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Abstract—The GNSS performance could be significantly 
degraded by the interferences in an urban canyon, such as the 
blockage of the direct signal and the measurement error due to 
reflected signals. Such interferences can hardly be predicted by 
statistical or physical models, making urban GNSS positioning 
unable to achieve satisfactory accuracy. The deep learning 
networks, specializing in extracting abstract representations 
from data, may learn the representation about the GNSS 
measurement quality from existing measurements, which can 
be employed to predict the interferences in an urban area. In this 
study, we proposed a deep learning network architecture 
combining the conventional fully connected neural networks 
(FCNNs) and the long short-term memory (LSTM) networks, to 
predict the GNSS satellite visibility and pseudorange error 
based on GNSS measurement-level data. The performance of 
the proposed deep learning networks is evaluated by real 
experimental data in an urban area. It can predict the satellite 
visibility with 80.1% accuracy and predict the pseudorange 
errors with an average difference of 4.9 meters to the labeled 
errors. Experiments are conducted to investigate what 
representations have been learned from data by the proposed deep learning networks. Analysis results show that the 
LSTM layer within the proposed networks may contain representations about the environment, which affects the 
prediction behavior and can associate with the real environment information. 

Index Terms—deep learning, GNSS, LSTM, multipath, navigation, urban canyon 

I. Introduction
ARIOUS applications nowadays rely on accurate and 
reliable navigation solutions, such as intelligent 

transportation system (ITS) and location-based service (LBS) 
[1]. The global navigation satellite system (GNSS) is the most 
widely employed approach among different positioning 
techniques. The GNSS can directly provide a global positioning 
solution instead of a relative position estimation for the user, 
while maintaining an economical cost. However, the quality of 
the GNSS measurements can be easily degraded by the 
interferences related to the environment, introducing enormous 
errors during positioning [2].  
 Unlike the interference from atmospheric delays or satellite 
orbit bias, the modelling of the GNSS multipath error closely 
related to the environment surrounding the user is always a 
challenge, neither through a physical nor a statistical approach, 
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especially for an urban environment with complicated building 
structures [3]. The GNSS receiver may receive the reflected 
signal from the building surface in addition to the direct line-
of-sight (LOS) signal, or even worst, the reflection alone, 
namely the multipath effect or (non-line-of-sight) NLOS 
reception [4]. The reflected signal with an extra propagation 
path will introduce a bias in the GNSS pseudorange 
measurement, which will further degrade the positioning 
accuracy. The GNSS degradation caused by the multipath 
effects that is related to the number and size of surrounding 
buildings, namely the urbanization of the environment, which 
can be quantitatively represented by the parameters of the sky-
view blockage (as shown in the graphical abstract, namely 
skymask) [5]. The relationship between the averaged building 
elevation angle (or averaged skymask) and the weighted least 
squares positioning error from a commercial-grade GNSS 
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receiver is demonstrated in Fig. 1. Such positioning degradation 
is possible to exceed tens of meters and has become the primary 
issue for GNSS urban positioning. 

 A variety of studies have been conducted to mitigate the 
multipath or NLOS errors. A straight-forward method is to   
detect those measurements containing multipath errors by other 
indirect quality information (e.g., the measurement carrier-to-
noise ratio 𝐶𝐶/𝑁𝑁0, the satellite elevation angle, etc.)  and further 
de-weight or isolate their influences [6-9]. However, many of 
the multipath or NLOS errors do not follow the expected 
behavior, such as the strong reflection with high 𝐶𝐶/𝑁𝑁0 , 
resulting in miss-detection and fault isolation. Another 
approach is to avoid encountering the multipath or NLOS 
degradation via positioning error prediction and path planning 
technique [10, 11], but it is impossible to avoid such errors in a 
dense urban area completely. Numerous studies propose 
employing additional sensors to compensate for the GNSS 
errors to achieve precise positioning solutions even in a GNSS-
degraded environment, such as integrating GNSS with the 
inertial navigation system (INS) [12-14] and vision sensors [15, 
16]. Unfortunately, the GNSS is the major sensor providing the 
absolute user position, which still needs to be accurate during 
the initialization of other sensors. Recently, a novel approach 
has been developed to predict the GNSS degradations via 3D 
building models and, in turn, employs those degradations as 
features to conduct positioning, namely the 3DMA GNSS. One 
of the popular 3DMA GNSS techniques is shadow matching 
[17], which conducts positioning by finding the location with 
the 3D-building-model-predicted satellite visibility best 
matching the actual measurements. Besides matching the 
satellite visibility, the 3DMA GNSS ray-tracing [18] further 
considers the matching of pseudorange delay between 
measurements and the 3D-building-model-based prediction. 
Although the 3DMA GNSS can achieve positioning accuracy 
with 10 meters of error in a dense urban area [19], the 
corresponding computation load is huge and the availability of 
3D building models cannot always be guaranteed.  
 Due to the rapid development in computer science, it 
becomes possible to use computational models to learn 
representations of existing data, which can, in turn, guide the 
system behavior when a similar situation is encountered. 
Machine learning model is trained by adjusting the parameters 

of a template model so that the input features extracted can be 
used to infer the outcome, which is the true label. The trained 
model becomes a representation between existing data features 
and corresponding outcomes. As a result, it can be used to 
predict the outcome for a new event. Various machine learning 
algorithms have been developed to conduct classification with 
satisfactory performances, such as the decision tree (DT) [20] 
employing a flowchart-like structure to learn and predict the 
outcome of an event based on existing features, or the support 
vector machine (SVM) [21] separating labeled feature point 
into groups by hyperplanes for future prediction. Moreover, the 
recent popular deep learning technique can even learn 
complicated representation from abstract raw data without the 
need for feature extraction guided by experts [22]. The 
conventional deep learning algorithm as the fully connected 
neural networks (FCNNs) mimics the neural structures in the 
human brain to solve classification or regression problems [23]. 
This structure is then extended by the convolution operation, 
namely the convolutional neural networks (CNN), to 
accomplish more difficult and abstract tasks, such as image 
recognition or diagnosis [24, 25]. By adding the artificial 
memory unit and forget gate into the neural network structure, 
such as the long short-term memory (LSTM) networks of the 
recurrent neural networks (RNN) [26], the model can also have 
an awareness of the context during prediction, which is 
powerful on speech recognition or translation tasks [27, 28].  
 The machine learning technique is superior in accomplishing 
tasks without expertise of the inner principles but with 
numerous data. For the GNSS measurement error that are 
complicated to be comprehensively modeled, many studies also 
suggest employing the machine learning technique to predict 
and mitigate [29]. The occurrence of GNSS ionospheric 
scintillation can be detected by the SVM model [30, 31] or the 
DT model [32] with an accuracy better than the conventional 
threshold-based method. The occurrence of the multipath effect 
in an urban area can also be detected via an SVM classifier [33]. 
Moreover, a machine learning random forest model can 
evaluate the level of multipath degradation to aid the integration 
of GNSS with other sensors [34]. Besides, the machine learning 
model can be employed in a regression manner for the 
pseudorange error prediction [35]. The performances of 
multipath detection by machine learning with different levels of 
GNSS measurements are investigated in [36].  

