
IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH X, XXXX 1 

XXXX-XXXX © XXXX IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Abstract— GNSS is being widely used in different applications in navigation. However, GNSS positioning is greatly 
challenged by notorious multipath effects and non-line-of-sight (NLOS) receptions. The signal blockage and reflection 
by buildings cause these effects. In other words, the more urbanized the city is, the more challenge on the GNSS 
positioning. The conventional multipath mitigation approaches, such as the sophisticated design of GNSS receiver 
correlator, can efficiently mitigate the most of multipath effects. However, it has less capability against NLOS 
reception, potentially leading to several tens of positioning errors. Therefore, the 3D mapping aided (3DMA) GNSS 
positioning is introduced to exclude or even use the NLOS signal. Shadow matching is to make use of the similarity 
between building geometry and satellite visibility to improve the positioning performance. This paper introduces a 
machine learning intelligent classifier with features to distinguish LOS and NLOS. With the NLOS reception 
classification, the positioning accuracy of shadow matching can be increased. In addition, this paper develops several 
indicators to label the unreliable solution of shadow matching. These indicators are to examine the complexity of the 
surrounding environment, which is the key factor relating to the proposed shadow matching performance. Several 
designed experiments were done in Hong Kong to evaluate the proposed method. With the intelligent classifier, the 
average positioning accuracy is about 15m and 6m on 2D and the across-street direction, respectively. Simultaneously, 
the reliability evaluation rules can exclude unreliable epoch and improve the positioning results, especially on 
smartphone data. 

Index Terms—GNSS, Navigation, Smartphone, 3D building model, Urban canyons, Multipath and NLOS 

I. INTRODUCTION

NSS is widely adopted in different location-based-service 
(LBS) [1]. Users always want to have high positioning 

accuracy, especially for those low-cost receivers, and the 
performance of LBS tightly relies on it. However, the urban 
area is still a challenging environment for the majority of the 
low-cost GNSS receivers and smartphone users and suffering 
dozens of meter positioning errors [2, 3]. The positioning error 
comes from the GNSS signal blockage or reflection by the 
building surface, namely multipath and NLOS signals [4]. 
These errors are common in deep urban canyons and results in 
the extra travelling distance for the signal, which introduces a 
large positioning error for more than 50 meters [5].  

As the conventional single point positioning algorithm, 
weighted least-squares still suffers from several ten meters of 
positioning error. The differential Global Navigation Satellite 
System (DGNSS) correction can significantly reduce the 
positioning error in the open-sky area, but not for the urban one. 
Different researches are trying to mitigate the NLOS reception 
to improve positioning accuracy. The consistency-check 
method [6] can detect and exclude those unhealthy 
measurements to obtain better positioning accuracy. However, 
in the dense urban area, multiple NLOS reception may lead to 
fault consistency issue and degrade the correctness of fault 
detection and exclusion [7].  

Researches also proposed improving urban positioning by 
extra equipment, which is suitable for vehicle-mounted 
applications. [8, 9] proposed using the sky-pointing fisheye 
camera to exclude the NLOS satellites by image recognition. 
Another approach is using the 3D light detection and ranging 
(LiDAR) to provide surrounding environment obstacles and 

detect the NLOS signal [10]. NLOS propagation model can 
calculate the pseudorange correction based on the distance to 
the building provided by LiDAR [11]. By integrating with the 
sky-pointing fisheye camera with LiDAR, the positioning 
accuracy in urban areas can be improved [12]. The NLOS 
classified satellite can be excluded or de-weighted to provide a 
more reliable GNSS position solution.  

With the trend on 3D building model resources become more 
common worldwide for open access. For example, the 3D 
building model can be made by combining the satellite images 
and airborne LiDAR, where the former and latter ones provide 
2D building contour and building height, respectively [13]. A 
complete review of the making of large-scale 3D building 
models can be found at [14]. These 3D models provide the 
opportunity to make use of the model to improve the 
performance, which is well-known as the 3D mapping aided 
(3DMA) GNSS [15]. The 3DMA GNSS positioning algorithms 
as NLOS-excluded positioning [16], shadow matching [17, 18], 
likelihood-based 3DMA GNSS [19], ray-tracing 3DMA GNSS 
[20, 21], and skymask 3DMA GNSS [22]. The shadow 
matching, proposed by [18], uses the building boundaries from 
the 3D city model and compare the satellite visibility similarity 
between the actual received signal to determine user position. 
Due to the similarity of the building geometry, shadow 
matching usually performs better on the across street direction 
[23]. Therefore, the likelihood-based 3DMA GNSS was 
introduced to use the measurements on the along-street 
direction. The integration solution on the shadow matching and 
likelihood-based 3DMA GNSS to improve both along and 
across street accuracy was introduced by [19]. The ray-tracing-
based 3DMA GNSS positioning provides a more intensive 
purpose for detecting and correcting the reflected signal on 
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NLOS reception. The ray-tracing traces the possible 
transmission route of both direct and reflected GNSS signals 
based on 3D building models. Therefore, the measurement 
delay distance due to the reflection can be provided to correct 
the pseudorange.  

