
1

Deployment of Charging Stations for Drone
Delivery Assisted by Public Transportation Vehicles

Hailong Huang and Andrey V. Savkin

Abstract—To enable the drone delivery service in a remote
area, this paper considers the approach of deploying charging
stations and collaborating with public transportation vehicles.
From the warehouse which is far from a customer, a drone takes
some public transportation vehicles to reach some position close
to the remote area. When the customer is unreachable from the
position where the drone leaves the public transportation vehicle,
the drone swaps the battery at a charging station. The focus of
this paper is the deployment of charging stations. We propose
a new model to characterize the delivery time for customers.
We formulate the optimal deployment problem to minimize the
average delivery time for the customers, which is a reflection of
customer satisfaction. We then propose a sub-optimal algorithm
that relocates the charging stations in sequence, which ensures
that any movement of a charging station leads to a decrease in the
average flight distance. The comparison with a baseline method
confirms that the proposed model can more accurately estimate
the flight distance of a customer than the commonly used model,
and the proposed algorithm can relocate the charging stations
achieving lower flight distance.

Index Terms—Drones, unmanned aerial vehicle (UAV), parcel
delivery, charging stations, public transportation vehicles.

I. INTRODUCTION

MANY people may have seen the “Sorry, we missed
you” cards in their letterboxes when they expect to

receive their parcels. In many metropolises, such a card may
be replaced by a text message like “Your parcel has been stored
in a temporarily locked box, and you can collect it within 48
hours with a password”. The main reason behind this is the
fast growth of online shopping, resulting in the heavy working
load on postmen. To “deliver” more parcels, many postmen
choose the time-saving method by leaving a card or sending
a text message.

To save the labour force, many logistics companies, such
as Amazon [1], SF Express [2] and UPS [3], have started
to develop unmanned aerial vehicles (UAVs), also known as
drones, to conduct the last-mile delivery in recent years. There
are two main types of drones: fixed-wing drones and multi-
rotor drones. The former requires a launcher to get the drones
into the air, and it is difficult for them to land. In contrast,
multi-rotor drones do not require any facility for launching and
landing, and they are preferred by most logistics companies.
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A bottleneck of this type of drones is the limited flying time.
Most commercial drones can only fly for about half an hour.
Consequently, they can only serve customers close to the
warehouse.

In the literature, there are two main approaches to address
the limited flight distance problem. The first one exploits
ground vehicles to collaborate with drones [4]–[7]. Specifi-
cally, a ground vehicle such as a truck or van departs from
the warehouse and takes some parcels and some drones. At
some position, a drone can leave the vehicle and fly to a
customer. After dropping off the parcel, the drone flies to a
rendezvous position and docks with the vehicle. During this
course, the vehicle can move to other customers and then go
to the rendezvous position to meet the drone. Under such a
design, the paper [4] targets scheduling the vehicle and the
drone to minimize the latest return time of the vehicle and
the drone to the warehouse. The reference [5] investigates a
similar system. Differently, all the customers are served by
the drone, and the vehicle only charges the drone. An optimal
path planning problem on a road graph is formulated, and the
goal is to find the shortest cooperative route to deliver parcels
to all the target locations. The paper [6] considers minimizing
the operational costs including the transportation cost and the
one created by the waste time when one vehicle has to wait
for the other. Some other variants have been discussed in
[7], [8]. Compared with the traditional vehicle only method,
the drone-vehicle collaboration approach has an advantage in
reducing energy consumption and operation time, thanks to the
participation of drones. A shortcoming is that it still requires
a driver to participate in the delivery.

Another type of drone-vehicle collaboration approaches
aims at removing human involvement. While the references
[9], [10] consider the collaboration between drones and mobile
robots, the papers [11], [12] have proposed the idea of using
public transportation vehicles to transport drones. The paper
[11] considers the path planning problem for a drone from
the warehouse to a customer in the time-varying and stochas-
tic public transportation network. A reliable path planning
algorithm taking into account the worst-case uncertainty is
proposed. The paper [12] further considers the round-trip
planning problem. Though exploiting mobile robots is more
flexible, the robots may meet various challenges especially
in urban areas. Making use of public transportation vehicles
avoids this issue because these vehicles are existing platforms.
However, the uncertainty and the time variance need to be well
considered in the planning of the drones’ paths.

The second approach addressing the limited flight distance
issue makes use of stationary facilities such as charging
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stations, similar to the charging stations for electric vehicles
[13]. At a charging station, a drone can either recharge or
replace the battery. Then, the drone can fly further to serve
more customers. The paper [14] considers the scenario where
customers locate far from the warehouse. So, it considers
deploying a drone station near customers, which is assumed to
furnish a sufficiently large number of drones. A vehicle leaves
the warehouse with parcels and activates the drone station
when it arrives at the drone station. Then, the drones deliver
the parcels to customers. The paper [15] aims at selecting
a number of charging stations from a given candidate set to
maximize the coverage of customers in a certain area, while
the goal of [16] is to minimize the total system cost including
the charging stations, drone ownership, service congestion,
etc. Different from [15], [16], the paper [17] considers the
deployment of charging stations in a continuous space.

In this paper, we consider a scenario where a supplier
wishes to extend its delivery service to a remote area. Such
an area is far from the supplier’s warehouse so that a drone
cannot reach any customers in the area directly. Our strategy
leverages the aforementioned two approaches. In particular, we
assume that there are some public transportation vehicles that
pass the warehouse and the area of interest. Then, a drone
can take these vehicles to reach the area [11]. For a large
area that cannot be covered by a drone without swapping
its battery, we consider deploying some charging stations in
the area. With the assistance of public transportation vehicles
and charging stations, this strategy enables a drone to serve a
remote customer.

We focus on the charging station deployment problem.
Though it has been studied in existing publications, where
the objectives of maximizing coverage [15] and minimizing
system cost [16] have been considered, we investigate it
from the point of the satisfaction of customers. Generally, a
shorter delivery time means a higher satisfaction level. So,
we consider minimizing the average delivery time, which
can be approximated by flight distance. We propose a new
model to characterize the flight distance for drones to serve
customers, which is called the service model. Different from
the commonly used coverage model which says a customer
is covered by a charging station within a certain range [15],
[17], the service model specifies the charging station via
which a drone directly serves a customer in the shortest time.
The main advantage of this model is that it can provide an
accurate computation of the flight distance. With this model,
we formulate the charging station deployment problem from a
simple case with only one charging station to a complex case
with multiple charging stations. While the former is easy to
solve, the latter is challenging as the positions of charging
stations are coupled in the objective function. Considering
that this problem is NP-hard, to solve it within a reasonable
time, we propose a sub-optimal solution. From the initial
positions which are connected and cover all the customers,
we construct the minimum spanning tree (MST). Then, we
move the charging stations one by one in sequence to reduce
the average flight distance of the impacted customers, while
maintaining the topology of the MST and avoiding losing any
customers.

