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Abstract— This letter presents a performance evaluation on the conventional normal distribution 

transform (NDT) map-based scan matching under the presence of occlusion. The LiDAR map-based 

localization method enables centimeter level accuracy positioning; however, the state-of-the-art algorithms do 

not achieve the same performance when excessive unexpected objects, such as pedestrians or dynamic 

vehicles, occlude the field of view (FOV) of the LiDAR. Although the NDT scan matching is able to cope with 

slight geometrical change of environment, the presence of unexpected objects still induces matching error 

due to the discrepancy created between the real-time scan and the pre-build map. In this study, we manually 

place bounding boxes into realistic medium-urban LiDAR scans to simulate occlusion scenarios and 

investigate the effect of the point cloud occlusion on the map-based NDT scan matching method 

performance. Under the occluded situations, the induced positioning error is found positively correlated 

to the change of heading angle. Significant 3D localization errors peaks, up to 42.41cm, are identified 

repeatedly at circumstances while the LiDAR encounters a substantial change of yaw angle, and these errors 

peaks amplify as the occlusion rate increases. 

Index Terms—NDT Scan Matching, Point Cloud Occlusion, LiDAR, Localization, Autonomous Driving 

I. INTRODUCTION

In highly dynamic urban environments, accurate positioning in a 

global positioning system (GPS) denied area is important for 

autonomous vehicles for path planning and perception missions. With 

the availability of high definition (HD) map, researchers have 

proposed different map-based localization methods to provide 

accurate and robust localization. LiDAR map-based normal 

distribution transform (NDT) scan matching is one of the major 

algorithms that has been being extensively used on autonomous 

vehicles and robotic applications. For example, Akai et al. used an 

extended Kalman filter (EKF) to fuse the poses of the map-based 

NDT localization and dead reckoning to increase the robustness [1]. 

One major disadvantage of the map-based NDT scan matching is that 

it is not robust against significant geometric change of environments 

or occlusion by excessive unexpected or dynamic objects [3]. These 

weaknesses highly affect the performance of map-based NDT scan 

matching. Previous studies [5],[8] found that NDT is able to cope with 

certain level of the environmental change. However, the localization 

accuracy of NDT still degrades when there are discrepancies between 

the environment and map. Such discrepancy could be introduced by 

the unexpected object occlusion (i.e. LiDAR sensor being partially 

blocked by pedestrian or other vehicles), which is unavoidable in 

highly dynamic urbanized cities, like Hong Kong [4].  

In general, most of the previous works related to NDT [1],[3] study 

the impact of point cloud occlusion in the context of NDT-based 
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simultaneous localization and mapping (SLAM) applications rather 

than map-based NDT. Out of the limited studies on map-based NDT, 

Wen et al. enhanced the uncertainty estimation performance of map-

based NDT by modelling the surrounding dynamic vehicles [7]. 

Similarly, Akai et al. combined the estimated map-based NDT 

matching uncertainty information with a road-marker matching 

method using a particle filtering algorithm to provide accurate 

positioning in areas where NDT scan matching fails [9]. However, 

these studies did not provide a concrete evaluation on the relationship 

between point cloud occlusion and the map-based NDT performance. 

Therefore, this letter proposes to evaluate the performance of the 

conventional map-based NDT scan matching under the presence of 

the point cloud occlusion. 

In this letter, we aim to specifically evaluate the correlation 

between the point cloud occlusion rate and the performance of the 

map-based NDT. We generate synthetic occlusion datasets, perform 

the conventional NDT map matching with the prebuild map, and 

evaluate the performance under different occluded scenarios. 

The contributions of this letter are as follows: 

1. This letter proposes to investigate the relationship between the

localization accuracy of the map-based NDT scan matching and

the point cloud occlusion rate.