Under the shadow matching assumption, the received 
satellite with the C/N0 larger than a threshold is assumed to be 
the LOS satellite, e.g., 35 dB-Hz [23]. On the other hand, for 
those satellites are not received, the building should block them. 
Therefore, compare to all candidates, near the ground truth, one 
should obtain the highest similarity between the LOS and 
NLOS reception and prediction by building geometry. 
However, the signal can be reflected by or penetrated through 
the building and received, which results in NLOS reception. 
The NLOS reception will accidentally identify the satellite is 
the LOS one and affect the scoring for the agreement between 
geometry. To mitigate the NLOS reception effect, researchers 
are proposed to use the machine learning model to classify the 
received signal [24-26] and exclude those NLOS reception 
satellites from scoring.  

In this paper, the shadow matching will be analyzed. This 
paper has two main contributions: 1) adopting the machine 
learning classifier to classify out the NLOS reception and 
improve the shadow matching performance. 2) introducing the 
reliability evaluation scheme of shadow matching performance. 
The scheme aims to let users know whether the shadow 
matching is functional at the environment and the confidence of 
the position solution, whether it is trustworthy. Total four rules 
are introduced and used to evaluate whether the single point 
solution estimated by the shadow matching is reliable.  

The positioning accuracy and reliability will be evaluated by 
experiments conducted in urban canyons of Hong Kong. The 
across-street accuracy can achieve within 10m. With the 
reliability exclusion, the positioning accuracy can further 
improve in both across- and along-street direction.   

The paper is organized as follows. An overview of shadow 
matching will be done in Section II. The reliability evaluation 
scheme of shadow matching is presented in Section III. The 
experimental results on intelligent classifier accuracy and 
positioning are given in Section IV. Finally, the conclusions and 
future work are given in Section V.   

 

II. OVERVIEW OF SHADOW MATCHING 

A. Skymask Generation 
The ‘skymask’ is the building boundary projected on the 

skyplot with a given position.  
The offline process does the skymask generation process at 

the server-side, the whole process to generate skymask for one 
location is identical to the study proposed in [22]. The skymask 
of each candidate location is generated with the 3D city model. 
Thus, the skymask can be initially stored in the device. Based 
on the 3D building model or in storage perspective, a specific 
area is selected and divided into grid points to construct the 
skymask table. The grid point separation is set to 2 meters to 
generate the skymask. The generation process assumes the user 
(receiver) always stays on the ground (mean-sea-level). 
Therefore, the height of the skymask position used in this paper 
is given by the mean-sea-level datum by the Hong Kong Lands 

Department [27].  
Fig. 1 is an example of the generated skymask and storage 

format. The azimuth is in 1-degree resolution, and the elevation 
is in 0.1-degree resolution. The azimuth angle starts from the 
north direction, rotating in the clockwise direction; the 
elevation angle starts from the horizon as 0°.  

 
Fig. 1. The data format of the skymask (left) and visualization (right). If 
the satellite elevation is lower than the building boundary elevation 
(under the same azimuth angle), it is assumed to be an NLOS signal 
blocked by buildings. 
 

Each location will first determine whether it is inside a 
building. For the outside building location, a list of total 360-
degree will be used to store the maximum elevation angle of 
building edge for corresponding azimuth angle; for the ‘inside 
building’ location, a flag will be given to represent this location 
is inside building. The offline generation at the server side is 
more effective for a low-cost device with limited computational 
power in practical application.  

 

B. Satellites Visibility Estimation 
The shadow matching's main contribution is to determine 

user position based on the satellite visibility by comparing the 
satellite visibility between geometry-based and received signal-
based determination. In the geometry-based determination, the 
corresponding skymask will be extracted from the pre-
computed skymask table with the given location. The satellite 
position is estimated using the ephemeris data, which is used to 
calculate the relative satellite angular position and express in 
azimuth and elevation angles. The angular position is then put 
on the skymask. If the elevation angle of the satellite is larger 
than that of the skymask at corresponding azimuth, it is a LOS 
satellite, otherwise, it is a NLOS satellite.  

Fig. 2, it should be blocked and 
not received as the red path shown, but the signal is coming in 
with the blue reflected path. If we consider these signals is the 
LOS one, there will be a contradiction between skymask 
prediction and received signal.  

The features of the satellite signal on C/N0, elevation angle, 
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pseudorange residual, and pseudorange rate residual will be 
used to predict the received satellite is either LOS or NLOS. 
The dataset is trained by the linear support vector machine 
(SVM) as it has better generalization performance than the 
decision tree and kNN because the SVM can prevent overfitting 
problem. The training data cover different urban environment 
to ensure different natures of signals are included in the 
classifier model. The LOS/NLOS labelling is done by skymask 
visibility estimation at ground truth and utilized the SVM 
function in Matlab for training the intelligent classifier. 

 

 
Fig. 2. Example of NLOS reception affecting GNSS shadow matching. 
Both locations on the opposite side of the street can receive both 
satellites, which may degrade the shadow matching performance.  