The main contributions of the paper are as follows:
• We propose a service model to accurately compute the

delivery time (approximated by flight distance) of cus-
tomers.

• We formulate an optimization problem to minimize the
average flight distance (which is a reflection of the
satisfactory level of customers).

• We propose a sub-optimal algorithm to deploy the charg-
ing stations which ensures that any movement of a
charging station leads to a decrease in the average flight
distance (an improvement of the satisfactory level).

The rest of the paper is organized as follows. In Section
II, we discuss other related work in a broad view. Section III
provides an overview of the considered scenario. In Sections
IV and V, we present the proposed service model and formu-
late the considered problems from simple to complex. Section
VI shows the performance of the proposed method against a
baseline method. Finally, Section VII concludes the paper with
some future research directions.

II. RELATED WORK

In this section, we briefly discuss the relevant work.
Under the battery capacity constraint, energy consumption

models have been studied for drone delivery [18]. In [19],
the authors present a battery-aware scheduling algorithm to
accomplish more deliveries with a given battery capacity by
taking into account the battery power transfers. The paper [20]
develops the vehicle routing problem for drone delivery, where
drones can make multiple returns to the warehouse to pick
up parcels and swap their battery. This approach enables a
drone to deliver multiple parcels in a single trip, while most
logistic companies only deliver one parcel in a single travel.
The reference [21] considers only delivering one parcel in a
time-dependent graph. The edge cost in the graph represents
the energy consumption, and the time variance can describe
the wind effect. The authors present algorithms to construct
offline and online routes and evaluate their feasibility. One
common feature of these publications is that the drone can
only serve a customer close to the warehouse.

The charging station deployment problem is the hub location
problem or facility deployment problem [22]–[24], and the
basic goal is to enable a long-term and large-scale operation.
For example, in [23], the authors investigates the problem of
optimally locating an automotive service centre to minimize
the transportation cost of customers subject to stochastic
customer demands, varying setup cost and regional constraints.
The more general hub location problem concerns with locating
hubs and allocating demands to hubs to route the traffic
between origin–destination pairs [24]. Such a problem has
rich applications including but not limited to postal oper-
ations, express shipment and cargo delivery, public transit,
and computer and telecommunication networks. Regarding
the facility deployment problem for electric vehicles, the
commonly considered goal is to maximize the coverage of
electric vehicle flows by deploying a number of charging
stations on road segments. Various factors need to be taken
into account including but not limited to budget constraints,
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charging time, and traffic flow [25], [26]. In addition to these
general factors, the authors of [27] simultaneously consider the
requirements of transportation infrastructures and electricity
because charging EVs is a type of unconventional electric
load, and they propose a graph-computing based integrated
location planning model to maximize the charging convenience
while ensuring the reliability of power grids. Following the
observation of congestion at charging stations for electric
vehicles, the reference [28] also investigates this issue in the
charging station deployment for drone delivery. Different from
the aforementioned context, the paper [29] considers position-
ing terror response facilities under the risk of disruption. The
authors present a leader–follower game, which is translated
into a minmaxmin problem, and propose a population-based
heuristic algorithm to solve it.

The main difference between the deployment of charging
stations for electric vehicles and that for drone delivery is the
connectivity requirement. In general, a fully charged electric
vehicle can travel for more than 100 km, which is much longer
than a drone. The connectivity needs to be well considered
in drone charging station deployment, but it is not necessary
for electric vehicles. While the hub location problem cares
more about routing the traffic between origin–destination
pairs, our problem pays particular attention to the routing
problem between one origin (depot) and multiple destinations
(customers). In our problem, locating the charging stations
needs to ensure that a drone is able to reach a customer and
also safely return to the depot. However, such a constraint is
not a necessity in the hub location problem. Moreover, in the
hub location problem, a demand is allocated to a certain hub
for the optimization of a particular metric. In other words, the
demand is served by such a hub. However, in our problem,
a customer can be connected with multiple charging stations.
Since we aim at maximizing the customer satisfaction level,
the customer will be served from a charging station that results
in the shortest delivery time, and other charging stations are
used for a safe return of the drone after the delivery.

The drone charging station deployment problem also shares
similarities with the conventional set cover problem. Given
a set of elements and a family of subsets of the elements,
this problem aims at finding a minimum number of subsets
to fully cover the elements [30]. Under the context of set
cover, in papers [15], [17], a subset refers to the customers
within a circle of a certain radius. Similar to the above group,
connectivity is not explicitly required in the set cover problem.

Another group of related work studies the routing problem
in wireless sensor networks. A hierarchical wireless sensor
network consists of a sink, a number of cluster heads and a
number of cluster members. The sensory data is propagated
as follows. Whenever a sensor measures an event of interest,
it sends the data to its cluster head. If the cluster head is close
to the sink, the data is directly reported to the sink. Otherwise,
the cluster head needs to send the data to other cluster heads
with lower hop number for relay, until reaching the sink [31].
If the sink needs to send some command, it can do this in the
reverse way, which is similar to the scenario where a drone
travels from a charging station to a customer via other charging
stations as relays. The main difference between routing in
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Fig. 1: Illustration of the considered scenario.

wireless sensor networks and flying among charging stations is
that the wireless transmission distance can be easily increased
by increasing the transmission power, while the flight distance
of a drone is often strictly constrained.

III. SCENARIO DESCRIPTION

In this section, we provide an overview of the considered
scenario. We consider that a supplier wishes to provide drone
delivery service to customers in a rural area that is far from the
supplier’s warehouse so that a drone cannot reach a customer
in the area by direct flying. Following [11], a drone can take
a public transportation vehicle, such as a train and a bus, to
reach a vehicle stop that is close to the area of interest, see
Fig. 1. However, when the area of interest is large, and many
customers locate relatively far from the vehicle stop, due to
the limited battery capacity, a drone may not be able to serve
all the customers in the area.

