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Navigation of a UAV Team for Collaborative
Eavesdropping on Multiple Ground Transmitters

Hailong Huang, Andrey V. Savkin, and Wei Ni

Abstract—Thanks to excellent mobility and high probability
of a Line-of-Sight (LoS) to ground objects, unmanned aerial
vehicles (UAVs) have been widely used in surveillance. This
paper considers the use of UAVs to covertly and collaboratively
eavesdrop on suspicious wireless transmitters on the ground.
We focus on the trajectory planning of the UAVs. To avoid
the UAVs being visually noticed by the ground transmitters, we
propose a new measure to quantify the disguising performance
of the UAVs. The trajectories of the UAVs are planned to max-
imize the disguising performance, subject to an uninterrupted
eavesdropping requirement, UAV collision avoidance and UAV
aeronautic maneuverability. A new randomized method based
on the Rapidly-exploring Random Tree (RRT) is developed to
efficiently construct the trajectories of the UAVs. Computer
simulations confirm that the proposed method outperforms the
random movement method in eavesdropping performance, while
achieving with comparable disguising performance.

Index Terms—Unmanned aerial vehicle (UAV), covert eaves-
dropping, wireless communications, trajectory planning.

I. INTRODUCTION

UNMANNED Aerial Vehicles (UAVs) have increasingly
attracted attention, thanks to their reduced cost, improved

mobility and on-demand real-time deployment. UAVs provide
a superb means for communications [1], [2], as they have
a high probability of a Line-of-Sight (LoS) to other objects.
Besides, their mobility enables quick deployment of a network,
especially in some emergencies, e.g., after disasters [3]. The
UAVs can also be used as aerial relays to provide connectivity
between remote users and wireless networks [4]–[6].

The excellent mobility and the availability of the LoS enable
UAVs to proactively protect wireless communications. UAVs
can function as jammers by transmitting noises to confuse
eavesdroppers [7], [8]. When transmitting useful data, they
can secure the transmissions by optimizing their trajectories
[9], [10], transmit power [11], and transmission schedule
[12]. As a result, eavesdroppers cannot decode the collected
data, while the intended nodes can. A hybrid system with
a UAV jammer and a UAV transmitter has been proposed
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Fig. 1: Illustration of the considered scenario, where there are
four ground nodes and three UAV-based aerial eavesdroppers
collaboratively eavesdropping on the ground nodes.

to improve the security of transmissions [13]–[15]. Beyond
securely transmitting data to the intended nodes, UAVs have
also been used to carry out eavesdropping on suspicious
ground targets [16], [17] and other UAVs [18], [19].

In the above studies, UAVs are used for counter-
eavesdropping and eavesdropping, where the eavesdroppers
are (relatively) stationary UAV [8], [9], move periodically [10],
or move randomly [17]. The stationary UAV eavesdroppers
and those with periodical movements could be easily noticed,
leading to failed surveillance missions. The random movement
can help disguise the eavesdropping intention of the UAVs,
but the eavesdropping performance can hardly be guaranteed.
In this paper, we consider a scenario, where multiple UAVs
covertly and collaboratively eavesdrop on several ground tar-
gets. This is motivated by applications in which the eaves-
dropping mission should not be noticed by the targets. One
typical example is police surveillance on criminal suspects.

We optimize the trajectories for the UAVs that collabora-
tively and secretively eavesdrop on a set of ground nodes; see
Fig. 1. The eavesdropping performance on any ground link
is expected to remain effective at any time, while the UAVs
disguise their eavesdropping intention to prevent being visually
noticed. This is a new and practically interesting scenario. It
is different from the scenarios in the literature where either an
integrated jamming or eavesdropping technique is designed
[7], [11] or unplanned random trajectories are employed
[17]. Neither the integrated jamming and eavesdropping, nor
random trajectories can guarantee an instantaneous jamming
or eavesdropping performance. To the best of our knowledge,
there is no study that jointly considers the covertness of
eavesdroppers and the eavesdropping performance.

An important issue of the covert surveillance is how to
characterize the disguising performance. We propose a new
measure to quantify the disguising, which combines the deriva-
tives of the UAV-node angle and distance. We formulate a new
trajectory planning problem to maximize the disguising met-
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ric. Meanwhile, the eavesdropping performance and collision
avoidance requirements are met, the distance between a UAV-
node pair is sufficiently large at any time, and the movements
of the UAVs satisfy the aeronautic maneuverability.

To solve this problem, we present a method based on
Rapidly-exploring Random Tree (RRT). For each of the UAVs,
a tree of possible trajectories is constructed incrementally from
samples drawn randomly in the space. The set of trajectories
(one per UAV) maximizing the disguising performance and
satisfying all constraint conditions is selected. Different from
the complete random walk method, the proposed method can
incorporate the eavesdropping requirement as a constraint
of trajectory planning. Moreover, the proposed RRT-based
method can be decentralized by pre-storing at all UAVs the
same set of samples drawn in the space. Only by observing
the positions of the others, each UAV can construct consistent
RRTs for all the UAVs and select the best trajectories for itself
independently and consistently. Extensive simulations confirm
that the proposed technique provides effective eavesdropping
with a negligible loss of disguising, as compared to UAVs with
completely random trajectories.

The contributions of this paper are summarized as follows.
• We propose a new metric to characterize the disguising

performance of the surveillance UAVs.
• We formulate a new trajectory optimization problem,

which accounts for both the eavesdropping performance
and the disguising performance.

• A new RRT-based trajectory planning method is proposed
and numerically corroborated via computer simulations.