2. Accurate initialization of the heading angle is critical to the

convergence performance of NDT [9]. This letter analyzes the

relationship between the performance of NDT map matching and

the change of heading angle under occluded scenarios.
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The rest of this letter is composed as follows. In Section II, we 

present the conventional NDT scan matching method and the 

synthetic occlusion dataset generation process. In Section III, we 

present the experimental platform and the map-based NDT 

localization performance of each occluded dataset. In Section IV, we 

give our discussion and conclusion. 

II. METHODOLOGY

A. 3D Normal Map-based Distribution Transform (NDT)

In this letter, we follow the 3D NDT method developed by

Magnusson et al. [6]. Details can be found in [6]. For map matching, 

a 3D normal distribution (ND) map is built in advance from the 3D 

point cloud map, which is represented as a voxel map, for which each 

voxel 𝑖 contains the mean (𝐪𝑖
𝑚) and covariance matrix(𝚺𝑖). The goal

of the matching process is to find an optimal transformation, 𝐩 =

[𝐓𝐱   𝐓𝐲   𝐓𝐳   𝐑𝐱   𝐑𝐲   𝐑𝐳]
𝑻
, that maps the input scan to the pre-built

ND map. In our case, the input scan from the Velodyne HDL-32E is 

filtered with a 2m voxel grid (VG) filter. Then, we use the filtered 

points (𝐱𝟏, 𝐱𝟐 , … , 𝐱𝐌) to match with the pre-built ND map by the

following NDT score function (eqn. 1). 

𝑆(𝐱) = ∑ exp (−
(𝐱𝑖

′−𝐪𝑖
𝑚)

𝑇
𝚺−1(𝐱𝑖

′−𝐪𝑖
𝑚)

2
)𝑀

𝑖−1  (1) 

𝐱𝑖
′ = T(𝐱𝑖 , 𝐩)

where T(𝐱𝑖 , 𝐩) maps 𝐱𝒊  from the LiDAR frame to 𝐱𝐢
′  from the ND

map frame by the transformation parameter 𝐩. By maximizing the 

NDT score using gauss-newton method, the estimated pose 𝐩  is 

obtained once convergence is achieved. 

B. Synthetic Point Cloud Occlusion Dataset Generation

We propose to generate synthetic occluded dataset by placing 

simulated bounding boxes into the raw LiDAR scan to simulate the 

LiDAR’s field of view (FOV) being blocked by unexpected objects, 

such as dynamic buses. We firstly place bounding boxes into the raw 

LiDAR scan. Then, we employ the ray-box intersection algorithm 

(Algorithm 1) developed by Williams et al. [10] to detect the ray-box 

intersection and modify the occluded point cloud to the closest 

intersection if intersection exists. Fig. 1 shows the top view of a laser 

scan before and after occluded by two simulated bounding boxes. 

Fig. 1-Original LiDAR Scan (Left); Modified LiDAR Scan after two 

Simulated Bounding Boxes (Green) Being Placed (Right). 

Below three steps show the synthetic occluded dataset generation 

process and the associated flowchart is shown in Fig. 2. 

1. Applies NDT scan matching from the raw point cloud scan, then

obtains and records the pose 𝐩 = [𝐓𝐱   𝐓𝐲   𝐓𝐳   𝐑𝐱   𝐑𝐲   𝐑𝐳]
T

 of

LiDAR under map frame for each epoch.

2. Transforms the bounding box from map frame to LiDAR frame

at each epoch using 𝐩 from Step 1.

3. Performs point cloud modification using Algorithm 1 and

outputs the modified dataset each epoch.

Fig. 2 – Flowchart for the synthetic occlusion dataset generation. 

III. EXPERIMENTAL EVALUATION

To evaluate the effect of the point cloud occlusion on the map-

based NDT scan matching, two synthetic scenarios generated from a 

realistic medium-urban dataset collected in Hong Kong are used. 