We consider deploying a number of charging stations to
extend the coverage area for drones. We assume that each
charging station is equipped with a large number of batteries.
Whenever a drone arrives, it replaces the used battery with a
fresh one. This helps reduce the delivery time, which further
helps increase the customer satisfaction level. The used battery
can be recharged later. Because the time needed to replace a
battery is relatively shorter than the UAV flight time, we ignore
such a time in this paper. The first charging station is deployed
near the vehicle stop, i.e., at p0, see Fig. 1. With this charging
station, we further deploy other charging stations so that all
the customers in the area can be served by drones.

Our main objective is to serve the customers in the fastest
way on average. The operation of a drone to serve a certain
customer is as follows. Starting from the warehouse, it takes
proper public transportation vehicles to reach the desired
vehicle stop. It then travels to a customer by hopping from
one charging station to another. After completing the task, it
returns to p0 and waits for a proper vehicle. Finally, it takes
this vehicle to return to the warehouse. So, to serve one cus-
tomer in the area of interest, a drone takes one or more public
transportation vehicles to travel between the warehouse and p0,
and it travels between p0 and the customer by hopping among
the deployed charging stations. In this paper, we focus on the
optimal deployment of charging stations. Regarding travelling
with public transportation vehicles, readers are referred to
[11]. In the next two sections, we mathematically formulate



4

TABLE I: Symbols and meanings

Symbol Meaning
pj ∈ R2 Location of node j
Oj ⊂ R2 Circle around node j
C ⊂ R2 The set of customers
Cj ⊂ R2 Subset of customers covered by node j
R ∈ R2 Coverage radius

Aij ⊂ R2 Subset of customers covered by node j but served
by node i

Bij ⊂ R2 Subset of customers covered and served by node j
but directly impacted by node i

Pj ⊂ R2 The shortest path from node 0 to node j
L(pi, pj) ∈ R Length of the shortest path from node i to node j
ϕ(j) ∈ N The parent of node j
ψ(j) ⊂ N The set of child nodes of node j

F (pϕ(j), pj) ∈ R Average distance from pϕ(j) to the customers in Cj

the problem from simple to complex and also present our
solutions.

IV. DEPLOYMENT OF ONE CHARGING STATION

Suppose that a fully charged drone can fly for a distance of
2R. Then, for drone parcel delivery, a fixed charging station at
the position p0 ∈ R2 can serve the customers within a circular
area centred at p0 of radius R ∈ R, see Fig. 2. It is worth
pointing out that such a radius R depends on not only the
onboard battery capacity but also the designed parcel weight.
This paper focuses on the high level development problem.
Readers that are interested in the low level control aspects
are referred to some recent publications on aerial vehicles
with uncertain payloads [32], [33]. We consider extending the
coverage area by deploying a charging station p1 ∈ R2. This
charging station and the one at p0 should be connected so that
a drone starting from p0 can reach the new charging station. At
the new charging station, a drone can replace its battery with a
fresh one. Let C ⊂ R2 denote a set of customers to be served.
Let O0 ⊂ R2 and O1 ⊂ R2 be the circles centred at p0 and
p1 of the radius R, respectively, see Fig. 2. We assume that
there exists a position p1 such that the customers in C can be
enclosed by the circle O1. The connectivity constraint requires
that the distance between p0 and p1 is no greater than 2R,
i.e., |p0, p1| ≤ 2R, where |·, ·| gives the standard Euclidean
distance between two points. The mainly used symbols are
listed in TABLE I.

A. Service model

We present a new model to characterize the service of
customers and the delivery time, i.e., the service model:

Definition IV.1. A customer is served by the charging station
that can directly reach the customer and lead to the shortest
delivery time. Here, the delivery time refers to the time
duration between the instant when the drone leaves p0 and
the instant when the drone reaches the customer. Assuming
that a drone flies at a constant speed and omitting other times
such as replacing the battery, the delivery time is proportional
to the flight distance.

When |p0, p1| < 2R, we can construct an ellipse with p0
and p1 as the foci and passing the intersection points of O0
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Fig. 2: Illustration of the proposed service model with two
charging stations at p0 and p1. Without the charging station at
p1, the one at p0 only serves the customers in an area inside
the circle O0. With p1, the charging station at p0 further serves
the green region. Charging station p1 serves the yellow region.

and O1, see the red ellipse in Fig. 2. An important property of
such an ellipse is that for any point q on or inside the ellipse
we have |p0, q| + |q, p1| ≤ 2R. When |p0, p1| = 2R, such
an ellipse reduces to a line segment between p0 and p1. Let
A ⊂ R2 denote the subset of customers that are inside the
ellipse but outside the circle O0: A = {c| |p1, c| + |p0, c| ≤
2R & |p0, c| > R, c ∈ C}. In Fig. 2, the customers in A
are in the green region. Let B ⊂ R2 denote the subset of
customers that are inside the circle O1 but outside the ellipse:
B = {c| |p1, c| ≤ R & |p1, c|+ |p0, c| > 2R, c ∈ C}. In Fig.
2, the customers in B are in the yellow region. Moreover,
we have C = A ∪ B, and A ∩ B = ∅. Under the proposed
service model, the customers in the green region in Fig. 2 can
be served with shorter flight distances (shorter time). Such a
model is essentially based on a simple new concept, and to
the best of our knowledge, we have not seen it in any existing
publications. We formally state this benefit in Proposition IV.1.

Proposition IV.1. For the given set of customers C and
locations of p0 and p1, grouping the customers into the sets
A and B and letting charging station p0 serve the customers
in A and charging station p1 serve the customers in B ensure
that every customer can be served and the flight distance for
any customer is the lowest.

Proof. If Proposition IV.1 is untrue, there must exist another
partition so that all the customers can be served, the flight
distance of any customer is no longer than the considered
partition, and there must exist at least one customer such
that the flight distance is lower than the considered partition.
Consider there exists one customer c that falls into the set A
but is grouped into the set B. Since the customers in set B
are served by charging station p1, the flight distance for c is
|p0, c|+|c, p1|. If it is served by p0, the flight distance is |p0, c|.
Clearly, |p0, c| + |c, p1| ≥ |p0, c|, and the equality holds only
if p1 is on the line segment connecting p0 and c. So, grouping
a customer falling into the set A to the set B does not lead to
a lower flight distance for any customer. Moreover, suppose
a customer falling into the set B is grouped into the set A.
Since any customer c in B satisfies |p0, c|+ |c, p1| > 2R, this
customer cannot be served by p0. Thus, grouping a customer
falling into the set B to the set A results in that this customer
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cannot be served. Therefore, grouping the customers into
the sets A and B and letting charging station p0 serve the
customers in A and charging station p1 serve the customers
in B ensure that every customer can be served and the flight
distance for any customer is the lowest.

