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Abstract— The recent development in vehicle-to-everything 
(V2X) communication opens a new opportunity to improve the 
positioning performance of the road users. We explore the 
benefit of connecting the raw data of the global navigation 
satellite system (GNSS) from the agents. In urban areas, GNSS 
positioning is highly degraded due to signal blockage and 
reflection. 3D building model can play a major role in mitigating 
the GNSS multipath and non-line-of-sight (NLOS) effects. To 
combine the benefits of 3D models and V2X, we propose a novel 
3D mapping aided (3DMA) GNSS-based collaborative 
positioning method that makes use of the available surrounding 
GNSS receivers’ measurements. By complementarily 
integrating the ray-tracing based 3DMA GNSS and the double 
difference technique, the random errors (such as multipath and 
NLOS) are mitigated while eliminating the systematic errors 
(such as atmospheric delay and satellite clock/orbit biases) 
between road user. To improve the accuracy and robustness of 
the collaborative algorithm, factor graph optimization (FGO) is 
employed to optimize the positioning solutions among agents. 
Multiple low-cost GNSS receivers are used to collect both static 
and dynamic data in Hong Kong and to evaluate the proposed 
algorithm by post-processing. We reduce the GNSS positioning 
error from over 30 meters to less than 10 meters for road users 
in a deep urban canyon. 
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I.  INTRODUCTION

Due to the rapid development of signal communication, 
information sharing between neighboring road users is 
becoming possible. Researchers studied the new potentials by 
combining the measurements from the agents rather than only 
using the on-board measurements of one road user [1, 2]. 
Combined measurements can also improve the perception 
range of their surroundings or anti-spoofing ability [3], 
thereby contributing to road safety in intelligent 
transportation systems (ITS). Transponder-based methods 
are applied in vehicle-to-vehicle (V2V) collaborative 
positioning [4-6]. They use the time-of-arrival to measure the 
relative positions of different vehicles. However, these 
transponder-based methods suffer from non-line-of-sight 
issue (NLOS) [1] and are unable to obtain the relative 
distances from others when an obstacle is in-between two 

vehicles. Therefore, the detection ranges of these methods are 
limited. In contrast, the GNSS-based collaborative 
positioning method is able to overcome this issue and obtain 
full 3D relative position, even when obstacles exist in-
between vehicles. Based on the shared GNSS measurements 
and the spatial relationships, the relative distances between 
different road agents can be estimated [7]. By applying the 
double difference (DD) on the shared GNSS raw 
measurements, the correlated errors including satellite 
orbit/clock biases, ionospheric and tropospheric delays, can 
be eliminated [8, 9] and obtain relative position between two 
road agents. The performance and limitation of the double 
difference GNSS based collaborative positioning method are 
evaluated with the Cramer-Rao lower bound (CRLB) [10]. 
The relative positions of different vehicles are combined with 
absolute positions to optimize the position of the participated 
vehicles [11]. Moreover, the feasibility and improvements of 
integrating the inter-agent distances with GNSS 
measurements in a tightly-coupled architecture are studied 
[12]. However, the benefits of DD are limited to open-sky 
areas without NLOS or multipath effect [13, 14]. 
Unfortunately, GNSS receivers suffer from severe multipath 
and non-line-of-sight (NLOS) effects in urban areas [15]. The 
effects are strongly dependent on location. In other words, it 
cannot be eliminated or even mitigated by double 
differencing the measurements of road users. Since the 
multipath effect and NLOS reception are the dominant errors 
in urban areas [16], various algorithms are developed. A 
straightforward method is to integrate the GNSS with other 
sensors, which can maintain the positioning accuracy when 
GNSS measurements are not reliable. GNSS/INS integration 
has been widely applied to achieve robust positioning 
solutions [17-19]. Whereas, INS suffers from a continuous 
drift and is unable to guarantee the accuracy over long-time 
in dense urban areas without a reliable GNSS solution. 
Another approach is aiding GNSS with anchor-based 
measurements, for example, angle-of-arrival measurements 
[20], magnetic field strength [21], cellular signals [22], or 
more generally, the signals of opportunity [23]. However, the 
integration with other sensors requires additional hardware or 
infrastructures, as well as the consideration of the reliability 
of other sensors. 
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Since the multipath effects are caused by building 
reflections, researchers are studying the employment of 3D 
building models to mitigate these effects, as known as the 3D 
mapping-aided (3DMA) GNSS [24-30]. GNSS shadow 
matching (SDM) is one of the most widely applied 3DMA 
GNSS [31-33]. The detail and performance assessment of the 
state-of-the-art of 3DMA GNSS is reported in [24, 34]. A 
decentralized collaborative localization makes use of SDM 
and inter-agent ranging provided by ultra-wideband (UWB) 
is proposed and evaluated based on simulation [35]. The 
building model is also used to correct the UWB signal 
transmission delay when passing through walls, in order to 
improve the indoor collaborative positioning performance 
[36]. We previously proposed a pure 3DMA GNSS based 
collaborative positioning method. We used the SDM 
estimated satellite visibility to exclude the measurements 
affected by NLOS receptions before their use in double 
difference, thereby improving GNSS-based collaborative 
positioning in an urban area [37]. The experiment shows the 
previously proposed method can obtain satisfactory results if 
the number of common measurements between two road 
users is sufficient. However, the number of common line-of-
sight (LOS) measurements are usually limited in deep urban 
canyons. An example is given in Fig.1. If most of NLOS are 
excluded, the reminding common measurements became 
few. Out of the 6 LOS signals for each user, only 2 LOS 
signals (10 and 93) are simultaneously visible for these users 
due to the different surrounding buildings (grey area). This 
insufficiency makes the GNSS relative positioning difficult. 
The reason is the exclusion will lead to the distortion of 
GNSS dilution of precision (DOP), resulting in poor 
positioning performance, which we experienced in our 
previous work [38]. 

 

 
Fig. 1. Demonstration of the commonly-received GNSS measurements 
between different users in deep urban canyon. In the skyplots, green and red 
dots denote LOS and NLOS signals, respectively. Grey area denotes the area 
blocked by buildings.  

25, 27, 39]. 
Based on the pure reflection assumption, the reflected GNSS 
signal route can be simulated from the surfaces of buildings 

[40]. The extra traveling distance of the reflected GNSS 
signal can be estimated and used to correct the pseudorange 
measurements. Therefore, the ray-tracing algorithm is 
complementary to the GNSS based collaborative positioning 
in urban areas. 

The aim of collaborative positioning is to improve the 
positioning accuracy of the road agents by centralizing and 
optimizing the absolute and relative positioning solutions 
provided by all participants.  A study shows the effectiveness 
of using maximum likelihood estimation (MLE) [41]. 
However, the MLE may fail due to the nonconvex cost 
function. A convex relaxation is applied to solve the problem 
[42]. A cooperative method based on the least square is also 
developed to solve the non-convexity [43]. Multidimensional 
scaling (MDS) is another popular technique for collaborative 
positioning, exploring the spatial proximities between 
different agents with fast response [44, 45]. Recently, the 
factor graph optimization (FGO) is developed for 
applications with a large number of constraints [46], such as 
simultaneous localization and mapping (SLAM). FGO is 
well-known for its robustness against outliers [47]. It is also 
used in GNSS positioning under urban environments. The 
relate works show its ability in mitigating the outliers due to 
the multipath effect [48] and its potentials to outperform the 
extended Kalman filter (EKF) [49]. Thus, it is promising to 
apply FGO to GNSS based collaborative positioning. 

This paper proposes a ray-tracing 3DMA GNSS based 
collaborative positioning using FGO. We aim to improve the 
positioning accuracy of road users in dense urban areas by 
this centralized method. First, the ray-tracing algorithm is 
used to correct the NLOS pseudorange error for individual 
agent. Then, the GNSS systematic errors are eliminated using 
the double difference technique, thereby obtaining relative 
positions between different agents. The graph of FGO is 
described by connecting the nodes (agents’ state) based on 
the absolute and relative positions estimated by 3DMA 
GNSS and DD positioning, respectively. The reliability of 
each node and constraints are given by a predicted GNSS 
positioning error map [50]. The contributions of this paper 
are summarized as following: 1) Complementarily 
integrating the DD GNSS based collaborative positioning 
method with the ray-tracing based 3DMA GNSS to directly 
improve the GNSS positioning performance without the use 
of any additional sensors; 2) employing the factor graph 
optimization to obtain robust performance in dense urban 
areas, where outliers frequently occur. 

The remainder of this paper is organized as follows. The 
overview of the proposed method is given in Section 2. The 
proposed grid-based 3DMA relative positioning with double 
difference technique is detailed in Section 3. In Section 4, the 
process of the factor graph optimization to achieve overall 
optimal positioning solution is introduced. The uncertainty of 
each constraint based on the predicted positioning error map 
is also introduced. After that, the improvement of the 
proposed algorithm is verified and discussed with real 
experiments in Section 5. Finally, the conclusion is drawn 
and future work is suggested in Section 6.



 
Fig. 2. The use of 3D mapping database in center server to generate simulated GNSS LOS/NLOS ranges from satellites to each grid and predicted GNSS positioning 
error map. 

