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Decentralized Navigation of a UAV Team for
Collaborative Covert Eavesdropping on a Group of

Mobile Ground Nodes
Hailong Huang, Andrey V. Savkin and Wei Ni

Abstract—Unmanned aerial vehicles (UAVs) are increasingly
applied to surveillance tasks, thanks to their excellent mobility
and flexibility. Different from existing works using UAVs for
video surveillance, this paper employs a UAV team to carry out
collaborative radio surveillance on ground moving nodes and
disguise the purpose of surveillance. We consider two aspects of
disguise. The first is that the UAVs do not communicate with
each other (or the ground nodes can notice), and each UAV
plans its trajectory in a decentralized way. The other aspect
of disguise is that the UAVs avoid being noticed by the nodes
for which a metric quantifying the disguising performance is
adopted. We present a new decentralized method for the online
trajectory planning of the UAVs, which maximizes the disguising
metric while maintaining uninterrupted surveillance and avoiding
UAV collisions. Based on the model predictive control (MPC)
technique, our method allows each UAV to separately estimate
the locations of the UAVs and the ground nodes, and decide
its trajectory accordingly. The impact of potential estimation
errors is mitigated by incorporating the error bounds into the
online trajectory planning, hence achieving a robust control of
the trajectories. Computer-based simulation results demonstrate
that the developed strategy ensures the surveillance requirement
without losing disguising performance, and outperforms existing
alternatives.

Note to Practitioners—The paper is motivated by the covertness
requirement in the radio surveillance (also called eavesdropping)
by UAVs. In some situations, the UAV user (such as the police
department) wishes to disguise the surveillance intention from
the targets, and the trajectories of UAVs play a significant role
in the disguising. However, the typical UAV trajectories such
as standoff tracking and orbiting can easily be noticed by the
targets. Considering this gap, we focus on how to plan the UAVs’
trajectories so that they are less noticeable while conducting
effective eavesdropping. We formulate a path planning problem
aiming at maximizing a disguising metric, which measures the
magnitude of the relative position change between a UAV and
a target. A decentralized method is proposed for the online
trajectory planning of the UAVs based on MPC, and its robust
version is also presented to account for the uncertainty in the
estimation and prediction of the nodes’ states.

Index Terms—Wireless communications, radio surveillance,
model predictive control (MPC), decentralized control, un-
manned aerial vehicles (UAVs), trajectory planning.
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I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have found various
applications, including but not limited to area surveillance,
parcel delivery and agriculture [1]–[4], due to the decreasing
cost of UAVs and their excellent mobility. Many publications
have investigated the different roles of UAVs in wireless
communications. In most cases, UAVs play the role of base
stations in the air and provide wireless communication service
[5]–[7], well-positioned to provide a high quality of service for
cellular users. Some publications investigate other functions of
UAVs, such as relays to provide connectivity in remote areas
or gather sensory data from IoT devices.

Besides aerial base stations, UAVs can also protect wireless
communications. There are two popular scenarios on this
topic. In the first scenario, a UAV transmits data with a ground
node when an eavesdropper is present. By optimally placing
the UAV, the reference [8] maximizes the secrecy capacity of
the UAV-node link. To optimize the average secrecy rate over a
period, the papers [9], [10] present methods by optimizing the
UAV’s trajectory as well as the transmission power jointly. The
paper [11] derives the outage probability of the receiver and
the interception probability of the eavesdropper, followed by
optimizing the UAV deployment and jamming power accord-
ingly. An IoT device is considered to send data to a hovering
UAV in [12], and a friendly UAV protects the transmission
by jamming nearby eavesdroppers. The cumulative distri-
bution functions are derived for the signal-to-interference-
plus-noise ratio (SINR) of the legitimate and eavesdropping
links. Analytical expressions are established for the secrecy
outage probability and the average secrecy rate. The paper
[13] considers a system comprising a transmitter, a receiver, a
UAV relay and an eavesdropper. To prevent eavesdropping, an
optimization problem of maximizing the system secrecy rate
is studied where the transmission powers of the transmitter
and the UAV are optimized.