B. Deploying a charging station in a continuous region

An interesting problem under this model is the optimal
deployment of p1. Formally, given p0, R, and the positions
of a set of customers C which are outside O0, we look
for the position p1, such that p1 is connected with p0, all
the customers are covered, and the average flight distance is
minimized:

min
p1

1

|C|

(∑
c∈A
|p0, c|+

∑
c∈B

(|p0, p1|+ |p1, c|)

)
(1)

s.t.

|p0, p1| ≤ 2R, (2)

|c, p1| ≤ R,∀c ∈ C, (3)

A = {c| |p1, c|+ |p0, c| ≤ 2R & |p0, c| > R, c ∈ C}, (4)

B = {c| |p1, c| ≤ R & |p1, c|+ |p0, c| > 2R, c ∈ C}. (5)

The objective function (1) minimizes the average flight dis-
tance. Constraint (2) requires that p1 is connected with p0,
and constraint (3) requires that all the customers in C are
within the distance R from p1. Eqs. (4) and (5) define the sets
A and B, which are both the functions of p1. Note that the
considered model can be extended to the case where customers
are with weightings representing order frequency and the like.
Some constants representing the battery swapping time can
be added to the objective function. Also, the constant R can
be adjusted to consider the energy consumption for take-off,
landing, and other factors.

The problem (1) subject to (2), (3), (4) and (5) is non-
convex. The variable p1 determines the subsets A and B,
and p1, A and B all appear in the objective function (1).
Additionally, p1 is defined in a continuous space. A slight
change of p1 results in totally different A and B, which
means that the objection function (1) is not continuous with
respect to p1. We can imagine that there is a customer c
at the intersection of the circles O0 and O1. According to
Definition IV.1, this customer belongs to the subset A, and
the corresponding objective function value for this customer
is given by |p0, c| = R. However, a slight movement of p1
may result in that this customer falls into the subset B. Then,
the objective function value for c becomes |p0, p1| + |p1, c|.
Obviously, this is larger than |p0, c| 1, which means a jump in
the objective function value due to a slight movement of p1.

1Note that |p0, p1|+|p1, c| = |p0, c| holds if and only if p1 lies on the line
segment connecting p0 and c. For the considered c, |p0, p1|+|p1, c| > |p0, c|.

C. Deploying a charging station in a discrete set

In practice, a charging station cannot be deployed anywhere
[15], [16]. So, we introduce a discrete set of candidate sites for
deployment, denoted by S = {s1, . . . , sm}, where sk ∈ R2 is
the location of site k and m ∈ N is the number of candidate
sites. We also introduce a binary variable for each candidate
site, i.e., xk: xk = 1 if the charging station is deployed at
site k; xk = 0 otherwise. Moreover, since the locations of the
candidate sites and the customers are all known, we can pre-
compute the subsets A and B for each candidate site. Similar
to the above definition, for site k, let Ak denote the subset of
customers falling into the ellipse but outside the circle O0, and
let Bk denote the subset of customers falling into the circle
O1 but outside the ellipse. Then, the aforementioned problem
can be reformulated as follows:

min
x1,...,xm

m∑
k=1

xk
|C|

(∑
c∈Ak

|p0, c|+
∑
c∈Bk

(|p0, p1|+ |p1, c|)

)
(6)

s.t.
xk|p0, sk| ≤ 2R,∃k ∈ [1,m], (7)

xk|c, sk| ≤ R,∀c ∈ C,∃k ∈ [1,m], (8)
m∑
k=1

xk = 1. (9)

xk ∈ {0, 1},∀k ∈ [1,m]. (10)

For any site k, the subsets Ak and Bk are fixed. Thus, the
objective function (6) is a linear function of x1, . . . , xm.
Constraint (7) says that the charging station should be within
the range of 2R from p0. Constraint (8) requires that all
the customers are covered by the deployed charging station.
Constraint (9) specifies that there is only one charging station,
and constraint (10) defines the binary variable of xk. Clearly,
the problem (6) subject to (7), (8), (9) and (10) is convex,
which is easier to solve than the problem (1) subject to (2),
(3), (4) and (5). In the case where the candidate set is not
pre-defined, we can grid the field and take the grid points as
the candidates. However, the converting the problem may take
much pre-computation fro determining the sets Ak and Bk,
which is only suitable to small-scale cases.

V. DEPLOYMENT OF MULTIPLE CHARGING STATIONS

In this section, we discuss the complex scenario with
multiple charging stations. We start from the model of cover-
age, formulate the problem of interest and then propose our
solution.

A. Coverage model

To deploy multiple charging stations, an important tool
is the grouping of customers. We introduce the concept of
coverage in Definition V.1.

Definition V.1. A customer is covered by the charging station
that serves it if their distance is no larger than R; otherwise,
this customer is covered by the closest charging station if their
distance is no larger than R.
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Different from the concept of service, which pays attention
to the calculation of flight distance, the concept of coverage
defines how to group customers. In Fig. 2, the customer c1
in A is served by p0 according to Definition IV.1. Then, the
flight distance is given by |p0, c1|. However, it is covered by p1
according to Definition V.1, since the distance between c1 and
p0 is larger than R. It is easy to understand that if we use the
concept of coverage to compute the flight distance, we may
obtain inaccurate results, as under this concept both c1 and c2
are covered by p1. It is worth pointing out that Definition V.1
groups a customer to the charging station that serves it if the
distance requirement holds. This differs from other existing
coverage models. For example, in [17], a customer is grouped
to the closest charging station. Consider a customer that is in
the overlapping area of O0 and O1 and more closer to p1 in
Fig. 2. According to Definition V.1, this customer is covered
by p0. However, following the model in [17], it is covered by
p1. Since the concept of service generally leads to a shorter
flight distance, determining the coverage of a customer by
accounting for which charging station serving it can also result
in a smaller flight distance.

