1	A human-centred approach based on functional near-infrared spectroscopy for adaptive
2	decision-making in the air traffic control environment: A case study
3	Qinbiao Li ^{1, 2} , Kam K.H. Ng ² , Zhijun Fan ¹ , Xin Yuan ¹ , Heshan Liu ^{1, *} , Lingguo Bu ^{3, **}
4	¹ School of Mechanical Engineering, Shandong University, Jinan, China, 250061
5	² Interdisciplinary Division of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic
6	University, Hong Kong SAR, China
7	³ School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore,
8	639798
9	
10	*Corresponding author to Shandong University
11	Heshan Liu
12	School of Mechanical Engineering, Shandong University, Jinan, 250061
13	Email: <u>liuheshan@sdu.edu.cn</u>
14	
15	**Corresponding author to NTU
16	Lingguo Bu
17	School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore,
18	639798
19	Email: <u>felix.bu@ntu.edu.sg</u>
20	
21	Acknowledgement
22	The authors would like to express their gratitude and appreciation for the anonymous reviewers, the

23 editor-in-chief and the guest editors for providing valuable comments for the continuing improvement

of this article. The research is supported by *School of Mechanical Engineering, Shandong University,*

- 25 Jinan, China, Research Committee and Interdisciplinary Division of Aeronautical and Aviation
- 26 Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China (RH1W) and School
- 27 of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore. The
- 28 research is also supported by grant from the MOE (Ministry of Education in China) Project of
- 29 Humanities and Social Sciences (grant number 17YJC760009), Shandong Social Science Planning

30	Fund Program (grant number 18CCXJ23), and the Interdisciplinary Division of Aeronautical and
31	Aviation Engineering, The Hong Kong Polytechnic University, HKSAR (Grant number: ZVS9).
32	
33	Declarations of interest: The authors declare that they have no known competing financial interests
34	or personal relationships that could have appeared to influence the work reported in this paper.
35	
36	Abbreviation

ATC, Air traffic control; ATM, Air traffic management; ATCOs, Air traffic controller; HFs, Human
factors; DM, Decision-making; IA, Intelligent automation; EEG, Electroencephalography; fNIRS,
Functional near-infrared spectroscopy; fMRI, Functional magnetic resonance imaging; GSR,
Galvanic skin response; VAS, Visual analogue scoring; RPFC, right prefrontal cortex; LRFC, left
prefrontal cortex; RMC, light motor cortex; LMC, left motor cortex; ROL, right occipital lobe; LOL,

42 left occipital lobe.

43 A human-centred approach based on functional near-infrared spectroscopy for adaptive
44 decision-making in the air traffic control environment: A case study

- 45 Abstract
- 46

Safety-critical systems like air traffic control (ATC) are usually less automated than might be expected 47 by the public, so human intelligence will remain at the core in the decision-making (DM) process. 48 Meanwhile, human factors (HFs) need to be fully considered in the DM process, which can design 49 the ATC system to be more intelligent and more adaptive to the behaviour of the user. However, the 50 existing DM research lacks the systematic methods that fully consider human performance in a smart 51 manner. This study proposed a human-centred adaptive DM methodology that combines subjective 52 and objective measurements made by functional near-infrared spectroscopy (fNIRS) via intelligent 53 automation (IA). Moreover, this paper also described a case study of radar display map operation, 54 including descriptive and optimised maps, to illustrate the proposed approach and verify its feasibility 55 56 and effectiveness. The results were determined by jointly considering the user-generated and systemgenerated data and suggested that the proposed approach could capture subjective and objective data, 57 take into consideration the HFs information to provide real-time online feedback and adjust the 58 59 decision support system to HFs. It is hoped that this study can promote the methodology of humancentred subjective and objective data-driven applications in the future ATC environment adaptive 60 61 decision research.

62

Keywords: Air traffic control; Adaptive decision-making; Functional Near-Infrared spectroscopy;
 Human factors; Intelligent automation

65

66 **1. Introduction**

With the gradual development of technology and artificial intelligence, many robust and adaptive 67 decision-making (DM) methods are being explored for developing real-life applications of 68 69 engineering, such as transport systems, smart city, and inventory management, thereby increasing the 70 convenience and reducing the risk inherent in engineering applications [1-3]. According to the latest 71 annual global statistics reported by the International Civil Aviation Organization, the number of airline passengers is expected to reach 10 billion by 2040 [4]. Air traffic control (ATC) is responsible 72 73 for resolving operational conflicts on the approach route and ensure passenger safety, as well as air 74 traffic management (ATM) in the terminal manoeuvring area [5, 6]. The role of air traffic controllers 75 (ATCOs) which involves continuous acquisition of the latest flight status and coordinates from several 76 sources to make ATM decisions is becoming more significant [7, 8]. Normally, the work pressure of 77 ATCOs increases with the volume of air traffic in the terminal manoeuvring area, leading to potential 78 dangers. Hence, it is necessary to develop an advanced DM approach that can adapt to the mental 79 condition of the ATCOs and control ATC system automatic parameters to ensure the efficiency and 80 safety of air traffic operations [9, 10].

81

82 Making ATC decisions is deemed as a typical multi-criteria DM problem [5, 6, 11, 12]. Following the 83 common approach in operations research and optimisation methods, the aircraft conflicts under the 84 condition of uncertainty can be resolved by adjusting the speed, angle, and accelerations of the aircraft 85 [13-16]. Yet the ATC operating system should not perform automatic adjustment based only on numerical data. Feyer et al. [17] showed that 90% of accidents at workplaces are caused principally 86 87 by human error. Human factors (HFs) play a crucial role in improving system performance, reducing 88 operating errors and enhancing occupation safety in the workplace. The greater the cognitive 89 workload on the operators, the more likely it is that fatigue will occur and increase the possibility of 90 erroneous work decisions being made. In the ATC field, zero tolerance for errors is mandatory because 91 ATCOs' work has a direct implication regarding passenger safety. Therefore, HFs such as ATCOs' 92 mental status should be taken into consideration. However, in spite of most DM methods involving 93 human performance research currently, they only rely on the analysis of accumulated human 94 experience and behaviour [18-20]. Such methods are likely to be seriously affected by the mentality 95 of the decision maker and will not perform real-time feedback in response to environmental changes.

96 Therefore, the present circumstances lead to the unilateral (system-oriented or human-oriented) 97 design outputs of the ATC operating system, which often result in a disconnection in DM between 98 humans and the system. To maintain an appropriate operation level for the human-machine system 99 and avoid placing the working state of ATCOs in underload or overload, HFs must be more considered 100 in the DM process reasonably by introducing intelligent automation (IA) into the ATC workplace in 101 the future.

102

103 The recent developments in neuroscience have made it possible to apply neuroimaging technology to 104 detect the emotional and cognitive states of subjects and merge their data with other decision support 105 systems. Neurophysiological measures, including Electroencephalography (EEG), functional Near-106 Infrared Spectroscopy (fNIRS), functional Magnetic Resonance Imaging (fMRI), and other bio-107 signals, such as Electrocardiography and Galvanic Skin Response (GSR) are used for human performance assessment [21]. Electrocardiography and GSR activities merely highlight certain 108 109 mental states (stress, mental fatigue, drowsiness), while fMRI requires extremely exacting operating 110 conditions [21]. EEG data are affected by various physiological noise signals. Besides, attachment to 111 the body requires scalp abrasion and the application of a conductive gel. These necessities place 112 restrictions on the subjects, which are not conducive to their executing tasks. Therefore, fNIRS, which 113 does not have these disadvantages, is preferable for assessing human physiological performance in 114 operational environments.

115

116 Safety-critical systems like ATC are usually less automated than might be expected by the public [22]. 117 Human intelligence will remain at the core of the DM process. Although the current studies on 118 advanced DM technologies and DM methods report a great improvement in the ATC field [23], there 119 are still several challenges in their application and the related human activities: 1) Mainstream DM 120 methods mainly take an aircraft's numerical data into consideration. However, the internal state of 121 ATCOs cannot be detected and HFs do not receive consideration when manipulating and making 122 decisions on operations, which has led to a failure to realise human-centred automatic regulation of 123 ATC. 2) Most human performance and HFs assessment and detection methods are not efficient 124 enough to provide both subjective and objective data in real time to support the DM process and elements in design, development, and optimisation of ATC system behaviour. 125

126

127 To address the above challenges, this research proposed an integrated DM method that combines subjective, behavioural, and neurophysiological measurement into ATC. The results from this study 128 129 will contribute to a better understanding of human performance (ATCOs' workload, interaction, and 130 mental status) in real time and thereby provide appropriate countermeasures (e.g. external automation 131 will take over some of ATCOs' tasks when ATCOs are in a poor state) for the specific user-centred 132 automatic regulation of ATC. Meanwhile, this process will add significant value in the provision of a 133 useful approach and framework concerning data acquisition and analysis to assess machine and user 134 state in real time of the entire ATC system. Moreover, by collecting and processing the subjective and 135 objective data (e.g. user-created and system-generated data), the effectiveness and application of HFs 136 can be evaluated based on data being driven to guide the development and optimisation of ATC 137 system design. Operational insights from the findings would be useful in the development of ATCOs' 138 training, cognitive identification, system decision behaviour, and human-machine interaction design.

