obvious that the length Ti(γ) of the
closed UAV trajectory constructed in Diγ by A1–A6 satisfies
Hi(γ) < Ti(γ) ≤ Hi(γ) +

3γLi

2 . Since the UAVs are moving
with the maximum speed V , this and (9) imply (7). Now we
prove that for any family of paths,

lim
γ→∞

β(γ)

γ2
≥ A(D)

2nV r
(10)

Indeed, consider any curve C of length L and the set S of all
points at the distance r or less from some point of this curve,
see Fig. 5. Then the area of this set satisfies A(S) ≤ 2Lr+πr2.
This implies that the minimum length F (γ) of curves in D(γ)

with the property that for any point D(γ) there exists a point
of curves at the distance r or less, satisfies

lim
γ→∞

γ2A(D)

2rF (γ)
≥ 1. (11)

Since we have n UAVs and their maximum speed is V , (11)
implies (10). This completes the proof of Theorem III.1.

IV. SIMULATIONS

In this section, we show the effectiveness of the proposed
approach via computer simulations.

We consider using rotary-wing UAVs to survey a given
region D. Here, we do not consider where the UAVs start.
Though their starting points impact the time to complete the
first trip, they do not influence the revisit time of the later
rounds. The first task is to find the set of straight lines
satisfying Assumption III.1. Our method to find this set of
lines is stated as follows. Given D, we first find a line l′1 such
that D is l′1−convex and l′1 is tangent to D; see Fig. 6. Then,
we move l′1 in parallel inwards D to get another line l1, such
that the sub-region of D between l′1 and l1, denoted by D1,
satisfies A(D1) =

1
nA(D). Now, we have the first line l1. Let

Dremain denote the remaining sub-region after removing D1

from D, i.e., Dremain = D/D1. We then find a line l′2 such
that Dremain is l′2−convex. We move l′2 in parallel inwards
Dremain to get l2; see Fig. 6. We repeat this until D is divided
into n sub-regions with equal areas. A simplified version of
the above method is stated as follows. After having l1, instead
of finding another line l′2, we move l1 further to get l2, such
that 1) l2 is parallel to l1 and 2) the area of the sub-region of
D between l1 and l2 is 1

nA(D). By this simplified method, we
obtain a set of parallel straight lines. Illustrative examples of
the simplified method is shown in Fig. 7, where n = 3, α = π

2
and a = 10 m. We show the cases with γ = 1 and γ = 2,
respectively. These examples demonstrate how the paths are
generated according to the proposed method.

𝑙1
′

𝑙2
𝑙1𝒟1 𝑙2

′
𝒟2

𝒟3

Fig. 6: Constructing a set of straight lines to partition D into
n sub-regions with equal areas.

We make a comparison with a benchmark method [3]. This
method consists of three steps. Firstly, it partitions the area
of interest, which is similar to our method. Then, it grids
each sub-area by squares whose edge length is 2r. The grids
overlapping with the sub-area are considered as waypoints.
Finally, for each sub-area, it solves a travelling salesman
problem (TSP) using the Generic Algorithm (GA) to construct
a tour that visits each of the waypoints once. We use the
MATLAB embedded function to solve the problems. Using
the same area as above, the obtained UAVs’ trajectories by
the benchmark method are shown in Fig. 8, where n = 3, and
γ takes 1 and 2, respectively.
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(a) γ = 1 (b) γ = 2

Fig. 7: Trajectories constructed by the proposed approach.

(a) γ = 1 (b) γ = 2

Fig. 8: Trajectories constructed by the benchmark method [3].

We now compare simulation result with Theorem III.1.
Using the same parameters of α and a, we consider different
values of γ. As seen from Fig. 9a, with the increase of γ

(from 1 to 30), the value of β̂(γ)
γ2 decreases, and it tends to

be the optimal value of A(D)
2nV r , where V = 1 m/s and r = 10

m (computed by (2)). Simulation results for other values of n
are also shown in Fig. 9a. We have also applied the proposed
method to areas with different shapes, and similar results are
obtained. These results are in accordance with Theorem III.1.

We also apply the benchmark to cases with larger γ (up
to 10) and compare it with the proposed method. With the
increase of γ, the area Dγ increases, so more grids are needed
to fully cover Dγ . As solving TSP instances is computationally
heavy with respect to the number of points, γ takes up to 10
for the benchmark. As seen from Fig. 9a, for small values of
γ, the benchmark achieves better results. The reason is that
in our method when γ is small, the connection between the
starting point and ending point, which is constructed according
to Step A5, takes a relatively large part of a whole path, e.g.,
see the trajectories of UAV2 in Fig. 7. When γ is small,
it is easy to optimally solve the TSP instances. For large
γ, the proposed method outperforms the benchmark, as it
is difficult for GA to search the optimal solution under a
given number of iterations. Besides, the proposed method is
more computationally efficient. It only takes a few seconds to
complete (see Fig. 9b), while the benchmark can take several
minutes. Moreover, the computational time of our method is
not sensitive to γ but only to n. Because partitioning the
region takes a relatively long time in finding a set of lines
l1, l2, · · · , ln, while constructing a trajectory only needs to
move a line li in parallel to obtain other straight lines. In
contrast, the computation time of the benchmark significantly
depends on γ, as larger γ means more grids to visit.
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Fig. 9: Comparison with the benchmark method. (a) β̂(γ)
γ2

versus γ. (b) Computation time versus γ.

V. CONCLUSION

A problem of UAV navigation for surveillance was studied.
In this problem, UAVs equipped with ground-facing cameras
are navigated over a ground region to periodically monitor
every point of the region. An efficient navigation algorithm
was developed. The developed algorithm is asymptotically
optimal in the sense that the revisit period of the algorithm
is getting close to the optimal revisit period as the size of
the ground region tends to infinity. Illustrative examples and
comparisons with another approach showed the efficiency of
the proposed method. It is worth pointing out that the proposed
method is not restricted to UAVs but also works for other
types of mobile robots, such as marine surface vehicles, when
the assumptions mentioned in the paper are met. A limitation
is that the current result is only suitable for flat regions.
For uneven terrains, the designed paths may not guarantee
full coverage, and this is an interesting direction for future
research. Another interesting direction is to study the case with
heterogeneous mobile robots that can move at different speeds.
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