In the second scenario, a UAV functions as a jammer to con-
fuse eavesdroppers [14], [15]. The paper [16] jointly optimizes
the UAV’s trajectory and the jamming power for maximizing
the average secrecy rate. The papers [17] and [18] propose
schemes with two UAVs: while the first UAV transmits useful
messages, the second UAV broadcasts jamming signals. The
UAVs’ trajectories and the transmission powers, and the user
schedule are optimized jointly. The paper [19] considers that
two UAVs send confidential messages to their respective
ground destinations using the same spectrum. The authors
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Fig. 1: The considered scenario of using a UAV team to
conduct radio surveillance on mobile targets.

design a cooperation strategy to combat eavesdropping.
This paper presents a new online aeronautic control of the

trajectories for a UAV team that launches the radio surveillance
on a group of suspicious ground moving targets in a coopera-
tive and uncommunicative way; see Fig. 1. While effectively
capturing the wireless transmissions of the ground nodes, the
UAVs hide their surveillance intention. A metric quantifying
the visual disguising performance is adopted, which is based
on the UAV-target relative angle and distance [20]. The online
control of the UAV trajectories is formulated to optimize the
overall disguising metric, and a radio surveillance requirement,
the collision avoidance, and UAVs’ aeronautic manoeuvrability
are considered as constraints. Given the dynamic nature of this
online control problem, a model predictive control (MPC)-
based technique is presented, allowing each UAV to predict
the other UAVs’ and the targets’ movements and decide
its next move in real-time. The prediction errors’ influence
is mitigated by exploiting MPC’s online adjustability and
integrating the error bounds in the control, which lead to the
robust control of the trajectories in a decentralized manner.
We conduct extensive computer simulations and compare with
a randomized method. The results reveal that the developed
approach satisfies the radio surveillance requirement while not
sacrificing the disguising intention.

To the best of our knowledge, our considered scenario
has not been investigated. Existing approaches optimize an
integrated securing performance over a certain period, e.g.,
[9], [10], [16]; explore the random movements of UAVs, e.g.,
[21]; or allow sharp turns and only suit for particular types
of UAVs, e.g., [19]. Moreover, stationary ground nodes are
typically considered in the literature. In contrast, this paper
considers a nonlinear motion model accounting for the aero-
nautic manoeuvrability of the UAVs. In particular, we focus
on covert radio surveillance which significantly distinguishes
from the existing studies. The UAVs need to make an effort to
hide their surveillance intention and construct their trajectories
in a decentralized manner. We consider radio surveillance with
wireless channel models incorporated, and this is different
from the well-studied UAV-based video surveillance, where a
disk area often represents the coverage area [22]. All these new
considerations make the problem under consideration practical
and challenging. This paper falls into the group of model-based
approaches. Data-based approaches using machine learning
techniques, such as deep reinforcement learning (DRL), can
also be used for UAV trajectory planning [23]. The problem of

interest can be considered as a multi-agent Markov decision
process (MDP) and potentially solved using multi-agent DRL.
However, the design and training of multi-agent DRL are non-
trivial. One reason is that there are multiple targets moving
along unknown trajectories. The distances between the targets
and the monitors keep changing randomly. It is non-trivial
to confirm the existence of an equilibrium of the multi-
agent DRL, e.g., by using game theory. In other words, it
is challenging to design the reward or penalty, or train the
multi-agent DRL to converge. Another reason is that large and
representative datasets are needed for the design, training and
generalization of learning approaches The UAVs may already
fail (e.g., fail the eavesdropping mission, be noticed by targets,
fall, or collide) before their learning models converge if they
can converge.

In our recent work [24], the navigation problem of a UAV
for securing the communication with a stationary or moving
ground target is studied in the presence of eavesdroppers. In
another work [25], the scenario of using a fleet of UAVs
to conduct eavesdropping on a set of stationary targets is
studied, and a Rapidly-exploring Random Tree (RRT)-based
centralized scheme is proposed. The algorithms developed in
[24] and [25] cannot be applied to the problem studied in this
paper, where we consider a new and distinctively different
scenario of fully decentralized covert radio surveillance on a
group of moving targets by a UAV team. An initial study of
this new scenario was conducted under the ideal assumption of
the error-free estimation and prediction of targets’ trajectories,
and primary results are published in [26]. Compared to [26],
this paper presents a more holistic analysis of new scenario by
considering the practical situation with the non-negligible state
estimation and prediction errors. In particular, we construct
new constraints to guarantee the safe operation of the UAV
team and the effectiveness of their radio surveillance by
incorporating the bounds of errors. Additionally, more compre-
hensive simulations are conducted in this paper, including the
computing efficiency analysis and scalability of the proposed
algorithm under estimation and prediction errors.