B. Formulation of deploying multiple charging stations

Now, we consider a set of nodes labelled by 0, 1, . . . , n,
where n ∈ N is the number of charging stations. Here, node
0 represents the fixed charging station near the vehicle stop,
and nodes 1, . . . , n represent charging stations to be deployed.
Their locations are p0, p1, . . . , pn. Given p0, p1, . . . , pn, we
construct the minimum spanning tree (MST) rooted at p0. The
basic requirement is that every charging station is linked with
p0. Then, any valid edge in the MST must be no longer than
2R. For any node j, let Pj ⊂ R2, a series of nodes, denote
the shortest path from node 0 to node j. Let Pj [k] give the
location of the kth node on the path Pj , where k = 1, . . . , |Pj |.
In particular, Pj [1] = p0, and Pj [|Pj |] = pj . Then, the
requirement of connectivity can be explicitly described by
|Pj [k],Pj [k + 1]| ≤ 2R, ∀k = 1, . . . , |Pj | − 1. Moreover, let
ϕ(j) ∈ N denote the parent node of j and ψ(j) ⊂ N denote
the set of child nodes of j in the MST. In the MST, a node
(except the root) has a unique parent, but it may have more
than one child node.

Similar to the single charging station case, we can construct
an ellipse for a child-parent pair j and ϕ(j). Also, let Oj
and Oϕ(j) denote the circles centred at pj and pϕ(j) of radius
R, respectively. For node j, let Cj denote the subset of
customers that are covered by node j (see Definition V.1).
Let Aϕ(j)j denote the subset of customers in Cj that are
inside the ellipse but outside the circle Oϕ(j), and let Bϕ(j)j
denote the subset of customers in Cj that are inside the circle
Oj but outside the ellipse. For the customers in Cj , the flight
distance can be broken down into the distance from p0 to the
parent of pj , i.e., pϕ(j), and from pϕ(j) to the customers. Let
L(p0, pϕ(j)) denote the length of the shortest path from p0
to pϕ(j). Let F (pϕ(j), pj) denote the average distance from
pϕ(j) to the customers in Cj . Similar to (1), F (pϕ(j), pj) =
1

|Cj |

(∑
c∈Aϕ(j)j

|pϕ(j), c|+
∑
c∈Bϕ(j)j

(|pϕ(j), pj |+ |pj , c|)
)

.
An illustration is shown in Fig. 3.

𝑝0

𝑝𝑘

𝑝𝜙(𝑗)

𝑝𝑗 𝐴𝜙(𝑗)𝑗

𝐵𝜙(𝑗)𝑗

Fig. 3: The average flight distance for customers in Cj
composes of the flight distance from p0 to pϕ(j) and the
average distance from pϕ(j) to these customers. The second
part is the same as the model in Fig. 2.

Then, the objective function of minimizing the average flight
distance of a set of customers C is formulated as follows:

min
p1,...,pn

1

|C|

n∑
j=1

|Cj |
(
L(p0, pϕ(j)) + F (pϕ(j), pj)

)
. (11)

Similar to the objective function of deploying a single charging
station, i.e., (1), the term of F (pϕ(j), pj) couples the positions
of the charging stations and the sets determined by the
positions, i.e., Aϕ(j),j and Bϕ(j),j . This problem is much more
difficult than the single charging station case. It is also non-
convex and NP-hard.

Now, we discretize the problem of deploying multiple
charging stations. Let S denote the set of candidate sites to
deploy charging stations. Suppose that the set S includes p0.
Given the locations of the set of customers C and the set of
candidate sites S, we find the subset of customers covered by
each candidate site, i.e., Cj . We can also construct the sets Aij
and Bij for each pair of candidate sites i and j. Furthermore,
let Lij denote the distance between candidate sites i and j,
and Fij denote the average distance from candidate site i to
the customers covered by candidate site j. Given the locations
of the customers and the candidate sites, Lij and Fij can be
pre-computed for each pair of charging stations i and j, and
the complexity is O(|C||S|2).

Let xi be a binary variable indicating if a charging station
is deployed at candidate site i (xi = 1, if yes; xi = 0,
otherwise). Let yij be another binary variable. If a charging
station deployed at site j is connected with p0 via the charging
station deployed at site i, yij = 1; otherwise, yij = 0. For
example, in Fig. 3, ykϕ(j) = 1 because the charging station
at pϕ(j) is connected with p0 via the charging station at pk,
while yϕ(j)k = 0. Moreover, let lj be a non-negative real-value
variable representing the path length from p0 to site j.

With these variables, the problem of deploying multiple
charging stations can be formulated in a discrete form:

min
xi,yij ,li

1

|C|
(
∑
i

|Ci|xili +
∑
i

|Ci|
∑
j

Fijyij) (12)

s.t. ∑
i

xi = n, (13)
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∑
i ̸=j

yij = n, (14)

yijLij ≤ 2R,∀i ̸= j, (15)∑
i∈S′,j∈S′,i̸=j

yij ≤ |S′| − 1,∀S′ ⊂ S, (16)

L0iy0i ≤ li ≤ lj + Lijyij ,∀i, j, (17)

xi, yij ∈ {0, 1},∀i, j ∈ S, i ̸= j, (18)

li > 0,∀i. (19)

The objective function (12) re-writes that of (11) in a discrete
form. Constraint (13) specifies that exactly n sites are selected
to deploy charging stations. Constraint (14) specifies that there
are n edges in the MST. Constraint (15) says that if the
charging stations deployed at sites i and j are connected by
an edge, the length of the edge cannot be larger than 2R.
Constraint (16) eliminates sub-tours in the MST. Constraint
(17) limits the length of the path from p0 to a charging station.
The left-hand side specifies the minimum length of a path, and
the right-hand follows the triangulation law. Constraints (18)
and (19) give the ranges of the variables.

Clearly, converting the problem to the discrete version, i.e.,
selecting positions from candidate sites, does not simplify
the problem much. Many additional variables to formulate
the connectivity requirement for each charging station are
introduced, and the objective function is still non-linear. Al-
though some existing solvers can be used to address the
discrete version, they do not scale well. Below, we discuss
a decentralized method to find sub-optimal positions for the
charging stations.

C. Sub-optimal solution

Similar to deploying a single charging station, the objective
function (11) more accurately characterizes the average flight
distance than the existing models, thanks to the introduction of
the ellipse. But, this new model makes the problem difficult to
address, because moving one charging station in a decentral-
ized manner impacts the coverage of not only the neighbour
charging stations but also the non-neighbour charging stations.
For a node j, its parent and children in the MST are called
the neighbours of j, and the rest of the nodes are called the
non-neighbours of j. Consider that we move pk a bit in Fig. 3.
Such a movement may change the subsets of Akϕ(j), Bkϕ(j),
A0k and B0k and the flight distance to customers in Cϕ(j) and
Ck. Moreover, the length of the shortest path from p0 to pϕ(j)
is likely to change because of the movement of pk, so as the
flight distance to the customers in Cj .