 
Fig. 3. The overview of the proposed 3DMA cooperative positioning with factor graph optimization. This is an example of 3 road agents participated in the 
collaborative positioning. The blue parts are the methods proposed in this paper. The parts highlighted in yellow are algorithms in the center server. 

 

II. OVERVIEW OF THE PROPOSED ALGORITHM 
The use of 3D mapping database to support the proposed 
3DMA GNSS collaborative positioning is shown in Fig. 2. 
First, a set of grids is defined on the ground surface based on 
digital terrain model (DTM) with a resolution of 2 by 2 
meters in a selected area. The ray-tracing algorithm is used to 
simulate the GNSS LOS/NLOS ranges from satellites to each 
grid [39], which will be used in the 3DMA GNSS of the 
proposed collaborative positioning. In addition, the simulated 
ranges are used to predict the GNSS positioning error on each 
grid in the given time [50]. The system overview of the 
proposed 3DMA GNSS based collaborative positioning 
algorithm is given in Fig. 3. As shown in Fig.3, the road 
agents send their own GNSS raw data to the center server to 
conduct the proposed collaborative method. First, the ray-
tracing based 3DMA GNSS algorithm [39] is applied to 
obtain the improved absolute position of individual road 
agents. In order to obtain an accurate relative position 

between two road agents, we propose a grid based 3DMA 
GNSS relative positioning method. The idea is similar to the 
previous work in [39]. Instead of comparing the pseudorange 
likelihood, the likelihood of the double difference 
measurements is considered. The detail will be introduced in 
the next section. After obtaining the absolute and relative 
positions, all these solutions are used as constraints for the 
factor graph optimization.  Based on each agent’s absolute 
position estimation, the corresponding positioning error can 
be evaluated by the predicted GNSS positioning error map 
and further used to obtain the uncertainty of the related 
constraint in the factor graph. Finally, by applying the factor 
graph optimization, the global optimal positioning of the 
participated road agents can be achieved with higher 
accuracy and robustness.  



III. GRID BASED 3DMA GNSS RELATIVE POSITIONING  
Conventionally, the relative position between two road 
agents can be estimated by double differencing the GNSS 
pseudorange measurements [51]. The problem is the 
multipath and NLOS affected measurements cannot be 
canceled or even mitigated during DD. Thus, the delay 
caused by reflections must be corrected before it is used in 
DD. Since the true position of the road agent is unknown, it 
is unable to derive the unique multipath and NLOS 
pseudorange corrections using the ray-tracing algorithm. A 
feasible approach is to select a number of grids near the initial 
position of the road agent. The initial position is given by the 
ray-tracing based 3DMA GNSS [39]. By extending the idea 
of the ray-tracing based method, we propose to calculate the 
relative position based on a position hypothesis based 
method. Its flowchart is given in Fig.4.  
 

 
Fig. 4. The flowchart of the proposed grid based 3DMA GNSS relative 
positioning method.  

Sets of grids 𝕒𝕒 and 𝕓𝕓 are selected for road agents a and b, 
respectively. Note that the height of the grids is given by 
DTM, assuming that the road agents are on the ground. If the 
ray-traced range of a grid is NLOS, then the NLOS correction 
of that particular grid can be calculated as: 

where 𝛿𝛿𝜌𝜌𝑛𝑛,𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑖𝑖  is the NLOS correction for the pseudorange 

from the 𝑖𝑖𝑡𝑡ℎ satellite to the 𝑛𝑛𝑡𝑡ℎ grid, 𝐿𝐿𝑛𝑛𝑖𝑖  is the total distance 
of the simulated reflection path and 𝑅𝑅𝑛𝑛𝑖𝑖  is the geometric LOS 
range between the 𝑛𝑛𝑡𝑡ℎ grid and the 𝑖𝑖𝑡𝑡ℎ satellite. Note that, the 
NLOS correction generated by ray-tracing is unique for each 
grid. The corrected range in a grid selected by road agent a is 
calculated as:  

 𝜌𝜌�𝑛𝑛𝑎𝑎
𝑖𝑖 = 𝜌𝜌�𝑎𝑎𝑖𝑖 − 𝛿𝛿𝜌𝜌𝑛𝑛𝑎𝑎,𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

𝑖𝑖  (2) 

where 𝜌𝜌�𝑎𝑎𝑖𝑖  is the received pseudorange measurement from 
satellite i to road agent a. A grid closer to the true position of 
the road agent is more likely to obtain a correct correction. 
To estimate the relative position between two road agents, 

DD of the corrected range measurements is used. Like 
DGNSS, the road agents applying DD are better to be close 
within 1 km, ensuring the GNSS atmospheric delays are 
similar [52]. The calculation of the DD range between two 
grids selected by road agent a and b is as below:  

 𝐷𝐷𝑛𝑛𝑎𝑎𝑛𝑛𝑏𝑏
𝑖𝑖𝑖𝑖 = �𝜌𝜌�𝑛𝑛𝑏𝑏

𝑖𝑖 − 𝜌𝜌�𝑛𝑛𝑏𝑏
𝑖𝑖 � − �𝜌𝜌�𝑛𝑛𝑎𝑎

𝑖𝑖 − 𝜌𝜌�𝑛𝑛𝑎𝑎
𝑖𝑖 �  (3) 

where the superscript m denotes the master satellite. We 
selected the satellite with the highest elevation angle as the 
master satellite in this paper. Due to the distance between 
satellite and road agent is far way comparing to the distance 
between two road agents, their relationship can be linearized 
as following [52]: 

 𝐷𝐷𝑛𝑛𝑎𝑎𝑛𝑛𝑏𝑏
𝑖𝑖𝑖𝑖 = (�⃗�𝜂𝑖𝑖 − �⃗�𝜂𝑖𝑖) ∙ ∆𝐏𝐏�𝑛𝑛𝑎𝑎𝑛𝑛𝑏𝑏 (4) 

where �⃗�𝜂𝑖𝑖  and �⃗�𝜂𝑖𝑖  are the unit line-of-sight (LOS) vectors 
from the road agent to satellites i and m, respectively. ∆𝐏𝐏�𝑛𝑛𝑎𝑎𝑛𝑛𝑏𝑏 
denotes the relative position between the grids 𝑛𝑛𝑎𝑎  and 𝑛𝑛𝑏𝑏 
selected by road agent a and b, respectively. It is 
demonstrated in Fig. 5. Equation (4) can be re-written as:  

 𝐷𝐷𝑛𝑛𝑎𝑎𝑛𝑛𝑏𝑏
𝑖𝑖𝑖𝑖 = A𝑖𝑖𝑖𝑖∆𝐏𝐏�𝑛𝑛𝑎𝑎𝑛𝑛𝑏𝑏 (5) 

Considering the DD ranges from different satellites, the 
relative position can be solved by pseudo-inversing matrix A:   

 ∆𝐏𝐏�𝑛𝑛𝑎𝑎𝑛𝑛𝑏𝑏 = (𝐀𝐀𝐓𝐓𝐀𝐀)−𝟏𝟏𝐀𝐀𝐓𝐓𝐃𝐃𝑛𝑛𝑎𝑎𝑛𝑛𝑏𝑏 (6) 

We assume if both selected grids are close to the real position 
of road agents, the corresponding estimated relative position, 
∆𝐏𝐏�𝑛𝑛𝑎𝑎𝑛𝑛𝑏𝑏 , should be closer to the true relative position between 
road agents a and b.  In contrast, if both of the grids are far 
away from the real road agent positions, the ray-tracing 
correction will be incorrect. Using the faulty corrections will 
increase the uncommon errors in DD range, resulting in the 
corresponding relative positioning error will be largely 
increased. As a result, the estimated relative position with 
faulty corrections will be very different from the actual 
relative position between the two grids. The difference is 
calculated as:  

 δΔ𝐏𝐏(𝑛𝑛𝑎𝑎,𝑛𝑛𝑏𝑏) = ��𝐏𝐏𝑛𝑛𝑏𝑏 − 𝐏𝐏𝑛𝑛𝑎𝑎� − Δ𝐏𝐏�𝑛𝑛𝑎𝑎𝑛𝑛𝑏𝑏� (7) 

If the assumption is valid, the likelihood (the posterior 
probability) of each pair of grids can be estimated using the 
difference as following:  

  Λ(𝑛𝑛𝑎𝑎,𝑛𝑛𝑏𝑏) = 𝑒𝑒𝑒𝑒𝑒𝑒 �
�δΔ𝐏𝐏(𝑛𝑛𝑎𝑎,𝑛𝑛𝑏𝑏)−δΔ𝐏𝐏𝑚𝑚𝑚𝑚𝑛𝑛�

(δΔ𝐏𝐏𝑚𝑚𝑎𝑎𝑚𝑚−δΔ𝐏𝐏𝑚𝑚𝑚𝑚𝑛𝑛)
�
−1

 (8) 

 δΔ𝐏𝐏𝑖𝑖𝑖𝑖𝑛𝑛 = min
𝑛𝑛𝑎𝑎∈𝕒𝕒,𝑛𝑛𝑏𝑏∈𝕓𝕓

�δΔ𝐏𝐏(𝑛𝑛𝑎𝑎,𝑛𝑛𝑏𝑏)�  (9) 