The rest of this paper is organized as follows. Section II
presents the system model and states the considered problem.
Section III presents the MPC-based trajectory planning method
and then discusses how to use it to deal with the expected
system uncertainty. Computer simulations are presented in
Section IV to validate and evaluate the proposed approach.
A conclusion is drawn in Section V finally.

II. PROBLEM STATEMENT

We consider that there are N UAVs collaboratively eaves-
drop on the communications among M moving nodes on the
ground. TABLE I summarizes the frequently used symbols in
the paper.

Denote pi(t) = [xi(t), yi(t), zi(t)] as UAV i’s position (i =
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TABLE I: Mainly used symbols and the meanings

Symbol Meaning
pi The position of UAV i
θi The flight path angle of UAV i
µi The flight path angle rate of UAV i
ψi The heading angle of UAV i
ϕi The bank angle of UAV i
vi The speed of UAV i
qj The position of node j
dij Distance from UAV i to node j
δih Distance from UAVs i to h
γij Relative angle between UAV i and node j
hij Channel coefficient from UAV i to node j

SNRij SNR at UAV i from node j
Fj The combined SNR from node j
gij Disguising performance of UAV i to node j
Si Average distance threshold for UAV i
S0 The minimum distance between two UAVs
p̂h(i) Position of UAV h estimated at UAV i
p̂j(i) Position of node j estimated at UAV i
∆n

ij Error bound of node j estimated at UAV i

∆u
ij Error bound of UAV h estimated at UAV i

P Transmit power of nodes
N The number of UAVs
M The number of target nodes
T Optimization horizon
L Number of slots of one optimization horizon

1, . . . ,N ) at time t. The motion of UAVs is modelled by [27]:

ẋi = vi cos θi cosψi,

ẏi = vi cos θi sinψi,

żi = vi sin θi,

θ̇ = µi,

ψ̇ = g tanϕi

Vi
,

(1)

where vi is the speed of UAV i, θi is the flight path angle,
µi denotes the flight path angle rate, ψi denotes the heading
angle, and ϕi is the bank angle. The state of the model (1)
is {pi, θi, ψi}, and the control input is {vi, µi, ϕi}. vi, µi and
ϕi satisfy that |vi| ≤ V max

i , |µi| ≤ Umax
i and |ϕi| ≤ Φmax

i ,
where V max

i , Umax
i and Φmax

i are given constants depending
on the maneuverability of UAV i. Each UAV i needs to operate
within a certain range of altitude:

Zmin ≤ zi(t) ≤ Zmax, (2)

where the allowed range [Zmin, Zmax] is known.
Let qj(t) = [x′j(t), y

′
j(t), 0] (j = 1, . . . ,M) denote node j’s

location at t. As assumed in [8], [10], a UAV can estimate other
UAVs’ and ground nodes’ positions using onboard cameras.
Also assume that the nodes’ movements can be predicted for
a certain time period in the future. We start with accurate
predictions in this section and then extend to predictions with
errors in the next section.

Denote dij(t) as the Euclidean distance from UAV i to node
j at t:

dij(t) = ∥pi(t)− qj(t)∥, (3)

where ∥ · ∥ gives 2-norm. Let hij(t) be the complex channel
coefficient from node j to UAV i at t, and it can be measured
at the UAV. The channels between UAVs and nodes are
line-of-sight dominated, and they enable UAVs to outperform

the ground eavesdroppers [28]. With this assumption, hij(t)
follows the free-space path loss model:

hij(t) =
P0

daij(t)
, (4)

where P0 is the reference transmit power of a node at the
distance of 1 meter and a is the path loss exponent. The
Doppler effect caused by the UAV’s and node’s movements
is assumed to be well compensated at the UAV.