139

The rest of the paper is organised as follows: Section 2 introduces some preliminaries of the proposed method. Section 3 illustrates the overall framework of DM in the ATC. Section 4 presents a case study using the radar map display interface to make the proposed decision research framework more specific and verify the effectiveness of the proposed method. Section 5 discusses and analyses the research results. Sections 6 sets out the managerial implications of this research. Section 7 states the contributions to the current literature in this field and the future direction of research that it suggests.

146

147 **2. Related studies**

Three streams of literature are relevant to this research, namely DM, HFs and cognitive fatigue measurements in ATC. The related literature is reviewed in this section to find the gaps in the research and build research strategies specific to the ATC system upon review of the theoretical foundations of the above aspects.

152

153 2.1. DM studies

154 The ATC system plays an important role in ensuring the flight efficiency and safety of aircraft by 155 maintaining a safe longitudinal or vertical distance between aircraft and by changing the speed and deviating aircraft from hazardous areas to eliminate (or reduce) conflicts between aircraft on flight routes and other emergencies. The ATCOs need to monitor radar displays at all times to ensure the safety of various flights and their path movements along paths at different speeds and altitudes. In the last 20 years, the cause of approximately 70% of aircraft accidents was found to be ATCOs operating errors [24]. Creating advanced systems to support the DM process in ATC in order to reduce the error in DM by ATCOs, increasing the convenience of human-machine systems, and ensuring the stability and safety of ATC have always been important research directions [25].

163

164 The research on DM in the ATC system mainly includes expert systems, dynamic programming, path 165 planning techniques, resilience engineering and metaheuristics [26, 27]. Cafieri et al. [13] proposed 166 aircraft mixed-integer nonlinear programming modelling, based on speed regulation by acceleration 167 or deceleration, to avoid aircraft conflicts while keeping their trajectories unchanged. Evans et al. [14] 168 systematically collected the opinions of airlines through methods such as averaging, voting, and 169 ranking, and then applied the game-theoretic approach and Monte Carlo methods to test the potential of airline strategic behaviour. The meta-heuristic framework based on variable neighbourhood search 170 171 was proposed by Alonso-Ayuso et al. [28], which can be used to deal with conflict detection and 172 resolution of such problems relating to aircraft by adjusting the angle of the aircraft. Moreover, the 173 application of artificial intelligence to support the DM process in the ATC field has also attracted 174 researchers' attention. Multi-agent-based modelling is frequently adopted in collaborative and 175 complex DM processes by representing the entities of control centres, airports, lanes, etc. Agogino et 176 al. [29] presented a multi-agent algorithm, where agents use reinforcement learning to reduce 177 congestion through local actions. Each agent as a waypoint is responsible for three functions, ensuring separation between aircraft, ordering delays on the ground and changing the routes of aircraft. Lovato 178 179 et al. [27] proposed a control strategy based on decisions on the longitudinal speed of flights without 180 changing the route. Two series of fuzzy models based on Mamdani structure were adopted to quantify 181 the level of longitudinal conflict between aircraft and to order aircraft to accelerate by a certain extent, 182 thereby reducing or eliminating the possibility of conflict. However, Parasuraman et al. [22] have 183 shown that a safety-critical system is usually a human-machine collaborative system. Most of the 184 safety-related decisions are made by humans, and computer systems are used as auxiliary tools to assist controllers in their monitoring and communication tasks. Although the above systems make a 185

- 186 certain contribution to the development of DM, these systems do not gather reliable information to
- 187 understand the internal state of ATCOs to support IA progress in the ATC field.
- 188

189 To meet the ATC system's IA during the DM process, it is necessary to estimate and predict the status 190 indicators of ATCOs through some scientific methods. Task execution, [18] such as the explicit 191 measurement of errors committed while executing a task, the number of control actions, the efficiency 192 of communications and time, decision and action frequency, as well as empirical research, including 193 instantaneous self-assessment [30], NASA task load index [31], and the subjective workload 194 assessment techniques [32] can measure the quality of cognitive decisions to some degree. Xiaotian 195 et al. [33] confirmed the mental landscape of ATCOs through the locus of attention scale, and the 196 results suggested that subjects with a high overall degree of thinking are more sensitive to potential 197 conflict events, which provided a reference for ATCOs' selection and training. Wee et al. [34] 198 attempted to synchronise the dynamic changes in humans and the system to monitor the operational 199 behaviour and mental status of the whole system using a real-time eye tracking system. Dumais et al. [35] used a real-time eye tracking system to identify different user types by capturing information 200 201 such as the gaze time of the eyes and the corresponding heat map to better design a search interface 202 and adjust the system behaviour. Borst et al. [36] studied the control performance and operant 203 behaviour of ATCOs during a transfer manipulation in different target scenarios through two-day 204 behaviour analysis and discussed the short-term effects of ecological interface design.

205

206 Although the subjective and behavioural methods contribute to refining the level assessment of the 207 user's status, the contribution is limited to the user's awareness, subjective perception, and the length 208 of interval between the occurrence of an event and its assessment by the subject. With the rapid 209 development of physiological measurement technology, it has been widely demonstrated that 210 neurophysiological measurements of discriminating cognitive demand fluctuations transcend both 211 behavioural and subjective measures [37]. The online neurophysiological measurements are not only 212 used as support tools in operative activities but also as monitoring techniques [38], enabling the 213 measurement of any changes in cognitive activity immediately, which can help the system manipulate 214 the task demands and make adjustments to achieve the optimal level of work. Di Flumeri et al. [4] presented a vigilance and attention controller, which integrated the EEG and eye-tracking techniques. 215

216 The purpose was to evaluate the level of vigilance of ATCOs and to adjust the level of automation of 217 the interface itself while working with highly automated human-machine interfaces. In the product 218 scheme evaluation field, Lou et al. [39] utilized cloud models and EEG to form an integrated DM 219 method, obtain the internal experience of design experts and target users, and provide professional 220 test data to improve product design and development. The adoption of physiological and neurological 221 tools to help understand the state of human perception while using engineering systems is more 222 common in HFs research [40]. To improve upon the maximum efficiency of the existing ATC system, 223 it is urgent to adopt convenient, scientific and effective methods to provide reliable feedback on the 224 internal state of ATCOs and to reveal the current adaptive DM and IA level of the human-machine 225 system.

226

227 2.2. Human factors studies

The purpose of studying HFs is to simultaneously consider human capabilities, defects and needs, so that products can be adapted to suit human characteristics. That is, HFs play an important role in the ATC system, which determines whether ATCOs can work comfortably and then adjust the operating level of the system to ensure ATCOs' efficiency. HFs have always been a major area of research in aviation [41]. The United States and Europe are paying more attention to HFs in the ATC system by gaining a better understanding and integration of HFs performance in the pursuit of superior business performance and security.

235

236 Human-machine interfaces, radar maps, voice interaction and radio communication help ATCOs to 237 have a landscape of the latest traffic situation for ATM. Many high-frequency problems encountered in ATC operation are caused by unreasonable design [42]. Therefore, the research on interface and 238 system designs of the ATC system has increased gradually. In order to solve the problem of coarse-239 240 grained rotation interaction of ATC automation operation, Luciani et al. [43] developed a set of low-241 fidelity prototypes by using auxiliary sketch models to perform fine-grained interaction on the radar 242 display human-machine interface and re-designed the display and interaction formats of the interface 243 elements in the system. Van Paassen et al. [44] presented a shared representation of 4D trajectory 244 management design based on the cognitive systems engineering framework, and also adopted a 245 formative approach in the field of analysis of 4D trajectory planning. Ten Brink et al. [45] introduced a conceptual interface for air traffic flow-based perturbation management in ATC. Their proposed
system can enable ATCOs to manipulate multiple flows of traffic by facilitating interaction with a
path-planning algorithm to change the route of several aircraft along an airway.

249

250 What calls for special attention is that individual factors, including the changes in workload, fatigue, 251 stress and situational awareness, are important predictors for ATCOs when making decisions. All of 252 these factors caused by the machine and environmental factors generally affect people's intervention 253 and understanding of the system. By understanding the impact of these factors on the performance of 254 ATCOs, specific solutions can be proposed. Trapsilawati et al. [46] measured HFs in conflict 255 resolution, enduring mental workload, trust, dependence, and situation awareness under four conditions. Lyu et al. [47] introduced an HFACS-BN model (HFACS: Human factors analysis and 256 257 classification system; BN: Bayesian network) to combine the subjective information of experts and objective data of accident reports, to evaluate training, physical fatigue, and mental state. The top five 258 259 most influencing factors of HFs affecting the ATC system can also be obtained with the measurement proposed by Lyu et al. [47], that is, training, physical fatigue, mental state, ineffective monitoring, 260 261 and ATC software/hardware.

262

In spite of some progress having been made on HFs research in the ATC field, most are considered 263 264 and adjusted unilaterally (by the system or human intervention) or without a reasonable method to 265 assess the HFs application, especially in effect on individual factors. Progress has not gone far enough 266 towards realising human-machine fusion, nor have researchers evaluated the verification scheme further to optimise its design. In the current state, there is a major gap in the system, because it is 267 unable to obtain physiological unconscious objective data through effective means to support the 268 adjustment of the system to the user's state and optimise system behaviour, thereby strengthening the 269 270 human-machine connection.