 δΔ𝐏𝐏𝑖𝑖𝑎𝑎𝑚𝑚 = max
𝑛𝑛𝑎𝑎∈𝕒𝕒,𝑛𝑛𝑏𝑏∈𝕓𝕓

�δΔ𝐏𝐏(𝑛𝑛𝑎𝑎,𝑛𝑛𝑏𝑏)�  (10) 

where Λ(𝑛𝑛𝑎𝑎,𝑛𝑛𝑏𝑏) is the estimated likelihood of the paired grids 
𝑛𝑛𝑎𝑎 and 𝑛𝑛𝑏𝑏. The total set of different combining pairs of the 
grid selected from road agents a and b can be expressed as: 

 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 = {(𝑛𝑛𝑎𝑎,𝑛𝑛𝑏𝑏)|𝑛𝑛𝑎𝑎 ∈ 𝕒𝕒,𝑛𝑛𝑏𝑏 ∈ 𝕓𝕓}  (11) 

δΔ𝐏𝐏𝑖𝑖𝑖𝑖𝑛𝑛 and δΔ𝐏𝐏𝑖𝑖𝑎𝑎𝑚𝑚 are the minimum and maximum of the 
calculated differences of all the pairs. We normalized the 
difference δΔ𝐏𝐏(𝑛𝑛𝑎𝑎,𝑛𝑛𝑏𝑏) and prioritized the pairs based on the 
likelihood. The larger likelihood of the pair (smaller 
difference) is, the higher chance the pair can reflect the actual 
relative position of the road agents. To gain robustness of the 
proposed method, we selected (filtered) the top 1% of all the 
pairs in this study. For example, if 100 grids are selected by 
each road agent, 10,000 pairs are generated between two road 
agents. Then, 1% means 100 pairs.  Finally, the relative 
position between road agents a and b can be determined by 
weighted average of all the filtered pairs (denoted as 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏∗ 
and 𝑒𝑒𝑝𝑝𝑖𝑖𝑝𝑝∗ for a subset). 

 Δ𝐱𝐱�𝑎𝑎𝑏𝑏 = �∑ Λ𝑝𝑝𝑎𝑎𝑖𝑖𝑝𝑝∗ ∙ Δ𝐏𝐏𝑝𝑝𝑎𝑎𝑖𝑖𝑝𝑝∗𝚸𝚸𝐏𝐏𝐏𝐏𝐏𝐏∗ � ∑ Λ𝑝𝑝𝑎𝑎𝑖𝑖𝑝𝑝∗𝚸𝚸𝐏𝐏𝐏𝐏𝐏𝐏∗�   (12) 

By applying the proposed 3DMA GNSS relative positioning 
method, an accurate relative position can be estimated even 
when two road agents are located in urban canyons. The 
relative positions of all the combinations of the road agents 
are estimated using the proposed method. 
 

 
Fig. 5. The demonstration of the grids selected by two road agents.  

IV. FACTOR GRAPH OPTIMIZATION BASED 
COLLABOTATIVE POSITIONING 

37]. As the demonstration in Fig. 6, by 
collaborating the healthy measurement from the anchor 
agent, the nearby mobile agent is able to obtain a better 
positioning solution. However, it is always difficult to 
correctly identify the “anchor” in the system. In other words, 
it is not robust. Instead of using an anchor, we should 
consider collaborative positioning as a problem of 
optimization. The absolute position of agents (calculated by 
ray-tracing based method) and the relative positions between 

agents (calculated by the proposed grid based 3DMA GNSS 
relative positioning) are regarded as constraints in the 
optimization process. 
 

 
Fig. 6. The concept of the anchor-based GNSS collaborative positioning 
method.  

Since the number of constraints becomes enormous when 
more road agents are participating, the factor graph 
optimization (FGO) becomes a good candidate to conduct 
collaborative positioning.  FGO is famous for its outstanding 
performance with a large number of constraints [47]. Since 
we assume the road agents are driving or walking on the 
ground, we focus on the positioning in the East-North 
(horizontal) plane of the local coordinate. In this study, the 
FGO is based on the open source toolbox (gtsam-toolbox-
3.2.0) [46]. 

The factor graph (including nodes and edges) of the proposed 
collaborative positioning system can be defined as shown in 
Fig. 7. 
 

 
Fig. 7. The proposed factor graph for the 3DMA GNSS-based collaborative 
positioning system. Node is denoted as a black circle. Lines (edges) with 
different colors denote different types of constraints, including 3DMA 
GNSS absolute positioning (red) and relative positioning (green) and GNSS-
based displacement estimation (blue).  

A node is defined as the absolute position of each road agent, 
which is denoted as 𝐗𝐗𝑎𝑎,𝑡𝑡  for agent a at the 𝑡𝑡𝑡𝑡ℎ  epoch. The 
absolute position estimated by ray-tracing based 3DMA 
GNSS of each road agent is employed as a one-sided 
constraint using the red edge, which is denoted as 𝐗𝐗�𝑎𝑎,𝑡𝑡. The 
green edge is defined as the constraint of relative position 
between the different agents, which is denoted as Δ𝐗𝐗𝑎𝑎𝑏𝑏,𝑡𝑡 for 
that between agents a and b at epoch t. The blue edge is 
defined as the displacement constraint between the different 
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epochs of a road agent, which is denoted as Δ𝐗𝐗𝑎𝑎,𝑡𝑡→𝑡𝑡+1 for 
agent a from epochs t to t+1. By expanding the graph with 
new estimated constraints, the graph can be updated. Hence, 
the overall optimal positioning solution of each road agent 
can be obtained based on optimizing the graph. Since the 
position of each agent is determined considering all the 
available constraints, through space and time, the estimated 
solution is hence more accurate and robust against errors 
comparing to the anchor based approach [37]. 

B. Uncertainty Evaluation during Factor Graph 
Optimization 

The reliability of each constraint is essential. Simply using 
the DOP of the GNSS measurement cannot describe the 
uncertainty of GNSS solution, especially in the case of urban 
canyons. The DOP value could be untrustworthily small due 
to severely affected NLOS receptions. We previously 
proposed to use the predicted positioning error map (shown 
in Fig. 2) to identify the friendliness of the environment that 
GNSS receivers located [53]. Previously, we used this 
approach to find the “anchor” of the collaborative system. In 
other words, it is a binary classification, healthy and not 
healthy. In this paper, we use the predicted GNSS error as the 
uncertainty of the edges (constraints). The predicted error 
map (PEM) can be regarded as a function to obtain the 
predicted error of a position 𝐱𝐱𝒂𝒂 on the map.  

 PEM(𝐱𝐱𝒂𝒂) = �
err𝐱𝐱𝒂𝒂

𝑒𝑒𝑎𝑎𝑒𝑒𝑡𝑡

err𝐱𝐱𝒂𝒂
𝑛𝑛𝑛𝑛𝑝𝑝𝑡𝑡ℎ�  (13) 

where err𝐱𝐱𝒂𝒂
𝑒𝑒𝑎𝑎𝑒𝑒𝑡𝑡  denotes the positioning error in the east 

direction based on 𝐱𝐱𝒂𝒂. The 𝐱𝐱𝒂𝒂 is estimated by the ray-tracing 
based 3DMA GNSS [39] in this paper. However, 𝐱𝐱𝒂𝒂  may 
contain errors. To deal with this uncertainty, we propose to 
include more grids, 𝐏𝐏𝐱𝐱𝒂𝒂

𝑒𝑒𝑝𝑝𝑝𝑝 , within a certain radius 𝑝𝑝 = 10 
meters around 𝐱𝐱𝒂𝒂. This value is heuristically determined by 
the uncertainty of  𝐱𝐱𝒂𝒂 . Thus, the predict error sets of the 
selected grids along east and north directions can be 
expressed as: 

 �
err𝐱𝐱𝒂𝒂

𝑒𝑒𝑎𝑎𝑒𝑒𝑡𝑡

err𝐱𝐱𝒂𝒂
𝑛𝑛𝑛𝑛𝑝𝑝𝑡𝑡ℎ� = �PEM�𝐏𝐏𝐱𝐱𝒂𝒂

𝑒𝑒𝑝𝑝𝑝𝑝���𝐏𝐏𝐱𝐱𝒂𝒂
𝑒𝑒𝑝𝑝𝑝𝑝 − 𝐱𝐱𝒂𝒂� ≤ 𝑝𝑝�  (14) 

Finally, the noise covariance matrix of the absolute position 
𝐱𝐱𝒂𝒂 is given by:  

 𝛀𝛀𝐱𝐱𝒂𝒂
𝒂𝒂𝒂𝒂𝒂𝒂 = �

�err����𝐱𝐱𝒂𝒂
𝑒𝑒𝑎𝑎𝑒𝑒𝑡𝑡�2 𝟎𝟎

𝟎𝟎 �err����𝐱𝐱𝒂𝒂
𝑛𝑛𝑛𝑛𝑝𝑝𝑡𝑡ℎ�2

�  (15) 

where   ̅denotes the average calculation. Similarly, the noise 
covariance matrix of the relative position between road 
agents a and b Δ𝐱𝐱�𝑎𝑎𝑏𝑏 is given by: 

𝛀𝛀Δ𝐗𝐗�𝑎𝑎𝑏𝑏
𝒓𝒓𝒓𝒓𝒓𝒓 =

�
�err����𝐱𝐱𝒂𝒂

𝑒𝑒𝑎𝑎𝑒𝑒𝑡𝑡�2 + �err����𝐱𝐱𝒂𝒂
𝑒𝑒𝑎𝑎𝑒𝑒𝑡𝑡�2 0

0 �err����𝐱𝐱𝒂𝒂
𝑛𝑛𝑛𝑛𝑝𝑝𝑡𝑡ℎ�2 + �err����𝐱𝐱𝒂𝒂

𝑛𝑛𝑛𝑛𝑝𝑝𝑡𝑡ℎ�2
� (16) 

For the constraint of the displacement of a road agent, the 
uncertainty should be decided based on the behavior of road 
agents.   