Moreover, denote P as the transmission power of the nodes
and σ2

0 as the noise power at UAVs. The signal-to-noise ratio
(SNR) at UAV i from node j is given by

SNRij(t) =
Phij(t)

σ2
0

. (5)

Maximum ratio combining is conducted to combine con-
structively the captured signals of all UAVs for the maximum
combined SNR [24]. The combined instantaneous SNR of the
collaborative radio surveillance in regards to node j is written
as

Fj(t) =

N∑
i=1

SNRij(t). (6)

Assume that no useful information is extractable from col-
lected data if Fj(t) is lower than a certain threshold C. Then,
the below constraint should be met to ensure that the data
gathered by the UAV team at t is useful:

Fj(t) ≥ C, ∀j. (7)

Here, the threshold C can be specified based on the known
highest modulation-and-coding and coding order of the ground
nodes. It is pointed out that when the UAVs are executing the
covert radio surveillance, they do not exchange the received
data with each other. Instead, the collected signals are com-
bined and decoded only after the mission.

Remark II.1. Constraint (7) requires the UAV team to have
effective radio surveillance on all the ground nodes at any
time. In the cases when the transmission schedule is available
to the UAV team, we can introduce a new notation sj(t)
to indicate the transmission schedule for node j at time t:
sj(t) = 1 if it transmits; sj(t) = 0, otherwise. Then, (7)
becomes Fj(t) ≥ Csj(t), ∀j, ∀t. This will significantly
reduce the restrictions on the UAVs’ movements. Thus, though
out of the scope of this paper, observing the transmission
pattern via some machine learning algorithms is an interesting
future research direction under the considered context.

When multiple UAVs collaborate, collision avoidance
should be considered. Denote S0 as a safety distance. Let
δih(t), which is computed by δih(t) = ∥pi(t) − ph(t)∥, be
the relative distance from UAV i to UAV h at t. Any two
UAVs must stay S0 away from each other at t:

δih(t) ≥ S0,∀i ̸= h, (8)

Moreover, to hide the surveillance intention, the UAVs
need to keep away from the nodes. The main reason is the
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Fig. 2: Illustration of several key symbols.

observation that staying closer to a target makes the UAV more
suspicious. Considering this, the below constraint is used:

1

T

∫ tk+T

tk

dij(t)dt ≥ Si, ∀j, ∀i, (9)

where tk is an instant and Si is used to characterize the average
distance between a UAV and a node during a period of T .
The value of Si is dependent on the dimensions of UAV
i. Generally speaking, a small-size UAV i corresponds to a
small Si, because a small object is less noticeable than a large
one. The period T is comparatively short in regards to the
whole mission time. The location of a node is assumed to be
predictable for the upcoming period of T .

Staying at some positions Si away from a node on average,
i.e., the condition (9), may not be sufficient to conceal the
monitoring intent. We wish the UAVs to move in a random-
like manner since a random movement is a reasonable way
to disguise. Denote γij(t) as the relative angle of UAV i and
node j, measured counter-clockwisely from a fixed direction
(such as the x-axis) to the straight line connecting the UAV
and the node; see Fig. 2. The disguising metric is measured
by the weighted amplitudes of the first-order derivatives of the
relative angle and distance of the UAV and the node [20]:

gij(t) = κ|γ̇ij(t)|+ |ḋij(t)|. (10)

Here, κ is a positive weighting factor. The rationale of (10)
is that, when we look at some object, if the object moves in
very different directions with significant displacements relative
to us, it seems not to monitor us. A comparison of the
disguising performance of some movement patterns of straight
line, arc and random movement on a 2D plane is given in
Fig. 3a. The starting positions and the linear speeds are the
same across these movements. An observer keeps measuring
the relative distance and angle from the object to itself.
For the random pattern, the object randomly turns left, right
or moves forward. From common sense, moving randomly
helps to hide intention, and the results of the disguising
performance under the considered metric (10) in Fig. 3b aligns
with this observation. Therefore, the proposed metric (10) is
reasonable. Additionally, the value of κ significantly influences
the movements of the UAVs. In particular, when κ takes some
large value, the UAVs prefer to change the relative angle
with respect to the targets. When κ takes some small value,
the UAVs prefer to change the relative distance with respect
to the targets. The selection of κ should be based on field
experiments with the participation of volunteers, i.e., how the
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Fig. 3: Evaluation of the disguising metric (10). (a) Trajec-
tories of an object moving along a straight line, an arc, and
randomly on a 2D plane. (b) The results of the disguising
metric corresponding to the movements in (a).

volunteers feel about the change of the relative distance and
relative angle. In this paper, we set κ as a fixed value and leave
the study on the value selection for further investigation. It is
worth noting that the metric (10) is just one option to describe
the disguising performance. As will be seen in the next section,
the developed method is not restricted to this model.