271

Effective integration of HFs could cover the design of all the system elements, such as tools, humanmachine interface, procedures, roles and communication flows [48]. The research design of the system elements extends from detailed basic design elements (lights and ergonomic design and colours) to high-level aspects that affect the DM process (assessing the cumulative workload or

fatigue induced in the operator by a new sector configuration). Compared to other safety-critical and 276 high-hazard domains, ATC is characterised by the key role played by HFs. Different HFs incorporated 277 278 into the system will affect the cognitive load of ATCOs determining whether the decision is correct. 279 The results of the evaluation of HFs performance affect the implementation and presentation of the 280 design of elements ranging from system interface to workflow procedures and may necessitate re-281 design of the system. Evaluation of HFs' performance is an effective way to significantly improve 282 the stability of the system and reduce errors. Furthermore, it is also a common method of decision 283 processing, and to some extent, it is the basis of realising the maximum potential of an IA system.

284

285 2.3. Cognitive fatigue measurement studies

286 The safety of the system depends on the attention and cognitive level of the operators in the operating 287 environment, such as aviation, railway, maritime and road transport. The industries are now seeking 288 more automated systems and assistive technologies in their daily operation. This should be the long-289 term focus in traffic monitoring because reliance on human monitoring of the system may lead to 290 degradation of vigilance and a potential increase in the number of errors, which may lead to failure 291 of the system [7, 49]. Human error will lead to serious and dramatic consequences [38]. Cognitive fatigue is closely related to the improvement or deterioration of the users' performance [50]. The 292 293 quality of the HFs assessed by the ATC system will directly determine the level of cognition in the 294 ATCOs' operation as affected by boredom, drowsiness or closer vigilance. Therefore, in ergonomics 295 and HFs research, it is crucial to have a reliable estimation of the actual cognitive workload 296 experienced by the operators and design a user interface that can preserve a proper level of the user's 297 mental workload, avoiding either an under or overloaded state [51]. This is also an important 298 component of the system's adaptive DM, which lays the foundation for the adjustment and 299 improvement of human-machine design.

300

Cognitive workload refers to the dynamic relationship among the cognitive resources that are needed to carry out a task [52]. The interactive behaviour of the ATC system based on human cognitive laws is of great significance, so it is possible to reduce the rate of manual error by adjusting the cognitive load of ATCOs. Neurophysiological techniques can assess the cognitive status of humans with a high degree of reliability, even in operational environments [53, 54] and also transcend both behavioural 306 and subjective measures in discriminating cognitive demand fluctuations [38]. Dehais et al. [55] 307 developed an fNIRS-EEG-based passive brain-computer interface system to monitor changes in 308 pilots' cognitive fatigue in flight missions (flight simulation and real flight) and the results showed 309 that more information was missed in the second phase than in the first phase; meanwhile, it also demonstrated that fNIRS and EEG-based systems can monitor psychological states in a working 310 311 environment and noisy environment. Di Flumeri et al. [56] simulated a real driving experiment, 312 inferring the driver's psychological and cognitive load based on the driver's brain activity through 313 EEG. Zhao et al. [57] used EEG to measure the mental load and cognitive fatigue level of drivers in 314 90 minutes of continuous driving in order to find more reliable physiological measurements for 315 driving mental fatigue. In order to measure the real state of cognitive change, Dehais et al. [58] under the condition of a real flight, used a 32-channel dry EEG system to measure the pilot's psychological 316 317 fatigue and overload, and the results showed that the occurrence of mental fatigue is associated with 318 higher theta and alpha band power, which provides the feasibility of evidence for detecting neural 319 cognitive fatigue and load research. Li et al. [59] used the fNIRS to detect and compare cerebral 320 cortical activity in two stroke rehabilitation models, in order to reveal the multisensory mechanism. 321 Bu et al. [60] revealed the physiological mechanism of patients with mild cognitive impairment through effective connectivity by fNIRS. Liu et al. [61] used the fNIRS system to record the changes 322 323 in a driver's actual driving activity and analysed the effective relationship between the brain network 324 and cognitive load while driving.

325

326 As mentioned in the introduction, fNIRS is more suitable than EEG for this study. It is safe, portable, user-friendly and relatively inexpensive, with rapid application times and near-zero run-time costs. 327 So it could be a potential portable system for measuring cognitive workload in realistic settings. 328 329 Despite the advances in automation technology, neurophysiological measurement will play a central 330 role in the study and application of ATCOs' job knowledge in the work environment [48]. Adaptive 331 systems driven by ATCOs' psychological cognition state have become an important research direction 332 [62]. It is essential to integrate human performance into the ATC system to increase its resilience and 333 tolerance to errors [48]. Therefore, combining the objective (fNIRS technology) and subjective 334 (experience and behaviour) measurement would appear more suitable in realistic environments for recognising the nature of spontaneous brain activity and other inner activity to improve and modulate 335

the interaction between the operator and the system itself.

337

338 2.4. Research gaps

As introduced in Section 2.1, 2.2, and 2.3, the internal state of ATCOs and the human-machine fusion, 339 especially subjective and objective research methods that provide reliable feedback, have not been 340 fully considered in the advanced DM process of the ATC system. This may be due to most operating 341 processes performing automatic adjustment only using numerical data and ignoring the role of 342 343 operators, which might be difficult to evaluate through the existing quantitative methods, resulting in 344 inaccurate data and failing to realise the human-system connection closely and reasonably. 345 Meanwhile, there is little information to study a user-centred and data-driven framework for advanced DM of the ATC system. To address the above issues, the human-centred adaptive DM method that 346 347 combines subjective and objective measurements made by fNIRS via intelligent automation is desirable. 348

349

350

3. The overall framework of data-driven DM on ATC

351 ATCOs should be at the centre of the entire process of IA and adaptive DM process in the ATC system. 352 The proposed method considers the application and impact of HFs on the system and the subjective behaviour and neurophysiological changes that the ATCOs show. Figure 1 illustrates the overall 353 framework of the research method, which is divided into three parts: platform layer, data layer and 354 355 application layer. The platform layer is in charge of providing research materials and elements (e.g. user and machine) to meet the conditions of data input. The data layer, based on subjective and 356 357 objective data (e.g. brain science data) [63], mainly processes data acquisition, storage, analysis, and 358 transmission. The application layer can provide the guidance for system adjustment and design 359 elements (e.g. automatic level or performance design) in light of the above data results representing 360 both physical and psychological implication and signal, and then serve to system parameters.

362

Figure 1. Overall framework of the data-driven DM process

363 3.1. Platform layer of the framework

364 The platform layer mainly includes the existing ATC system elements (i.e. hardware and software, as well as human and machine), such as human-machine interface, voice interaction, radar map, radio 365 366 communication and so on, which provides the experimental conditions and materials for the datadriven research. Meanwhile, this layer also involves design and optimisation progress based on 367 368 reliable data and parameters to prompt the ATC system to become smarter and friendlier for ATCOs, 369 guaranteeing the high-efficiency operation with advanced DM. For example, Luciani et al. [43] re-370 designed the display and interaction formats of the interface elements in the system by using auxiliary 371 sketch models based on users' preference and experience.

372

373 3.2. Data layer of the framework

374 3.2.1. Data input

The data layer includes data input and data analysis. Data input is mainly involved in the data collection function of the whole DM process. All the decisions that are supported by subjective or objective data which have certain defects. To ensure the orderly operation of the ATC system, the first 378 step in its design framework is the collection of subjective, behavioural and physiological data to help 379 reduce one-sidedness in the process and ensure that the system's adaptive DM moves in the correct 380 direction. Both ATCOs and machine are regarded as the research objects. Subjective data in the form 381 of quantitative and qualitative subjective information was collected from the ATCOs through the use 382 of questionnaires, interviews and discussions and included visual analogue scoring (VAS), fatigue 383 severity scale, NASA-Task Load Index questionnaire and a focus group. Physiological data collection 384 was based on the real-time monitoring of ATCOs' neuronal activity in the fNIRS system during 385 operational interaction and real-time recording of the user's unconscious feedback data, such as 386 oxygenated haemoglobin concentration, cerebral cortex activation level and functional connectivity 387 between brain regions, etc., to collect the objective information of ATCOs in the current state. The 388 acquired behavioural data, such as operation reaction time, correct rate, situational awareness, and 389 user operation flow through computer, sensor, mouse, and keyboard input, shows the behavioural 390 status in the course of performing tasks, and is non-participatory observation. The specific 391 implementation methods that the ATCOs use to increase the efficiency of their performance for doing specific experimental tasks may be noted for inclusion in the operating procedures. 392

393 3.2.2. Data analysis

394 The main work of the data analysis included data storage and transformation, data processing and 395 data analysis and transmission. Firstly, subjective and objective data, such as changes in oxygenated 396 haemoglobin concentration, rating scales, accuracy, and reaction time were recorded and stored in an 397 unstructured fashion and subsequently arranged in an appropriately structured relational database 398 system [64]. Not only structured query language was used to manage unstructured data that may 399 appear in this article (mainly subjective and behavioural). Before storing semi-structured data, a 400 simple conversion step was required to facilitate subsequent analysis. For example, the qualitative 401 information or semantic words on the subjective scale and behaviour data were converted into a score 402 scale through a Likert scale or the attention point scale. After data storage and transformation, data 403 cropping, data denoising, data filtering and data conversion were required to improve the data's 404 quality by noise filtering to ensure the effectiveness and reliability of data analysis. Next, the 405 processed data were analysed to show the implied information with simple and clear results to clarify 406 the relationship between the data results and the system application. For example, a generalised linear

- 407 model was used to analyse the time series data of neuroimaging fMRI and fNIRS technology to obtain
- 408 the degree of influence of the corresponding stimulation on the activation of the cerebral cortex [59].
- 409 The results of subjective, behavioural and physiological data were then normalised.
- 410
- 411 3.3. Application layer of the framework

412 The analysed data could then be used in the implementation of some data-driven application services 413 based on results signals via data characteristics recognition, such as the adjustment of human-machine 414 interface, the optimisation of radar maps, and the fine-tuning of voice-interactive and system automation level changes to meet the needs in its current state. Meanwhile, understanding the role of 415 416 the HFs in the ATC system is necessary for achieving the ideal state of human-machine integration 417 and decision processing in the ATC system. The evaluation system based on the subjective and 418 objective score of the system design scheme can be used to further support and improve the ATC 419 system design, as shown in Figure 2.