 𝛀𝛀𝐱𝐱𝒂𝒂,t→t+1
𝑑𝑑𝑖𝑖𝑒𝑒𝑝𝑝𝑑𝑑𝑎𝑎𝑑𝑑𝑒𝑒𝑖𝑖𝑒𝑒𝑛𝑛𝑡𝑡 = �

𝜎𝜎𝑎𝑎,𝑡𝑡→𝑡𝑡+1 𝟎𝟎
𝟎𝟎 𝜎𝜎𝑎𝑎,𝑡𝑡→𝑡𝑡+1

�  (17) 

where 𝜎𝜎𝑎𝑎,𝑡𝑡→𝑡𝑡+1  denotes the uncertainty of a road agent 
between two epochs. The behavior can be intelligently 
detected based on the classifier trained by machine learning 
or deep learning approaches. An example using raw sensor 
data of smartphones to detect the behavior can be found [54]. 
A similar approach can be used to classify whether the road 
agent is a pedestrian or a road vehicle. This paper selects 
𝜎𝜎𝑎𝑎,𝑡𝑡→𝑡𝑡+1 = 0.2 meter because the experiments are done by 
pedestrians. After defining the constraints and corresponding 
uncertainties in the graph, we have to minimize the cost of 
factors.  

C. Optimization of the Constructed Factor Graph 
The objective function is constructed by the cost of each 
factor mentioned earlier. The cost of the absolute position is 
defined as follows: 

 𝜀𝜀𝑎𝑎,𝑡𝑡 = 𝐇𝐇(𝐱𝐱𝑎𝑎,𝑡𝑡) − 𝐱𝐱�𝑎𝑎,𝑡𝑡 (18) 

𝜀𝜀𝑎𝑎,𝑡𝑡 is the cost for the absolute positioning constraint for road 
agent a at epoch t. Transform matrix H is the identity matrix. 
The cost function for the constraint of relative position 
between different road agents at the same epoch:  

 𝜀𝜀𝑎𝑎𝑏𝑏,𝑡𝑡 = 𝐇𝐇�𝐱𝐱𝑏𝑏,𝑡𝑡� − 𝐇𝐇�𝐱𝐱𝑎𝑎,𝑡𝑡� − Δ𝐱𝐱�𝑎𝑎𝑏𝑏,𝑡𝑡 (19) 

where 𝜀𝜀𝑎𝑎𝑏𝑏,𝑡𝑡 is the cost vector regarding the relative constraint 
between the different road agents a and b at the same epoch 
t. Δ𝐱𝐱�𝑎𝑎𝑏𝑏,𝑡𝑡  is calculated based on (12). The cost of the 
constraint of a road agent’s displacement from time epochs t 
and t+1 is derived by: 

 𝜀𝜀𝑎𝑎,𝑡𝑡→𝑡𝑡+1 = 𝐇𝐇�𝐱𝐱𝑎𝑎,𝑡𝑡+1� − 𝐇𝐇�𝐱𝐱𝑎𝑎,𝑡𝑡� − Δ𝐱𝐱�𝑎𝑎,𝑡𝑡→𝑡𝑡+1 (20) 

where Δ𝐱𝐱�𝑎𝑎,𝑡𝑡→𝑡𝑡+1 denotes the displacement of a road agent, 
which is calculated using the equations below:  

 Δ𝐱𝐱�𝑎𝑎,𝑡𝑡→𝑡𝑡+1 = 𝐯𝐯�𝑎𝑎,𝑡𝑡 ∙ ∆𝑡𝑡 (21) 

 𝐯𝐯�𝑎𝑎,𝑡𝑡 = (𝐆𝐆𝐓𝐓𝐆𝐆)−1𝐆𝐆𝐓𝐓𝐟𝐟𝑎𝑎,𝑡𝑡 (22) 

where 𝐯𝐯�𝑎𝑎,𝑡𝑡 denotes the estimated velocity of agent a using the 
measured GNSS Doppler frequency 𝐟𝐟𝑎𝑎,𝑡𝑡  (after correcting 



satellite clock drift). 𝐆𝐆 denotes the unit LOS matrix. Finally, 
the objective function for this FGO is defined as:  

 𝝌𝝌∗ = arg min
𝝌𝝌

∑ ‖𝜀𝜀𝑘𝑘‖𝛀𝛀𝒌𝒌−1
𝟐𝟐

𝑘𝑘   (23) 

where 𝝌𝝌 = [𝐱𝐱1 ⋯ 𝐱𝐱𝑁𝑁]T is the vector of the N nodes in the 
graph and 𝝌𝝌∗ is the optimized position of each node. 𝜀𝜀𝑘𝑘 is the 
cost for the 𝑘𝑘𝑡𝑡ℎ  constraint, where 𝜀𝜀𝑎𝑎,𝑡𝑡 , 𝜀𝜀𝑎𝑎𝑏𝑏,𝑡𝑡 , 𝜀𝜀𝑎𝑎,𝑡𝑡→𝑡𝑡+1 ∈ 𝜀𝜀𝑘𝑘 . 
𝛀𝛀𝒌𝒌  is the noise covariance matrix with the corresponding 
uncertainty constraint which can be found in (15, 16 and 17). 
By employing the Levenberg-Marquardt optimization 
method [46], the optimal positions of each road agent can be 
achieved with higher accuracy and robustness. 

V. EXPERIMENT RESULTS AND DISCUSSIONS 

A. Experiment Setup  
Static and dynamic experiments are conducted in urban 
canyons in Hong Kong as shown in Fig. 8. We use pedestrian 
to replace the vehicle as the data collection platform.  
Consumer-grade GNSS receiver, ublox M8T, is selected 
since it is popular in the ITS field. GNSS receivers are 
simultaneously collecting raw measurements in NMEA and 
RINEX format, with the sampling rate as 1Hz. The GNSS 
measurements are synchronized based on the GPS time and 
post-processed on the MATLAB programming platform. The 
ground truth of this experiment is obtained by comparing the 
landmark in Google Earth. We compare the following 
approaches: 
1) LS: Conventional least square method, 
2) RT: Ray-tracing based 3DMA GNSS [39], 
3) SDM-CP: SDM 3DMA GNSS using anchor based 

collaborative method [37], 
4) RT-CP: Ray-tracing 3DMA GNSS using anchor based 

collaborative method,  
5) SDM-FGO: Apply FGO to SDM-CP, and 
6) RT-FGO (proposed method): Apply FGO to RT-CP 
 

 

B. Static Experimental Results 
The comparison between experimental and predicted GPS 
positioning errors of each receiver is given in Table I. Since 
the ray-tracing simulation cannot perfectly model the 
receiver noise and other error factors, the simulated error may 
lower than the actual GNSS error that receiver experienced.  

TABLE I.  COMPARISON BETWEEN EXPERIMENTAL AND PREDICTED 
GPS POSITIONING ERRORS  

Receiver No. 1 2 3 4 
LS Positioning 

Error (m)  3.7 5.0 14.7 30.9 

Predicted Mean 
Error (m) 3.1 2.9 6.6 16.3 

Operating Status Healthy Healthy Degraded Degraded 
 
The errors of the relative position between receivers 
estimated by different approaches are shown in Fig. 9. The 
corresponding root mean square errors (RMSEs) and 
maximum errors (Max errors) are shown in Table 2. The 
Receiver 4 suffered from multipath effects and NLOS 
receptions. Although the conventional DD method can 
eliminate common errors, it is very sensitive to the multipath 
effect and NLOS reception. As a result, its relative 
positioning error is enormous with an RMSE of 84.6 m. One 
idea is to exclude the NLOS measurements before the DD 
process. Our previous work uses the satellite visibility 
determined by shadow matching (SDM) to exclude the 
NLOS ones [37]. Thereby, its estimated relative position is 
improved comparing to the conventional DD. However, the 
available LOS signal is limited in urban areas, thus making 
the surviving measurements after the SDM exclusion also 
limited. Due to the unsatisfactory satellite distribution of the 
surviving measurement, the SDM-DD has an RMSE of 20.3 
m for the relative positioning. Moreover, the amount of 
surviving measurements may even be insufficient for 
positioning, thus making the availability of the valid SDM-
DD solution only 70%. Using the proposed grid based 3DMA 
GNSS relative positioning, the reflected GNSS 
measurements are corrected instead of excluded. As a result, 
the relative positioning accuracy is further improved 
comparing to our previous work, the SDM-DD method, 
reaching an RMSE of 16.3 m.  