The remainder of the paper is organized as follows. In
Section II, we review the related works. In Section III, we
present the system model and formulate the problem of
interest. In Section IV, we propose the RRT-based trajectory
planning method. Computer simulations are demonstrated in
Section V to show the performance of the proposed method.
A conclusion is given in Section VI.

II. RELATED WORK

When operating as eavesdroppers, UAVs are likely to collect
stronger signals than the ground counterparts due to the high
probability of LoS. Existing research has investigated the
security rate in the systems with UAV eavesdroppers. The
paper [20] investigates the secrecy outage performance of
a UAV system with a linear trajectory, where a UAV flies
along a straight line and transmits data to a ground node
in the presence of a UAV eavesdropper. The reference [19]
considers the scenario, where a UAV transmitter sends data
to a UAV receiver with UAV eavesdroppers uniformly and
randomly deployed. By using stochastic geometry theory, the
closed-form expressions for the secrecy outage probability and
the average secrecy capacity are derived. In [21], a UAV
jammer is added to the system of [19]. The authors derive
the secure connection probability of a legitimate ground link
as a function of the jamming power, the position of the UAV
jammer and the height of UAV eavesdroppers. Besides the
relatively stationary deployment, the paper [17] investigates
the case in which UAV eavesdroppers move in a 3D space.

The authors analyze the ergodic and outage secrecy capacities
of a legitimate ground link under selection combining (SC) or
maximal ratio combining (MRC) eavesdropping of the UAVs.

The paper [16] considers UAV-assisted proactive eaves-
dropping in a amplify-and-forward multi-relay system. One
UAV is deployed above a suspicious node, and it can either
eavesdrop or jam at any time due to its half-duplex constraint.
The authors investigate which UAVs should jam and which
should eavesdrop to improve the successful eavesdropping
rate. The paper [18] uses a legitimate UAV to overhear the
communication of suspicious UAVs, while tracking their flight
trajectory. Making use of the eavesdropped data, the authors
design the movement of a UAV to jam a pair of suspicious
UAVs, so as to force the suspicious UAV to reduce its data
rate. This helps increase the success of eavesdropping.

The trajectory control of UAVs has been studied for security
protection. The paper [10] considers the use of a UAV to
communicate with a moving ground node in the presence
of stationary or moving eavesdroppers. By assuming the
knowledge on the movements of eavesdroppers, [10] designs
the UAV trajectory to keep the UAV far away from the
eavesdroppers. The paper [11] considers a UAV-ground com-
munication system with ground eavesdroppers with partially
known locations. The goal is to maximize the average worst-
case secrecy rate of the system by jointly designing the robust
UAV trajectory and transmit power. The references [13]–[15]
consider a hybrid system with a source UAV and a jamming
UAV in the presence of eavesdroppers. The source UAV sends
confidential information and the jamming UAV cooperatively
transmits interference signals to jam eavesdroppers. The two
UAVs’ trajectories and the transmit power are considered as
control inputs to maximize the minimum worst-case secrecy
rate of the users. The paper [12] investigates a system with
multiple source UAVs and jamming UAVs, and maximizes
the system secrecy energy efficiency by optimizing the UAVs’
trajectories, transmit power, and user scheduling under the
UAVs’ mobility constraints and the maximum transmit power.

The above studies [10], [11], [13]–[15] design the UAVs’
trajectories and other control variables to optimize different
security-related metrics. In the context of area surveillance,
minimizing the age of information has been used as an objec-
tive of the path planning problem [22], [23]. The UAVs peri-
odically visit a given set of positions, and the corresponding
path planning problem can be formulated as the conventional
travelling salesman problem or its variants. When the target
positions are unknown, specific trajectory patterns are adopted
to cover the area of interest. The corresponding problem is
called coverage path planning, and the widely studied patterns
include the zigzag and the spiral-like pattern [24]. Regarding
target tracking, UAVs are used for standoff tracking [25] and
persistent tracking [26]. While the former [25] requires the
UAVs to follow some standoff orbits, the latter [26] aims at
maximizing the probability of having targets within the sensing
range, especially in cluttered urban environments.

None of the above works [10], [11], [13]–[15], [22], [23],
[25], [26] have taken the covertness of the UAVs into account.
Covertness can play an important role in applications requiring
UAVs to be unnoticed by targets, e.g., pursuit and intercep-
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tion, police surveillance and wild animal tracking. Motion
camouflage, a stealthy behavior firstly discussed in [27], has
been considered for UAV disguising. As presented in [27],
a predator often camouflages to the effect that it remains
(relatively) stationary in the view of its prey. Various motion
camouflage guidance laws have been proposed for UAVs to
achieve this [28]–[31]. Specifically, the paper [28] designs
a motion camouflage guidance law to monitor a moving
target, so that the UAV maintains a constant distance from the
target. The paper [29] proposes a bearing-based UAV motion
camouflage guidance law, where only the bearing information
to the moving target and a fixed reference point is used. With
no range information used, the UAV only camouflages its
motion with respect to the target by keeping a large distance.
The paper [30] presents a virtual-motion-camouflage-based
framework. With a pseudospectral discretization approach, it
finds analytical solutions for the formation-flying trajectory
reconfiguration guidance under boundary conditions. Aiming
at capturing a moving target using a net towed by a UAV
team, the paper [31] regards the net center as a predator (a
virtual UAV). A navigation law is proposed for the virtual UAV
first, and then the authors present a formation control law to
guide the motion of each real UAV using the virtual UAV.
These motion camouflage approaches construct the UAVs’
trajectories to the UAVs to maintain relatively stationary with
respect to the target and the reference. If these approaches
are used in our problem, the UAVs could remain at positions
which are not in favor of eavesdropping.