420 421

- Figure 2. Data-driven system application services
- 422

423 **4. Case description**

- 424 4.1. Platform development
- 425 This section provides an illustrative example of a radar display map in the ATC system's task

execution. A radar map is an event in the ATC system and has long-term high-frequency contact with 426 ACTOs, and is directly related to the intrinsic state of ATCOs, and a reasonable HFs test is a 427 prerequisite for radar map optimisation. Therefore, the above DM framework was applied to the radar 428 429 display interface as an example to study. Figure 3 presents a prototype hardware and software system and experimental radar materials. The experimental design considers 12 aircraft on the radar map. 430 431 One was described as a conflict alert event and displayed flight tag information, which included flight 432 number, speed, and altitude. Attempts were made to optimise the radar display map by using an 433 explorative design study and assisted sketching with the following design setting:

- The radar map from Los Angeles (LAX) International Airport. Sector 38.
- 435 Dotted lines are sector boundaries.
- Solid lines are airways.
- 437 Circles depict airports and navigational radio beacons.
- 438 X's show intersections along the airways.

- 439
- 440

Figure 3.Prototype of the hardware and software system

- 441 4.2. Data collection and processing
- 442 4.2.1. Data input and collection
- 443 4.2.1.1. Subjects
- 444 A total of 18 healthy subjects (14 males and 4 females, 23-29 years old) with no history of neurological,

445 physical, or psychiatric illness and a certain level of experience of aviation were recruited for this 446 study. The research was conducted at the Industrial Design Research Laboratory of the School of 447 Mechanical Engineering, Shandong University (SDU). All subjects agreed to participate and signed 448 informed consent forms. The experimental methods were approved by the SDU Human Ethics 449 Committee and implemented according to the ethical standards of the 1975 Helsinki Declaration.

450

451 4.2.1.2. Experiment procedure

452 The experiment was divided into three stages: Rest, Task1 (descriptive map), and Task2 (optimised 453 map). Each stage lasted 10 min, with 10 min intervals between stages to ensure the accuracy of the 454 measurement data shown in Figure 4(A). Subjects were required to sit in front of a radar map monitor 455 and be at rest and keep their body as still as possible for 10 min, and the task1-stage and task2-stage 456 were based on the n-back task with n is 2. In the first stimulation, conflict warning aircraft appeared 457 at any position among the 12 aircraft, flying at any altitude. In the subsequent stimulation, conflict 458 warning events occurred at random positions and at random altitudes. Adjusting the flight altitude is 459 the most common way for ATCOs to resolve conflicts and was, therefore, used as a determining factor. 460 The subjects completed cognitive thinking activities by judging whether the n + 2 stimulation and 461 the n stimulation conflict warning events were the same in terms of position and flying altitude. The 462 instruction was that if they were all the same, press the "SPACE" key, and if they are different, do 463 nothing. The task1-stage and task2-stage were implemented in E-prime 2.0 psychology software.

464

465 4.2.1.3. Physiological data acquisition

The prefrontal cortex of the brain performs advanced neural information processing functions, 466 including memory, judgment, analysis, thinking, and manipulation, and plays a key role in cognitive 467 control [60]. The sensorimotor cortex in the parietal lobe region plays an important role in 468 469 somatosensory perception, visual body spatial information integration and movement. The occipital lobe is mainly responsible for visual processing. In order to place the probe correctly, spatial 470 471 positioning information was obtained by using a 3D magnetic locator and spatial positioning 472 acquisition software. The distance between each light source and the detector was 30 mm, which 473 allows optical waves to reach the cortex and keep the signal quality stable and intense. This fNIRS 474 equipment uses a multi-channel commercial near-infrared system (Nirsmart, Danyang Huichuang Medical Equipment Co. Ltd, China) with a sampling frequency of 10 Hz and set wavelengths of 760 and 850 nm. Based on the international 10/20 system, 22 SD probes were placed on the right prefrontal cortex (RPFC), the left prefrontal cortex (LRFC), the right motor cortex (RMC), the left motor cortex (LMC), the right occipital lobe (ROL) and the left occipital lobe (LOL) to constitute a 22-channel fNIRS system as shown in **Figure 4(B)**.

480 481

Figure 4. Experiment procedure and the 22-channel fNIRS system

482 4.2.1.4. Subjective and behaviour record

Subjects were asked to complete a VAS at the end of each stage to discover their subjective psychological feelings. According to the experimental settings, fatigue, comfort, attention, positivity, and stress were selected as the five key indicators. Furthermore, the psychology E-Prime2.0 software was used to record the subjects' behavioural data during operation, including accuracy rate and single reaction time information.

488

489 4.2.2. Data analysis and processing

490 4.2.2.1. Objective data processing

491 The deletion of irrelevant time intervals in the original data was performed firs; thereafter the data

492 was automatically spliced into a complete continuous time series. After this exclusion process, a series

493 of processing steps was carried out, as shown in **Figure 5**.

494

495

Figure 5. fNIRS data processing analysis flow

First of all, the raw data were converted into optical density. The raw data were light intensity received 496 497 by the detector (avalanche diode), and changes in light intensity were measured by electrical signals created by emitted light signals [65]. This stage mainly included identifying and removing the 498 499 artefacts, and finally converting the data the optical density data. Firstly, the sliding average method 500 in Eq. (1) calculates the abnormal signals, such as a noise, caused by the light leakage on the data-501 time series to improve the SNR. The average value of 2N + 1 points is used to replace the abnormal points in the original signal. Then, y(n) is the time series after the sliding average, x(n) is the 502 503 original time series, and the value of N is 2.

$$y(n) = \frac{1}{2N+1} \sum_{i=1}^{2N+1} x(n-i)$$
(1)

504

505 Next, the mobile standard deviation was calculated to automatically retrieve the interval of artefacts

506 that may be found in the data. In our experiment, a 0.5-s sliding time window was used to check all

507 the time periods. The detected artefacts made by the movement were modified by spline interpolation

508 and then the processed time series was converted into optical density data, expressed as Eq. (2), where

509 I'_1 is the incident light intensity and I_1 represents the emitted light intensity.

$$\Delta Odd = \log I_1' / I_0 - \log I_1 / I_0 = \log I_1' / I_1$$
(2)

510

511 Secondly, denoising and filtering were necessary for data correction. All heartbeat and Mayer waves 512 can be reflected in oxy and deoxy data, but these signals cannot be measured directly because this 513 character and noise are actually detected by optical means, where the direct feedback is the change 514 of Odd data. Hence, filtering Odd data can achieve the same effect and remove the noise caused by physiological signals such as heartbeat [66]. In order to retain the original amplitude of the original 515 516 signal in the passband to the greatest possible extent, a Butterworth filter was used for processing the optical density data to improve the data quality and ensure the validity and reliability of the data 517 analysis because the interference of high frequency noise and low frequency fluctuation signals were 518 519 reduced to improve correction and SNR. Further, a 0.01 Hz-0.2 Hz band-pass filter was set to remove 520 low baseline drift and physiological noise due to heartbeats, breathing, cardiac frequencies, and 521 Mayer waves [65]. The expression of the n-order Butterworth filter is as shown in Eq. (3), where fc522 is the cutoff frequency, fp represents the passband edge frequency, and the value of n is 6:

$$H(f)|^{2} = \frac{1}{1 + \left(\frac{f}{fc}\right)^{2n}} = \frac{1}{1 + \epsilon^{2} \left(\frac{f}{fp}\right)^{2n}}$$
(3)

523

524 Thirdly, optical density was converted to haemoglobin concentration data by using the modified Beer-525 Lambert law. Haemoglobin concentration data directly reflect changes in the brain nerves during activity. The relative concentrations of oxygenated haemoglobin (HbO2) and reduced haemoglobin 526 527 (HbR) detected in the brain tissues were calculated through the modified Beer-Lambert law to obtain 528 the time-series of haemoglobin concentration data. As Eq. (4) shows, DPF is called differential 529 pathlength factors [67] with the value of 6, which accounts for the effective length between source and detector. The value of r is the linear distance between paired probes on the scalp. The delta 530 optical density, ΔOdd^{λ_i} , refers to the change in light absorption. $\varepsilon_{HBO}^{\lambda_i}$, under near-infrared light of 531