1) High occluded (HO) case (mean occlusion rate (%occ) > 60%)

2) Low occluded (LO) case (%occ̅̅ ̅̅ ̅̅ ̅ < 30%)

A. Experimental Setup

A Velodyne HDL-32E 32-channel 3D LiDAR sensor is used to

provide the real-time point clouds at sampling frequency of 10Hz for 

the scan matching, and a NovAtel SPAN-CPT RTK/INS integrated 

navigation system is used to provide accurate position estimates for 

our experiment. To generate the point cloud map, we integrate the 

LiDAR odometry with the SPAN-CPT solution using the graph 

SLAM method by Koide et al [11]. In our case, real-time kinematic 

(RTK) fix was obtained by SPAN-CPT over the whole trajectory, so 

a high weighting factor was applied on SPAN-CPT in the information 

matrix to produce an accurate point cloud map as shown in Fig. 3. 

The 3D positioning error (∈3𝐷)  and the occlusion rate of point

cloud (% occ)  are evaluated on both scenarios. Theoretically, the 

LiDAR scan matching shall perform better for non-occluded case than 

the occluded case, so the non-occluded case is treated as the baseline 

for comparison. The ∈3𝐷 between the occluded case and the baseline

(non-occluded) case is computed by: 

∈3𝐷= √(𝑥𝑜𝑐𝑐 − 𝑥𝑏𝑙)2 + (𝑦𝑜𝑐𝑐 − 𝑦𝑏𝑙)2 + (𝑧𝑜𝑐𝑐 − 𝑧𝑏𝑙)2 (2)

where subscripts occ and bl stand for the occluded case and baseline 

case, respectively. As map-based NDT scan matching process is to 

measure the similarity between the real-time point cloud and the pre-

build point cloud map, the point cloud occlusion rate (% occ), 

computed by Eqn. (3), will be evaluated in Section IIIB. 

%occ =
𝑛𝑜𝑐𝑐

𝑛𝑡𝑜𝑡𝑎𝑙
× 100% (3)

where 𝑛𝑜𝑐𝑐  and 𝑛𝑡𝑜𝑡𝑎𝑙 denote the number of occluded point cloud and

the total number of point cloud at each LiDAR scan, respectively. 

Algorithm 1 

1 Input: {raw LiDAR scan, Bounding Boxes (BB) Parameters} 

2 Output: {modified LiDAR scan} 

3 For {each point cloud ray 𝑖 in the original LiDAR scan} 

4 if {point cloud ray 𝑖 intersects any of the BBs’ surfaces} 

5 Find the ray-box closest intersection. 

6 Modify the point cloud to the closest intersection. 

7 end if 

8 end 



Fig. 3 – Demonstration of the point cloud map conducted in an urban 

area in Hong Kong and the bounding boxes placement for HO case. 

B. Experimental Result

High Occluded (HO) Case 

In this experiment, three dynamic simulated bounding boxes are 

placed around the ego-vehicle at pre-defined offset distances. The size 

of each box is defined as 12.8m (L) x 2.5m (W) x 4.4m (H), which 

intends to simulate the standard double decker bus in Hong Kong. 