Several researches have focused on UAV detection [32]–
[35]. For example, the paper [33] reports the results of using
military Doppler radar to detect a DJI UAV. The paper [34]
proposes a machine learning framework for detection and
classification of UAV sounds out of those of birds, airplanes
and thunderstorm. A spatial-temporal fusion detection method
for UAVs using electrical-optical cameras is presented in [35].
These approaches can detect and/or locate UAVs in proximity.
The aforementioned (relatively) stationary camouflage of the
UAVs would fail. It becomes critical for the UAVs to disguise
their eavesdropping intention by adjusting the way they move,
as opposed to hiding their presence.

III. PROBLEM STATEMENT

We consider that M stationary ground nodes send messages
to each other and N heterogeneous UAVs eavesdrop on the
ground nodes (see Fig. 1). In this section, we first present the
system models and then formally state the problem of interest.
The frequently used symbols are listed in TABLE I.

Let pi(t) = [xi(t), yi(t), zi(t)] be the position of UAV i at
time t. The following flight model is considered to describe
the motions of the UAVs [36]:

ẋi(t) = vi(t) cos(θi(t)),

ẏi(t) = vi(t) sin(θi(t)),

θ̇i(t) = ui(t),

żi(t) = wi(t),

Zmin ≤ zi(t) ≤ Zmax,

(1)

TABLE I: Symbols and definitions.

Parameter Definition
N Number of UAVs
M Number of ground nodes
qj Position of node j
C Eavesdropping performance requirement

dsafe Safety distance between UAVs
C Eavesdropping performance requirement
Di Average distance away from targets for UAV i
T Time duration for path planning
L Number of time slots in a duration T

Variable Definition
pi(t) Position of UAV i
θi(t) Heading angle of UAV i
vi(t) Linear speed of UAV i
wi(t) Angular speed of UAV i
ui(t) Vertical speed of UAV i
dij(t) Distance between UAV i and node j
δih(t) Distance between UAVs i and h
Fj(t) Combined SNR of node j
αij(t) The angle between UAV i and node j

where θi(t) is the heading of UAV i with respect to the x-
axis; vi(t) and ui(t) are its linear and angular speeds on
the horizontal plane, respectively; and wi(t) is the vertical
speed. ẋi(t), ẏi(t), żi(t) and θ̇i(t) are the derivatives of xi(t),
yi(t), zi(t) and θi(t) with respect to t, respectively. Let V max

i ,
Wmax
i and Umax

i be given constants, and 0 ≤ vi(t) ≤ V max
i ,

−Wmax
i ≤ wi(t) ≤ Wmax

i , and −Umax
i ≤ ui(t) ≤ Umax

i .
Moreover, Zmin and Zmax are the minimum and maximum
allowed altitudes, respectively.

Let qj (j = 1, . . . ,M ) be the location of node j on the
ground1. Let dij(t) denote the Euclidean distance between
UAV i and node j at time t. Then, dij(t) is given by:

dij(t) = ‖pi(t)− qj‖, (2)

where ‖ · ‖ is the standard norm of a vector.
We consider large-scale and small-scale fading in the

ground-to-air channel. The large-scale fading depends on the
distance between the transmitter and the receiver. Let hij
denote the small-scale channel coefficient between UAV i
and ground node j. hij is assumed to yield independent and
identically distributed (i.i.d.) Rician fading with a Rician factor
K > 0. Let P denote the transmit power of the ground nodes
and n0 denote the zero-mean additive white Gaussian noise
with E[|n0|2] = σ2

0 . Then, the instantaneous signal-to-noise
ratio (SNR) at UAV i from node j is Pyijd

−a
ij (t)/σ2

0 , where
yij = |hij |2 and a is the path loss exponent. yij is a ran-
dom variable following a non-central Chi-square distribution.
Since the UAV eavesdroppers collaborate, the collaborative
eavesdropping performance on node j by the UAVs at time t,
denoted by Fj(t), is given by:

Fj(t) =

∫
· · ·
∫

y1j ,...,yNj

N∑
i=1

Pyij
daij(t)σ

2
0

N∏
i=1

f(yij) dy1j . . . dyNj , (3)

if the UAVs carry out MRC [17], which is known to maximize
the combined SNR of signals captured by the UAVs. Here,

1As considered in [37], the UAVs can measure the locations of the ground
nodes via an onboard optical camera or a synthetic aperture radar.
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f(y) = (K+1)
Ω exp(−K − (K+1)y

Ω )I0(2
√

K(K+1)y
Ω ) is the

probability density function (PDF) of the gain of the Rician
fading channel, where I0(·) is the 0th order modified Bessel
function of the first kind, and K and Ω are the given model
parameters.

Let C be a given threshold for the collaborative eavesdrop-
ping measure. Suppose that if this measure is smaller than C, it
is not possible to extract useful information from the collected
data. In this sense, C is the channel capacity between node
j and its intended receiver on the ground. To guarantee that
the collected data at any time by the UAVs is meaningful, the
following constraint should hold:

Fj(t) ≥ C, ∀j, ∀t. (4)

It is worth pointing out that constraint (4) uses the MRC
method to characterize the eavesdropping performance. Com-
pared to SC which only picks the UAV with the highest SNR
at an instant, MRC combines the signals of all the UAVs
to maximize the SNR at every instant for eavesdropping.
This corresponds to the best eavesdropping capability and
performance that the UAVs could have.