Besides the conventional learning architecture, a deep 
learning architecture is recently being employed to extract a 
better representation from the GNSS data. The neural networks 
have been employed to better estimate the wind speed from the 
GNSS reflectometry (GNSS-R) measurements [37, 38]. The 
neural network framework is employed for multipath detection 
[39] or multipath error prediction [40] based on the GNSS 
measurement-level features, e.g., pseudorange measurements 
and 𝐶𝐶/𝑁𝑁0  in the Receiver Independent Exchange (RINEX) 
format. It can be integrated with the fuzzy logic principle to 
achieve better accuracy on multipath or NLOS detection [41]. 
The neural network architecture can even extract 
representations from the GNSS correlator-level data to estimate 
parameters for multipath mitigation [42], or directly output the 
multipath-mitigated measurements [43]. This approach is 
further extended by integrating the CNN to conduct multipath 
detection and mitigation [44], or substitute the conventional 

 
Fig. 1.  Relationship between the averaged building elevation angle and 
the weighted least squares positioning error from a commercial-grade 
GNSS receiver. Blue curve denotes the polynomial fitted model from a 
large size of GNSS data samples (black markers). 
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correlation process in a GNSS receiver [45]. The deep learning 
algorithm has shown great potential to learn and represent those 
complicated GNSS errors that are hard to be modeled via the 
traditional approach. However, most studies evaluate the 
benefits of GNSS aided by deep learning from the result point 
of view, whereas the representation that the network has learned 
is seldom investigated or discussed. 

In this study, a deep learning framework combining 
conventional neural networks and LSTM is developed to 
predict the GNSS satellite visibility and pseudorange error in 
an urban canyon. Here, the satellite visibility refers to whether 
the satellite is blocked by buildings even if its measurement is 
received (i.e., NLOS reception). The pseudorange error refers 
to the delay within the GNSS ranging measurement due to 
interferences from buildings. This is inspired by our previous 
work that the GNSS measurements can be used to estimate the 
sky visibility in an urban canyon [46]. The LSTM layer is 
superior to FCNNs in extracting the context information from 
sequential data, like GNSS measurements. It is employed to 
extract the representation, which may relate to the environment 
from the preprocessed GNSS features. On the other hand, the 
GNSS measurement-level features of each satellite will be input 
to the FCNNs, from which the hidden layer will concatenate 
with the representation from the LSTM layer to predict the 
satellite visibility and pseudorange multipath error, 
respectively. The proposed model is trained and evaluated by 
real experimental data. Based on the knowledge of environment 

and measurement error behavior, we conduct investigations on 
what representation is learned from the data and its relationship 
to the actual surrounding environment. The contributions of this 
study are twofold: 1) the development of a deep learning 
network architecture to predict the GNSS satellite visibility and 
pseudorange error in an urban area, by employing the LSTM 
specialized in extracting context representations; 2) the 
investigation on what representation is learned from the deep 
learning network to predict the urban GNSS measurement 
uncertainty (i.e., the satellite visibility and pseudorange error), 
and its relationship between the network layer and the urban 
environment.  

The remainder of this paper is organized as follows: Section 
II shows the overall system architecture of the deep learning 
networks. Section III illustrates the preprocessed GNSS 
features that are effective for deep learning prediction. The 
proposed deep learning networks are explained in detail in 
Section IV, followed by experimental evaluation results in 
Section V. Then, the extracted representation from the LSTM 
layer is investigated in Section VI. Finally, the conclusions are 
summarized with future work. 

II. SYSTEM ARCHITECTURE 
The proposed deep learning network architecture for GNSS 

satellite visibility and pseudorange error prediction is shown in 
Fig. 2. Firstly, the GNSS raw measurements are preprocessed 
to obtain the features, including the elevation angle, azimuth 

 
Fig. 2.  The system architecture of the proposed deep learning network for satellite visibility and pseudorange error prediction. The variables 𝐸𝐸𝐸𝐸, 𝐴𝐴𝐴𝐴, 
𝐶𝐶/𝑁𝑁0, 𝜀𝜀 and 𝑅𝑅𝑅𝑅𝑅𝑅𝜀𝜀 denote the GNSS features of elevation angle, azimuth angle, carrier-to-noise ratio, pseudorange residual, root-sum-squares of 
pseudorange residuals, respectively. The variable 𝑘𝑘 denotes the satellite index in the same epoch of measurements. 𝑊𝑊 and 𝑏𝑏 denote the weighting 
and bias term between different neural network layers, followed by the type of activation function, including ReLu, Sigmoid and None (explained in 
Section IV.A). The bracket in each block denotes the size of the corresponding layer. 
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angle, 𝐶𝐶/𝑁𝑁0, pseudorange residual, and the root-sum-squares of 
the pseudorange residuals 𝑅𝑅𝑅𝑅𝑅𝑅𝜀𝜀  from all satellites at a single 
epoch. In this study, the term “epoch” denotes an instant in time 
collecting the GNSS measurements. The GNSS features from 
all available satellites in a specific epoch will be the inputs of 
the LSTM network. This network (the blue one in Fig. 2) is 
expected to combine the information from each satellite to 
transform them into a vector that representing the surrounding 
environment of the GNSS receiver. The features of a single 
target satellite in the same epoch will be used as the inputs to 
the FCNN (the red one in Fig. 2) to predict the GNSS 
measurement quality in urban areas. The third hidden layer is 
then concatenated with the preceding layer, expecting to 
combine the measurement information with the environment 
information. The concatenate layer will be employed by two 
individual FCNNs with two hidden layers to predict the satellite 
visibility and the pseudorange error corresponding to the 
selected measurement. Here, the motivation of designing this 
network structure is to employ the LSTM’s ability in context 
recognition to extract a representation of the surrounding 
environment, which can better aid the prediction of satellite 
visibility and pseudorange error that is closely depending on the 
surrounding environment.  

III. GNSS FEATURE EXTRACTION 
Although one of the benefits of deep learning is the ability to 

directly extract abstract representations from the raw data, the 
preprocess of the data can help to isolate irrelevant features and 
enhance the effectiveness of model training. In our proposed 
network, five features closely related to the satellite visibility 
and pseudorange error are preprocessed for the deep learning 
networks, including the elevation angle, azimuth angle, 𝐶𝐶/𝑁𝑁0, 
individual pseudorange residual, and the root-sum-squares of 
pseudorange residuals from all available satellites.  

A. Elevation Angle 𝐸𝐸𝐸𝐸 
The GNSS measurement quality is highly affected by the 

corresponding satellite elevation angle, which has been widely 
employed to determine the weighting during GNSS positioning. 
As Fig. 3a shows, the satellite with a higher elevation angle is 
less likely to be blocked by obstacles. Moreover, the 
corresponding measurement is also less affected by the 
multipath effect, since it is harder to fulfill the geometrical 
requirement of receiving the reflected signals. 