These three boxes move along with the ego-vehicle in the entire 

trajectory. Fig. 3 shows the bounding boxes distribution around the 

ego-vehicle. The total travelled distance of the whole experiment is 

more than 600m. The %occ is 65.19%. A video demonstration of the 

HO case is available in the hyperlink in the footnote.i 

In Fig. 4, the red curve shows the trajectory of the HO case in the 

top view, which generally matches well with the baseline case. As 

stipulated in Table 1, the mean ∈3𝐷 (∈3𝐷) is only 5.42cm, and the

associated standard deviation (std) is 4.09cm. Interestingly, the 

maximum ∈3𝐷  (∈3𝐷,𝑚𝑎𝑥) is 42.41cm which is almost eight times

higher than the mean error. It takes place at one of the corners in the 

trajectory as shown in the zoom in view of Fig. 4. To further evaluate 

the ∈3𝐷 , the top panel of Fig. 5 plots the ∈3𝐷  at each epoch. Four

distinct error peaks could be identified, and they coincidently appears 

at the four corners of the trajectory. This possibly indicates that there 

is a relationship between the positioning error and the change of 

heading angle. The bottom panel of Fig. 5 plots the change of 

magnitude of the estimated yaw (heading) angle (|∆𝜃|). It could be 

seen that the four peaks of the |∆𝜃| in the bottom panel well align with 

the four peaks of the ∈3𝐷 in the top panel. By computing the Pearson

product-moment correlation coefficient (𝑟∈3𝐷,|Δ𝜃|) between the time

series signal of the ∈3𝐷  and the |∆𝜃| using Eqn. (4), a correlation

coefficient (𝑟∈3𝐷,|Δ𝜃|)  of 0.6636 is obtained which indicates a

moderate positive linear relationship between two signals. 

𝑟𝑥,𝑦 =
∑ (𝑥𝑖−�̅�)(𝑦𝑖−�̅�)𝑛

1

√∑ (𝑥𝑖−�̅�)2𝑛
1 √∑ (𝑦𝑖−�̅�)2𝑛

1

(4) 

where n denotes sample size. x and y denote two individual signals. 

xi and yi denote individual samples and x̅ and y̅ denote the mean.

The middle panel of Fig. 5 plots the %occ  at each epoch. No 

significant relationship between the ∈3𝐷 and %occ could be observed

in Fig. 5. 

By correlating the %occ  with the ∈3𝐷 , a correlation coefficient

(𝑟∈3𝐷,%𝑜𝑐𝑐) of only 0.201 is obtained which confirms a weak linear

relationship between the two signals. Interestingly, ∈3𝐷 is higher than

the mean value at some places where %occ is lower than the average 

value, which contradicts the intuitive thinking. It is suspected that it 

is due to important map features were being occluded which 

significant degrades the localization accuracy. Such map features will 

be saved for valid map feature investigation in the future work. 

Fig. 4 - Estimated 2D Trajectory by NDT Map-based Scan Matching 

Method. Low Occluded Case (Blue Solid Line); High Occluded Case 

(Red Solid Line); Baseline Case (Green Dotted Line). 

Figure 5 - ∈3𝐷 at each epoch (top); %𝑜𝑐𝑐 at each epoch (middle); |∆𝜃| 

(bottom); Vertical line indicates the peaks alignment of ∈3𝐷 with |∆𝜃|. 

Low Occluded (LO) Case 
Similar to the HO case, one dynamic box, with a size of 12.8m (L) 

x 2.5m (W) x 4.4m (H), is placed on the right side of ego-vehicle at a 

pre-defined offset distance for the LO case. The %occ is 29.85%. A 

video demonstration of the LO case is available in the hyperlink in 

the footnote.i The ∈3𝐷  is only 1.55cm, and the associated std is

1.84cm. Table 1 tabulates the individual localization errors and the 

%occ for this case. 

Similarly, four distinct peaks of the ∈3𝐷 could be identified at the

four corners, and they again well aligns with the peaks of the |∆𝜃| as 

Table 1. Performance of NDT map-based scan matching at a high 

occluded (HO) case and low occluded (LO) case 

Longitudinal 

(cm) 

Lateral 

(cm) 

Altitude 

(cm) 

2D  

(cm) 

3D 

(cm) 

Point. 

Cloud 

Occlusion 

(%) 

HO 

Mean 3.08 2.20 2.65 4.26 5.42 64.65 

Std 3.04 3.18 2.32 3.94 4.09 5.57 

Max 31.10 32.45 4.75 42.32 42.41 70.80 

LO 

Mean 0.89 0.77 0.63 1.31 1.55 29.44 

Std 1.22 1.35 0.84 1.72 1.84 3.05 

Max 10.69 14.23 11.87 15.44 15.67 33.44 



shown in Fig. 5, but the maximum ∈3𝐷  reduces to 15.67cm from

42.42cm when compared to the HO case. A correlation coefficient 

(𝑟∈3𝐷,|Δ𝜃|)  of 0.7176 is obtained which shows a moderate positive

linear relationship between the ∈3𝐷 and the |∆𝜃|, whereas 𝑟𝜖3𝐷,%𝑜𝑐𝑐

of only -0.0835 is obtained. The nearly zero correlation coefficient 

indicates no linear relationship between two signals. This agrees with 

the observation in the HO case. To summarize, Table 2 tabulates the 

correlation coefficients that relate the |∆𝜃| and the %occ to the ∈3𝐷.