Fortunately, we notice that the movement of any node in
the MST only impacts the flight distance of the customers
covered by its downstream nodes, but not the upstream nodes.
In Fig. 3, the movement of node k impacts the flight distance
of the customers covered by nodes k, ϕ(j), and j, but not those
covered by node 0. We call the node k and its downstream
nodes a branch of nodes sub-rooted at node k. So, moving
node k only affects the flight distance of customers covered by
its branch. Moreover, we classify the nodes in a branch into

two groups: the neighbours of the sub-root that are directly
connected with the sub-root (the sub-root connects to itself);
and non-neighbours that are not directly connected with the
sub-root. We notice that for non-neighbours, the movement
of the sub-root only affects the first part in (11), but not the
second part. We call this the indirect impact. For instance,
when we move node k in Fig. 3, the second part of the flight
distance of the customers in Cj remains, because this part
only depends on the positions of node j and its parent ϕ(j),
rather than node k. For the neighbours of the sub-root, the
movement of the sub-root affects both parts in (11), and we
call this the direct impact. The relocation of a node depends
on the evaluation of both the direct and indirect impacts. We
relocate a node to a new position if the overall impact leads to
a decrease in the average flight distance of the customers in its
branch, and we move the node to the position corresponding
to the maximum decrease of the average flight distance.

From the above discussion, we can see that the relocation of
a leaf node (that does not have child nodes) can be addressed
by the method discussed in Section IV. The relocation of a
non-leaf node is more complex than that of a leaf node. We
define Ni ∈ N as the number of the customers that are in
the branch of node i and are indirectly impacted by node i.
Moreover, let Gi ∈ R denote the average flight distance from
node i to these customers. If i is a leaf node or the parent of
a leaf node, Ni = 0 and Gi = 0 because the customers in
the branch of node i are all directly impacted by node i. Let
H1(pj) ∈ R denote the average flight distance from the parent
of node j, i.e., ϕ(j), to all the indirectly impacted customers
in the branch of node j. If

∑
i∈ψ(j)Ni = 0, H1(pj) = 0;

otherwise, H1(pj) is computed as follows:

H1(pj) =

∑
i∈ψ(j)Ni(Gi + |pi, pj |+ |pj , pϕ(j)|)∑

i∈ψ(j)Ni
. (20)

In (20), the term Gi + |pi, pj | + |pj , pϕ(j)| gives the average
flight distance from node ϕ(j) to the customers in the branch
of node i (where i ∈ ψ(j)) that are indirectly impacted by
node j. An example is shown in Fig. 4. Clearly, H1(pj) is a
function of pj , and other information in (20), including Ni, Gi
and pϕ(j), is known if the downstream nodes and the parent
node are fixed.

Let H2(pj) ∈ R denote the average flight distance from
node ϕ(j) to the customers that are in the branch of node
j and directly impacted by node j. Such customers include
those covered by node j and the child nodes of node j. The
number of these customers is |Cj |+

∑
i∈ψ(j) |Ci|. H2(pj) is

computed as follows:

H2(pj) =

1

|Cj |+
∑
i∈ψ(j) |Ci|

[ ∑
c∈Aϕ(j)j

|pϕ(j), c|+

∑
c∈Bϕ(j)j

(|pϕ(j), pj |+ |pj , c|) +
∑
i∈ψ(j)

( ∑
c∈Aji

|pj , c|+

∑
c∈Bji

(|pj , pi|+ |pi, c|) +
∑
c∈Ci

|pj , pϕ(j)|

)]
.

(21)
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Fig. 4: Flight distance for indirectly and directly impacted
customers. Gv + |pv, pj |+ |pj , pϕ(j)| gives the average flight
distance from node ϕ(j) to customers in the branch of node v
that are indirectly impacted by node j.

∑
c∈Aϕ(j)j

|pϕ(j), c|+∑
c∈Bϕ(j)j

(|pϕ(j), pj | + |pj , c|) gives the total flight dis-
tance from pϕ(j) to the customers in Cj .

∑
c∈Ajv

|pj , c| +∑
c∈Bjv

(|pj , pv|+ |pv, c|) +
∑
c∈Cv

|pj , pϕ(j)| gives the total
flight distance from node ϕ(j) to the customers in Cv .

The term
∑
c∈Aϕ(j)j

|pϕ(j), c|+
∑
c∈Bϕ(j)j

(|pϕ(j), pj |+ |pj , c|)
in (21) gives the total flight distance from node ϕ(j) to the
customers in Cj . The term

∑
c∈Aji

|pj , c|+
∑
c∈Bji

(|pj , pi|+
|pi, c|)+

∑
c∈Ci

|pj , pϕ(j)| in (21) gives the total flight distance
from node ϕ(j) to the customers in Ci, where i ∈ ψ(j). An
example is available in Fig. 4. Clearly, H2(pj) is a function of
pj , and other information in (21) is known if the downstream
nodes and the parent node are fixed. Different from H1(j)
which can be zero, H2(j) > 0, because there exists a subset
of customers that are directly impacted by node j. If this subset
is empty, there is no need to have node j.

Let H(pj) ∈ R denote the average flight distance from node
ϕ(j) to all the indirectly and directly impacted customers by
node j. Then,

H(pj) =
(|Cj |+

∑
i∈ψ(j) |Ci|)H2(pj) +

∑
i∈ψ(j)NiH1(pj)

|Cj |+
∑
i∈ψ(j) |Ci|+

∑
i∈ψ(j)Ni

.

(22)
Moreover, the average flight distance from node 0 to all the
customers in the branch of node j is given by L(p0, pϕ(j)) +
H(pj), where L(p0, pϕ(j)) denote the distance from node 0
to node ϕ(j) as defined at the beginning of this section. If at
any time we only move one node in the MST, say node j, for
the purpose of reducing the average flight distance, we only
need to consider H(pj), because L(p0, pϕ(j)) is a constant.
Therefore, we can relocate pj to a new position that minimizes
(22) subject to that the topology of the MST remains and
node j does not lose any covered customers. Similar to (1),
the function (22) is not continuous with respect to pj . So, we
solve it in a numerical manner, which is similar to what we
do in Section IV.