Apart from the eavesdropping task, the UAVs should also
avoid collisions and disguise their intention of eavesdropping.
For collision avoidance, a safety distance dsafe between any
two UAVs is considered. Let δih(t) = ‖pi(t) − ph(t)‖ is the
distance between UAVs i and h at time t. Then, any pair of
UAVs should be at least dsafe apart at any time:

δih(t) ≥ dsafe,∀i 6= h,∀t. (5)

In practice, the safety distance dsafe is a constant. It is selected
based on the type of the UAVs and should be sufficient to avoid
possible collisions between the UAVs; see e.g. [38], [39].

For disguising, the UAVs should not be too close to the
nodes, since the smaller the distance, the higher the probability
of being noticed. We consider the following constraints:

1

T

∫ (k+1)T

kT

dij(t)dt ≥ Di, ∀j, ∀i, (6)

where [kT, (k+ 1)T ] (k = 0, 1, . . . ,K, and T is the duration
of a time interval) is a time interval during which the accu-
mulative distance between node j and UAV i is sufficiently
large. Di is the given threshold which depends on the size of
UAV i. For a large UAV i, Di should also be large, since it
is more noticeable than a small UAV.

It is worth pointing out that constraint (4) is a hard con-
straint, and can lead to the infeasibility of the considered
problem, especially when there are fewer UAVs than nodes and
the nodes are well apart from each other. In the presence of a
sufficient number of UAV eavesdroppers (e.g., no fewer than
the nodes), constraint (4) could enforce the UAVs to reduce
their altitudes and get the UAVs closer to the nodes if needed,
until constraint (6), becomes active. One could potentially set
Di in constraint (6) as a hyperparameter, and adjust Di to
make (4) satisfied.

We propose a new metric to quantify the disguising perfor-
mance which evaluates the derivative of the UAV-node angle
and the derivative of the UAV-node distance. By frequently

x-axis

z-axis

𝛼𝑖𝑗

𝑑𝑖𝑗

y-axis

𝑖
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Fig. 2: Illustration of the UAV-node distance and angle.

changing the relative positions of the UAVs against the targets,
the movements of the UAVs appear to be random to the targets
(i.e., the ground nodes). The targets are unlikely to connect the
UAVs with an eavesdropping or monitoring mission (as com-
pared to structured movements with recognizable patterns).
When the targets use cameras to monitor their surrounding, it
is generally difficult for the cameras to focus their lens on a
UAV that frequently changes distance and angle with respect
to the camera. A ground node can hardly obtain a clear view
of the UAV. In light of this, our disguising metric evaluates
the derivative of the UAV-node angle and the derivative of the
UAV-node distance.

Let αij denote the angle between two vectors: the x-axis
(which is agreed and pre-stored by all the UAVs for global
reference) and the vector connecting UAV i and node j; see
Fig. 2. The disguising performance is modelled as a weighted
sum of the amplitudes of the derivatives of the UAV-node angle
and distance, i.e.,

gij(t) = η|α̇ij(t)|+ |ḋij(t)|, (7)

where η > 0 weights the importance of the angular and
distance aspects. As shown in (7), when node j looks at
UAV i, the UAV appears to move in different directions with
significant changes in their relative angle and distance. Then,
the UAV does not look suspicious. The disguising performance
is unitless. A larger value of (7) indicates a better disguising
performance. We compare several typical movement patterns
in terms of disguising performance, including straight line,
orbit, and random movement, as shown in Fig. 3a. For the
random pattern, the UAV randomly selects a turning direction.
As shown in Fig. 3b, the average disguising performance of
the random movement is much higher than that of the other
two movement patterns. This is consistent with the common
sense that the random movement can better hide the intention
than the straight line and the arc trajectories. To this end, the
proposed metric (7) is reasonable. As mentioned in Section I,
to the best of our knowledge, no existing model is available
to model the disguising performance. The proposed model (7)
is the first of the kind.

The following objective function is specified to maximize
the overall disguising performance of the UAVs over the time
interval [kT, (k + 1)T ] (k = 0, 1, . . .):

max
p1(t),··· ,pN (t)

N∑
i=1

M∑
j=1

1

Di

∫ (k+1)T

kT

η
(
|α̇ij(t)|+ |ḋij(t)|

)
dt,

(8)
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Fig. 3: (a) Typical movement patterns: straight line, orbit,
random. (b) The disguising performance by the metric (7).
The average values of the three movements are 2.0 (straight
line), 1.8 (arc) and 2.4 (random), respectively, where η = 1.

Here, we use 1
Di

as the weight of UAV i. This is because that
a large UAV should make more effort to disguise itself than a
small UAV, since the former is more noticeable than the latter.

Problem Statement: We focus on an eavesdropping tra-
jectory planning problem. Given the locations of nodes qj
(j = 1, . . . ,M ) and K, T , C, dsafe, Di, V max

i , Wmax
i and Umax

i

(i = 1, . . . , N ), we plan the trajectory for each UAV at each
time interval [kT, (k+1)T ] (k = 0, 1, . . . ,K) to maximize the
objective function (8), subject to the instantaneous eavesdrop-
ping requirement (4), collision avoidance (5), the requirement
of keeping an average distance away from the ground nodes
(6), and the mobility constraint (1). In other words, given the
locations of the ground nodes, we optimize the trajectories for
a UAV team so that the UAVs can decode the collected data,
disguise their eavesdropping intention, and fly safely.