To investigate the trivial results at sharp turns in Fig. 5, ∈3𝐷̅̅ ̅̅ ̅ and

∈3𝐷,𝑚𝑎𝑥  are further evaluated at the sharp turn occurring around

epoch 569 with 31 different randomly generated occluded scenarios. 

NDT map matching is applied on the dataset from epoch 300 to epoch 

750 for 31 different cases. The associated locations at epoch 300, 569, 

and 750 are marked in Fig. 4. In Fig. 6, ∈3𝐷̅̅ ̅̅ ̅ increases with %occ̅̅ ̅̅ ̅̅ ̅. For

∈3𝐷,𝑚𝑎𝑥, it shows that the error is generally small (i.e. < 10cm) for

the %occ less than 25%. In this region, no vivid error peaks could be 

identified during sharp turn. For %occ̅̅ ̅̅ ̅̅ ̅ between 25% and 80%, the

errors rise as %occ̅̅ ̅̅ ̅̅ ̅  increases, and distinct error peaks could be

observed at turns similar to the LO and HO cases. NDT matching was 

also applied on two cases with the %occ exceeds 80%, no solutions 

were obtained due to divergence. 

In Fig. 6, it is interesting to note that a 20cm difference of the 

∈3𝐷,𝑚𝑎𝑥  occurs at %occ  around 75% even though the %occ  is

approximately the same. It is suspected that is caused by the occlusion 

of important map features, for which we will leave it for further 

investigation in future works. 

Fig. 6 – ∈3𝐷,𝑚𝑎𝑥 and ∈3𝐷 for 31 randomly generated occluded scenarios. 

IV. DISCUSSION AND CONCLUSION

With the performance evaluation on the conventional NDT map 

matching method under occlusion, it is found as follows: 

• Higher rate of occlusion would result a higher map-based NDT

scan matching error generally. Increase of the mean 3D

positioning error occurs as %occ rises of as shown in Fig. 6.

• The NDT localization error amplifies at sharp turns locally in our

synthetic datasets. With the mean %occ higher than 25%, distinct

positioning error peaks can be identified repeatedly when the

LiDAR sensor undergoes substantial change of heading angle. A

moderate positive linear relationship between the |∆𝜃| and the 

∈3𝐷 is identified in both the HO and LO synthetic datasets.

 It is commonly known that the performance of the NDT map 

matching degrades under occlusion. In this letter, it is particularly 

interesting that significant localization error amplifies locally when 

the LiDAR sensor is under substantial change of yaw angle. In the 

previous study by Akai et al. [9], the NDT convergence performance 

could easily fall into local minimum for inaccurate yaw angle 

initialization. With the additional uncertainty possibly introduces to 

the yaw angle estimated solution by the occlusion, it is suspected that 

the distinct error peaks are caused by the combined effects of the 

substantial change of yaw angle and the point cloud occlusion. 

 In summary, point cloud occlusion has a negative impact to the 

map-based NDT localization method. The evaluated results of this 

study can be a good starting point for further mitigating the effects of 

occlusion. For the future works, we will make use of the existing 

trivial results and further investigate the occlusion results in terms of 

valid map features [12] and scan shapes [13]. By relating the 

occlusion with the map features, we hope to better estimate the 

uncertainty for LiDAR-based localization method for a better sensor 

fusion estimated solution in the future. 
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Table 2. Correlation coefficients relate the magnitude of the yaw 

angle change and occlusion rate with 3D positioning error  

High Occluded Case Low Occluded Case 

𝑟𝜖3𝐷,|Δ𝜃| 0.6636 0.7176 

𝑟𝜖3𝐷,%𝑜𝑐𝑐 0.1902 -0.0835
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