Moreover, as the values of N and G are required in the
computation of H1(pj) in (20), we need a general formula for
them to relocate each node in a decentralized manner. Given

the N and G values of the child nodes of node j, we can
compute these values for node j as follows:

Nj =
∑
i∈ψ(j)

(Ni +
∑
k∈ψ(i)

|Ck|), (23)

Gj =
1

Nj

∑
i∈ψ(j)

(
Ni(Gi + |pi, pj |)+

∑
c∈Aji

|pj , c|+
∑
c∈Bji

(|pj , pi|+ |pi, c|)

)
.

(24)

The values of N and G propagate in the upstream order. For
a certain node, these values can be computed once those of
its child nodes have been computed.

Now, we are in the position to present our method as a
whole. Suppose that at the initial positions p1, . . . , pn, the n
charging stations cover all the customers in the set C. We
construct the MST for the nodes rooted at p0. We assume that
all the edges in the MST are no longer than 2R. Additionally,
with the initial positions, we can compute the subset of
customers covered by each node. The main procedure of our
method repeats relocating the nodes in sequence. In particular,
whenever we are to relocate a node, we need to complete the
relocation of all its child nodes. For two sibling nodes, either
of them can come first in the sequence. With this rule, we
start the relocation from the leaf nodes, then the parent of leaf
nodes, and so on. For a leaf node, we find the position for
this node by solving the problem (1) subject to (2), (3), (4)
and (5), where p1 in this problem is the leaf node, and p0 is
the parent of the leaf node. For a non-leaf node, we find the
position for the node by minimizing (22) subject to that the
topology of the MST remains when the node is relocated, and
the node does not lose any customers. After the relocation, we
use (23) and (24) to update the values of N and G for the node,
respectively. After the relocation of all the nodes, we update
the subset of customers covered by each node, including the
update of the sets A and B. These procedures repeat until the
nodes cannot be further moved. One termination condition can
be that all the nodes stay at the previous positions in one round
of relocation. This method is summarized in Algorithm 1.

Complexity. Algorithm 1 is an iterative algorithm, and the
termination depends on the evaluation of the solutions in two
consecutive rounds. We now analyze the complexity of each
round. For any node in the MST, we need to compute the
values of N and G. To this end, the child nodes of the
considered node will be evaluated. The worst case is that this
node has n child nodes. Then, the worst complexity is O(n2).
It is worth pointing out that in practice, in an MST, the number
of child nodes of a parent node is far less than n. Thus, the
practical complexity of each round should be much smaller
than O(n2).

Proposition V.1. For a given set of customers, from the
initial positions, Algorithm 1 ensures that any movement of
a charging station leads to a lower average flight distance.

Proof. Algorithm 1 consists of two main procedures. One is
the relocation of charging stations in sequence, and the other
is the update of customers covered by each charging station.
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Algorithm 1 Relocating the nodes in MST
Input: p0, p1, . . . , pn
Output: p1, . . . , pn

1: Construct the MST.
2: Compute the subset of customers covered by each node.
3: Construct a relocating sequence.
4: while Termination condition is unsatisfied do
5: for Each node j in the sequence do
6: if Node j is a leaf node then
7: Find the new position by solving the problem

(1) subject to (2), (3), (4) and (5).
8: Nj ← 0, Gj ← 0.
9: else

10: Find the new position by minimizing (22)
subject to that the topology of MST remains when node
j relocates, and node j does not lose any customers.

11: Update Nj and Gj by (23) and (24).
12: end if
13: end for
14: Update the subset of customers covered by each node.
15: end while

For the former, as we only relocate one charging station at any
time, and we relocate it only if the average flight distance of
the downstream customers impacted by the charging station
reduces. As analyzed above, such a relocation does not influ-
ence the upstream customers. Thus, the relocation procedure
ensures the decrease of the average flight distance. Regarding
the latter, according to Proposition IV.1, for the given locations
of any pair of parent-child charging stations, the proposed
customer grouping model ensures that any customer can be
served and the flight distance for any customer is the lowest.
Therefore, Algorithm 1 relocates the charging stations to
positions with lower average flight distance.

From Proposition V.1 we can see that starting from some
initial positions, Algorithm 1 ensures that any movement of a
charging station leads to a lower average flight distance. When
there is no further decrease on the average flight distance,
a local optimum is obtained. We can try different initial
conditions to find different local optimums. Then, we can
select the best among them.

VI. SIMULATION RESULTS

In this section, we present computer simulations to show the
performance of the proposed method. As discussed in Section
II, algorithms for the hub location problem do not pay attention
to the connectivity constraint generally. The reference [15]
considers the connectivity issue but aims at maximizing the
coverage of customers. In contrast, the considered problem
is to minimize the average delivery time. Suppose that we
start from the same initial positions of charging stations that
fully cover the customers, the method in [15] will terminate
immediately, while the proposed method will exploit Algo-
rithm 1 to reduce the flight distance. Thus, the comparison
would be unfair. Minimizing the average distance between the
customers and the charging stations is a part of the method in

[17]. Therefore, the method in [17] is considered as a baseline
method. Moreover, we use a MATLAB function ’fmincon’
to address some small-scale instances to obtain the optimal
solutions. Below, the coverage radius is R = 15 km.

We first consider a simple case with only one charging
station to be deployed near a given charging station. Figs. 5a
and 5b show the positions of the charging station by the the
proposed method and the baseline method [17], respectively.
We can see that the proposed method leads to an average flight
distance of 26.2 km, which is shorter than the average flight
distance of 30.8 km achieved by the baseline method. To apply
the MATLAB function ’fmincon’, we need to construct a set
of candidate sites. For this case, we grid a square area around
the customers with a certain resolution from 0.1 to 2 km. Figs.
5c and 5d demonstrate the results when the resolution takes
2 km and 1 km, respectively. Figs. 5e and 5f further show
the performance of the function ’fmincon’ in terms of the
average flight distance and the computing time under different
resolutions (counted on a normal computer with Intel Core
i7-7500U CPU). It is as expected that when the resolution
becomes large, the average flight distance increases and the
computing time reduces. When the resolution is set as 0.2 km,
the average flight distance achieved by the function ’fmincon’
becomes the same as the proposed method.