Note that the system parameters Di (i = 1, . . . , N ) impact
the disguising performance and C impacts the eavesdropping
performance. When these parameters are not well selected,
the considered problem may be infeasible. In such a case,
instead of adjusting the parameter C, we can use smaller UAVs
and then reduce the parameters of D1, . . . , DN . Since smaller
UAVs have better disguising ability, we can set smaller values
for D1, . . . , DN , which enlarge the solution space.

In the considered trajectory optimization problem, the UAVs
are not required to reach some desired positions at the end
of the operation, which is different from the common goal
of the conventional UAV path planning problem [40]. It
is also different from the path planning problem in typical
search-and-rescue or search-and-track scenarios, which needs
to produce trajectories for UAVs to traverse a certain space
[41]. Moreover, our eavesdropping mission can be conducted
collaboratively by the UAV team even when all the UAVs
are relatively far from a target. This is different from video
surveillance that requires a target to be within the view of
a UAV [42], [43], i.e., at least one UAV should be close
enough to the target, in the collaborative radio surveillance
problem. These features make this paper distinct to the existing
literature.

IV. TRAJECTORY PLANNING METHOD

Problem of (8), subject to constraints (1), (4), (5) and (6),
is intractable and cannot provide analytical solutions for the

following reasons. The absolute value operator in (8) makes
the problem non-differentiable. Both |α̇ij(t)| and |ḋij(t)| are
non-convex with respect to (xi(t), yi(t), zi(t)). Moreover,
since each UAV has three control variables vi(t), wi(t) and
ui(t), the solution space of the problem is O(3N ) during an
interval if the solution space remains unchanged. This can
degrade the disguising performance, and the ground nodes
may detect the UAVs’ intention with a high probability. Thus,
vi(t), wi(t) and ui(t) are expected to vary, to improve the
disguising performance. This leads to a much larger solution
space than O(3N ) and, in turn, makes problem (8) more
complex. To address this challenging problem, we present a
new randomized method based on RRT [44] to construct the
UAVs’ trajectories efficiently.

We first discretize the interval [kT, (k + 1)T ] into L small
slots with equal lengths τ , i.e., T = Lτ . Without loss
of generality, we focus on the trajectory planning for the
interval [0, T ]. The objective function and the constraints of
the considered problem can be rewritten, as follows:

max
p1(lτ),··· ,pN (lτ)

N∑
i=1

M∑
j=1

L∑
l=1

1

Di
(η|αij(lτ)− αij((l − 1)τ)|

+|dij(lτ)− dij((l − 1)τ)|),
(9)

Fj(lτ) ≥ C, ∀l, ∀j, (10)

δih(lτ) ≥ dsafe, ∀l, ∀i 6= h, (11)

1

L

L∑
l=1

dij(lτ) ≥ Di, ∀i, ∀j. (12)

The UAV dynamic model can be discretized and simplified as:

xi(lτ) = xi((l − 1)τ) + V maxi cos(θi((l − 1)τ)),

yi(lτ) = yi((l − 1)τ) + V maxi sin(θi((l − 1)τ)),

zi(lτ) = zi((l − 1)τ) + wi((l − 1)τ),

θi(lτ) = θi((l − 1)τ) + ui((l − 1)τ),

Zmin ≤ zi(lτ) ≤ Zmax,
wi((l − 1)τ) ∈ {−Wmax

i , 0,Wmax
i },

ui((l − 1)τ) ∈ {−Umaxi , 0, Umaxi },

(13)

for l = 1, . . . , L. Compared to (1), V maxi in (13) is given.
ui((l − 1)τ) and wi((l − 1)τ) in (13) have three options at
interval (l − 1)τ , respectively. This simplifies the control of
UAVs and also reduces the solution space significantly.

The trajectories of the UAVs are planned by repeatedly
solving problem (9), subject to constraints (10) – (13), for
K intervals. Having the initial positions and headings of the
UAVs, a set of trajectories per interval (with L slots) are
constructed. With the positions and headings of the UAVs at
the end of the L-th slot, which are the initial status of the next
interval, the trajectories for the next L slots are constructed.
Planning the trajectories for L slots is a core of constructing
the whole trajectories.

The developed method is summarized in Algorithm 1. A
random tree for each UAV with its initial status as the root
is constructed by randomly placed R samples. Specifically,
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Algorithm 1 Trajectory Planning Algorithm.

1: for i = 1, · · · , N do
2: Construct RRT for UAV i.
3: Select β trajectories with L consecutive vertices from

the RRT satisfying (12), i.e., Ti.
4: end for
5: for κ = 1, . . . , γ do
6: Randomly select a trajectory from each of Ti, i =

1, · · · , N .
7: if (10) and (11) are satisfied by these trajectories then
8: Record them with the corresponding objective

function value (9).
9: end if

10: end for
11: Find the recorded combination that has the largest objec-

tive function value.

for UAV i, the samples are placed in a cylinder centred at
the current location of the UAV with the horizontal radius
of V maxi T and height of 2Umaxi T . Starting from the root,
β number of trajectories with L consecutive vertices from the
random tree are selected. Some of them may be so close to the
root that constraint (12) is not satisfied by these trajectories.
These invalid trajectories are precluded. Let Ti denote the set
of valid trajectories satisfying (12) for UAV i. For N UAVs,
there are N sets of valid trajectories. Then, one trajectory is
randomly selected from each set, which makes a combination
of trajectories. For each combination, constraints (10) and (11)
are assessed for each slot l. If they are satisfied, we say
this combination of trajectories is valid. Then, the objective
function (9) is evaluated. Among γ number of combinations,
the one maximizing (9) can be identified.