532 wavelength *i*, is the absorption coefficient of HBO substance,
$$\lambda$$
 represents wave length (1=760 mm,
533 absorption coefficient is 1486.5865 $\left(\frac{cm^{-1}}{mol*L^{-1}}\right)$; 2=850 mm, and the absorption coefficient is
534 2526.391 $\left(\frac{cm^{-1}}{mol*L^{-1}}\right)$). Moreover, $\varepsilon_{HB}^{\lambda_i}$, under near-infrared light of wavelength *i*, is the absorption
535 coefficient of HB substance, λ is wave length (1=760mm, absorption coefficient is
536 3843.707 $\left(\frac{cm^{-1}}{mol*L^{-1}}\right)$; 2=850mm, absorption coefficient is 1798.643 $\left(\frac{cm^{-1}}{mol*L^{-1}}\right)$).

$$\Delta \text{Odd}^{\lambda_i} = \left(\varepsilon_{HBO}^{\lambda_i} \Delta C_{HBO} + \varepsilon_{HB}^{\lambda_i} \Delta C_{Hb}\right) \cdot r \cdot DPF \tag{4}$$

537

538 Fourth, time-frequency waveform analysis was performed. The data were further analysed (e.g., 539 cortical activation, brain functional connectivity) to visualise the implications of the results. The 540 transformation from the original optical data to the blood oxygen concentration was completed by 541 applying the above algorithm, and the time series of each channel was obtained, representing the 542 functional activity attributes and cooperation level of corresponding brain regions. The connectivity attributes between cortical regions were measured by the correlation between the time series data. 543 544 The Pearson correlation analysis method was used to calculate the correlation by substituting the 545 relevant values in Eq. (5), where $x_i(k)$ and $x_i(k)$ are the k-th data value of the i-th and j-th channel time series; K is the total number of sequence values; x_i and x_j are the average values of 546 547 the channel sequence.

$$r_{ij} = \frac{\sum_{k=1}^{k} [x_i(k) - \overline{x_i}] [x_j(k) - \overline{x_j}]}{\sqrt{\sum_{k=1}^{k} [x_i(k) - \overline{x_i}]^2 \sum_{k=1}^{k} [x_j(k) - \overline{x_j}]^2}}$$
(5)

548

549 To judge the difference of cooperation among the three stages (rest, task-1 and task-2 stages) of brain 550 regions to provide clear guidance for the DM process, the significant differences among three stages 551 were further analysed. Firstly, the strength of functional connectivity between brain regions in the 552 three stages was calculated to evaluate whether the data exhibited a normal distribution, without outliers and spherical assumption. Then the functional connectivity in three stages was analysed by 553 554 one-way repeated ANOVA measurement. Three stages were internal variables, and functional 555 connectivity was the observed influencing factor. Finally, the functional connectivity of each stage 556 was further compared in pairs. P < 0.05 showed that there was a significant difference in functional

- 557 connectivity.
- 558

559 4.2.2.2. Subjective data processing

560 The subjective and behavioural data were stored and summarised. The Shapiro-Wilk test was used to 561 test the normal distribution of the data, and the box plot of each group of data was used to determine 562 the presence of abnormal values. A paired-sample t-test was used for the data that met the normal 563 distribution and the Wilcoxon signed-rank test was used for non-compliance. The comparison of the 564 three sets of data needed to simultaneously conform to the normal distribution, without outliers and spherical assumptions, and then descriptive statistics and mean analysis were conducted. One-way 565 566 repeated measurement ANOVA was used to detect significant differences between the subjective scales in three different stages, so as to further explain the difference between the subjective data in 567 568 each two stages. p < 0.05 was statistically significant.

- 569 4.3. Application and results
- 570 4.3.1. Physiological results

The results are shown in **Figure 6.** The intensity of the functional connectivity between LPFC and RPFC regions of the brain in the three stages was observed to be the highest of each stage. Their correlation coefficients were, in the rest-stage r=0.8222, and in the task 1-stage r=0.7987 and in the task-2 stage r=0.8688. Further, the correlation between RMC and ROL in the rest-stage was the lowest, r=0.2017. In the task1-stage, the functional correlation between LOL and ROL was the lowest, r=0.0915. Similarly, the lowest degree of correlation between LOL and ROL appeared in the task2stage, r=0.1659.

579 Figure 6. The strength of functional connectivity between brain regions in three stages. A. Rest-

580 stage correlation; B. Task1-stage correlation; C. Task2-stage correlation. Significant differences in 581 functional connectivity after ANOVA are marked with *p < 0.05 between the task1-stage and 582 task2-stage, and $^{\&}p < 0.05$ between the rest-stage and task-stage.

583

584 The functional connectivity strengths of LPFC and RPFC (F = 5.152, p = 0.011), LPFC and LMC (F = 4.307, p = 0.022), LPFC and ROL (F = 5.914, p = 0.006), LOL and ROL (F = 4.396, p = 0.022)585 586 0.02) in rest-stage, task1-stage and task2-stage were statistically significant. Compared with task1-587 stage, the functional connectivity strength of LPFC and LMC in the rest-stage was significantly improved by 0.096 (p = 0.023, corrected). Compared with the task1-stage, the connectivity strength 588 589 of LOL and ROL in the rest-stage significantly increased by 0.169 (p = 0.01, corrected). The LPFC 590 and RPFC functional connectivity in the task2-stage was significantly improved by 0.070 (p = 0.012) 591 correction). Meanwhile, the functional connectivity between LPFC and ROL in the task2-stage increased significantly by 0.181 (p = 0.014 corrected). It is worth noting that there was no 592 significant difference between the rest-stage and task2-stage. The ANOVA analysis of the functional 593 594 connectivity of brain regions in the three stages showed that the functional connectivity strengths of certain brain regions in the task2-stage and rest-stage were improved compared with the task1-stage. 595

596 4.3.2. Subjective results

597 The results of the subjective VAS scale are shown in **Figure 7**. The rest-stage, task1-stage, and task2stage in Fatigue (F = 28.620, P < 0.001), Attention (F = 7.101, p = 0.003), Training Positive 598 (F = 8.269, P = 0.001), Pressure (F = 22.481, p < 0.001) demonstrated statistical significance. 599 600 Among these, the fatigue aspect of the rest-stage was significantly reduced by 4.667 (p < 0.001) as compared to the task1-stage, and 4.222 (p < 0.001) was a significant reduction as compared to the 601 task2-stage. The attention level at the rest-stage was significantly lower than at the task1-stage by 602 2.611 (p = 0.042), and was significantly lower than in the task2-stage by 2.722 (p = 0.021). The 603 stress perception in the rest-stage was significantly lower than in the task1-stage by 4.611 (p < 0.001), 604 which was further significantly lower than the task2-stage by 2.944 (p < 0.001). However, with the 605 606 task training positive, only the task2-stage was significantly improved by 3.167 (p = 0.012) 607 compared to the rest-stage.

609Figure 7. Results of the VAS scale at each stage. Significant differences in subjective score are610marked with *p < 0.05 or **p < 0.01 between the rest-stage and task1-stage, and & p < 0.05611or & p < 0.01 between the rest-stage and task2-stage.

612

608

In this research, E-Prime software was used to record the subjects' level of accuracy and reaction time 613 614 during operations as shown in Figure 8. The total number of errors in the task1-stage was 6.8 (3.1 in 615 the first half and 3.8 in the second half), while the total number of errors in the task2-stage was 5 (2.4 in the first half and 2.5 in the second half). Meanwhile, in the reaction time aspect, the average 616 617 reaction time in the task1-stage was 980 ms, 959 ms in the first half, and 1004ms in the second half. 618 The average response time in the task2-stage was 935 ms, 941 ms for the first half and 929 ms for the 619 second half. Interestingly, the accuracy rate and response time between the task1-stage and task2-620 stage were not statistically significant. However, accuracy and response time were both superior in the task2-stage than in the task1-stage. Especially the response time in the second half of the task2-621 622 stage was reduced though the accuracy remained high.

623

Figure 8. Analysis of the result of behaviour data in the task1-stage and task2-stage. (A) The number of errors committed by each subject in the two stages. (B) Average reaction time for each subject in the two stages. (C) The number of errors in total, first half, and the second half of the task1-stage and task2-stage. (D) The total reaction time of all the subjects, first half and second half of the task1-stage and task2-stage.

629

630 4.3.3. Interpretation of the results

631 4.3.3.1. Physiological meaning

The brain signals detected by fNIRS mainly stem from the changes in brain neural activity while performing the task. Based on neurovascular coupling theory, functional connectivity is a significant indicator of brain activity, which can directly analyse the cooperative level in the brain's complex area. The stronger the functional connectivity between brain regions, the stronger the cooperation between brain regions, which helps subjects reach higher performance levels and maintain higher attention levels. Therefore, the functional connectivity strength is an intuitive expression of the degree 638 of a user's cognitive state which might lead to the occurrence of human error.