The satellite elevation angle can be estimated from the GNSS 
measurements by 
 

𝐸𝐸𝐸𝐸 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑢𝑢�𝑠𝑠𝑠𝑠/�̂�𝑎) (1) 
 
where 𝑢𝑢�𝑠𝑠𝑠𝑠 is the length of the “Up” component of the satellite 
position in East-North-Up (ENU) coordinate with respect to the 
receiver position, �̂�𝑎 is the range between satellite and receiver. 
Although the exact positions of satellite and receiver are 
unknown, the elevation angle can still be estimated with an 
acceptable accuracy based on the ephemeris-estimated satellite 
position and the measurement-estimated receiver position, 
since positioning error is trivial compared to the distance 
between satellite and receiver. 

B. Azimuth Angle 𝐴𝐴𝐴𝐴 
The satellite azimuth angle is another geometrical parameter 

describing the position of the satellite. Unlike the satellite 
elevation angle, it only indirectly relates to the GNSS 
measurement quality when considering the spatial correlations 
between different satellites. For a group of satellites with 
adjacent azimuth angles, such as Satellites 9 and 87 in Fig. 3b, 
if the satellite with a lower elevation angle has good 
measurement quality that possibly being a LOS satellite, the 
other satellite with a higher elevation angle is more likely to be 
a LOS satellite as well. On the other hand, the low-elevation 
satellite with an azimuth angle adjacent to a high-elevation 
NLOS satellite is more likely to be an NLOS satellite as well, 
such as Satellites 95 and 93 in Fig. 3b. Such relationships are 
difficult to be represented via conventional model but may 
feasible by deep learning approach, which is good at extracting 
abstract representations. 

 Similar to elevation angle, the satellite azimuth angle can be 
estimated by the estimated satellite and receiver positions, using 
 

𝐴𝐴𝐴𝐴 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(�̂�𝑒𝑠𝑠𝑠𝑠/𝑎𝑎�𝑠𝑠𝑠𝑠) (2) 
 
where �̂�𝑒𝑠𝑠𝑠𝑠  and 𝑎𝑎�𝑠𝑠𝑠𝑠  are the length of the “East” and “North” 
component of the satellite position in ENU coordinate with 
respect to the receiver position. 

C. Carrier-to-Noise Ratio 𝐶𝐶/𝑁𝑁0 
The quality of GNSS measurement is also frequently 

evaluated by its corresponding 𝐶𝐶/𝑁𝑁0 , which describes the 
received signal strength with respect to the noise power density 
at the receiver front-end [47].  

Besides being employed to determine the weighting of each 
measurement during positioning, the 𝐶𝐶/𝑁𝑁0  is also used to 
predict satellite’s visibility in many 3DMA GNSS algorithms 
[17]. Moreover, the 𝐶𝐶/𝑁𝑁0 attenuation could also relate to the 
interference, such as reflections or diffractions, according to the 
geometrical parameters of the interference [48, 49]. Therefore, 
the measurement 𝐶𝐶/𝑁𝑁0  is employed to classify the satellite 
visibility and quantitatively evaluate the severeness of the 
interference. An example is shown in Fig. 4, where the 
measurement with severe diffraction effect is usually 
significantly attenuated. Noted that the 𝐶𝐶/𝑁𝑁0 is closely related 
to the satellite elevation angle due to the propagation distance 
in space [50]. The 𝐶𝐶/𝑁𝑁0 is a feature that usually used together 
with the elevation angle for an effective machine learning 
architecture. 

 
Fig. 3.  Examples of the sky-plot with satellite visibility in urban areas. 
Green and red markers denote the LOS and NLOS satellites, 
respectively. Grey areas denote the sky-view blocked by buildings. 
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D. Pseudorange Residual 
The GNSS receiver position is usually obtained by an 

iterative least squares (LS) estimation based on the pseudorange 
measurements and satellite positions, which forms an overly 
determined system, as follows. 
 

∆𝐱𝐱 = (𝐇𝐇T𝐇𝐇)−1𝐇𝐇T∆𝛒𝛒 (3) 
 

where ∆𝐱𝐱 consists of the position bias from the initial guess 
and the receiver clock bias. 𝐇𝐇 is the satellite geometry matrix 
that consisted by LOS vectors between the satellites and 
receiver. ∆𝛒𝛒  is the vector of the difference between 
pseudorange measurements and geometric distance from the 
initial guess to the satellites. The optimized solution may not 
always be consistent with all measurements. Hence, the 
consistency between the optimal solution and each individual 
measurement can be described by the pseudorange residual [9], 
as follows. 
 

𝛆𝛆 = ∆𝛒𝛒 − 𝐇𝐇 ∙ ∆𝐱𝐱 (4) 
 
where 𝛆𝛆 = [𝜀𝜀1 ⋯ 𝜀𝜀𝑘𝑘]T  consists of the individual 
pseudorange residual from 1st to 𝑘𝑘𝑡𝑡ℎ satellite. The pseudorange 
residual is expected to provide quantitative information about 
the scale of the pseudorange error during deep learning.  

E. Root-Sum-Squares of Pseudorange Residuals 𝑅𝑅𝑅𝑅𝑅𝑅𝜀𝜀 
The goodness of the least square fit to the measurement 

during positioning can be evaluated by the root-sum-squares of 
all pseudorange residuals [51], which can be derived using 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝜀𝜀 = √𝛆𝛆T ∙ 𝛆𝛆 (5) 
 
where the superscript T denotes the transpose of a matrix. The 
𝑅𝑅𝑅𝑅𝑅𝑅𝜀𝜀  can be regarded as an overall feature describing the 
quality of a set of GNSS measurements. It also has an indirect 
relationship with the environment; for example, the 𝑅𝑅𝑅𝑅𝑅𝑅𝜀𝜀 of the 
measurements is anticipated to be small for an open-sky area 
but large for an urban area. The 𝑅𝑅𝑅𝑅𝑅𝑅𝜀𝜀  is expected to provide 
overall information about the surrounding environment of the 
receiver. 

IV. DEEP LEARNING NETWORKS 
As Fig. 2 shows, the proposed deep learning network 

combines the conventional FCNNs and the LSTM network, a 
popular type of RNNs. The detailed procedures and benefits of 
applying the proposed network will be introduced in this 
section. 

A. Fully Connected Neural Networks (FCNNs) 

The FCNNs architecture is a traditional form of neural 
networks. Each node is connected to the nodes on the next layer 
with all possible connections until reaching the output, as 
shown in Fig. 5. The mathematical process on each node can be 
described as applying a non-linear activation function on the 
biased linear combination of all the information from the former 
layer, as follows. 
 

𝑦𝑦𝑛𝑛 = 𝑔𝑔�∑ 𝑤𝑤𝑚𝑚,𝑛𝑛𝑥𝑥𝑚𝑚𝑚𝑚 + 𝑏𝑏𝑛𝑛� (6) 
 
where 𝑚𝑚 and 𝑎𝑎 denote the node index on the former layer and 
the current layer. Variable 𝑤𝑤𝑚𝑚,𝑛𝑛  denotes the weighting 
(coefficient) during the linear combination of each 𝑥𝑥𝑚𝑚 from the 
former layer on the 𝑎𝑎𝑡𝑡ℎ node at the current layer.  𝑏𝑏𝑛𝑛 is the bias 
term and 𝑔𝑔(∙) is the activation function. In this study, three 
types of activation functions may be used. 
 