 

C. Position Determination 
The shadow matching idea is to compare the similarity 

between the geometry and signal on each selected position 
candidates, and the highest similarity will be chosen to be the 
solution. The overall flowchart for the proposed GNSS shadow 
matching is shown in Fig. 3.  

 

 
Fig. 3. Flowchart of the proposed GNSS shadow matching. 
 

The received signals will first be fed into the intelligent 
classifier. The NLOS reception classified signal will consider 
as the NLOS one to compare with the satellite visibility 
determined by 3D building models. As mention in section II.B, 
the intelligent classifier should classify those received NLOS 
satellites. The NLOS reception will degrade the shadow 

matching performance, and the score at the incorrect position 
will be higher than or similar to that at ground truth, as shown 
in Fig. 2. Both ground truth and incorrect position are located 
on the opposite side of the street, but they can receive both 
satellites. However, the NLOS received satellite (red circled 
satellite) should not be received intentionally. It should be 
classified as NLOS by skymask, and this will result in the 
incorrect position obtains a higher similarity than that of ground 
truth. As a result, an intelligent classifier is needed and consider 
the unhealthy measurements as NLOS one in the scoring 
scheme. 

Meanwhile, several position candidates will first be 
distributed around the initial position, and only the candidates 
located outside the building are selected. The initial position is 
important to the positioning hypothesis-based method. The 
candidate distribution should cover the receiver truth location 
to estimate the correct satellite visibility, or the sampling radius 
need to be enlarged either. In this paper, the initial position is 
the NMEA solution given by commercial GNSS receivers or 
smartphones. The candidates will be distributed in a circle grid 
with a 40m radius and 2m separation. In our experience, the 
positioning uncertainty of NMEA is within 20m in most of the 
case. Therefore, with candiates sampling radius of 40m, 
candidates are able to cover and estimate the truth location in 
order to get the best accuracy. The position candidate sampling 
size can be variated based on the quality of the initial position, 
such as least-squares residual [19]. 

Then, the LOS/NLOS prediction by skymask will be 
performed at each candidate. All satellites from ephemeris are 
labelled on the skymask and classified as LOS and NLOS as the 
skymask classification results. A score is then given to the 
candidate based on the agreement between the skymask 
prediction and intelligent classifier results. The score of the 𝑖𝑖-th 
satellite at 𝑗𝑗-th candidate notated as 𝑠𝑠𝑗𝑗𝑖𝑖, is given in Table I. 

 
TABLE I 

TRUTH TABLE FOR SATELLITE SCORING AT THE CANDIDATE 

  Received and intelligent 
classifier result Not 

received   LOS NLOS 
Skymask 

classification 
LOS 1 0 0 

NLOS 0 1 1 
 
After scoring all satellites for the candidate, the sum of the 

score will be the score for the candidate, τj.  
 
 τj = � sji (1) 

Then, the candidates’ score will be normalized. The top 5% 
of the candidates with the highest score will be chosen to 
calculate the solution. The solution 𝑥𝑥  is calculated by the 
weighted average of the selected 5% candidates with the highest 
score, Λ ∈ highest 5% of �τ1 … τj�. 

 

 𝑥𝑥 =
∑Λ𝑃𝑃
∑Λ

 (2) 

Where the Λ denotes the score of the selected candidates, and 
𝑃𝑃 is the position of the chosen candidates with the highest 5% 
score. 
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III. RELIABILITY EVALUATION 
The evaluation of the safeness in using the GNSS shadow 

matching is very challenging, statistically. Our proposed 
approach plays a role in selecting the shadow matching 
solutions that fulfil the rules (derived based on the theory of 
GNSS shadow matching) of a good estimation. In a real 
application, the exclusion of unreliable solutions is beneficial 
for multi-sensor integrated navigation system. Therefore, the 
reliability evaluation is necessary.  

Total of four rules are defined and will be introduced in this 
section. These evaluations aim to provide indicators to forecast 
the shadow matching performance. The indicators are designed 
by the uniqueness of the surrounding building geometry for the 
satellites matching. For example, shadow matching will not 
work in an opensky environment as there are not enough 
features to match with as shown in rule 1 𝑅𝑅1. Also, the high 
similarity of building geometry like two parallel streets will 
results in multiple clusters with high score which will give a 
high uncertainty to the solution, so we target to find out the 
multiple clusters and determine the confidence level for the 
solution as shown in rule 3 𝑅𝑅3 . Another critical point for 
shadow matching is the satellite distribution to match the 
building geometry. Therefore, the indicator will consider how 
the satellite distribution matching with the building geometry 
as shown in rule 2 𝑅𝑅2. These indicators are designed for the 
smartphone and low-cost GNSS receiver to use, where their 
measurements may be nosier comparing to a geodetic receiver. 
When these indicators label the shadow matching is not 
trustable, we can exclude that epoch’s solution. Although this 
will decrease the shadow matching availability, it can provide a 
more robust positioning solution for the user. The positioning 
results after solution exclusion based on different reliability rule 
will be presented in section IV.C.  