We consider the below function for maximizing the overall
disguising metric:

max
p1(t),...,pN (t)

N∑
i=1

M∑
j=1

1

Si

∫ tk+T

tk

(κ|γ̇ij(t)|+ |ḋij(t)|)dt. (11)

In (11), a small-size UAV can make less effort in disguising
itself than a large-size UAV, because the latter is more de-
tectable. In the case where the UAVs are of the same size, we
omit the weights. The current formulation does not consider
the energy consumption, as the fixed-wing UAVs modelled by
(1) is typically much more energy-efficient and can fly for a
much longer time than rotary-wing UAVs [29]. Nevertheless,
we note that energy consumption is important to trajectory
planning, especially when the operation time increases. To
capture this factor, we can potentially extend the current opti-
mization problem with a single objective function to a multi-
objective optimization problem. In addition to the currently
considered disguising metric, another metric describing the
energy consumption of the UAVs, such as the length of UAVs’
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Fig. 4: The estimate-predict-plan-calibrate working manner of
each UAV of the team.

trajectories and the magnitudes of the UAVs’ control inputs,
can be considered as the second objective function.

Given that a team of UAVs are able detect the coordinates
of an object and predict its position for a future period T ,
and given the constants C, S0, Si, V max

i , Umax
i and Wmax

i

(i = 1, . . . ,N ), we restrict out attention to maximize (11) in
a decentralized manner while satisfying constraints (2), (7),
(8) and (9).

III. PROPOSED METHOD

Problem (11) subject to (2), (7), (8) and (9) is difficult as
it does not provide the analytical solution. In (11), γ̇ij(t) is
non-convex with respect to vi(t), ui(t), ωi(t), so as ḋij(t).
The absolute value operator further results in that they are
not differentiable at the point of zero. In addition, the control
commands vi(t), ui(t), ωi(t) for each UAV lead to a solution
space in the size of O(3N ) under the condition that they
keep unchanged during an interval. However, remaining the
same may make it probable for the ground nodes to notice
the UAVs’ intention. Thus, vi(t), ui(t) and wi(t) should vary
in [tk, tk + T ] to achieve a good disguise. The necessity of
reserving a large solution space complicates the problem.

We present an MPC-based decentralized UAV trajectory
planning scheme. We first consider the scenario where the
estimations and predictions of the nodes’ and UAVs’ move-
ments are accurate and present the basic MPC-based trajectory
planning method in Section III-A. We then consider the prac-
tical case with estimation and prediction errors and exploit the
error bounds to design a robust trajectory planning method in
Section III-B. We only discuss how UAV i plans its trajectory,
and other UAVs can do it in the same way.

A. MPC-based trajectory optimization

We assume that each UAV carries some sensors such as
cameras to measure the states of other UAVs and ground
nodes. Also, each UAV can make predictions on the ground
nodes’ movements. With the measurements, the state estima-
tion can be conducted by existing approaches, e.g., extended
Kalman filter [30]. The working manner of each UAV of the
team is shown in Fig. 4.

The interval T (the horizon during which the trajectories are
planned) is divided by a constant τ into L (L = ⌊T

τ ⌋) slots.
The control commands vi(t), ui(t) and wi(t) are assumed
to update only at instants tk, tk + τ, . . . , tk + (L − 1)τ and
do not change during the slots [tk + lτ, tk + (l + 1)τ ], l =
0, 1, . . . ,L − 1. With such discretized time slots, constraints
(2), (7) and (8) are rewritten in discrete forms. Specifically,
we assess the constraints only at instants tk, tk + τ, . . . , tk +

(L − 1)τ , rather than in the continuous-time domain. Then,
constraint (9) becomes:

1

L

L∑
l=1

dhj(tk + lτ) ≥ Sh,∀j,∀h. (12)

The objective function is re-written in the discretized form:

max
p1(tk+lτ),...,pN (tk+lτ)

N∑
h=1

M∑
j=1

L∑
l=1

1

Sh
(κ|γhj(tk + lτ)− γhj(tk + (l − 1)τ)|+

|dhj(tk + lτ)− dhj(tk + (l − 1)τ)|).