𝑔𝑔(𝑎𝑎) = �
max(0,𝑎𝑎), 𝑅𝑅𝑒𝑒𝑅𝑅𝑅𝑅

1
1+𝑒𝑒−𝑎𝑎

, 𝑅𝑅𝑎𝑎𝑔𝑔𝑚𝑚𝑆𝑆𝑎𝑎𝑆𝑆
𝑎𝑎, 𝑁𝑁𝑆𝑆𝑎𝑎𝑒𝑒

 (7) 

 
The process on the whole layer can be represented in a vector 

form, using 
 

𝐲𝐲 = 𝑓𝑓(𝐖𝐖𝐱𝐱 + 𝐛𝐛) (8) 
 

Therefore, the overall network can be regarded as a repeating 
stack of linear combinations and non-linear functions. The goal 
is to find the optimal weighting and bias for each layer, making 
the outputs of the network (by feeding with existing data) close 
to the true label. 

B. Long Short-Term Memory (LSTM) Networks 
Besides using the FCNNs, our proposed network architecture 

employs the LSTM to obtain the representation from all 
available satellite information within a single epoch, as Fig. 2 
shows. The motivation here is the attempt to extract the 
environment information, which determines the GNSS 

 
Fig. 4.  A sky-plot demonstrating the 𝐶𝐶/𝑁𝑁0 of different satellites in an 
urban area. The color bar shows the value of 𝐶𝐶/𝑁𝑁0 . The grey area 
denotes the sky-view blocked by buildings. 

 
Fig. 5.  Demonstration of fully connected neural networks (FCNNs) and 
the operation on each node. 
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interference behaviors, from available measurements. The 
feasibility of extracting this representation has been 
investigated by [46], where the sky-view blockage (skymask) 
due to buildings can be estimated by the GNSS measurements. 
The LSTM being widely applied on context-awareness 
applications is an appropriate architecture to achieve this task. 

An example cell of the employed LSTM architecture (a 
single LSTM layer is formed by 𝑘𝑘 cells, where 𝑘𝑘 is the total 
satellite number in a single epoch for this study) is shown in 
Fig. 6. Based on the current input 𝐱𝐱𝑘𝑘 and the former cell output 
𝐡𝐡𝑘𝑘−1, the output of the current cell can be obtained by 
 

𝐟𝐟𝑘𝑘 = 𝜎𝜎�𝐖𝐖𝑥𝑥,𝑓𝑓𝐱𝐱𝑘𝑘 + 𝐖𝐖ℎ,𝑓𝑓𝐡𝐡𝑘𝑘−1 + 𝐛𝐛𝑓𝑓� (9) 
 

𝐢𝐢𝑘𝑘 = 𝜎𝜎�𝐖𝐖𝑥𝑥,𝑖𝑖𝐱𝐱𝑘𝑘 + 𝐖𝐖ℎ,𝑖𝑖𝐡𝐡𝑘𝑘−1 + 𝐛𝐛𝑖𝑖� (10) 
 

𝐠𝐠𝑘𝑘 = 𝑎𝑎𝑎𝑎𝑎𝑎ℎ�𝐖𝐖𝑥𝑥,𝑔𝑔𝐱𝐱𝑘𝑘 + 𝐖𝐖ℎ,𝑔𝑔𝐡𝐡𝑘𝑘−1 + 𝐛𝐛𝑔𝑔� (11) 
 

𝐨𝐨𝑘𝑘 = 𝜎𝜎�𝐖𝐖𝑥𝑥,𝑜𝑜𝐱𝐱𝑘𝑘 + 𝐖𝐖ℎ,𝑜𝑜𝐡𝐡𝑘𝑘−1 + 𝐛𝐛𝑜𝑜� (12) 
 

𝐜𝐜𝑘𝑘 = 𝐟𝐟𝑘𝑘⨀𝐜𝐜𝑘𝑘−1 + 𝐢𝐢𝑘𝑘⨀𝐠𝐠𝑘𝑘 (13) 
 

𝐡𝐡𝑘𝑘 = 𝐨𝐨𝑘𝑘⨀𝑎𝑎𝑎𝑎𝑎𝑎ℎ(𝐜𝐜𝑘𝑘),𝐡𝐡𝑘𝑘 ∈ (−1,1) (14) 
 

where 𝐖𝐖 and 𝐛𝐛 denote the weightings and bias that need to be 
trained. 𝐜𝐜𝑘𝑘  is the vector of internal recurrent cell state. 𝐟𝐟𝑘𝑘 
denotes the forget gate vector determining whether to erase the 
cell state, whereas 𝐢𝐢𝑘𝑘 denotes the input gate vector determining 
whether to update the cell state. 𝐠𝐠𝑘𝑘  controls how much to 
update from the input, while 𝐨𝐨𝑘𝑘 controls how much to output 
from the cell. 𝜎𝜎  and 𝑎𝑎𝑎𝑎𝑎𝑎ℎ  are the sigmoid function and the 
hyperbolic tangent function, respectively. ⨀  denotes the 
element-wise multiplication. 

The LSTM is capable of learning the context information 
shared by multiple feature sets, even for size-varying inputs 
[22]. It is ideal for the GNSS measurements, in which the total 
receivable satellite number varies depending on the 
environment. The design of LSTM can mitigate the extreme 
gradient problem on nodes during the training process via 
properly designed flows [25]. When dealing with a sequential 
input data by a traditional network architecture, the early input 
data has a less influence on the final network output. The LSTM 
mitigates this effect. However, the LSTM also has another 
characteristic of memorizing the input sequence pattern, which 
may not be an advantage for the expecting task in this study. 
The overall environment behavior will not have a relationship 
with the input sequence of measurements from different 

satellites within the same epoch. To avoid over-learning the 
sequence pattern, we randomly rearrange the measurement 
order before fed in the LSTM. 

C. Training Networks 
The goal of deep learning is to tune and learn the optimal 

parameters on each layer that can not only represent the 
relationships between existing feature data and the 
corresponding true labels, but also predict the outcome from 
new observations. Here, the feature data refers to the five 
features in Section III extracted from the received 
measurements of a satellite, while the true labels refer to the 
actual satellite visibility and pseudorange error that estimated 
from reliable knowledge (e.g., user’s actual location and 
building models). During the learning process, each batch of 
data is fed into the networks to obtain the corresponding output. 
The consistency between this output and the true label is 
evaluated through a cost function. In this study with two 
outputs, the loss function is defined as an equal-weighted 
summation of the binary cross-entropy from the satellite 
visibility prediction and the mean absolute error from the 
pseudorange error prediction, as below. 