 

A. Rule 1 𝑅𝑅1: Applying Shadow Matching Determine 
Factor 

The first rule is the factor to determine whether the shadow 
matching is functional. As we know, the shadow matching 
performs well in urban canyons in the condition that unique 
building features are sufficient. As the open-sky areas contain 
very few buildings, the shadow matching is not suitable for such 
environments. Therefore, this rule is to check whether all the 
candidates located in an open-sky environment averagely. If 
most of the candidates are located in an open-sky environment, 
this indicator will reflect a high value, which is calculated by,  

 

 R1 =
𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿������
𝑆𝑆

 (3) 

 
Where 𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿������ is the average number of LOS satellite classified 

by the skymask classification of all distributed candidate and 𝑆𝑆 
is the total number of satellite that its elevation angle is higher 
than 0 degrees based on the broadcast ephemeris. 

Rule 1 can examine whether the distributed candidates' 
environment is too open for the shadow matching to give a 
reliable solution. The lower value of the R1 is, the deeper the 
urban canyon the receiver is located at, the high reliability of 
the shadow matching solution is expected.  

 

B. Rule 2 𝑅𝑅2: Surrounding Features 
Rule 2 is to examine the richness of surrounding building 

features for the shadow matching. The unique structure of 
surrounding buildings is, the more accurate for the shadow 
matching solution is.   

In here, a concept of ‘key satellite’ needs to be introduced. 
The key satellite is the satellite(s) that falls near the building 
edge, like the cyan and yellow satellites shown in Fig. 4. Based 
on the shadow matching principle, the satellite distribution is 
important to match the building boundaries in the skymask. 
Precisely, satellites fall around the building boundaries are the 
main features to be matched with skymask and more critical for 
the shadow matching. Therefore, we offset the skymask on both 
azimuth and elevation angle, named ‘key satellite area’ in Fig. 
4, and see how many satellites fall inside this area. These 
satellites inside the offset area well named as ‘key satellite’. If 
a larger number of satellites are labelled as ‘key satellite’ 
overall satellite, a higher probability of the best match on this 
candidate.  

When performing the skymask prediction at each candidate, 
the skymask building edge will offset the azimuth and elevation 
angle with 10 degrees. For the LOS classified satellites, an extra 
5 degrees will be added. If the offset building edge covers the 
satellite, that satellite will be labelled as the key satellite.  

 

 
Fig. 4. Illustration of the proposed key satellite classification for GNSS 
shadow matching. The searching offset angle is 10 degrees for both 
azimuth and elevation angles. The LOS area will add an extra 5 degrees 
to search the key satellite. 
 

Rule 2 calculates the number of the classified key satellites 
in the total number of satellites for the scoring (total number of 
received satellites and ephemeris satellites) at the solution 
position. 

 

 R2 =
𝑆𝑆𝑘𝑘𝑘𝑘𝑘𝑘������
𝑆𝑆

 (4) 

 
The 𝑆𝑆𝑘𝑘𝑘𝑘𝑘𝑘������ is the average number of key satellites at highest 

5% of the candidate, and 𝑆𝑆 is the total number of visible satellite 
based on a broadcast ephemeris. 

The higher value of rule 2 is, the better performance of 
shadow matching should be obtained. It means the more 
features for shadow matching to compare the received satellites 
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with the classified satellite visibility of candidates based on 
skymask. Therefore, we can know whether the candidate has 
the unique features to matching with the satellite visibility. 

 

C. Rule 3 𝑅𝑅3: Confidence Level at Multiple Cluster 
Rule 3 examine the local minima problem on selected 

candidates with the highest similarity on satellite visibility. The 
local minima's occurrence due to the high similarity of the 
surrounding building structure and lack of matching features. 
For example, at two parallel streets with a similar environment, 
their skymask will be similar and easily identify a wrong 
position when matching with the satellites, as shown in Fig. 
5(b). In other words, the candidate located at the incorrect 
position may have identical satellite visibility with that of the 
ground truth location. Therefore, these local minima result in a 
low confidence level of the weighted average solution.  

The calculation of Rule 3 uses the Euclidean distance to 
separate the candidates with the highest 5% score into the 
cluster, 15 meters is set as the threshold distance for clustering 
in this paper. For example, multiple clusters could be found, 
such as Fig. 5. If the key satellite appears in more than half of 
the candidates, that key satellite will be the key satellite for the 
cluster. Then, for the two clusters, the confidence level of rule 
3 is calculated by 

 

 𝑅𝑅3 = �
argmax

𝑚𝑚,𝑛𝑛

𝑺𝑺𝒎𝒎∩𝑛𝑛 × 2
𝑺𝑺𝒎𝒎 + 𝑺𝑺𝒏𝒏

𝑁𝑁 > 1

0 𝑁𝑁 = 1
 

where 𝑚𝑚,𝑛𝑛 ∈ {1,2, … ,𝑁𝑁}:𝑚𝑚 ≠ 𝑛𝑛 

(5) 

 
𝑁𝑁 is the total number of clusters. 𝑆𝑆∗  is the number of key 

satellite in the ∗-th cluster. Therefore, 𝑆𝑆𝑚𝑚∩𝑛𝑛 is the number of 
common key satellite between cluster 𝑚𝑚 and 𝑛𝑛. The calculation 
of 𝑅𝑅3  will go through all combination of any two clusters if 
more than two clusters were found, the largest calculated value 
will be used for the R3 evaluation. If only one cluster is found, 
Rule 3 will be given 0 for that epoch, which means all the 
particle are concentrate and higher confidence is given to the 
solution.  