In the second case, we consider 100 customers randomly
located in a long but narrow area. Five charging stations are
deployed to serve the customers. Fig. 6a shows the initial
positions of the five charging stations together with p0 at (0,0).
Applying the proposed method and the baseline method [17],
the final positions of the 5 charging stations are shown in Figs.
6b and 6c, respectively. The termination condition is that the
average gap between the current positions and the previous
positions of all charging stations is smaller than 0.01 km. In
Fig. 6b, we also plot the ellipse for each parent-child pair.
Fig. 6d compares the average flight distance to the customers
in each round of relocation. We can observe from Fig. 6d
that at the same positions (such as at the initial positions),
the proposed model leads to about 6% shorter average flight
distance than the baseline method. We can also see that the
proposed Algorithm 1 moves the charging stations leading to a
shorter average flight distance. In contrast, the baseline method
does not guarantee the decrease of the average flight distance.
The main reason is that during the relocation, the baseline
method moves each charging station closer to the covered
customer only without considering the flight distance from p0
to this charging station. We also apply the function ’fmincon’.
Similar to the above case, we discretize the area with a certain
resolution, and take the grid points as the candidate sites. Figs.
5e and 5f show the average flight distance and the computing
time, respectively. When the resolution is set lower than 2 km,
the function ’fmincon’ achieves better performance in terms
of the average flight distance. However, the cost is that the
computing time is more than 1 hour. In contrast, the proposed
algorithm can complete in about 10 seconds.

We further consider a case in a real map as shown in Fig. 7.
This is the greater Wollongong region, which is on the south
side of Sydney and about 45 km along the coast. As we are
not accessible to the population distribution, we assume that
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Fig. 5: Comparison of the proposed method, the baseline
method [17], and the optimal solution achieved by ’fmincon’
in a simple case.

the customers are uniformly distributed in the resident area.
p0 is deployed at the position of the black square in Fig. 7.
The coverage radius is R = 15 km, which is the same as
above. To apply the optimal method, we randomly select 150
candidate sites in the map. Among the 150 candidate sites,
the function ’fmincon’ finds the optimal solution as shown
in Fig. 7a. The computing time for this case is about 30
minutes, and the average flight distance is 33.1 km. Using
this solution as the initial conditions, the proposed method
is applied, and the corresponding deployment of the charging
stations is shown in Fig. 7b. From the initial positions, the
proposed method further moves the charging stations locally,
and the final average distance drops to 32.3 km under the
terminal condition of 0.1 km. The corresponding computing
time is less than 1 minute. We also apply the baseline method
to this case. Using the same initial condition, the deployment
achieved by the baseline method [17] is shown in Fig. 7c. The
average flight distance is 35.0 km, and the computing time of
the baseline method.

We also demonstrate the scalability of the proposed method.
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Fig. 6: Comparison of the proposed method, the baseline
method [17], and the optimal solution achieved by ’fmincon’
in a case with 5 charging stations.

We create some cases with more charging stations in larger
areas with more customers randomly places in the areas. For
each simulating case, we apply the proposed method to find
the locations of charging stations. Some of the results are
illustrated in Fig. 8. We repeat this 10 times for each case
and record the computing time. As Fig. 9 shows, the proposed
method can return solutions within a few minutes. However,
the function ’fmincon’ cannot address these large-scale cases
in a reasonable time. Moreover, the computing time of the
proposed method increases almost linearly with the number of
charging stations. The main reason is that when we relocate a
charging station, only the neighbour charging stations have an
impact. This is consistent with our expectation as mentioned
in Section V.

As a final remark, the function ’fmincon’ to address the
discretized version can find the optimal solution among the
candidate sites. The computing time is very long if the number
of candidate sites is large. So, we can first construct a set of
candidate sites with low resolution and then use the function
’fmincon’ to determine a ’rough’ solution. Regarding this
solution as an initial condition, we can apply the proposed
method to further relocate the charging station locally to
improve the solution.
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(a) The deployment of the optimal solution. The red stars are
the randomly selected candidate sites.

(b) The deployment by the proposed method

(c) The deployment by the baseline method [17]

Fig. 7: Comparison in a real map with uniformly distributed
customers.
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Fig. 8: Illustration of the proposed method in large-scale cases.

VII. CONCLUSION

To provide drone delivery service to customers in a remote
area, this paper presented an approach using public transporta-
tion vehicles and charging stations. In particular, a drone can
travel to some position near the remote area by taking public
transportation vehicles, and then it may hop and swap the
battery at charging stations in the area to reach a customer.
For the deployment of charging stations, we proposed a new
service model to characterize the delivery time, that provides
an accurate estimation of the flight distance of a customer.
The deployment problem was formulated with the objective
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Fig. 9: Computing time of the proposed method under different
number of charging stations.

of minimizing the average delivery time, which can be seen
as a reflection of customer satisfaction level. To solve the
problem, a sub-optimal algorithm that relocates the charging
stations in the sequence was proposed. This algorithm ensures
that any movement of a charging station leads to a decrease
in the average flight distance. One shortcoming in the current
approach is that we relocate a charging station by numerical
evaluation. One future research work will look for an analytical
solution to this issue. In addition, in the current work, the
charging process is not considered as each charging station
is assumed to have a large number of spare batteries. An in-
teresting but also challenging problem is the routing planning
problem for drones when the charging stations have limited
battery resources. In this case, the status of the charging
stations will be taken into account in the routing planning
issue. To make the proposed scheme become a reality, accurate
and timely information of the operations of PTVs should be
accessible to drones because the drones need to collaborate
with PTVs. Moreover, the current paper only addresses the
facility deployment problem. The low-level air traffic control
issue needs to be considered to achieve a safe and efficient
schedule of the drones, especially when lots of drones are
flying in the air.

REFERENCES

[1] Amazon.com Inc, “Amazon prime air,” accessed on the 1st April 2021.
Online: http://www.amazon.com/primeair.

[2] “SF express approved to fly drones to deliver goods,” accessed on the
1st April 2021. Online: https://www.caixinglobal.com/2018-03-28/sf-
express-approved-to-fly-drones-to-deliver-goods-101227325.html.

[3] “UPS testing drones for use in its package delivery
system,” accessed on the 1st April 2021. Online:
https://www.apnews.com/f34dc40191534203aa5d041c3010f6c5.

[4] C. C. Murray and A. G. Chu, “The flying sidekick traveling salesman
problem: Optimization of drone-assisted parcel delivery,” Transportation
Research Part C: Emerging Technologies, vol. 54, pp. 86–109, 2015.

[5] N. Mathew, S. L. Smith, and S. L. Waslander, “Planning paths for
package delivery in heterogeneous multirobot teams,” IEEE Transactions
on Automation Science and Engineering, vol. 12, no. 4, pp. 1298–1308,
Oct 2015.

[6] Q. M. Ha, Y. Deville, Q. D. Pham, and M. H. Hà, “On the min-cost
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