  

ℒ = −
1
𝑁𝑁
��𝑦𝑦𝑗𝑗 log�𝑝𝑝(𝑦𝑦𝑗𝑗)� +
𝑁𝑁

𝑗𝑗

 

(1 − 𝑦𝑦𝑗𝑗) log�1 − 𝑝𝑝(𝑦𝑦𝑗𝑗)� + ��̂�𝐴𝑗𝑗 − 𝐴𝐴𝑗𝑗�� (15) 
 
where 𝑗𝑗 denotes the index of the data set (feature set of a single 
satellite) inside the batch data with 𝑁𝑁 total size. 𝑦𝑦𝑗𝑗 is the binary 
label value (1 and 0 corresponding to LOS and NLOS). 𝑝𝑝(𝑦𝑦𝑗𝑗) 
denotes the probability of the prediction being 𝑦𝑦𝑗𝑗  after going 
through the networks. �̂�𝐴𝑗𝑗  and 𝐴𝐴𝑗𝑗  denote the predicted 
pseudorange error from the networks and the true labeled 
pseudorange error, respectively. 

After estimating the input gradient on each node via back-
propagation from the output, a gradient descent optimization 
method is employed to obtain the optimal parameters that 
minimizing the loss function. When new GNSS measurements 
are received, the corresponding satellite visibility and 
pseudorange error can be predicted by applying the proposed 
network with the trained parameters. 

 
Fig. 6.  Demonstration of the 𝑘𝑘𝑡𝑡ℎ cell of the long short-term memory 
(LSTM) architecture in the proposed network (Fig. 2). 

 
Fig. 7.  The vehicular experiment trajectory for data collection. Red 
markers denote the least-squares positioning solution based on the 
collected data. 
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V. EXPERIMENTAL RESULTS 

A. Experiment Setup 
The performance of the proposed deep learning networks on 

predicting the satellite visibility and the pseudorange error is 
validated by real data collected from a vehicular experiment in 
an urban area of Hong Kong (Whampoa, 23/08/2019, at around 
8 a.m. UTC), as Fig. 7 shows. The GNSS L1 measurements, 
including GPS and Beidou, are collected in the RINEX format 
based on a commercial-grade GNSS receiver ublox EVK-M8T 
with a standard patched antenna. The receiver true location is 
obtained from the real-time kinematic (RTK) GNSS/INS 
integrated solution from NovAtel SPAN-CPT, which is capable 
of achieving centimeter-level accuracy in RTK mode. The 
satellite visibility is labeled by comparing the satellite position 
with the skymask, which is obtained by remapping the 3D 
building model to the sky-view on the receiver's true location. 
The measurement with visible direct signal but under multipath 
effect is also categorized into LOS. The pseudorange error is 
labeled by extracting the building interference term via the 
double difference method based on the measurements and true 
locations of the receiver and a nearby reference station. The 
detail can be found at Section 2.3.3 in [36]. 3000 epochs of data 
are collected, where four-fifths of data are used for training, and 
the rest is used as the test set for out-of-sample performance 
evaluation. The deep learning networks are constructed and 
trained based on Python in TensorFlow with the application 
programming interface of Keras, which includes the activation 
functions and cost loss functions in this study. 

B. GNSS Availability Prediction Results 
The satellite-wise visibility prediction result is compared 

with the truth labeled from the 3D building model, as shown in 
Fig. 8. The rapidly changing environment during a dynamic test 
will make the visibility classification more difficult; for 
example, the measurements may have a delayed reflection 
about the environment changing. However, the proposed deep 
learning networks can correctly predict the satellite visibility 
for most of the time, even for the satellite rapidly changing 
between LOS and NLOS (e.g., G02 and G29). Moreover, the 
proposed network has good prediction performance on all 
satellites, rather than only for a few particular satellites, 
showing a good generalization performance. Besides, the 
network returns a continuous value between 0 to 1 for visibility 
prediction instead of a binary result, which could also provide 
the reliability of prediction in a sense. 

The final satellite visibility prediction can be determined in a 
binary form based on a threshold. The satellite with a visibility 
value over 0.5 is classified as LOS; otherwise, it is classified as 
NLOS. By comparing with the true visibility label, the 
classification performance of the proposed networks is shown 
in Table I. 64% of the total data are LOS measurements being 
correctly classified, and 16.2% of the total data are correctly 
classified into NLOS. However, there still remain 20% of the 
data unable to be predicted with the correct visibility 
information. The overall classification performance metrics of 
the proposed model (DL) are compared with standard support 
vector machine (SVM) model [33] and decision tree (DT) 
model in Table II, including recall, precision, F1-score, and 
accuracy. Here, F1-score is the harmonic mean of recall and 

precision with equal importance. Noted the SVM or DT model 
is employed without using the feature of azimuth angle, since it 
cannot input multiple satellite data at once to utilize the azimuth 
correlations. In summary, the proposed deep learning network 
significantly improves the NLOS prediction performance 
compared to the SVM approach, achieving an overall accuracy 
of 80.1% for the satellite visibility prediction in the urban 
canyon. 

C. GNSS Pseudorange Error Prediction Results 
The satellite-wise pseudorange error prediction results from 

the proposed deep learning networks are shown in Fig. 9. Since 
the data is collected from a dynamic test in an urban area, the 
labeled pseudorange errors have a drastic variation even for the 
same satellite within a short period. Many of the errors exceed 

 
Fig. 8.  The satellite visibility prediction results from the proposed deep 
learning network compared with the true visibility determined from the 
ground truth location and the 3D building model. Y-axis shows the 
visibility value that 1 denotes LOS and 0 denotes NLOS. 

TABLE I 
SATELLITE VISIBILITY CLASSIFICATION RATE (AMOUNT OF DATA) 

 
Truth 

LOS NLOS 

Prediction 
LOS 64.0% (4511) 7.8% (551) 

NLOS 12.0% (849) 16.2% (1140) 

 
TABLE II 

SATELLITE VISIBILITY CLASSIFICATION PERFORMANCE 

  Recall Precision F1-Score Accuracy 

SVM 
LOS 55.7% 74.7% 63.8% 

52.0% 
NLOS 40.2% 22.2% 28.6% 

DT 
LOS 76.3% 87.3% 81.5% 

73.6% 
NLOS 64.9% 46.4% 54.1% 

DL 
LOS 84.2% 89.1% 86.6% 

80.1% 
NLOS 67.4% 57.3% 62.0% 

 



8  IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH X, XXXX 

 

20 meters, which are probably due to multipath or NLOS 
receptions. From the prediction results of Satellite G05 and 
B19, the proposed model can provide a timely prediction on the 
pseudorange error with a similar amplitude to the label, even if 
the errors may suddenly exceed 40 meters for only a few 
seconds. Moreover, the proposed model can instantly recognize 
the measurement is recovered to a healthy status, preventing 
over-correction. However, there still occur some epochs that the 
proposed model provide incorrect predictions, such as over-
correction or miss-correction. Note that for the Satellites G15, 
B13 and B29, the proposed model cannot provide appropriate 
correction to those large pseudorange errors during the epochs 
between 150 and 200. This is probably because the receiver is 
under a road bridge in this period, where the environment 
behavior is quite different from most of the training data that 
only surrounded by buildings. The deep learning network is less 
likely to learn those representations between the measurements 
and pseudorange errors in the scenario under a bridge from 
limited training data. Therefore, the proposed model cannot 
provide satisfactory predictions for this scenario. In summary, 
for many of the time, the proposed deep learning networks can 
provide a timely prediction on the pseudorange error with 
satisfactory accuracy. 