The meaning of this value is the similarity of two clusters. 
The clusters can be separated using the highest 5% score 
candidates based on the distance. If more common key satellites 
were found, it means other candidates obtain similar satellite 
visibility which is far away. Therefore, the smaller value means 
the cluster obtains a higher uniqueness.  

 
Fig. 5. Illustration of the local minima (two clusters) in GNSS shadow 
matching. The blue circle is the cluster, the pink point is the shadow 
matching solution, and the green star is the ground truth. (a) shows the 
distributed candidates with a single cluster. (b) shows the distributed 
candidate with multiple clusters.  

 

D. Rule 4 𝑅𝑅4: Ratio on Achieving Full Score 
Rule 4 𝑅𝑅4 is the reliability of shadow matching solution is the 

ratio of achieving full score. The reliability score is calculated 
by 

 

 R4 =
Λ� − τmin

τmax − τmin
 (6) 

 
Where Λ� is the average score of the selected candidates, τmin 

and τmax  are the minimum and maximum score of all 
distributed candidates τj, respectively. In here, the higher score 
of reliability is, the more reliable solution is. R4 examines how 
the candidates with the highest 5% score achieve the highest 
score. The denominator in (6) calculates the range of the score 
for all distributed candidates. While the numerator is 
calculating the range of the highest 5% selected candidates to 
all score. If the average score of selected candidates Λ�  are 
concentrated, and the average value is near the highest score, 
Λ� ≈ τmax, the R4 value will fall near to 1. If R4 near to 1, means 
solution have a higher possibility to be the optimal solution.  

 

IV. EXPERIMENT RESULTS AND ANALYSIS 

A. Experiment Setup and Information 
Several experiments were done to evaluate the performance 

of shadow matching with intelligent classifier. The experiments 
took place in the urban canyons in Hong Kong. A commercial-
grade receiver (Rx1), and two smartphones (Rx2 and Rx3 
respectively) were equipped to record the data and post-
processing it. The 3D building models are given by the research 
collaborator, which are in the accuracy of 1-2m. The ground 
truth is marked on Google Earth manually, and we went to the 
labelled landmark for the experiments. These ground truth 
method is following with our previous work in [28].  

Table II shows the environments of the experiments. The 
street width to height ratio is calculated by 
𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛 𝑏𝑏𝑏𝑏𝑖𝑖𝑏𝑏𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏 ℎ𝑚𝑚𝑖𝑖𝑏𝑏ℎ𝑡𝑡 𝑠𝑠𝑡𝑡𝑠𝑠𝑚𝑚𝑚𝑚𝑡𝑡 𝑤𝑤𝑖𝑖𝑏𝑏𝑡𝑡ℎ⁄ , the higher value 
means the area is surrounded by taller building compared to the 
street width. Namely, the higher value means the higher 
urbanization of the environment. The environment and 
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skymask for the experiments are shown in Fig. 6. 
 

TABLE II 
EXPERIMENTS INFORMATION 

Experiment 
name Device No. of 

epochs 
Experiment 

type 
Street width to 

height ratio 
Half street 
width (m) 

S1-Rx2 Smartphone 1 601 Static 3.07 11.9 
S1-Rx3 Smartphone 2 601 Static 3.07 11.9 
S2-Rx3 Smartphone 2 421 Static 2.83 12.0 
S3-Rx2 Smartphone 1 481 Static 2.47 15.0 
S4-Rx1 Commercial 214 Static 2.25 8.0 
D1-Rx1 Commercial 69 Dynamic 0.78 32.5 
D1-Rx2 Smartphone 1 66 Dynamic 0.78 32.5 
D1-Rx3 Smartphone 2 66 Dynamic 0.78 32.5 
 

 
Fig. 6. Environment and skymask of the experiments. 

 
The intelligent classifier model is pre-trained by datasets 

recorded on different scenarios to ensure the dataset can cover 
enough signal features [29]. And the experimental data used in 
this paper did not include in the training datasets.  

 

B. Classification Accuracy and Positioning Results 
In this section, the classification rate of intelligent classifier 

and the positioning results will be evaluated. The positioning 
results of shadow matching with and without intelligent 
classifier will be compared. 

 
1) Intelligent Classifier Classification Rate 

The overall classification rate is shown in Table III. The LOS 
and NLOS classification is done at ground truth for each 
experiment, where the ground truth is labelled manually on 
Google Earth. The intelligent classifier overall accuracy is 
about 70%. The feature of the satellite signal on 𝐶𝐶 𝑁𝑁0⁄ , 
elevation angle, pseudorange residual, and pseudorange rate 
residual are used for the NLOS reception exclusion for the 
intelligent classifier [29]. 