Note that constraint (10) requires the UAVs to be close to
the nodes, while constraint (12) requires the UAVs to be far
away. Given C, the parameters D1, . . . , DN can make the
problem infeasible. Nevertheless, D1, . . . , DN can be adjusted
periodically for the feasibility of the problem. For example,
when the ground nodes become too close to each other and
reduce their transmit power, we can reduce the values of
D1, . . . , DN and allow the UAVs to be closer to the nodes.

Also note that, apart from the mathematical intractability
of the constrained problem (9), another reason for designing
the RRT-based method is its potential decentralized imple-
mentation. Specifically, the RRT is an algorithm designed to
efficiently search a space by constructing a space-filling tree
incrementally from samples drawn randomly from the space.
In other words, each UAV can produce the tree of possible
trajectories for any UAV (including itself), given the samples
from the space and the current position of the latter UAV.
To this end, we can pre-sample the space and pre-store the
samples at all UAVs. By only observing the positions of
itself and the others, each UAV can independently produce
consistent trees of possible trajectories for all UAVs. The
best set of trajectories, one from each of the trees, can be
consistently identified in a decentralized fashion.

It is worth pointing out that the proposed RRT-based
navigation method inherits the randomness in the trajectory

generation. It takes into account the UAVs’ dynamic model (1)
when constructing the trajectories. Compared to completely
random trajectories which are effective for disguising, the
proposed method further considers constraints (4), (5) and (6),
which guarantee that during the movement, the eavesdropping
on the ground nodes is effective and the UAVs keep away
from each other for safety. It is also worth pointing out that
the proposed method can be straightforwardly extended to
avoid stationary or moving obstacles. This can be achieved by
simply removing samples that encounter any obstacles from
the generated random trees in Line 2 of Algorithm 1.

Finally, we analyze the computational complexity of eval-
uating one of the combinations. The results returned by
Algorithm 1 are a set of N trajectories for the N UAVs. Each
trajectory is designed for the future L slots. For each set of the
trajectories, the first operation is to verify the flight safety of
the UAVs for collision avoidance. At any slot l, the distance
between any two UAVs is no shorter than dsafe. Since we have
N UAVs and L slots, it takes O(LN2) time to verify whether
the positions of the UAVs satisfy constraint (11) at any slot.
Regarding the verification of the eavesdropping performance,
i.e., constraint (10), for any ground node j at any slot l, it takes
O(N) time to compute Fj(t), as all the N UAVs contribute
to the eavesdropping. Given the M nodes and L slots, the
complexity is O(LMN). Therefore, it takes O(LMN+LN2)
to check whether constraints (10) and (11) are satisfied by this
combination. Furthermore, to evaluate the objective function
(9), it takes O(LMN) time. Then, the complexity to evaluate
a combination is O(LMN + LN2). For the random tree
construction part, the complexity of constructing one RRT
(line 2) by randomly placing a number of R samples is O(R2).
The complexity of selecting β trajectories from each RRT
satisfying constraint (12), i.e., line 3, is at least O(βL), since
some randomly selected trajectories may not meet constraint
(12). As a result, the total complexity of Algorithm 1 is
O(NR2 + βNL+ γLMN + γLN2).

V. SIMULATION RESULTS

We present the simulation results of the proposed technique.
The maximum angular speed is 1 rad/s and the maximum
vertical speed is 10 m/s for all the UAVs. dsafe = 20 m, C = 3
dB, η = 10, P = 20 dBm, σ2

0 = −80 dBm, K = 10, L = 15,
and each slot is 1 second. Zmin = 200 m and Zmax = 600
m. We place R = 5000 random samples to construct an RRT,
β = 20 trajectories are selected from each RRT, and γ = 100
combinations tested for each interval.

Simulations are conducted on the simulator platform Cop-
peliaSim. The UAVs on the platform can be controlled by
MATLAB via a built-in API. The simulation fowchart is shown
in Fig. 4. The simulation starts from the MATLAB side by
calling the functions of remApi() and simxStart(). We set a cer-
tain simulation time. During the simulation time, Algorithm 1
constructs the UAVs’ trajectories. The trajectories are exported
to CoppeliaSim via the command of simxSetObjectPosition().
Then, in CoppeliaSim, we simulate the UAVs’ ights with the
embedded controller. The UAVs’ positions are then sent back
to MATLAB script by the command simxGetObjectPosition().
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Start MATLAB program

via functions remApi() and simxStart()

MATLAB constructs UAVs’ trajectories by 

Algorithm 1

Simulation time reached? 

MATLAB inquires UAVs’ and ground 

nodes’ status from CoppeliaSim via the 

command of simxGetObjectPosition()

Simulate UAVs’ flights in CoppeliaSim

(using the embedded controller)

Stop by 

simxFinish()

Yes

No

Export to CoppeliaSim via the command of 

simxSetObjectPosition()

Fig. 4: The flowchart of the MATLAB-CoppeliaSim simu-
lation of the proposed method, where MATLAB scripts are
imported to CoppeliaSim to simulate the movement of the
UAVs and eavesdropping results are returned to MATLAB for
performance analysis.
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Fig. 5: One UAV and one node (Case 1).

When the simulation time is reached, we stop the simulation
by simxFinish().