The overall prediction results and the remained error after the 
correction by prediction are shown in Fig. 10. Excepting for the 
data from 2400 to 3000 under a bridge, most of the pseudorange 
errors are properly corrected, remaining only a few meters of 
error, which is less likely to introduce severe positioning error. 
The overall prediction performance is evaluated in Table III, by 
comparing the mean and standard deviation (STD) of the 
pseudorange error before and after correction from the SVM 
model, the DT model, or the proposed network (DL), in terms 
of LOS, NLOS, and all satellites. For the LOS satellites, either 

receiving only the direct signal or under the multipath effect, 
the faulty correction from the SVM model may even degrade 
the pseudorange accuracy. On the other hand, the proposed 
deep learning networks can provide corrections that reducing 
the pseudorange error STD from 7.3 m to 5.3 m, which is 
probably profited by the corrections on the multipath error. 
Since the pseudorange measurements from a commercial-grade 
receiver may always have few meters of random thermal noise, 
there still remain 3.6 m errors on average after correction for 
the LOS satellites. For the NLOS measurements, the proposed 
model can mitigate half of the pseudorange error, from 18.7 m 
to 9.0 m on average. For the overall correction performance, the 
proposed network outperforms the SVM model. In a short 
summary, the pseudorange error can be significantly reduced in 
terms of mean and STD by the predictions from the proposed 
deep learning networks. 

D. Deep Learning Networks Generalization Analysis 
The performance of the proposed deep learning network is 

evaluated by two additional experiments to analyze its 
generalization, as Fig. 11 shows. Test A is at a similar location 
but different time (Whampoa, 21/05/2021, 1510 epochs at 
around 6 a.m. UTC) compared to the test in Section V.A, while 
Test B is at a different location and time (Tsim Sha Tsui, 
17/05/2021, 87 epochs at around 2 a.m. UTC). The testing data 
here are available at [52]. The GNSS satellite visibility and 
pseudorange error prediction performance from the proposed 
network for these two experiments are summarized in Tables 
IV and V. 

For Test A, the proposed network achieves an overall 82.0% 
accuracy on the satellite visibility prediction, similar to the 

 
Fig. 9.  The pseudorange error on each satellite based on the prediction 
result using the proposed deep learning network and the labeled 
pseudorange error from the double difference estimation. 

 
Fig. 10.  (a) The labeled and predicted pseudorange errors during the 
dynamic experiment (test set); (b) The remained error after correcting 
the labeled pseudorange error by the prediction from deep learning 
networks. The x-axis denotes the index number of satellite-wise data. 

TABLE III 
MEAN (STANDARD DEVIATION) OF PSEUDORANGE ERROR (M) FROM 

LOS/NLOS/ALL SATELLITES BEFORE/AFTER APPLYING THE CORRECTION 
PREDICTED BY THE SVM, DT, AND THE PROPOSED NETWORK (DL) 

 LOS NLOS ALL 

Before 3.7 (7.3) 18.7 (20.7) 7.3 (13.6) 

After SVM 4.5 (6.2) 14.1 (16.7) 6.8 (10.6) 

After DT 5.6 (8.2) 12.3 (14.0) 7.2 (10.3) 

After DL 3.6 (5.3) 9.0 (12.3) 4.9 (7.9) 
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preceding test. The prediction on the LOS satellites is also 
around 20% better than that on the NLOS satellites. Consistent 
performance on pseudorange error prediction is achieved 
compared to the preceding test, where the averaged remained 
errors after applying correction are 9.3 m and 4.4 m for NLOS 
satellites and all satellites, respectively. For Test B, the 
visibility prediction accuracy on LOS satellites is decreased, 
resulting in a degradation of the overall accuracy. The GNSS 
measurements are severely degraded in Test B, having a 
doubled NLOS pseudorange error compared to the preceding 
test. The proposed network trained in another area still provides 
the pseudorange error prediction with a certain accuracy, which 
mitigates the pseudorange error from 17.7 m to 11.4 m on 
average. The degradation of prediction performance in Test B 
is probably because of the difference in building style. The 
buildings in Test B are covered by glasses, whereas the 
buildings in Test A and the training/validating test are covered 
by concrete surfaces. Hence, the GNSS measurements behave 
differently in these two areas and affect the prediction 
performance. In summary, the performance of the proposed 
deep learning network can be maintained for the data from 
different time spans. However, it will be degraded for the data 
from different locations, especially with a different 
environmental context. 

VI. INVESTIGATION ON THE LSTM LAYER 
Unlike conventional machine learning approaches, the 

effectiveness of a trained deep learning network is hard to be 
validated from the model point of view. The deep learning 
method truncates the modeling problem into multiple layers 
with a massive number of tuning parameters and nonlinear 
functions. It is very difficult to evaluate the goodness of each 
parameter or reveal the meaning of each layer. However, it is 
still worth investigating what has been modeled inside the deep 
learning networks, in order to guarantee the model is reasonable 
and so that it can provide a guide for future developments. For 
this study, both the satellite visibility and the pseudorange error 
are mainly affected by the environment. Therefore, for a 
reasonable model, it is expected to exist layers capable of 
extracting representations about environmental information. 
Therefore, in this section, we will investigate whether the 
LSTM layer output in our proposed networks could represent 
the environment information based on the test in Section V.A. 

A. Relationship between LSTM Layer and Prediction 
We will first investigate whether the LSTM layer affects the 

prediction result in a way similar to the environment 
information, by manually assigning different LSTM layer 
vectors which is 𝐡𝐡𝑘𝑘 given in (14). In the other words, we set the 
value 𝐡𝐡𝑘𝑘 in the blue network (environment network) and uses 
the real data in the red network (measurement quality network) 
to investigate the performance of the prediction on the satellite 
visibility and pseudorange error. The six test sets of the real data 
are selected and they are summarized in Table VI. The 
corresponding sky-plots with building blockages are shown in 
Fig. 12. The six tests cover the typical environments in an urban 
canyon. The investigation steps are demonstrated in Fig. 13. 
The measurement features from different test sets are fed into 
our proposed deep learning network (Fig. 2), applying the 
process of FCNNs Layers from 1 to 3 (red ones). Then, the 
corresponding Layer 3 output will be concatenated with a 
manually assigned LSTM layer (blue ones), which is a 360-by-
1 vector with the same entry value 𝜏𝜏, 𝐡𝐡𝑘𝑘 = [𝜏𝜏 ;  ⋯  ;  𝜏𝜏]360×1. 
After that, the concatenated layer (the black ones) will be 
processed by the remaining networks to obtain the 
corresponding predictions on the satellite visibility and the 
pseudorange error.  

 
Fig. 12.  The skyplot with satellites and sky-visibility for the selected 
data sets corresponding to Table VI by the index (A-F). Green and red 
markers denote LOS and NLOS satellites, respectively. Grey area 
denotes the sky-view blocked by buildings. 