 
TABLE III 

CLASSIFICATION ACCURACY OF THE EXPERIMENTS 

Experiment Total no. of 
measurements 

No. of 
measurements 

correctly 
classified 

No. of 
measurements 

incorrectly 
classified 

Overall 
correctly 
classified 

percentage 
(%) 

S1-Rx2 14737 10428 4309 70.76 
S1-Rx3 15008 9899 5109 65.96 
S2-Rx3 12390 6593 5797 53.21 
S3-Rx2 13393 9214 4179 68.80 
S4-Rx1 2376 1655 721 69.65 
D1-Rx1 1074 888 186 82.68 
D1-Rx2 1337 1048 289 78.38 
D1-Rx3 1639 1104 535 67.36 
 

2) Positioning Results 
The overview on root-mean-square (RMS) error for 

positioning results is shown in Table IV. The positioning 
accuracy will be compared with: 

1. Weighted-least-squares (WLS), with (42) based on 
satellites’ elevation angle and 𝐶𝐶 𝑁𝑁0⁄  value [30] 

2. Shadow matching without intelligent classifier (SDM) 
3. Shadow matching with intelligent classifier (SDM-ML) 

The SDM without intelligent classifier only consider the 
received satellite with 𝐶𝐶 𝑁𝑁0⁄  larger than 35dBHz as the LOS 
satellite. While the SDM-ML first extracts the measurement 
features, then puts into the intelligent classifier to select out the 
NLOS reception. 
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The actual datasets determine 𝐶𝐶 𝑁𝑁0⁄  threshold with 35 dBHz 
for SDM without the intelligent classifier, shown in Fig. 7. For 
both smartphone and commercial-grade receiver, the  𝐶𝐶 𝑁𝑁0⁄  of 
LOS signal is usually larger than 35 dBHz. 

 
Fig. 7. Normalized SNR distributions of LOS and NLOS signals of (a) 
smartphone and (b) commercial-grade receiver dataset. 

 
The positioning error will be shown in the 2D direction, 

which is the displacement between ground truth and solution. 
The error will also be decomposed into across- and along- street 
directions. The along-street direction is determined manually 
based on the building geometry distribution.  

 
TABLE IV 

OVERALL EXPERIMENTS POSITIONING ACCURACY (IN METERS) 

Experiment WLS RMS error (m) SDM RMS error (m) SDM-ML RMS error (m) Percentage of SDM-ML epoch 
within half street width (%) 2D Across Along 2D Across Along 2D Across Along 

S1-Rx2 22.84 20.39 10.29 17.80 4.23 17.29 7.29 4.11 6.02 100.0 
S1-Rx3 147.34 82.89 121.82 24.76 13.49 20.77 7.61 4.21 6.33 100.0 
S2-Rx3 110.02 74.21 81.23 22.96 16.09 16.37 17.30 12.71 11.74 60.1 
S3-Rx2 22.10 16.03 15.22 40.87 23.78 33.24 40.25 15.27 37.24 54.1 
S4-Rx1 39.88 36.61 15.81 14.54 7.72 12.32 17.76 4.86 17.08 97.7 
D1-Rx1 37.38 36.45 8.30 39.76 34.04 20.55 10.79 3.01 10.36 100.0 
D1-Rx2 40.11 39.58 6.50 28.62 13.55 25.21 10.37 1.93 10.19 100.0 
D1-Rx3 112.94 56.79 97.62 27.66 13.12 24.35 13.41 2.26 13.22 100.0 

The shadow matching performance can achieve about 5m in 
across street direction, while the total 2D error most of them can 
achieve about 10m error. Solutions distribution on the map for 
the shadow matching with intelligent classifier, as shown below.  

The experiment S1 surrounds with aligned building along the 
street. Therefore, the positioning results are good in the across-

street direction, as shown in Fig. 8. For the experiment S1 with 
both smartphones Rx2 and Rx3, the across street direction RMS 
can achieve about 4m. From the distribution of the solutions, 
the SDM-ML can improve along-street accuracy. And for the 
S1-Rx3, the across-street direction accuracy improves much. 

 
Fig. 8. Positioning results of S1 on (a) Rx2 and (b) Rx3. 

 
Both the experiment S2 and S3 are located at the intersection 

of the road, where buildings are not aligned and do not have a 
clear along street direction. In other words, the positioning 
uncertainty is the same in both along- and across-street 

directions.  For the S2-Rx3, both the across- and along-street 
direction errors achieve about 12m. Fig. 9 shows the positioning 
results of S2-Rx3, where the positioning results of SDM 
without intelligent classifier, the solutions distribute across the 
whole intersection. The reflected signal come from different 
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directions, results in counted as LOS and accidentally high 
score in the candidate at the opposite side of the street. With the 
intelligent classifier, the received signal visibility estimation 
can be improved, resulting in the positioning accuracy improve 
much, and the solutions become more concentrated to the 
ground truth. 