 

 
Fig. 9. The error of the relative positioning estimation between Receivers 1 
and 4 based on the conventional double difference (DD), the shadow 
matching visibility-based double difference (SDM-DD) [37] and the 
proposed grid based 3DMA GNSS relative positioning (RT-DD). The black 
cross denotes the epoch when the SDM-DD was unable to provide a valid 
solution (SDM-DD Invalid).  



TABLE II.  THE RMSES, MAX ERRORS AND AVAILABILITY OF THE 
RELATIVE POSITIONING SOLUTIONS FROM DIFFERENT METHODS 

Method DD SDM-DD RT-DD 

RMSE (m) 84.6 20.3 16.3 

Max error (m) 137.4 55.8 40.9 

Availability 100% 70% 100% 
 

The benefit of applying the proposed 3DMA GNSS 
relative positioning can be further explained by comparing the 
horizontal DOP (HDOP) of the used DD measurements as 
shown in Fig. 10. 

 

 
Fig. 10. The HDOP of the DD, SDM-DD and RT-DD.  

The mean of the HDOP of the original DD measurement (nor 
exclusion or correction) is about 0.72. Using the satellite 
visibility of SDM to exclude the NLOS measurement, the 
HDOP increases to a mean of 2.41. By using the ray-tracing 
correction, the HDOP is maintained as 1.34 in average, which 
enables the RT-DD to achieve a better relative positioning 
solution. The reason of the HDOP of RT-DD higher than that 
of DD is RT cannot also correct NLOS if the reflected route 
is not detected. 
 
After obtaining the relative position between Receivers 4 
(degraded) and 1 (healthy), the absolute position of Receiver 
4 can be collaboratively estimated based on the idea of our 
previous work [37]. By employing Receiver 1 as an accurate 
anchor, the absolute position of Receiver 4  (RT-CP) can be 
computed using the absolute position of Receiver 1 and the 
proposed grid based 3DMA GNSS relative positioning 
between Receivers 1 and 4. The errors of different anchor 
based collaborative positioning methods are shown in Fig. 
11. The conventional LS obtains a performance of 30.9 m in 
RSME. The SDM approach excludes NLOS measurements, 
therefore improving the positioning accuracy to RMSE of 
16.2 meters with 70% availability. The proposed grid based 
3DMA GNSS relative positioning uses ray-tracing correction 
and collaborates with an anchor receiver, generating an 

improved performance of 7.8 m in RMSE, which is nearly 
three times better than that of the conventional LS method. 
 
However, the RT-CP method conducts positioning based on 
a single anchor, which is not always reliable. In some of the 
epochs, both the relative position from the double difference 
and the absolute position from the ray-tracing 3DMA GNSS 
of Receivers 1 and 4 may not be accurate, thus resulting in 
the positions being inaccurate in these epochs. As Fig. 11 
shows, the positioning error distribution of RT-CP is largely 
fluctuated. To improve the robustness of the collaborative 
positioning, we use the FGO considering all the constraints 
mentioned in Section IV and the result is shown in Fig. 12.  
 
Using the factor graph optimization for the SDM-CP, some 
of the positions with enormous errors are reduced by the 
constraints during optimization. Comparing with SDM-FGO, 
the proposed method (RT-FGO) highly reduces the RMSE 
from 12.6 m to 7.4 m and the Max error from 24.8 m to 17.7 
m. As shown in Fig. 12, the positioning solution of the 
proposed method (green) is more accurate and precise 
compared to other methods.  
 

 
Fig. 11. The error of absolute positioning of receiver 4 by LS, SDM-CP, RT-
CP, SDM-FGO and RT-FGO.  

 
Fig. 12. The absolute positioning solutions of receiver 4 by LS, SDM-CP, 
RT-CP, SDM-FGO, RT-FGO and the ground truth.  



In addition to Receiver 4, the positioning accuracy of the 
participating receivers are improved by RT-FGO as shown in 
Table 3. The proposed method achieves the best 
performance, which is three times better than that of the LS. 
The proposed method also largely improves the result from 
the stand-alone ray-tracing 3DMA GNSS [39]. Although the 
improvement of the RT-FGO compared to the RT-CP is only 
0.4 m with respect to the RMSE, the robustness of the 
positioning solution is improved. For another degraded 
receiver (Receiver 3), the single-anchor-based RT-CP 
method slightly improves the positioning accuracy with 
respect to the other methods by nearly 2 m in the RMSE. By 
using the factor graph optimization, the positioning accuracy 
is significantly improved to an RMSE of 8.4 m. Moreover, 
comparing with the anchor-based RT-CP method, the peak 
error is remarkably reduced from 25.8 m to 11.7 m after 
applying the proposed collaborative optimization with other 
users. Since the optimization obtains an overall optimal 
solution and the uncertainty of the constraints may not be 
very accurate, the positioning solution of the healthy receiver 
after optimization may be slightly degraded compared to 
other methods. In general, the proposed 3DMA GNSS-based 
collaborative positioning algorithm with factor graph 
optimization is able to achieve an overall more accurate and 
robust positioning solution with an RMSE of less than 10 m 
for each receiver in the urban areas. 

TABLE III.   THE RMSE (MAX ERROR) IN METERS OF ABSOLUTE 
POSITIONING OF EACH RECEIVER USING DIFFERENT APPROACHES   

Receiver No. 1 2 3 4 

LS 3.7 
(5.9) 

5.0 
(15.3) 

14.7 
(20.9) 

30.9 
(57.9) 

RT 2.7 
(4.3) 

3.1 
(5.4) 

14.9 
(33.8) 

10.4 
(17.9) 

SDM-CP 4.2 
(10.5) 

4.7 
(8.8) 

14.2 
(20.8) 

16.2 
(27.8) 

RT-CP 2.3 
(4.1) 

3.5 
(5.4) 

12.5 
(25.8) 

7.8 
(18.9) 

SDM-FGO 2.3 
(5.0) 

2.6 
(5.3) 

14.7 
(18.7) 

12.6 
(24.8) 

RT-FGO 2.7 
(5.0) 

4.1 
(5.5) 

8.4 
(11.7) 

7.4 
(17.7) 

 

C. Dynamic Experimental Results 
The relative positioning errors of different methods, 
including all Receivers and operating epochs, are compared 
in terms of the RMSE and Max error in Table 4 as well as the 
cumulative distribution functions (CDFs) in Fig. 13. Since 
the differential approach can worsen the multipath and NLOS 
effects, most of the conventional DD estimation results 
contain enormous errors. The SDM-DD excludes the NLOS 
measurement achieving an improved relative positioning 

result that 69% of the errors are within 10 m. Note that 
Receiver 5 is located on a narrow street with two-side tall 
surface buildings, the NLOS reception is severe and the 
number of direct GNSS signals is very limited. Due to the 
lack of common satellites in view (as we demonstrated in Fig. 
1), the SDM-DD relative position performance between 
Receiver 5 and other receivers is significantly degraded, 
leading to 6% of the error exceeds 40 m. By employing the 
complementary characteristic between the ray-tracing 
algorithm and the double difference method, the relative 
positioning accuracy can be further improved. Comparing to 
SDM-DD, RT-DD ensures a sufficient amount of 
measurements, which mitigates the enormous relative 
positioning errors to below 40 m, achieving a much lower 
Max error. Specifically, the relative positioning RMSEs 
between Receiver 3, 4 and 5 are all below 6 m. Notice that 
the relative positioning error of R3-R4 is larger than R1-R4 
or R2-R4. It is probably because the ray-tracing technique 
cannot completely correct all the NLOS errors, which makes 
the measurement noise after correction is still higher than the 
open-sky scenario. Therefore, collaborating with the road 
agents from healthy scenarios could enhance the potential for 
better performance. However, for Receiver 5 located in a 
narrow street, the measurements are possibly experiencing 
double reflections, which is not considered in our NLOS 
correction. Therefore, the proposed grid based 3DMA GNSS 
relative positioning is unable to achieve satisfactory 
performance for Receiver 5. 
  
For Receivers 3, 4 and 5 that located in a dense urban area, 
the positioning results of the proposed and other collaborative 
positioning methods are shown in Fig. 14 (a), (b) and (c), 
respectively. For the Receivers 3 and 4, the anchor-base 
cooperative positioning method (RT-CP) can achieve a better 
positioning solution comparing to conventional methods. 
Using the FGO, all the available measurements are used as 
constraints for the global optimal solution. The optimized 
solutions from SDM-FGO and RT-FGO are more robust and 
closer to the true position. The performances of the proposed 
and other methods are evaluated with RMSE and Max error 
in Table 5.  
 

 
Fig. 13. The relative positioning error CDFs of the conventional DD, SDM-
DD and the proposed RT-DD for all the Receivers and all epochs. 