 
Fig. 11.  The vehicular experiment trajectory for the generalization test. 
Test A is at the same urban area as the experiment in Section V.A, 
while Test B is at a different urban area. Red markers denote the least-
squares positioning solution based on the collected data.  

TABLE IV 
SATELLITE VISIBILITY CLASSIFICATION PERFORMANCE 

  Recall Precision F1-Score Accuracy 

Test A 
LOS 87.9% 87.9% 87.9% 

82.0% 
NLOS 64.9% 64.8% 64.8% 

Test B 
LOS 65.9% 75.1% 70.2% 

68.3% 
NLOS 71.4% 61.5% 66.1% 

 
TABLE V 

MEAN (STANDARD DEVIATION) OF PSEUDORANGE ERROR (M) FROM 
LOS/NLOS/ALL SATELLITES BEFORE/AFTER APPLYING THE CORRECTION 

PREDICTED BY THE PROPOSED NETWORK (DL) 

  LOS NLOS ALL 

Test A 
Before 2.4 (4.4) 14.9 (16.7) 5.6 (10.8) 

After DL 2.8 (4.8) 9.3 (10.6) 4.4 (7.3) 

Test B 
Before 3.7 (4.9) 36.2 (45.5) 17.7 (34.2) 

After DL 4.8 (4.9) 20.0 (22.7) 11.4 (17.1) 
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Based on the activation function used to calculate 𝐡𝐡𝑘𝑘 , we 
substitute 𝜏𝜏 from -1 to 1. Thus, we can evaluate the relationship 
between the LSTM layer (blue ones) and the prediction 
outcome (black ones). Since the satellite visibility and 
pseudorange error are closely related to the surrounding 
environment, their prediction result would have similar 
behaviors regarding to different 𝜏𝜏. 

The satellite visibility predictions on different test sets 
corresponding to different LSTM layer vectors are summarized 
in Fig. 14. Most of the predictions follow a similar behavior that 
the satellite is more likely to be classified as a LOS under the 
LSTM layer with 𝜏𝜏 = ±1 , but more likely to be an NLOS 
satellite when 𝜏𝜏 = 0. It might indicate that a higher magnitude 
of 𝜏𝜏 represents the environment closer to open-sky, where most 
satellites are classified into LOS. On the contrary, the LSTM 
layer with 𝜏𝜏 = 0 might represent a harsh urban scenario, where 
most of the sky-view is blocked by buildings, and most 
satellites are classified into NLOS. Noted for the test set B, it is 
still predicted as very likely being LOS even under a harsh 
urban scenario with 𝜏𝜏 = 0. This is probably because its 𝐶𝐶/𝑁𝑁0 
feature is very high as 48 dB-Hz, which is strong evidence that 
it is LOS. In summary, the values of the LSTM layer are 
probably indicated to environment information, which affects 
the later prediction on the satellite visibility. 

On the other hand, the pseudorange error prediction results 
for different test set with respect to different LSTM layer values 
are shown in Fig. 15. Similar to the preceding results on 
visibility prediction, the pseudorange predictions of different 
test sets have similar behaviors corresponding to the LSTM 
layer value. When giving the LSTM layer with 𝜏𝜏 close to 0, the 
network is likely to predict the same level of pseudorange error 

for different sets, similar to a systematic error shared by those 
sets. Such error is more likely to be the dominated error in an 
environment without other complex interference or sky-view 
variation. Hence, we can assume the LSTM layer with 𝜏𝜏 close 
to 0 may represent an open-sky environment. Moreover, a 
positive pseudorange error is always predicted for a positive 𝜏𝜏 
and vice versa. A higher magnitude of 𝜏𝜏 is also resulting in a 
higher variation on the error prediction. Therefore, we can 
assume that the positive or negative LSTM layer may represent 
the constructive or destructive interference (caused by the 
relative phase between the LOS and reflected signal) during the 
pseudorange error prediction. The magnitude of the layer value 
may represent the complexity of the environment, such as the 
building blockage level.  

In summary, from the analysis result, the LSTM layer might 
represent the environment information that aiding the satellite 
visibility and pseudorange error prediction in the later 
networks. 

TABLE VI 
INFORMATION ABOUT THE SELECTED FEATURE SETS FOR INVESTIGATION 

Index Satellite 
No. Visibility C/N0 

(dB-Hz) 
Pseudorange 

Error (m) Environment 

A 2 LOS 44 0.2 Nearly open-
sky 

B 29 LOS 48 0.1 Barely urban 

C 99 LOS 35 -0.1 Light urban 

D 5 NLOS 28 22.6 Middle urban 

E 116 NLOS 24 37.0 Dense urban 

F 95 NLOS 24 16.6 Harsh urban 

 

 
Fig. 14.  The satellite visibility prediction results based on the manually 
assigned LSTM layer vector with the same entry 𝜏𝜏 for different test sets 
from Table VI. 

 
Fig. 15.  The pseudorange error prediction results based on the 
manually assigned LSTM layer vector with the same entry 𝜏𝜏  for 
different test sets from Table VI. 

 
Fig. 13.  The flowchart of investigating the relationship between LSTM 
layer and prediction result by manually assigning different 𝜏𝜏  for the 
LSTM layer vector. 
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B. Relationship between LSTM Layer and the Skymask 
As discussed in Section VI.A, the value 𝜏𝜏   could be 

associated to the environment information, e.g., the skymask. 
The skymask is represented by the building boundary elevation 
angles on each azimuth angle, which can be obtained from the 
receiver true location and the 3D building model. We believe 
the values on the LSTM layer could be associated with the 
values of the skymask. We intuitively assume that the value of 
a specific entry of the LSTM layer (an element in 𝐡𝐡𝑘𝑘) would be 
related to the skymask elevation angle on a specific azimuth 
angle, representing the building blockage area on that specific 
azimuth angle. Then, we compare the LSTM layer output with 
the skymask for several test sets (same as Section VI.A) to 
investigate the occurrence of our assumption. Instead of using 
6 single satellites indicated in Table VI, we include all the 
satellites shown in A-F of Fig. 12. The skymasks (represents 
azimuth and elevation angles in x-axis and y-axis, respectively) 
for the test sets (indicated in Fig. 12) are shown in Fig. 16a. The 
grey areas in Fig. 16a indicates the azimuth angles of the 
existing GNSS measurements (that refers to Fig. 12). Out of the 
grey areas, 8 observable sections are selected to be investigated 
whether they can be reflected by different entries of the LSTM 

layer. The environment information obtained from the skymask 
is summarized in Table VII for each test set and each 
observation section. We categorize the environment 
information into 5 classes (in the bracket of Table VII) based 
on the skymask elevation angle, which indicates the openness 
level of the environment on a specific azimuth direction. Based 
on the discovery in Section VI.A that a higher magnitude of the 
LSTM layer value denotes an open-sky environment, each entry 
of the LSTM layer from the 6 test sets (Fig. 16b) can also be 
categorized into 5 classes representing different levels of 
openness of an environment. We found 8 entries having the 
categorization result consistent with the openness level of 
preceding 8 selected observable sections for the test sets. The 
values of these 8 entries for different test sets and the 
corresponding openness level are summarized in Table VIII. 
Take the observable  as an example, the skymask elevation 
angle on the azimuth angle of 32 degrees from A-F test sets are 
14, 60, 0, 62, 0, and 78 degrees, which can be categorized into 
(+), (--), (++), (--), (++), and (---) to represent the environment 
openness level. On the other hand, the value on the 289th entry 
of the LSTM layer from A-F test sets are 0.67, 0.46, 0.88, 0.12, 
0.93, and 0.14, which can also be categorized into (+), (-), (++), 