(13)

Denote nv , nµ and nϕ as some given positive integers. They
determine the numbers of feasible control inputs at each slot
in the below class:

vi =
svV

max
i

nv
∀sv = 1, . . . , nv,

µi =
sµU

max
i

nµ
∀sµ = −nµ, . . . ,−1, 0, 1, . . . , nµ,

ϕi =
sϕΦ

max
i

nϕ
∀sϕ = −nϕ, . . . ,−1, 0, 1 . . . , nϕ.

(14)

In (14), there are nv choices for vi, (2nµ +1) choices for µi,
and (2nϕ+1) choices for ϕi. So, there are nv(2nµ+1)(2nϕ+
1) sets of possible control inputs at each slot. Then, there are
(nv(2nµ + 1)(2nϕ + 1))L possible control sequences for L
slots.

In this paper, we adopt the MPC framework to construct
UAVs’ trajectories. Some concepts used in the proposed algo-
rithm are explained as follows:

• The set of control commands vi, µi and ϕi from (14) is
called a set of control commands at t for UAV i.

• The L sets of control commands that will be applied at
any UAV at tk, tk+τ, . . . , tk+(L−1)τ is called a control
sequence.

• The set of N control sequences for N UAVs is called a
combination of control sequences.

The UAV team commences the collaborative surveillance at
t0. UAV i constructs its trajectory using the below procedures
at tk = kτ for k = 0, 1, 2, . . ..

S1: 1) Estimate the locations and headings of the other
UAVs, as well as the locations and speeds of the ground nodes,
and 2) forecast the nodes’ positions for the upcoming L slots
based on the estimations.

S2: Consider all possible control commands from (14) and
apply them to the UAVs at tk, tk + τ, . . . , tk +(L− 1)τ . This
will create multiple trajectories of the UAVs.

S3: Choose the combination of control sequences maximiz-
ing (13) and satisfying (2), (7), (8) and (12) at tk+τ, . . . , tk+
Lτ . The first combination will be chosen when two or more
combinations of control sequences give the same objective
value of (13).

S4: Implement the first set of control commands of the ith
control sequence.

Proposition III.1. The global maximum of problem (13)
subject to (2), (7), (8) and (12) exists. With nv → ∞, nµ →
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∞, nϕ → ∞ and L → ∞, the control sequence obtained in
S2 and S3 converges to the global optimum.

Proof. From the model (1) we understand that the trajectories
(xi(·), yi(·), zi(·)) for i = 1, . . . ,N under constraints (2), (7),
(8) and (12) are continuous and bounded uniformly [31]. Thus,
these trajectories are compact following the Arzela–Ascoli
theorem, and the global maximum of the problem (13)
can be achieved at some trajectory (x∗i (·), y∗i (·), z∗i (·)) [31].
Moreover, the control inputs (v∗i (·), µ∗

i (·), ϕ∗i (·)) that lead to
the optimal trajectory can be approximated by a piecewise
constant function with an arbitrary small precision. In other
words, with nv → ∞, nµ → ∞, nϕ → ∞ and L → ∞,
the control sequence obtained in S2 and S3 converges to
(v∗i (·), µ∗

i (·), ϕ∗i (·)). This completes the proof of Proposition
III.1.

When the UAVs and ground nodes’ positions are measured
precisely, different UAVs get the unique combination of con-
trol sequences following the above procedures. In other words,
each UAV addresses the considered problem and executes
the first set of control commands in the control sequence
belonging to itself. This set of control commands leads the
UAV to a new position, at which it repeats the procedures.

We note that the position estimations by a UAV may be
inaccurate in practice. In this sense, the result of the proposed
method serves as an asymptotic upper bound. One way to
reduce the errors’ impact is the introduction of a fading factor.
In particular, a given constant λ ∈ (0, 1) can be introduced,
and λl can be multiplied by the contribution at each instant
tk + lτ in (13).

We also note that the proposed MPC-based scheme re-
peatedly optimizes the considered problem in a smaller time
window T than the whole horizon. In this sense, the proposed
scheme falls behind some other optimization algorithms such
as Linear-Quadratic Regulator (LQR) [32] which optimizes
the entire horizon. Compared to LQR (which can obtain the
optimal solution), the proposed MPC-based algorithm may ob-
tain a suboptimal solution. However, the proposed method can
be implemented online and can adjust the control commands
actively upon the latest measurements, which is more suitable
for time-variant problems. In addition, the proposed method
can handle the nonlinear constraint (7) and the nonlinear
objective function (13) without linearization.