To evaluate the proposed method, we compare it with the
following two benchmark methods:

• The first benchmark method, referred to as “random”,
follows [17] to allow the UAVs to fly completely ran-
domly, where each UAV can randomly select its moving
direction. Generally speaking, such a movement comes
with covertness, and the targets are least likely to connect
the UAVs with an eavesdropping or monitoring mission
(as compared to structured movements with recognizable
patterns).

• The second benchmark, referred to as “complete search”,
searches all the feasible paths generated by all the pos-
sible control inputs defined in (13). There are a total of
9 control input combinations for each UAV i, accounting
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Fig. 6: Two UAVs and one node (Case 2).
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Fig. 7: Two UAVs and two nodes (Case 3).

for three possible options for each of the horizontal angu-
lar speed and the vertical speed, and one possible option
for the linear speed. This benchmark is deterministic,
and is expected to provide the optimal solution to the
considered problem under the discretization (13) at the
cost of a high computational complexity. This method can
find the paths which offer good disguising performance
and guarantee the eavesdropping performance.

By comparing with the two benchmarks, our algorithm is com-
pared against the best possible covertness performance (i.e.,
random), and the best possible covertness under guaranteed
eavesdropping performance (i.e., complete search).

We start with a simple case of a single UAV and a single
node. The maximum linear speed V max

1 = 30 m/s and D1 =
400 m. The horizontal movement of the UAV is shown in Fig.
5a, where the black square is the initial position. The altitude
is shown in Fig. 5b. Fig. 5c shows that the eavesdropping rate
at any time is over C. The cumulative density function (CDF)
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Fig. 8: Two UAVs and three nodes (Case 4).
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Fig. 9: Three UAVs and three nodes (Case 5).

of the corresponding disguising performance is shown in Fig.
5d. For the same node, we also consider two UAVs, where
V max

1 = 30 m/s, V max
2 = 25 m/s, D1 = 400 m, and D2 = 350

m. The eavesdropping performance is much better than the
single-UAV case (see Fig. 6c), and the disguising performance
is improved as shown in Fig. 6d. We further consider a case
with two UAVs and two nodes, and a case with two UAVs and
three nodes. Compared to Figs. 6c and 6d, with an increasing
number of nodes, both the eavesdropping performance and
the disguising performance decrease (see Figs. 7c and 8c, and
Figs. 7d and 8d). In the case of three nodes, we add one
more UAV and the simulation results are shown in Fig. 9,
where V max

3 = 20 m/s and D3 = 300 m. Clearly, adding a
UAV improves both the eavesdropping performance and the
disguising performance. Another set of the simulation results
under five UAVs and three nodes is presented in Fig. 10.
Compared to the case shown in Fig. 9, having two more UAVs
can significantly improve the eavesdropping performance; see
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Fig. 10: Five UAVs and three nodes (Case 6).

Eavesdropping performance on each node

Disguising performance

Fig. 11: A screenshot of the simulation for five UAVs and
three ground nodes (Case 6). The graphs on the right show
the disguising performance and the eavesdropping perfor-
mance of each node. A video recording the movements of
the UAVs is available: https://youtu.be/80l9vq7GPws. Other
recordings are available at https://youtu.be/f3adKTWqDIA and
https://youtu.be/mEYe-o5l5BA.

Figs. 9c and 10c. When N > 1, we only show the lowest
eavesdropping performance on the nodes in Figs. 7c, 8c and
9c. As long as a curve in these figures is above the threshold
C, the collaborative eavesdropping is effective. From these
simulations, we see that the proposed method guarantees that
the worst-case eavesdropping is still above the given threshold.
To better illustrate the movements of the UAVs under the
navigation of the proposed method, we record the simulation
in CoppeliaSim for the case with five UAVs. A video link is
available at the caption of Fig. 11.

In Fig. 5c, we see that the random movements of UAVs
fail to satisfy the eavesdropping requirement at some times,
since the corresponding curves fall below the given threshold
C. The collaborative eavesdropping is effective if the curves
remain above C. This can also be observed later in Figs.
6c, 7c, 8c, 9c and 10c. Like the proposed method, the UAV
trajectories generated by the complete search method also
ensure the effective eavesdropping. In the case with five
UAVs, only the random method is used for comparison, as
the complete search method is computationally prohibitive and
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TABLE II: Result summary. E stands for eavesdropping
performance, i.e., the ratio of successful eavesdropping in
the whole duration, and D stands for the average disguising
performance in the whole duration.

Case Metric Proposed Random method Complete search

1 E 1 0.55 1
D 1.52 1.64 1.65

2 E 1 0.20 1
D 2.02 2.11 2.14

3 E 1 0.81 1
D 1.63 1.68 1.72

4 E 1 0.52 1
D 1.45 1.48 1.51

5 E 1 0.67 1
D 2.11 2.18 2.22

6 E 1 0.87 -
D 2.52 2.60 -

cannot produce the result within a reasonable timeframe. In
Fig. 5d, we see that the complete search method achieves
better disguising performances than the proposed method (as
can also be observed later in Figs. 6d, 7d, 8d and 9d). The
reason is that the proposed method randomly tests a subset of
trajectories, instead of all the possible trajectories (as tested
in the complete search method). The simulation results of the
eavesdropping performance and the disguising performance of
the above cases are summarized in TABLE II. In particular,
for the eavesdropping performance, we count the ratio of
successful eavesdropping in the simulations. For the disguising
performance, we present the average value of (7). Clearly, the
proposed method achieves the ratio of 1 in terms of eaves-
dropping performance, and the disguising performance is very
close to the benchmark methods. In other words, the proposed
method enables UAVs to successfully eavesdrop on the ground
nodes with comparable disguising performance. We note that
the parameters in the proposed method can be adjusted during
the trajectory construction process. For example, in Fig. 9,
we can adjust the parameter of the eavesdropping requirement
during the simulation. Specifically, in the first 105 slots, the
parameter C = 3 and in the next 45 slots, it is set as 4; see
Fig. 9c. Clearly, the proposed method can construct the UAVs’
trajectories to satisfy the increased eavesdropping requirement.