TABLE VII 
ENVIRONMENT INFORMATION (SKYMASK ELEVATION ANGLE AND THE LEVEL OF OPENNESS) ON DIFFERENT SELECTED AZIMUTH ANGLES FOR DIFFERENT 

TEST SETS 

Observable Section Index 1 2 3 4 5 6 7 8 

Azimuth Angle (degree) 12 32 72 111 226 237 253 288 

Sk
ym

as
k 

E
le
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tio

n 
 

A
ng

le
 (d

eg
re

e)
 

A 28 (+) 14 (+) 32 (-) 0 (++) 0 (++) 0 (++) 31 (-) 32 (-) 

B 60 (--) 60 (--) 49 (-) 0 (++) 0 (++) 0 (++) 27 (+) 28 (+) 

C 0 (++) 0 (++) 54 (--) 50 (-) 71 (---) 14 (+) 37 (-) 45 (-) 

D 60 (--) 62 (--) 30 (-) 54 (--) 78 (---) 75 (---) 62 (--) 54 (--) 

E 0 (++) 0 (++) 60 (--) 50 (-) 76 (---) 70 (---) 34 (-) 45 (-) 

F 74 (---) 78 (---) 71 (---) 62 (--) 70 (---) 69 (--) 66 (--) 53 (--) 

The level of the openness is categorized in 5 classes based on the elevation angle of the skymask: (++) below 10; (+) between 10-30; (-) between 
30-50; (--) between 50-70; (---) over 70. 

TABLE VIII 
ENVIRONMENT INFORMATION REPRESENTED BY THE SPECIFIC LOCATION IN LSTM LAYER CORRESPONDING TO THE SELECTED ENVIRONMENT INDEX 

(FROM TABLE VII) 

Observable Section Index 1 2 3 4 5 6 7 8 

LSTM Layer Entry No. 322 289 111 134 275 115 260 26 

L
ST

M
 L

ay
er

  
A

bs
ol

ut
e 

V
al

ue
 

A 0.30 (--) 0.67 (+) 0.69 (+) 0.81 (++) 0.25 (--) 0.64 (+) 0.54 (-) 0.45 (-) 

B 0.41 (-) 0.46 (-) 0.40 (-) 0.98 (++) 0.60 (+) 0.67 (+) 0.63 (+) 0.69 (+) 

C 0.72 (+) 0.88 (++) 0.55 (-) 0.76 (+) 0.06 (---) 0.48 (-) 0.65 (+) 0.36 (--) 

D 0.15 (---) 0.12 (---) 0.53 (-) 0.12 (---) 0.10 (---) 0.04 (---) 0.15 (---) 0.11 (---) 

E 0.97 (++) 0.93 (++) 0.31 (--) 0.35 (--) 0.02 (---) 0.19 (---) 0.57 (-) 0.54 (-) 

F 0.26 (--) 0.14 (---) 0.07 (---) 0.01 (---) 0.07 (---) 0.09 (---) 0.35 (--) 0.18 (---) 

The openness level is categorized in 5 class based on the value of the selected entry from the LSTM layer: (++) over 0.8; (+) between 0.6-0.8;  
(-) between 0.4-0.6; (--) between 0.2-0.4; (---) below 0.2. 
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(---), (++), and (---) to represent the environment openness 
level. The representations of the openness level are quite 
consistent between the skymask and the LSTM layer value for 
each test set. Hence, the 289th entry of the LSTM layer may 
represent the environment information (openness level) on the 
32 degrees azimuth direction during the satellite visibility 
prediction. Similar consistency can be found in other 
observable sections. Most of the categorization results between 
the skymask and the LSTM layer are consistent, or at least 
having adjacent categories. Here, the categorization rules 
follow an intuitive approach with equal intervals, whereas the 
deep learning networks could follow a non-linear model to 
represent the openness level. The overall trend on representing 
the environment openness level is quite similar between the 
skymask (Table VII) and the LSTM layer (Table VIII). To 
summarize, some parts of the LSTM layer obtained from the 
GNSS measurement by the proposed deep learning networks 
may represent the surrounding environment information. 

VII. CONCLUSIONS AND FUTURE WORKS 
In this paper, we proposed a deep learning network 

architecture, which combines the conventional FCNNs and the 
popular LSTM, to predict the GNSS satellite visibility and 

pseudorange error in an urban area based on the available GNSS 
measurements. The design of integrating the LSTM layer is 
aiming to learn environment representations from 
measurements, which determines the occurrence and 
severeness of the GNSS interferences in an urban area. By 
knowing the environment information, the deep learning 
networks could have a potential to provide better predictions 
about the GNSS interferences. The performance of the 
proposed deep learning network is evaluated through real 
experimental data. The proposed networks achieve satisfactory 
performance on both satellite visibility and pseudorange error 
predictions, which has 80.1% overall accuracy and a 4.9 m 
averaged difference from the labeled pseudorange error. Then, 
we analyze what representations have been learned by the 
proposed network, by investigating whether the LSTM layer 
extracted from the GNSS measurements contains the 
representations about the environment information. By 
comparing the LSTM layer value with the prediction outcome 
and the real environment information from the 3D building 
model, we find the LSTM layer could extract the environment 
representations, such as the level of openness, from the existing 
GNSS measurements. 

This study provides a straightforward approach to investigate 
the representations obtained in the deep learning network. 

 
Fig. 16.  The comparison between environment information represented by (a) the elevation of the building boundary on the sky-plot (skymask) 
according to the receiver true location and the 3D building models; (b) the value of each entry of the LSTM layer output vector (360-by-1) 
corresponding to different test sets. The line color denotes different test sets in Section VI.A. The number denotes the index of the selected 
observable section for comparison. The grey area denotes the azimuth angle with available satellite measurements, which may be the area with 
environment information observable by received measurements and the deep learning network. 
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However, the current analysis result only indirectly supports 
our assumptions, whereas stronger evidence is necessary for 
justification. To understand the representations during the deep 
learning network, it is suggested to analyze the meaning of each 
part from different hidden layers and visualize each layer based 
on existing knowledge. A more comprehensive and rigorous 
analysis of the extracted representations during the deep 
learning network will be conducted in the future. Moreover, the 
proposed deep learning network predicts the measurement 
status based on the data from a single epoch, whereas the 
transitions over the time are neglected. In addition, the receiver 
filtering technique will introduce a latency on the GNSS feature 
variation, which may degrade the prediction performance and 
instantaneity. The development of deep learning networks 
considering the historical correlations of GNSS measurement 
for the prediction will be a suggested future work. Exploring 
new GNSS features containing additional environment 
information will be another future work to improve the 
performance of the deep learning model. 
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