639

640 4.3.3.2. Relationship between results and application

641 Normalised results of subjective, behavioural and physiological data are considered in the 642 interpretation of the experiment. The execution of cognitive control is mainly carried out in the 643 prefrontal lobes. LPFC and RPFC functional connectivity strength in the task2-stage was the highest, 644 even higher than in the rest-stage, and it is significantly lower in the task1-stage than in the task2-645 stage, indicating that an optimised radar map with HFs is better than a descriptive radar map and more 646 suitable for users' cognitive mental fatigue state. Although there was no significant difference in the 647 behavioural data, it can be judged intuitively that the task2-stage is better than the task1-stage in 648 regard to time and accuracy. Meanwhile, regarding the subjective aspect, it also emphasises again 649 that the task2-stage's training positivity is superior to the other two stages. In this connection, 650 synchronisation has occurred between subjective and objective data.

651

These results can be applied together to generate service options, such as cognitive fatigue threshold, 652 comfort prediction, and internal state monitoring. The ATCOs' cognitive state was evaluated to 653 654 determine whether the intervention behaviour of the system was turned on or not, and the operational behaviour beneficial to the ATCOs' current state was formed. In this case study, for the adaptive DM 655 process, the functional connectivity level for both the task1-stage and task2-stage was not 656 657 significantly lower than that of the rest-stage, which means that ATCOs' cognition and ability enable them to deal with the potential conflictions by adjusting an aircraft's angle, altitude, or other elements. 658 659 If the functional connectivity strength in an event is significantly lower than that of the rest-stage, which indicates that the event has caused ATCOs fatigue, which will probably lead to operation errors, 660 the system should change automatic level to take over ATCOs' behaviour based on the signals 661 received in real time, for instance, strengthening the automatic control level, creating stimulating 662 signals to assist users, or providing the alternative solutions for ATCOs, or even taking over the 663 664 operation, and so on until the user's cognition recovers. In addition, for human-machine fusion, based 665 on the subjective and objective data, it also suggested that this type of visual aid that the optimised 666 radar map provides a design reference, which can effectively avoid human error and provide a direction for future design and development of ATC system elements. 667

668

669 **5. Discussion**

- 670 Detecting cognitive fatigue is a key problem in developing adaptive systems and has been proven to 671 improve human-computer interaction [68]. The research conducted by Lyu et al. [47] focuses on the previous experience and determined the common human factor influence ranking through the 672 673 HFACS-BN model, so as to guide the optimisation of the system. By contrast, this research can 674 effectively monitor the user and system behaviour data in real time through the proposed data-driven 675 framework. Then the data are processed by the framework data analysis section (characteristics 676 process). And finally, according to the characteristics (range and threshold, extreme value, and 677 significance compared to the resting state) of the data, the adaptive adjusting behaviour (the degree of automation, the replacement of two-dimensional or three-dimensional design presentation 678 679 elements) of the system or keeping the original state is decided in a multi-dimensional way. This step 680 is similar to a mock recogniser (characteristics recognition) that determines the user's level of 681 cognitive status and then provides a basis for the system to be adaptive.
- 682

683 The complex cognitive information required by the human-machine interaction interface may come 684 from two sources, namely the required operations and the information prompts. Both sources depend 685 on how the user interacts with the target task under the information support structure (such as visual 686 assistance, interactive media). Therefore, the design of the radar map considers the similarities 687 between the elements and the observed transformation operations of the elements. The fNIRS 688 considers the brain regions, namely prefrontal lobe, parietal lobe, and occipital lobe through 22 689 channels. The prefrontal lobe is related to the DM process, working memory and attention. Therefore, 690 the more complex the cognitive information, the higher the HbO₂ in the prefrontal lobe brain region. 691 In this case, the functional connectivity values of significant interactions were averaged for 15 692 directed interregional connection types between all possible pairs of 22 channels in each subject, and 693 thereby, the mutual interactions among the six regions were analysed.

694

The prefrontal lobe maintains high connectivity among the three stages, but of the two task stages, the task1-stage is weakened at the functions' connection, which reflects the reduced transmission efficiency of this area. The parietal lobe is related to procedural memory and vision. The longer the 698 memory consolidation, the stronger the visual stimulation, and the higher the HbO₂ level in the 699 parietal lobe. In the task2-stage, the functional connectivity between the left and right parietal regions 700 and LPFC and RPFC were higher than for the task1-stage, indicating that appropriate visual auxiliary 701 elements, such as object and important data indicator enhancement prompts and object visualisation, are conducive to the positive linkage effect of vision, memory and cognitive DM. Design elements 702 703 research studied by Luciani et al. [43] and Van Paassen et al. [44] demonstrate that the visualisation 704 auxiliary can help ATCOs operate the ATC system better, which is similar to our research. The rest-705 stage has a positive significant difference compared to the task1-stage, the task2-stage has a positive 706 significant difference compared to the task1-stage, and there was no significant difference between 707 the rest-stage and task2-stage, which may indicate that the optimised map task is closer to the resting 708 state, and a descriptive map makes subjects fatigued. Meanwhile, according to the subjective results, 709 it was found that the task2-stage's training positivity is significantly higher than for the rest-stage, 710 while the results of the task1-stage and rest-stage have no significant difference. From the behaviour 711 analysis, the average number of errors and the average response time of the task2-stage are lower than 712 for the task1-stage, indicating that the optimal design of visual AIDS is expected to contribute to 713 ATCOs' training, which can effectively avoid human error and provide a direction for future design 714 and development in the ATC field.

715

716 From the aforementioned work on the memory task by ATCOs, one can see that good results have 717 been achieved in brain functional connectivity and subjective analysis, such as maintaining normal 718 function connectivity and improved accuracy and reaction time. Dehais et al. [69] also indicated 719 undesirable neurocognitive states, such as mind wandering, while inattentional phenomena can 720 negatively affect ATCOs' operation (increase human error rate and reaction time). Simultaneously, it 721 also establishes that the DM framework can usefully apply HFs to the ATC system to avoid unilateral judgment errors, without causing a significant difference in behaviour. This can avoid the wastage of 722 time and money, and achieve the timely adjustment of the system in response to behavioural changes 723 724 and system performance decline. Meanwhile, fNIRS is sensitive to different levels of cognitive fatigue, which is consistent with the study by Durantin et al. [68]. 725

726

727 **6. Managerial implications**

728 This framework will further aid understanding of the performance of humans and machines for 729 intelligent adjusting of the system's DM behaviour in relation to the external and internal working 730 conditions and the skills, tasks and cognitive abilities of specific personnel, through intuitive data and 731 good synchronisation. The results can support the combination with ATC system applications. The 732 system behaviour can be adjusted accordingly via the data-driven approach. The possible applications 733 mainly include: real-time online feedback that eases the capturing of the state of ATCOs to realise human-centred system adjustment, safety warning reminders according to the critical point of 734 735 information implied by the data and level of automation in the human-machine interface. Also, it 736 serves as a data-driven model that provides objective data to empirically prove the advantages and 737 disadvantages of applications of HFs and further supports the subsequent design optimisation. Hence, 738 these new data results provide insights into ATCOs interactions with the whole system interface and 739 with a single field of interest and indicates the potentials for IA of ATC.

740

741 Data-driven adaptive DM supports and regulates system parameters, including adaptive automation 742 level, workload scheduling, ergonomics interface and interaction. According to the ATCOs' real-time 743 physiological state – mainly cognitive state – the behaviour of the system is adjusted automatically 744 to adapt to the ATCOs. When ATCOs change from slight fatigue to high cognitive fatigue, that is, the brain functional connectivity falls below the normal range, the system will automatically determine 745 that the ATCOs' cognitive fatigue is at danger level according to the findings of the cognitive fatigue 746 simulation recogniser, and then improve the automatic operation level (from low to high) and add 747 748 wake-up signals (the preferred warning graphics and tone) (Figure 9). For instance, when there is a 749 possibility of aircraft conflict, the system will pop up optimal operation – adjust the plane's altitude 750 (but not necessarily the most appropriate solution) – for ATCOs' selection to reduce their mental 751 pressure. Meanwhile, triggered warning signals based on design elements will appear to awaken ATCOs' mind, which relieves ATCOs' workload, helps to restore cognition and also is able to 752 guarantee the safety of the aviation system. When the system detects that ATCOs are operating at a 753 754 reasonable level, the system's responsible behaviour will disappear and the ATCOs will manually adjust the best solution (more factors, such as weather conditions, can be considered 755 756 comprehensively).

758

Figure 9. Adaptive DM mechanism based on the data-driven framework

759

The real-time online feedback system can also be incorporated into ATC operation to distinguish state 760 761 changes when ATCOs participate in different human factor tasks to extract and identify new 762 opportunities for its application in future HFs design applications. By interpreting the resource 763 allocation between brain regions, such as whether multiple brain regions can be mobilised, or which 764 brain regions are more effective, we can speculate about the internal effects of different factors on ATCOs. The above can serve as a basis for adaptive decisions of the system (preferred elements 765 design, warning signal, and so forth). The priority of the design elements concerning HFs in regard 766 to system aspects will be formed, which can provide guidance for the future system design and 767 transformation, as well as being a way to show the two-dimensional and three-dimensional elements. 768 769 Then subjective data can be combined to identify different human behaviour factors, patterns, and 770 plans, and find the optimal design elements which need improvement, to support the design and development of different modes of human-machine interfaces. 771

772

The proposed method can also be extended to situation awareness. As a method should be provided

to observe the individual factors influencing ATCOs, which is convenient for identifying the critical points of ATCOs including fatigue, pressure and workload and also to identify the most common factor relationships that negatively or positively affect ATCOs' performance, to propose several sets of core factors, provide hypotheses for further research, and combine with ATCOs' safety performance models or training programmes to establish effective human performance management.