TABLE IV.  THE RELATIVE POSITIONING RMSE (MAX ERROR) IN METERS BETWEEN RECEIVERS IN THE DYNAMIC EXPERIMENT  

Between Receivers R1-R2 R1-R3 R2-R3 R1-R4 R2-R4 R3-R4 R1-R5 R2-R5 R3-R5 R4-R5 

DD 5.2 
(10.9) 

82.4 
(201.8) 

82.0 
(202.4) 

51.4 
(104.1) 

52.9 
(109.4) 

68.9 
(206.5) 

103.2 
(166.1) 

102.4 
(170.2) 

85.2 
(158.9) 

85.4 
(158.8) 

SDM-DD 4.3 
(9.6) 

8.7 
(45.8) 

8.8 
(52.1) 

7.7 
(36.1) 

6.1 
(18.8) 

6.0 
(17.1) 

29.0 
(120.4) 

21.8 
(67.0) 

20.8 
(29.0) 

48.1 
(131.1) 

RT-DD 4.3 
(10.1) 

4.5 
(9.7) 

3.1 
(11.1) 

3.6 
(11.0) 

4.0 
(14.3) 

6.0 
(19.3) 

20.2 
(40.1) 

20.9 
(39.4) 

20.8 
(31.8) 

23.7 
(37.9) 

 

 
Fig. 14. The positioning results of the proposed 3DMA GNSS based collaboative positioning with factor graph optimization (RT-FGO) comparing to that of the 
conventional least square method (LS), shadow matching based cooperative positioning method (SDM-CP), anchor-based positioning method using ray-tracing 
(RT-CP) and SDM based cooperative positioning with factor graph optimization (SDM-FGO) for the receiver 3 (a), receiver 4 (b) and receiver 5 (c) in dense urban 
areas.  

TABLE V.  THE ABSOLUTE POSITIONING RMSE (MAX ERROR) IN 
METERS OF EACH RECEIVER IN THE DYNAMIC EXPERIMENT  

Receiver No. R1 R2 R3 R4 R5 

LS 4.3 
(9.3) 

2.0 
(4.0) 

14.6 
(33.7) 

25.3 
(48.1) 

46.5 
(52.3) 

NMEA 1.2 
(2.1) 

5.4 
(6.6) 

13.5 
(17.7) 

10.6 
(15.4) 

27.6 
(31.7) 

RT 5.1 
(10.3) 

3.1 
(12.8) 

8.5 
(21.4) 

10.6 
(23.8) 

20.1 
(35.3) 

SDM-CP 4.9 
(9.8) 

2.4 
(4.7) 

14.7 
(33.6) 

12.0 
(27.7) 

18.3 
(66.8) 

RT-CP 5.4 
(9.5) 

2.5 
(6.4) 

5.3 
(14.7) 

7.6 
(16.3) 

19.3 
(35.1) 

SDM-FGO 5.6 
(11.3) 

1.7 
(3.0) 

7.5 
(12.8) 

3.4 
(5.3) 

25.5 
(50.8) 

RT-FGO 5.1 
(9.5) 

2.1 
(3.5) 

8.1 
(12.8) 

4.2 
(9.4) 

18.6 
(30.3) 

 

For Receivers 1 and 2 which located in the GNSS-friendly 
environment, the proposed algorithm can maintain their 
performance during the optimization. For Receivers 3 and 4 
located in a dense urban area, the accurate relative positions 
are used to improve the positioning accuracy with RT-CP, 
achieving the RMSE twice lower than the LS method and 3 
meters better than stand-alone RT method. By applying with 
FGO, the positioning accuracy of Receiver 4 is improved 

within 5 meters of RMSE.  Interestingly, the optimized 
solution for Receiver 3 is not better than the RT-CP method, 
which is due to the improper uncertainty of the constraint of 
the displacement in FGO. Since the Doppler measurement is 
not accurate for Receiver 3 and is given a smaller uncertainty, 
the solutions may drift and resulting additional 2 meters in 
RMSE.  As mentioned earlier, the proposed NLOS correction 
method may not be able to fully correct the double reflected 
signal delay by only considering single reflection. Then, the 
remnant delay could degrade the positioning performance, 
may even worse than the exclusion-based method. Therefore, 
the RMSE of the proposed method achieves a performance of 
18.6 meters in RMSE. Comparing to receiver’s NMEA 
position result with sophisticated filtering techniques, our 
proposed method can achieve significant improvements for 
most of the scenarios. In general, the proposed 3DMA GNSS 
collaborative positioning method with factor graph 
optimization can significantly improve the GNSS positioning 
accuracy in dense urban areas. 

D. Noise Analysis  
To evaluate the benefit of our proposed method, the GNSS 
measurement noise during the collaborative positioning is 
analyzed. The GNSS measurement noise combines with 
systematic error and uncommon error. The systematic error 
is eliminated by the DD method. For the urban scenario, the 
majority of the uncommon error is the NLOS delay, which 
can be corrected by the RT method. Then, the remaining 
noise required to be analyzed is the RT correction residual. 



 
Fig. 15. The GNSS pseudorange error CDFs before and after ray-tracing 
corrections for Receiver 3 (a), Receiver 4 (b) and Receiver 5 (c) during the 
dynamic experiment. 

The GNSS pseudorange error CDFs before and after RT 
correction during the dynamic experiment are compared in 
Fig. 15. The pseudorange error is estimated using double 
differential measurements with the knowledge of the ground 
truth location  [55]. Most of the NLOS errors are corrected 
by the RT method, which significantly reduces the 
pseudorange error comparing to the original measurement. 
Note that a few measurements still have the correction 
residual over 50 meters. It is due to the double reflection or 
diffraction effect that cannot be modelled by the RT method.  
 
To evaluate the impact of the correction residual, we analyze 
the likelihood distribution used to determine the relative 
position (as described in Section III). The averaged likelihood 
distribution among all the grid pairs during the relative 
positioning between Receivers 3 and 4 is shown as Fig. 16. 
For each pair of grids, its relative grid position vector is 
compared with the actual relative position between Receivers, 
to estimate the West-East (W-E) and South-North (S-N) 
errors. Afterward, the likelihood values of all pairs are 
constructed as a likelihood distribution corresponding to the 
W-E and S-N error. Then, the likelihood distributions of all 
epochs during operation will be averaged, representing the 
overall performance. Since the likelihood distributions may 
not always have the same coverage on “W-E error” and “S-
N error”, only the area with over ten epochs occurrence will 
be considered.  
 

 
Fig. 16. The averaged likelihood distribution for each grid pair during the 
proposed relative positioning between Receivers 3 and 4. S-N Error and W-
E Error denote the error between the relative grid position and the true 
relative position on the South-North or West-East directions. The likelihood 
value is indicated with height and color. 

From the averaged likelihood distribution, the highest peak is 
located close to the coordinates (0,0). On the contrary, the 
likelihood value significantly decreased for the pairs with 
higher error. Although the RT correction remains residual, 
the RT corrected DD estimation from the correct pair is still 
consistent with the actual Receivers relative position, 
achieving a high likelihood value. Therefore, the impact of 
the correction residual is sufficiently low, which guarantees 
the likelihood value on the correct pair much higher than that 
on the fault pair. By using the likelihood values as weights, 
the pairs with higher likelihood will have more contribution 
in the proposed method, which enables us to estimate the 
relative position with lower W-E and S-N error. 
 

 
Fig. 17.  (Left) The clock-wise vehicular experiment route in the urban 
scenario. (Right) The CDFs of pseudorange errors before and after applying 
the ray-tracing correction. 

Since the dynamic experiment is conducted with limited 
scenarios, an additional vehicular experiment is conducted to 
evaluate the RT correction residual for various scenarios. As 
Fig. 17 (left) shows, the vehicle is driven with a clockwise 
route in an urban area of Hong Kong. There are 2895 epochs 
(1Hz) in total. The true position of the vehicle is obtained by 
the Novatel SPAN-CPT with the real-time kinematic 
solution. The CDFs of pseudorange error before and after 
applying the RT correction are shown in Fig. 17 (right). The 
proposed RT method can correct most of the NLOS delays, 
achieving 80% of the pseudorange errors are less than 16.3 
m, much lower than the original 29.7 m. However, there still 
exist 15% of the pseudorange errors exceed 20 m after 
correction. This could come from we mistakenly apply the 
RT correction to a diffracted-pseudorange measurement or a 
double-reflected-pseudorange measurement.  
 

VI. CONCLUSIONS AND FUTURE WORK 
In this study, a centralized 3DMA GNSS-based collaborative 
positioning algorithm using factor graph optimization is 
proposed to improve the positioning accuracy of the 
participated road agents in dense urban areas. By applying the 
ray-tracing algorithm to correct the NLOS delay caused by 
buildings, the uncommon errors between different receivers 
are mitigated. Then, the remaining systematic GNSS errors 
can be eliminated using the double difference technique. 
Based on their complementary characteristic, the ray-tracing 



and double difference combined method can achieve a more 
accurate relative positioning.  
 
By employing the receiver located in GNSS-friendly area as 
an anchor for collaborative positioning, the positioning 
accuracy of the degraded receiver is significantly improved 
to an RMSE of 7.8 m with the proposed method, while the 
conventional LS achieves 30.9 m. By further applying the 
FGO, all the available measurements are used to enhance the 
robustness of the positioning solution, achieving an RMSE of 
less than 10 m for most of the participating road agents in the 
dense urban area. 
 
However, the ray-tracing algorithm simulates the GNSS 
signal reflecting point by searching every building surface 
using every grid for all the received satellites, which is proved 
too computational costly for a single user [56]. Additionally, 
the pair-wise evaluation will enhance the computation load in 
a squared way. For practical applications, it is necessary to 
reduce the computation load in the future, for example, using 
a unique pre-generated storage format [57] or utilizing a 
simplified ray-tracing method  [56]. Moreover, the 
uncertainty of the constraint estimated from the positioning 
error map may not be stable or accurate, which is another 
challenge that needs to be solved in the future.  
 