 
Fig. 9. Positioning results of S2-Rx3. 
 

Furthermore, for the S3-Rx2, the 2D position error achieves 
40.25m and 37.24m in the along-street direction, Fig. 10 shows 
the solution distribution. Similar to S2-Rx3, severe NLOS 
reception and results in the solution drift to the opposite side of 
the street. Although intelligent classifier cannot classify all 
NLOS reception, it still improves the accuracy.  

 
Fig. 10. Positioning results of S3-Rx2. 
 

This considerable error caused by the limitation of shadow 
matching, the experiment was located in the road intersection. 
The high similarity of the building from one corner to another 
cause the error, like the location and corresponding skymasks 
shown in Fig. 11 (a), (b), and (c) respectively. This high 
similarity results in the uncertainty for the position candidate’s 
selection, and multiple clusters for the candidates. Cluster near 
the ground truth obtains a high score of 25, as shown in Fig. 
11(b). The score here is identical to the score obtained by father 
cluster, shown in Fig. 11(c). Although the skymask is different, 
only a few key satellites to match the skymask to obtain a 
perfect solution.  

 

 
Fig. 11. (a) Position candidates heatmap. (b) Skymask with satellites 
projected of a candidate at the upper cluster which is near the ground 
truth. (c) Skymask with satellites projected of a candidate at the lower 
cluster in (a). 
 

Positioning results of S4-Rx1 are shown in Fig. 12. The 
positioning accuracy on across-street can achieve within 5m, 
and the total RMS error is about 18m. However, the along-street 
error of this experiment is relatively large, which exceeds about 
17m. Large positioning error here due to the high similarity of 
building geometry in the along-street direction. The intelligent 
classifier improves the across-street accuracy from 8m to 5m. 
In other words, as the half street width here is 8m, the shadow 
matching with intelligent classifier can successfully identify the 
NLOS reception and results in high confident to determine 
which side of the street is located. 
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Fig. 12. Positioning results of S4-Rx1. 
 

Experiment D1 locates in a light-urban area, and surrounding 
buildings are aligned into the same direction. Therefore, all 
three receivers achieve good positioning results. The 
positioning accuracy can achieve within 5m in the across-street 
direction, shown in Fig. 13. The solution of SDM-ML shows 
that the intelligent classifier can select out those NLOS 
reception to improve the satellite visibility estimation and the 
solution sticks near the building side rather than drift towards 
the middle side. 

 

 
Fig. 13. Positioning results of D1. (a) Experiment D1-Rx1. (b) 
Experiment D1-Rx2. (c) Experiment D1-Rx3. 

 

C. Reliability Analysis 
We use several experiments to improve the reliability 

indicator performance, we will use the proposed reliability rules 
to exclude the epoch solution and mitigate the final positioning 
errors. The passing threshold of the reliability evaluation are 
given as following. The values are determined heuristically.  

• 𝑅𝑅1 < 0.4 
• 𝑅𝑅2 > 0.3 
• 𝑅𝑅3 < 0.5 
• 𝑅𝑅4 > 0.7 

 
In here, we made a comparison of four main categories. The 

first is no rule applied as a reference. The second is that only 
one rule is applied to see the error. The third category is Rule 4 
of reliability passed with one other rules. The last one is 
applying all rules. Also, we combine Rules 1 and 3 to evaluate 
the performance. We believed that Rules 1 and 3 together could 
confirm the shadow matching applies on the satisfactory 
environment, and no multiple clusters or local minimum 
problem to the selected candidates. Therefore, the solution will 
be more reliable.  

The experiment S2-Rx3 positioning results with reliability 
evaluation is shown in Table V. The results show that the Rule 
2 on the key satellites matching with the skymask features at 
solution position can successfully identify the reliability of the 
solution.  

 

 
TABLE V 

RMS ERROR AND PERCENTAGE OF EPOCHS PASSED THE PROPOSED RULES FOR EXPERIMENT S2-RX3 (METERS). WITHOUT IS ABBREVIATED AS W.O. 

RMS (m) w.o. rules Rules combination All rules 1 2 3 4 1+3 1+4 2+4 3+4 1+3+4 
2D 17.30 17.30 12.08 17.07 17.30 17.07 17.30 12.08 17.07 17.07 12.15 

Across 12.71 12.71 9.79 12.77 12.71 12.77 12.71 9.79 12.77 12.77 9.44 
Along 11.74 11.74 7.08 11.33 11.74 11.33 11.74 7.08 11.33 11.33 7.65 

Availability (%) 100.00 52.49 43.23 100.00 43.23 100.00 52.49 43.23 43.23 21.14 
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Fig. 14. Cumulative distribution function (CDF) of the positioning error 
on the across-street direction before and after epochs solution exclusion 
for S2-Rx3. The red dashed line represents the half street width of 
experiment S2-Rx3. 