779 **7.** Conclusion

The field of engineering, especially automation and control engineering, is further exploring adaptive 780 781 DM methods to reduce the occurrence of human error and the risk index of engineering. HFs play an 782 important role in DM, especially in the ATM field where ATCOs are at the centre of DM. At present, 783 most of the research is limited to the level of automation of operation systems. However, obtaining 784 feedback on ATCOs' performance is difficult, which makes it impossible to scientifically monitor 785 human behaviour in real time. In this context, this paper proposes a subjective and objective data-786 driven adaptive DM method based on fNIRS, which takes ATCOs' internal state as the dominant 787 supporting factor in decision behaviour. The main contributions are summarised as follows:

A novel framework and approach for adaptive DM based on fNIRS from the user's perspective is
 proposed, which captures the internal status and defects in the performance of users to achieve
 human-centred automatic adjustment.

- A novel data collection and processing method is proposed, which can directly reflect and evaluate
 the user and system status. In addition to considering the user experience and machine behaviour
 data, the objective physiological data of the user in the operation process is also fully considered.
 Data-driven methodology combining subjective and objective data is proposed to detect the
 impact of system factors on the user, ensure the accuracy and validity of data, and understand the
 best facilitation for maximising human performance in the ATC environment.
- The application of HFs in the system was evaluated to support element design optimisation so
 that the performance of HFs in design and manufacturing lays the foundation for the realisation
 of the IA of the system.

To make the research framework more specific, the feasibility of DM proposed in this paper was verified through the radar case study, which can play a certain role in promoting the application of human-centred subjective and objective data-driven applications in the future ATC environment in adaptive decision research.

804

This paper is limited to research of human-machine interfaces. The whole ATC system also has tools, procedures, roles and communication flows, which have not been covered in this study and need to be considered in the future. Also, the follow-up study should be more than an hour-long task designed to mimic the real work situation. Future work should focus on applying the proposed methodology to

- 809 multiple complex environments involving more users to explore more data-driven system application
- 810 services, so as to promote the development of system IA and DM.

811 References

- 812 [1] L. Bu, C.-H. Chen, G. Zhang, et al., A hybrid intelligence approach for sustainable service 813 innovation of smart and connected product: A case study, Advanced Engineering Informatics, 46
- 814 (2020).
- [2] K.K.H. Ng, C.K.M. Lee, F.T.S. Chan, Y. Lv, Review on meta-heuristics approaches for airside
 operation research, Applied Soft Computing, 66 (2018) 104-133.
- 817 [3] C.K.M. Lee, Y. Lv, Z. Hong, Risk modelling and assessment for distributed manufacturing system,
- 818 International Journal of Production Research, 51 (2013) 2652-2666.
- [4] G. Di Flumeri, F. De Crescenzio, B. Berberian, et al., Brain-computer interface-based adaptive
 automation to prevent out-of-the-loop phenomenon in air traffic controllers dealing with highly
 automated systems, Frontiers in human neuroscience, 13 (2019).
- 822 [5] K.K.H. Ng, C.K.M. Lee, F.T.S. Chan, Y. Qin, Robust aircraft sequencing and scheduling problem
- with arrival/departure delay using the min-max regret approach, Transportation Research Part E:
 Logistics Transportation Review, 106 (2017) 115-136.
- 825 [6] K.K.H. Ng, C.K.M. Lee, F.T.S. Chan, et al., A two-stage robust optimisation for terminal traffic 826 flow problem, Applied Soft Computing, 89 (2020) 106048.
- 827 [7] D. Dasari, G. Shou, L. Ding, ICA-derived EEG correlates to mental fatigue, effort, and workload 828 in a realistically simulated air traffic control task, Frontiers in neuroscience, 11 (2017) 297.
- 829 [8] K.K.H. Ng, C.K.M. Lee, S.Z. Zhang, et al., A multiple colonies artificial bee colony algorithm for
- a capacitated vehicle routing problem and re-routing strategies under time-dependent traffic
 congestion, Computers Industrial Engineering, 109 (2017) 151-168.
- [9] K.K.H. Ng, M.H.M. Tang, C.K.M. Lee, Design and development of a performance evaluation
 system for the aircraft maintenance industry, 2015 IEEE International Conference on Industrial
 Engineering and Engineering Management (IEEM), IEEE, 2015, pp. 564-568.
- [10] K.K.H. Ng, C.K.M. Lee, Makespan minimization in aircraft landing problem under congested
 traffic situation using modified artificial bee colony algorithm, 2016 IEEE International Conference
 on Industrial Engineering and Engineering Management (IEEM), IEEE, 2016, pp. 750-754.
- [11] C.K.M. Lee, S. Zhang, K.K.H. Ng, In-plant logistics simulation model for the catering service
 industry towards sustainable development: A case study, Sustainability-Basel, 11 (2019) 3655.
- 840 [12] C.K.M. Lee, B. Lin, K.K.H. Ng, et al., Smart robotic mobile fulfillment system with dynamic
- 841 conflict-free strategies considering cyber-physical integration, Advanced Engineering Informatics, 42
- 842 (2019) 100998.
- 843 [13] S. Cafieri, N. Durand, Aircraft deconfliction with speed regulation: new models from mixed-844 integer optimization, Journal of Global Optimization, 58 (2014) 613-629.
- [14] A. Evans, V. Vaze, C. Barnhart, Airline-driven performance-based air traffic management: Game
 theoretic models and multicriteria evaluation, Transportation Science, 50 (2016) 180-203.
- 847 [15] K.K.H. Ng, C.K.M. Lee, F.T.S. Chan, An Alternative Path Modelling Method for Air Traffic
- Flow Problem in Near Terminal Control Area, 2019 2nd International Conference on Intelligent
 Autonomous Systems (ICoIAS), IEEE, 2019, pp. 171-174.
- 850 [16] K.K.H. Ng, C.K.M. Lee, F.T.S. Chan, A robust optimisation approach to the aircraft sequencing
- and scheduling problem with runway configuration planning, 2017 IEEE International Conference
- on Industrial Engineering and Engineering Management (IEEM), IEEE, 2017, pp. 40-44.
- 853 [17] A.-M. Feyer, A.M. Williamson, Human factors in accident modelling, Encyclopaedia of

- Occupational Health Safety, Fourth Edition, Geneva: International Labour Organisation, (1998). 854
- [18] B. Hilburn, Cognitive complexity in air traffic control: A literature review, EEC note, 4 (2004). 855
- 856 [19] K.A. Bernhardt, D. Poltavski, T. Petros, et al., The effects of dynamic workload and experience
- 857 on commercially available EEG cognitive state metrics in a high-fidelity air traffic control environment, Applied ergonomics, 77 (2019) 83-91. 858
- 859 [20] C.K.M. Lee, K.K.H. Ng, H.K. Chan, et al., A multi-group analysis of social media engagement
- and loyalty constructs between full-service and low-cost carriers in Hong Kong, Journal of Air 860 Transport Management, 73 (2018) 46-57. 861
- 862 [21] G. Borghini, P. Aricò, F. Ferri, et al., A neurophysiological training evaluation metric for air 2014 36th Annual International Conference of the IEEE Engineering in 863 traffic management, Medicine and Biology Society, IEEE, 2014, pp. 3005-3008. 864
- [22] R. Parasuraman, T.B. Sheridan, C.D. Wickens, A model for types and levels of human interaction 865
- with automation, EEE Transactions on systems, man, cybernetics-Part A: Systems Humans, 30 (2000) 866 286-297. 867
- 868 [23] D. Chang, Z. Gu, F. Li, R. Jiang, A user-centric smart product-service system development
- approach: A case study on medication management for the elderly, Advanced Engineering Informatics, 869 870 42 (2019) 100979.
- 871 [24] H.C. Muir, D. Harris, Contemporary issues in human factors and aviation safety, Routledge2017.
- [25] T. Lehouillier, F. Soumis, J. Omer, C. Allignol, Measuring the interactions between air traffic 872 873 control and flow management using a simulation-based framework, Computers Industrial Engineering, 99 (2016) 269-279.
- 874
- [26] C.K.M. Lee, S. Zhang, K.K.H. Ng, Design of An Integration Model for Air Cargo Transportation 875 Network Design and Flight Route Selection, Sustainability-Basel, 11 (2019) 5197. 876
- 877 [27] A.V. Lovato, C.H. Fontes, M. Embiruçu, R. Kalid, A fuzzy modeling approach to optimize 878 control and decision making in conflict management in air traffic control, Computers Industrial 879 Engineering, 115 (2018) 167-189.
- [28] A. Alonso-Ayuso, L.F. Escudero, F.J. Martín-Campo, N. Mladenović, A VNS metaheuristic for 880
- solving the aircraft conflict detection and resolution problem by performing turn changes, Journal of 881 882 Global Optimization, 63 (2015) 583-596.
- [29] A.K. Agogino, K. Tumer, A multiagent approach to managing air traffic flow, Autonomous 883 Agents Multi-Agent Systems, 24 (2012) 1-25. 884
- [30] B. Kirwan, R. Scaife, R. Kennedy, Investigating complexity factors in UK air traffic management, 885
- Human Factors Aerospace Safety, 1 (2001). 886
- [31] S.G. Hart, L.E. Staveland, Development of NASA-TLX (Task Load Index): Results of empirical 887 888 and theoretical research, Advances in psychology, Elsevier1988, pp. 139-183.
- 889 [32] G.B. Reid, T.E. Nygren, The subjective workload assessment technique: A scaling procedure for 890 measuring mental workload, Advances in psychology, Elsevier1988, pp. 185-218.
- [33] E. Xiaotian, J. Zhang, Holistic thinking and air traffic controllers' decision making in conflict 891 resolution, Transportation research part F: traffic psychology behaviour, 45 (2017) 110-121. 892
- [34] H.J. Wee, S.W. Lye, J.-P. Pinheiro, An integrated highly synchronous, high resolution, real time 893
- 894 eye tracking system for dynamic flight movement, Advanced Engineering Informatics, 41 (2019) 100919. 895
- 896 [35] S.T. Dumais, G. Buscher, E. Cutrell, Individual differences in gaze patterns for web search,
- Proceedings of the third symposium on Information interaction in context, 2010, pp. 185-194. 897