On the other hand, although a large network size could help 
to scale down the variance of noisy factors [58], merely 
increasing the number of collaborators may not be an optimal 
approach. Some adjacent road agents in the same area may 
have similar NLOS effects. Meanwhile, some of the agents 
may have complementary positioning error ellipsoids, due to 
different surrounding buildings or satellite visibilities. It has 
great potential to better improve the positioning performance 
by intelligently selecting the collaborating agents based on 
their characteristics. However, this requires detail and large-
scale analysis with a realistic simulator considering all 
possible effects. Therefore, the development of realistic 
simulator and intelligent collaborator selection will also be 
the future works. With appropriate agent reliability 
estimation and the intelligent collaborator selection, the 
large-scale experimental evaluation could be practically 
conducted based on smartphones using low-cost GNSS chip. 

ACKNOWLEDGMENT 
The authors acknowledge the support of Hong Kong 

PolyU startup fund on the project 1-ZVKZ, “Navigation for 
Autonomous Driving Vehicle using Sensor Integration”. 

REFERENCES 
[1] F. de Ponte Müller, "Survey on ranging sensors and cooperative 
techniques for relative positioning of vehicles," Sensors, vol. 17, no. 2, p. 
271, 2017. 
[2] N. Alam and A. G. Dempster, "Cooperative positioning for 
vehicular networks: Facts and future," IEEE Transactions on Intelligent 
Transportation Systems, vol. 14, no. 4, pp. 1708-1717, 2013. 
[3] S. Bhamidipati and G. X. Gao, "GPS Multi-Receiver Joint Direct 
Time Estimation and Spoofer Localization," IEEE Transactions on 
Aerospace and Electronic Systems, pp. 1-1, 2018. 

[4] G.-M. Hoang, B. Denis, J. Härri, and D. T. Slock, "Cooperative 
localization in GNSS-aided VANETs with accurate IR-UWB range 
measurements," in Positioning, Navigation and Communications (WPNC), 
2016 13th Workshop on, 2016, pp. 1-6: IEEE. 
[5] J. Liu, B.-g. Cai, and J. Wang, "Cooperative localization of 
connected vehicles: Integrating GNSS with DSRC using a robust cubature 
Kalman filter," IEEE Transactions on Intelligent Transportation Systems, 
vol. 18, no. 8, pp. 2111-2125, 2017. 
[6] M. Elazab, A. Noureldin, and H. S. Hassanein, "Integrated 
cooperative localization for Vehicular networks with partial GPS access in 
Urban Canyons," Vehicular Communications, 2016. 
[7] A. Minetto, C. Cristodaro, and F. Dovis, "A collaborative method 
for positioning based on GNSS inter agent range estimation," in 2017 25th 
European Signal Processing Conference (EUSIPCO), 2017, pp. 2714-2718. 
[8] D. Yang, F. Zhao, K. Liu, H. B. Lim, E. Frazzoli, and D. Rus, "A 
gps pseudorange based cooperative vehicular distance measurement 
technique," in Vehicular Technology Conference (VTC Spring), 2012 IEEE 
75th, 2012, pp. 1-5: IEEE. 
[9] F. d. P. Müller, E. M. Diaz, B. Kloiber, and T. Strang, "Bayesian 
cooperative relative vehicle positioning using pseudorange differences," in 
2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 
2014, 2014, pp. 434-444. 
[10] N. Alam, A. T. Balaei, and A. G. Dempster, "Relative positioning 
enhancement in VANETs: A tight integration approach," IEEE Transactions 
on Intelligent Transportation Systems, vol. 14, no. 1, pp. 47-55, 2013. 
[11] K. Liu, H. B. Lim, E. Frazzoli, H. Ji, and V. C. Lee, "Improving 
positioning accuracy using GPS pseudorange measurements for cooperative 
vehicular localization," IEEE Transactions on Vehicular Technology, vol. 
63, no. 6, pp. 2544-2556, 2014. 
[12] A. Minetto, A. Nardin, and F. Dovis, "Tight Integration of GNSS 
Measurements and GNSS-based Collaborative Virtual Ranging," in 
Proceedings of the 31st International Technical Meeting of the Satellite 
Division of The Institute of Navigation (ION GNSS+ 2018), Miami, Florida, 
2018, pp. 2399-2413. 
[13] N. Alam, A. T. Balaei, and A. G. Dempster, "Positioning 
enhancement with double differencing and DSRC," in ION GNSS, 2010, pp. 
20-24: Citeseer. 
[14] K. Lassoued, P. Bonnifait, and I. Fantoni, "Cooperative 
localization with reliable confidence domains between vehicles sharing 
GNSS pseudoranges errors with no base station," IEEE Intelligent 
Transportation Systems Magazine, vol. 9, no. 1, pp. 22-34, 2017. 
[15] N. Zhu, J. Marais, D. Bétaille, and M. Berbineau, "GNSS 
Position Integrity in Urban Environments: A Review of Literature," IEEE 
Transactions on Intelligent Transportation Systems, 2018. 
[16] L.-T. Hsu, "Analysis and modeling GPS NLOS effect in highly 
urbanized area," GPS Solutions, journal article vol. 22, no. 1, p. 7, November 
04 2018. 
[17] S. Godha and M. Cannon, "GPS/MEMS INS integrated system 
for navigation in urban areas," Gps Solutions, vol. 11, no. 3, pp. 193-203, 
2007. 
[18] C. Hide and T. Moore, "GPS and low cost INS integration for 
positioning in the urban environment," in Proceedings of ION GPS, 2005, 
pp. 13-16. 
[19] G. Zhang and L.-T. Hsu, "Intelligent GNSS/INS integrated 
navigation system for a commercial UAV flight control system," Aerospace 
Science and Technology, vol. 80, pp. 368-380, 2018/07/18/ 2018. 
[20] A. Fascista, G. Ciccarese, A. Coluccia, and G. Ricci, "Angle of 
arrival-based cooperative positioning for smart vehicles," IEEE 
Transactions on Intelligent Transportation Systems, vol. 19, no. 9, pp. 2880-
2892, 2017. 
[21] G. De Angelis, A. De Angelis, V. Pasku, A. Moschitta, and P. 
Carbone, "An experimental system for tightly coupled integration of GPS 
and AC magnetic positioning," IEEE Transactions on Instrumentation and 
Measurement, vol. 65, no. 5, pp. 1232-1241, 2016. 
[22] G. De Angelis, G. Baruffa, and S. Cacopardi, "GNSS/cellular 
hybrid positioning system for mobile users in urban scenarios," IEEE 
Transactions on Intelligent Transportation Systems, vol. 14, no. 1, pp. 313-
321, 2012. 
[23] Z. M. Kassas and T. E. Humphreys, "Observability analysis of 
collaborative opportunistic navigation with pseudorange measurements," 
IEEE Transactions on Intelligent Transportation Systems, vol. 15, no. 1, pp. 
260-273, 2013. 