 
After the reliability test to exclude the epochs based on the Rule 
2 criteria, about 77% of solutions is smaller than the half-width 
of the street, as shown in Fig. 14. The percentage of without 
reliability test of 60%. The result shows that the reliability test 
can increase the percentage of the solutions within half street 
width.  

The experiment S3-Rx2 positioning results with reliability 
evaluation are shown in Table VI. As mention in section 
IV.B.2), the large positioning results due to the similarity on 
building structure at the opposite side of the street. With the 
evaluation factor exclusion, the positioning accuracy improves 
much. Especially rule 2 and other criteria with rule 2. Which 
means the rule 2 shows the key satellites cannot provide enough 
uniqueness to the building boundaries to match the optimal 
positioning candidate. After the reliability evaluation, 78.8% of 
valid solution across-street direction error is smaller than half 
street width, shown in Fig. 15. 

 
TABLE VI 

RMS ERROR AND PERCENTAGE OF EPOCHS PASSED THE PROPOSED RULES FOR EXPERIMENT S3-RX2 (METERS). WITHOUT IS ABBREVIATED AS W.O. 
 

RMS (m) w.o. rules Rules combination All rules 1 2 3 4 1+3 1+4 2+4 3+4 1+3+4 
2D 40.25 40.25 16.05 34.36 40.29 34.36 40.29 16.08 34.40 34.40 16.22 

Across 15.27 15.27 13.73 14.60 15.28 14.60 15.28 13.76 14.62 14.62 13.95 
Along 37.24 37.24 8.30 31.10 37.28 31.10 37.28 8.32 31.14 31.14 8.27 
Availability (%) 100.00 50.10 73.60 99.79 73.60 99.79 49.90 73.39 73.39 46.78 

 

 
Fig. 15. CDF of the positioning error on across-street direction before 
and after epochs solution exclusion for S3-Rx2. The red dashed line 
represents the half street width of experiment S2-Rx3. 

 
The experiment S4-Rx1 reliability results are shown in Table 

VII. The results also show that Rule 2 can exclude those 
unreliable epochs and result in about 7m in 2D direction. And 
positioning error with 4m and 7m in across- and along-street 
directions, respectively. Most of the epochs were excluded by 
Rule 2, the ground truth for experiment S4 may be similar to 
other sample candidates, so it is hard to determine the exact user 
position accurately uniquely.  

From the reliability test and exclusion results, the positioning 
improvement is larger when applying on smartphones. Due to 
the smartphone or other low-cost receivers, their design is to 
acquire and track as much signal as it can, in other words, the 
number of the NLOS reception will be increased. This 
increment will affect both the classification of intelligent 
classifier and the shadow matching positioning. However, with 
the reliability evaluation, the unreliable epoch solution can be 
excluded, improving the positioning accuracy and robustness.  
 

TABLE VII 
RMS ERROR AND PERCENTAGE OF EPOCHS PASSED THE PROPOSED RULES FOR EXPERIMENT S4-RX1 (METERS). WITHOUT IS ABBREVIATED AS W.O. 

RMS (m) w.o. rules Rules combination All rules 1 2 3 4 1+3 1+4 2+4 3+4 1+3+4 
2D 17.76 17.76 6.89 17.65 17.76 17.65 17.76 6.89 17.65 17.65 6.89 

Across 4.86 4.86 3.66 4.87 4.86 4.87 4.86 3.66 4.87 4.87 3.66 
Along 17.08 17.08 5.84 16.96 17.08 16.96 17.08 5.84 16.96 16.96 5.84 
Availability (%) 100.00 0.93 98.13 100.00 98.13 100.00 0.93 98.13 98.13 0.93 

 

V. CONCLUSION AND FUTURE WORKS 
In this study, the shadow matching with intelligent classifier 

and reliability test is introduced. The intelligent classifier is 
successfully classifying the NLOS reception and obtain a better 
shadow matching solution. With the intelligent classifier to 
improve the satellite visibility estimation, the across street 
direction can achieve within 10m error. Furthermore, the idea 
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of shadow matching reliability indicators and key satellite are 
introduced. The exclusion based on the proposed reliability test 
shows that shadow matching performance can be improved 
especially on the smartphone data where the quality of the 
measurements is relatively poor and noisy. Several experiment 
results show that the proposed Rule 2 on the key satellites 
matching with skymask can exclude the solution of epoch with 
large error. From this conclusion, it shows that the shadow 
matching needs good satellites distribution as well as enough 
skymask uniqueness for its matching. 

The satellites at each candidate only score by the similarity 
of satellite visibility. This makes the resolution of the score 
limited, or the multiple clusters may easily occur if the high 
similarity of surrounding skymask. As a result, the scoring 
scheme may be re-designed by identifying the possible key 
satellite based on the received signal features. A higher 
weighting should be given to the matching with skymask. This 
idea should be able to improve the shadow matching results.  

In conclusion, this paper defines a reliable solution of the 
GNSS shadow matching by passing the proposed rules used to 
exclude suspicious solutions (that are not fulfilling the rules of 
a good estimation of shadow matching.) However, we cannot 
guarantee that the proposed solutions fulfil any level of 
integrity. 
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