A better disguising performance is achieved at the cost of
runtime, as shown in TABLE III. The runtime is measured
at a PC with Intel Core i7-7500U CPU using MATLAB. The
proposed method has an affordable runtime (less than 1 second
for the considered cases), while the complete search method
takes dramatically longer. For example, when M = 4, N =
3 and L = 20, the complete search method takes about 20
minutes to find the optimal solution. Moreover, the complete
search method cannot solve large-scale problems, e.g., M = 3,
N = 4 and L = 15, within a reasonable time.

We test the complexity of Algorithm 1 in terms of floating
point operations using a MATLAB FLOPs tool2 by evaluating
both the path combination and the RRT generation of the
algorithm. The results are summarized in TABLE IV. When
M is fixed, the number of floating point operations to assess

2https://www.mathworks.com/matlabcentral/fileexchange/50608-counting-
the-floating-point-operations-flops

TABLE III: Computation time (in seconds).

N = 3 L 5 10 15 20

M = 3
Proposed 0.47 0.52 0.56 0.63

Complete search 2.58 30.62 189.56 1134.63
L = 15 N 1 2 3 4

M = 3
Proposed 0.46 0.52 0.63 0.85

Complete search 52.67 118.43 189.56 -
L = 15 M 1 2 3 4

N = 3
Proposed 0.41 0.53 0.63 0.92

Complete search 48.52 103.56 189.56 -

TABLE IV: Number of floating point operations (FPOs) for
evaluating a path combination under different numbers of
UAVs (N ) and nodes (M ), and for constructing a random
tree with different numbers of samples (R).

Evaluating a path combination in line 8 of Algorithm 1

M = 4
N 3 4 5 6 7 8

FPOs 2630 3835 5220 6900 8700 11000

N = 3
M 3 4 5 6 7 8

FPOs 2194 2630 3100 3560 4120 4710
Constructing a random tree for one UAV in line 2 of Algorithm 1

R 1000 2000 3000 4000 5000 6000
Giga FPOs 0.34 0.71 1.2 1.8 2.6 3.5

a path combination increases with N . When N is fixed, the
number of of floating point operations increases linearly. For
the RRT generation of Algorithm 1, the complexity depends
on the number of random samples placed in the field, rather
than M , N and L. As shown in TABLE IV, the number
of floating point operations increases significantly with the
number of samples (R), and is much larger than that of the
path evaluation. To this end, the complexity of the algorithm is
dominated by the RRT generation and depends on the number
of UAVs. As listed in [45, Tab. IV], a Qualcomm Snapdragon
Flight is equipped with a Qualcomm Adreno 330 GPU with
167GFLOPs. Constructing an RRT with 5000 samples (2.6
giga floating point operations) at such a UAV only takes 0.015
seconds. The proposed method meets the needs of an actual
large scene with an acceptable delay.

Now, we discuss the impact of C, N and M on the
average disguising performance of the proposed method. We
consider the disguising performance of a UAV on a node
over 100 independent simulations. We first consider C, and
the rest of the parameters remain the same as the above
case of three UAVs and three nodes. With the increase of
C, the average disguising performance decreases (see Fig.
12a). Since the eavesdropping performance decreases with
an increasing distance between the UAV and the node, the
increase of C leads to a smaller feasible movement space
of the UAV. This phenomenon is more likely to worsen the
disguising performance. For the impact of N , we keep C = 3
and M = 3. As shown in Fig. 12b, increasing UAVs in
the system can significantly improve the average disguising
performance when the number of UAVs is relatively small.
In the presence of a large number of UAVs, the disguising
performance improves slightly with a further increase of the
UAV number. The reason is that with more UAVs in the
system, the eavesdropping workload is reduced, so that the
UAVs can make more effort to disguise their intention. When
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the number of UAVs is sufficient, adding extra UAVs does
not help much in terms of disguising, but the eavesdropping
performance improves. As shown in Fig. 12c, the disguising
performance degrades with an increasing number of ground
nodes. The reason is that with more ground nodes in the
system, the eavesdropping burden of UAVs increases. Thus,
the eavesdropping performance degrades. Therefore, for a
given number of ground nodes, we can select the number
of UAVs according to the expected disguising performance.
Such selection should also consider the gain in disguising
performance and system cost.
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Fig. 12: Impacts of several parameters on disguising.

VI. CONCLUSION

In this paper, we used UAVs to collaboratively and se-
cretively eavesdrop on a set of stationary ground nodes.
We proposed a new measure to quantify the disguising
performance, and formulated a new optimization problem
that maximizes the disguising performance subject to the
eavesdropping performance, the collision avoidance, and the
aeronautic maneuverability. A randomized method based on
RRT was developed to construct the trajectories. It can achieve
better eavesdropping performance than the random movement
method without compromising the disguising performance.
The proposed method achieves close disguising performance
with the complete search algorithm at much shorter compu-
tation time. As an extension of the current results, collabora-
tively and covertly eavesdropping on moving ground nodes
will be considered. Another future activity is to carry out
outdoor experiments to verify the proposed method.
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