[24] P. D. Groves and M. Adjrad, "Performance assessment of 3D‐

mapping–aided GNSS part 1: Algorithms, user equipment, and review," 
Navigation, 2018. 
[25] L.-T. Hsu, Y. Gu, and S. Kamijo, "3D building model-based 
pedestrian positioning method using GPS/GLONASS/QZSS and its 
reliability calculation," (in English), GPS Solutions, vol. 20, no. 3, pp. 413–
428, 2016. 
[26] T. Suzuki and N. Kubo, "GNSS positioning with multipath 
simulation using 3D surface model in urban canyon," in Proceedings of the 
25th International Technical Meeting of The Satellite Division of the Institute 
of Navigation (ION GNSS 2012), 2012, pp. 438-447. 
[27] T. Suzuki and N. Kubo, "Correcting GNSS multipath errors using 
a 3D surface model and particle filter," Proc. ION GNSS+ 2013, 2013. 
[28] N. I. Ziedan, "Urban Positioning Accuracy Enhancement 
Utilizing 3D Buildings Model and Accelerated Ray Tracing Algorithm," in 
Proceedings of the 30th International Technical Meeting of The Satellite 
Division of the Institute of Navigation (ION GNSS+ 2017), Portland, Oregon, 
2017, pp. 3253-3268. 
[29] L. Wang, P. D. Groves, and M. K. Ziebart, "Smartphone shadow 
matching for better cross-street GNSS positioning in urban environments," 
The Journal of Navigation, vol. 68, no. 3, pp. 411-433, 2015. 
[30] P. D. Groves and M. Adjrad, "Likelihood-based GNSS 
positioning using LOS/NLOS predictions from 3D mapping and 
pseudoranges," GPS Solutions, vol. 21, no. 4, pp. 1805-1816, 2017. 
[31] P. D. Groves, "Shadow matching: A new GNSS positioning 
technique for urban canyons," The journal of Navigation, vol. 64, no. 3, pp. 
417-430, 2011. 
[32] L. Wang, P. D. Groves, and M. K. Ziebart, "GNSS Shadow 
Matching: Improving Urban Positioning Accuracy Using a 3D City Model 
with Optimized Visibility Scoring Scheme," Navigation, vol. 60, no. 3, pp. 
195-207, 2013. 
[33] R. Yozevitch and B. B. Moshe, "A robust shadow matching 
algorithm for GNSS positioning," Navigation: Journal of The Institute of 
Navigation, vol. 62, no. 2, pp. 95-109, 2015. 
[34] M. Adjrad, P. D. Groves, J. C. Quick, and C. Ellul, "Performance 
assessment of 3D ‐ mapping ‐ aided GNSS part 2: Environment and 
mapping," Navigation, 2018. 
[35] S. Tanwar and G. X. Gao, "Decentralized collaborative 
localization in urban environments using 3D-mapping-aided (3DMA) GNSS 
and inter-agent ranging," in 31st International Technical Meeting of the 
Satellite Division of the Institute of Navigation, ION GNSS+ 2018, 2018, pp. 
2352-2363: Institute of Navigation. 
[36] A. Conti, M. Guerra, D. Dardari, N. Decarli, and M. Z. Win, 
"Network experimentation for cooperative localization," IEEE Journal on 
Selected Areas in Communications, vol. 30, no. 2, pp. 467-475, 2012. 
[37] G. Zhang, W. Wen, and L.-T. Hsu, "Rectification of GNSS-based 
collaborative positioning using 3D building models in urban areas," GPS 
Solutions, journal article vol. 23, no. 3, p. 83, June 06 2019. 
[38] G. Zhang, W. Wen, and L.-T. Hsu, "A novel GNSS based V2V 
cooperative localization to exclude multipath effect using consistency 
checks," in Position, Location and Navigation Symposium (PLANS), 2018 
IEEE/ION, 2018, pp. 1465-1472: IEEE. 
[39] S. Miura, L. Hsu, F. Chen, and S. Kamijo, "GPS Error Correction 
With Pseudorange Evaluation Using Three-Dimensional Maps," IEEE 
Transactions on Intelligent Transportation Systems, vol. 16, no. 6, pp. 3104-
3115, 2015. 
[40] M. Obst, S. Bauer, and G. Wanielik, "Urban multipath detection 
and mitigation with dynamic 3D maps for reliable land vehicle localization," 
in Position Location and Navigation Symposium (PLANS), 2012 IEEE/ION, 
2012, pp. 685-691: IEEE. 
[41] A. Howard, M. J. Matark, and G. S. Sukhatme, "Localization for 
mobile robot teams using maximum likelihood estimation," in IEEE/RSJ 
International Conference on Intelligent Robots and Systems, 2002, vol. 1, 
pp. 434-439 vol.1. 
[42] P. Oğuz-Ekim, J. Gomes, J. Xavier, and P. Oliveira, "A convex 
relaxation for approximate maximum-likelihood 2D source localization from 
range measurements," in 2010 IEEE International Conference on Acoustics, 
Speech and Signal Processing, 2010, pp. 2698-2701: IEEE. 
[43] T. Van Nguyen, Y. Jeong, H. Shin, and M. Z. Win, "Least square 
cooperative localization," IEEE Transactions on Vehicular Technology, vol. 
64, no. 4, pp. 1318-1330, 2015. 

[44] F. Wickelmaier, "An introduction to MDS," Sound Quality 
Research Unit, Aalborg University, Denmark, vol. 46, no. 5, pp. 1-26, 2003. 
[45] M. Efatmaneshnik, A. T. Balaei, N. Alam, and A. G. Dempster, 
"A modified multidimensional scaling with embedded particle filter 
algorithm for cooperative positioning of vehicular networks," in 2009 IEEE 
International Conference on Vehicular Electronics and Safety (ICVES), 
2009, pp. 7-12: IEEE. 
[46] F. Dellaert, "Factor graphs and GTSAM: A hands-on 
introduction," Georgia Institute of Technology2012. 
[47] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and 
F. Dellaert, "iSAM2: Incremental smoothing and mapping using the Bayes 
tree," The International Journal of Robotics Research, vol. 31, no. 2, pp. 
216-235, 2012. 
[48] R. M. Watson and J. N. Gross, "Robust Navigation In GNSS 
Degraded Environment Using Graph Optimization," presented at the 
Proceedings of the 30th International Technical Meeting of the Satellite 
Division of The Institute of Navigation (ION GNSS+ 2017), Portland, 
Oregon, September 2017, 2017.  
[49] W. Wen, Y. C. Kan, and L.-T. Hsu, "Performance Comparison of 
GNSS/INS Integrations Based on EKF and Factor Graph Optimization," in 
Proceedings of the 32nd International Technical Meeting of the Satellite 
Division of The Institute of Navigation (ION GNSS+ 2019), Miami, Florida, 
2019, pp. 3019-3032. 
[50] G. Zhang and L.-T. Hsu, "A New Path Planning Algorithm Using 
a GNSS Localization Error Map for UAVs in an Urban Area," Journal of 
Intelligent & Robotic Systems, vol. 94, no. 1, pp. 219-235, 2018. 
[51] N. Alam, A. T. Balaei, and A. G. Dempster, "Positioning 
Enhancement with Double Differencing and DSRC," in Proceedings of the 
23rd International Technical Meeting of the Satellite Division of The 
Institute of Navigation (ION GNSS 2010), Portland, Oregon, 2010, pp. 1210 
- 1218. 
[52] E. Kaplan and C. Hegarty, Understanding GPS: principles and 
applications. Artech house, 2005. 
[53] G. Zhang, W. Wen, and L.-T. Hsu, "Collaborative GNSS 
Positioning with the Aids of 3D City Models," in Proceedings of the 31st 
International Technical Meeting of The Satellite Division of the Institute of 
Navigation (ION GNSS+ 2018), Miami, Florida, 2018, pp. 143-149. 
[54] H. Gao and P. D. Groves, "Environmental context detection for 
adaptive navigation using GNSS measurements from a smartphone," 
Navigation: Journal of the Institute of Navigation, vol. 65, no. 1, pp. 99-116, 
2018. 
[55] B. Xu, Q. Jia, Y. Luo, and L.-T. Hsu, "Intelligent GPS L1 
LOS/Multipath/NLOS Classifiers Based on Correlator-, RINEX-and 
NMEA-Level Measurements," Remote Sensing, vol. 11, no. 16, p. 1851, 
2019. 
[56] H. F. Ng, G. Zhang, and L.-T. Hsu, "Range-based 3D Mapping 
Aided GNSS with NLOS Correction based on Skyplot with Building 
Boundaries," in the ION Pacific PNT Meeting, Honolulu, Hawaii, 2019. 
[57] X. Liu, S. Nath, and R. Govindan, "Gnome: A Practical Approach 
to NLOS Mitigation for GPS Positioning in Smartphones," in Proceedings 
of the 16th Annual International Conference on Mobile Systems, 
Applications, and Services, 2018, pp. 163-177: ACM. 
[58] M. Pirani et al., "Cooperative Vehicle Speed Fault Diagnosis and 
Correction," IEEE Transactions on Intelligent Transportation Systems, no. 
99, pp. 1-7, 2018. 

 
 

Guohao Zhang received the bachelor’s 
degree in mechanical engineering and 
automation from University of Science 
and Technology Beijing, China, in 2015. 
He received the master’s degree in 
mechanical engineering and currently 
pursuing the Ph.D. degree in the Hong 
Kong Polytechnic University. His 
research interests including GNSS urban 

localization, collaborative positioning and multi-sensor 
integrated navigation. 
 



Hoi-Fung Ng received the Bachelor of 
Engineering (Honours) in Air Transport 
Engineering from the Interdisciplinary 
Division of Aeronautical and Aviation 
Engineering, The Hong Kong 
Polytechnic University, Hong Kong, in 
2018. He is currently a research assistant 
in the same department. His research 
interests include the 3D mapping-aided 

GNSS localization, navigation. 
 

 
Weisong WEN was born in Ganzhou, 
Jiangxi, China. He is a Ph.D. candidate 
in mechanical engineering, the Hong 
Kong Polytechnic University. His 
research interests include the 
GNSS/INS/LiDAR/HD Map-based 
localization for autonomous vehicles. 

He is currently a visiting student researcher in University of 
California, Berkeley (UCB). 
 

Li-Ta Hsu received the B.S. and 
Ph.D. degrees in aeronautics and 
astronautics from National Cheng 
Kung University, Taiwan, in 2007 and 
2013, respectively. He is currently an 
assistant professor with the Division 
of Aeronautical and Aviation 
Engineering, Hong Kong Polytechnic 
University, before he served as post-

doctoral researcher in Institute of Industrial Science at 
University of Tokyo, Japan. In 2012, he was a visiting scholar 
in University College London, U.K. He is an Associate 
Fellow of RIN. His research interests include GNSS 
positioning in challenging environments and localization for 
pedestrian, autonomous driving vehicle and unmanned aerial 
vehicle. 


	I.  Introduction
	II. Overview of The Proposed Algorithm
	III. Grid based 3DMA GNSS Relative Positioning
	IV. Factor Graph Optimization based Collabotative Positioning
	A. Factor Graph Construction
	B. Uncertainty Evaluation during Factor Graph Optimization
	C. Optimization of the Constructed Factor Graph

	V. Experiment Results and Discussions
	A. Experiment Setup
	B. Static Experimental Results
	C. Dynamic Experimental Results
	D. Noise Analysis

	VI. Conclusions and Future Work
	Acknowledgment
	References