- 898 [36] C. Borst, R.M. Visser, M.M. Van Paassen, M. Mulder, Exploring short-term training effects of
- ecological interfaces: A case study in air traffic control, Ieee T Hum-Mach Syst, 49 (2019) 623-632.
- [37] G. Di Flumeri, G. Borghini, P. Aricò, et al., On the use of cognitive neurometric indexes in
 aeronautic and air traffic management environments, International Workshop on Symbiotic
 Interaction, Springer, 2015, pp. 45-56.
- 903 [38] P. Aricò, G. Borghini, G. Di Flumeri, et al., A passive brain–computer interface application for
 904 the mental workload assessment on professional air traffic controllers during realistic air traffic
 905 control tasks, Progress in brain research, Elsevier2016, pp. 295-328.
- [39] S. Lou, Y. Feng, Z. Li, et al., An integrated decision-making method for product design scheme
 evaluation based on cloud model and EEG data, Advanced Engineering Informatics, 43 (2020)
 101028.
- 909 [40] M. Peruzzini, M. Pellicciari, A framework to design a human-centred adaptive manufacturing 910 system for aging workers, Advanced Engineering Informatics, 33 (2017) 330-349.
- 911 [41] P. Bert, La pression barométrique: recherches de physiologie expérimentale, G. Masson1878.
- 912 [42] J.A. Wise, V.D. Hopkin, D.J. Garland, Handbook of aviation human factors, CRC Press2016.
- 913 [43] D.T. Luciani, J. Löwgren, J. Lundberg, Designing fine-grained interactions for automation in air
- 914 traffic control, Cognition, Technology Work, (2019) 1-17.
- [44] M. Van Paassen, C. Borst, R. Klomp, et al., Designing for shared cognition in air traffic
 management, Journal of Aerospace Operations, 2 (2013) 39-51.
- 917 [45] D. Ten Brink, R. Klomp, C. Borst, et al., Flow-based air traffic control: Human-machine interface
- 918 for steering a path-planning algorithm, 2019 IEEE International Conference on Systems, Man and 919 Cybernetics (SMC), IEEE, 2019, pp. 3186-3191.
- [46] F. Trapsilawati, X. Qu, C.D. Wickens, C.-H. Chen, Human factors assessment of conflict
 resolution aid reliability and time pressure in future air traffic control, Ergonomics, 58 (2015) 897908.
- [47] T. Lyu, W. Song, K. Du, Human Factors Analysis of Air Traffic Safety Based on HFACS-BN
 Model, Applied Sciences, 9 (2019) 5049.
- [48] P. Aricò, G. Borghini, G. Di Flumeri, et al., Human factors and neurophysiological metrics in air
 traffic control: a critical review, IEEE reviews in biomedical engineering, 10 (2017) 250-263.
- 927 [49] G. van Daalen, T.M. Willemsen, K. Sanders, M.J. van Veldhoven, Emotional exhaustion and
- 928 mental health problems among employees doing "people work": The impact of job demands, job
- 929 resources and family-to-work conflict, International archives of occupational environmental health
- 930 82 (2009) 291-303.
 - 931 [50] F. Dehais, D.E. Callan, A Neuroergonomics Approach to Human Performance in Aviation,
 - 932 Improving Aviation Performance through Applying Engineering Psychology: Advances in Aviation
 933 Psychology, 3 (2019) 123.
 - 934 [51] P. Aricò, G. Borghini, G. Di Flumeri, et al., Adaptive automation triggered by EEG-based mental
 935 workload index: a passive brain-computer interface application in realistic air traffic control
 936 environment, Frontiers in human neuroscience, 10 (2016) 539.
 - 937 [52] M.S. Young, K.A. Brookhuis, C.D. Wickens, P.A. Hancock, State of science: mental workload
 - 938 in ergonomics, Ergonomics, 58 (2015) 1-17.
 - 939 [53] G. Borghini, P. Aricò, G. Di Flumeri, et al., Avionic technology testing by using a cognitive
 - 940 neurometric index: a study with professional helicopter pilots, 2015 37th Annual International
 - 941 Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, 2015, pp.

- 942 6182-6185.
- [54] C. Mühl, C. Jeunet, F. Lotte, EEG-based workload estimation across affective contexts, Frontiers
 in neuroscience, 8 (2014) 114.
- 945 [55] F. Dehais, A. Dupres, G. Di Flumeri, et al., Monitoring pilot's cognitive fatigue with engagement
- 946 features in simulated and actual flight conditions using an hybrid fNIRS-EEG passive BCI, 2018
- 947 IEEE International Conference on Systems, Man, and Cybernetics (SMC), IEEE, 2018, pp. 544-549.
- 948 [56] G. Di Flumeri, G. Borghini, P. Aricò, et al., EEG-based mental workload neurometric to evaluate
- 949 the impact of different traffic and road conditions in real driving settings, Frontiers in human

950 neuroscience, 12 (2018) 509.

- [57] C. Zhao, M. Zhao, J. Liu, C. Zheng, Electroencephalogram and electrocardiograph assessment
 of mental fatigue in a driving simulator, Accident Analysis Prevention, 45 (2012) 83-90.
- [58] F. Dehais, B. Somon, T. Mullen, D.E. Callan, A Neuroergonomics Approach to Measure Pilot's
 Cognitive Incapacitation in the Real World with EEG, (2020).
- 955 [59] Q. Li, J. Feng, J. Guo, et al., Effects of the multisensory rehabilitation product for home-based
- hand training after stroke on cortical activation by using NIRS methods, Neuroscience Letters, 717(2020) 134682.
- [60] L. Bu, C. Huo, Y. Qin, et al., Effective connectivity in subjects with mild cognitive impairment
 as assessed using functional near-infrared spectroscopy, American journal of physical medicine
 rehabilitation, 98 (2019) 438-445.
- [61] Z. Liu, M. Zhang, G. Xu, et al., Effective connectivity analysis of the brain network in drivers
 during actual driving using near-infrared spectroscopy, Frontiers in behavioral neuroscience, 11 (2017)
 211.
- 964 [62] R. Klomp, C. Borst, R. van Paassen, M. Mulder, Expertise level, control strategies, and 965 robustness in future air traffic control decision aiding, Ieee T Hum-Mach Syst, 46 (2015) 255-266.
- [63] L. Bu, C.-H. Chen, K.K. Ng, et al., A user-centric design approach for smart product-service
 systems using virtual reality: A case study, Journal of Cleaner Production, (2020) 124413.
- 968 [64] B. Liu, Y. Zhang, G. Zhang, P. Zheng, Edge-cloud orchestration driven industrial smart product-
- service systems solution design based on CPS and IIoT, Advanced Engineering Informatics, 42 (2019)
 100984.
- [65] X. Hu, C. Zhuang, F. Wang, et al., fNIRS evidence for recognizably different positive emotions,
 Frontiers in human neuroscience, 13 (2019) 120.
- 973 [66] R. Di Lorenzo, L. Pirazzoli, A. Blasi, et al., Recommendations for motion correction of infant
- 974 fNIRS data applicable to multiple data sets and acquisition systems, NeuroImage, 200 (2019) 511975 527.
- 976 [67] E. Gentile, A. Brunetti, K. Ricci, et al., Mutual interaction between motor cortex activation and 977 pain in fibromyalgia: EEG-fNIRS study, PloS one, 15 (2020) e0228158.
- 978 [68] G. Durantin, J.-F. Gagnon, S. Tremblay, F. Dehais, Using near infrared spectroscopy and heart 979 rate variability to detect mental overload, Behavioural brain research, 259 (2014) 16-23.
- 980 [69] F. Dehais, A. Lafont, R. Roy, S. Fairclough, A Neuroergonomics Approach to Mental Workload,
- 981 Engagement and Human Performance, Frontiers in Neuroscience, 14 (2020) 268.
- 982