Now, we provide more details on the trajectory searching
strategies applied in S3. Without any constraint, each UAV
searches its trajectory in the complete tree. With the con-
sideration of (2), (7), (8) and (12), the tree to be searched
can be significantly reduced. Our searching strategy firstly
removes all the vertices whose altitudes are outside the range
of [Zmin, Zmax] from the tree (i.e., the positions that violate
constraint (2)). Their child vertices are also removed from
the tree. Secondly, the trajectories whose average distances
to the ground nodes are smaller than the given threshold
(i.e., the trajectories that violate constraint (12)) are removed
from the tree. Thirdly, we consider constraint (8) for collision
avoidance. When a vertex of a tree is within a S0 distance
of a vertex of another tree, one of these two vertices is

removed. The rule is to remove the vertex in the tree with
more vertices. This rule helps balance the number of vertices
in the trees of the UAVs. With these operations, the number
of feasible trajectories is reduced significantly. Finally, we
verify constraint (7) for each feasible trajectory combination.
If constraint (7) holds, we record the objective function value
of (13). By doing this, we can find out the best trajectory
combination.

B. Robust trajectory optimization

In practice, the estimations may not be perfect. Moreover,
the estimation errors cannot be known in real-time. To elimi-
nate the impact of the estimation errors on trajectory planning,
we take them into account in trajectory optimization. In this
subsection, we present a robust form of the proposed MPC-
based trajectory optimization method.

Let p̂h(i)(t) and q̂j(i)(t) stand for the positions of UAV h
and node j estimated by UAV i at t, respectively. Assume that
the estimation errors are random variables and are bounded.
We have

∥ph(i)(t)− p̂h(i)(t)∥ ≤ ∆u
ih, (15)

∥qj(i)(t)− q̂j(i)(t)∥ ≤ ∆n
ij , (16)

where ∆u
ih > 0 and ∆n

ij > 0 limit the errors of the UAV
i’s estimated positions of UAV h and node j, respectively. In
practice, ∆u

ih and ∆n
ij depend on the resolution of the cameras

mounted on UAV i. Suppose that UAV i can reject some
disturbance, such as wind, which enables the UAV to know
its position perfectly. Thus, we have ∆u

ii = 0. We assume that
the bounds are known to UAV i and they are considered in
the trajectory optimization.

To accommodate the estimation errors, we rewrite the worst-
case constraints (2), (7), (8) and (9) as follows:

Zmin +∆u
ih ≤ zh(tk + lτ) ≤ Zmax −∆u

ih,∀h,∀l, (17)
N∑

h=1

f(dhj(tk + lτ) + ∆u
ih +∆n

ij) ≥ C, ∀j,∀l, (18)

δih(tk + lτ) ≥ S0 +∆u
ih,∀i ̸= h,∀l, (19)

1

L

L∑
l=1

dhj(tk + lτ) ≥ Sh +∆u
ih +∆n

ij ,∀j,∀h. (20)

Constraint (17) narrows down the range of the allowed alti-
tude. Constraint (18) specifies the collaborative radio surveil-
lance requirement. UAV i needs to further estimate the dis-
tance from UAV h to node j. In the worst case, the estimation
error of the distance is ∆u

ih+∆n
ij . Constraint (19) enlarges the

safety distance between UAVs i and h by a margin specified
by the estimation error bound ∆u

ih. Constraint (12) increases
the required average distance between UAV h and node j by
a margin ∆u

ih + ∆n
ij . Clearly, if the UAVs are at positions

satisfying (17), (18), (19) and (20), the original constraints
(2), (7), (8) and (9) hold as well. In this sense, these new
constraints are tightened by the error bounds, and provide the
robust versions of the original constraints [33]. We note that
larger bounds increase the robustness to the estimation errors,
but excessively large bounds can make the problem infeasible.
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Therefore, the considered optimization problem becomes
maximizing (13) subject to (17), (18), (19) and (20). The
MPC-based trajectory optimization method proposed in Sec-
tion III-A can be applied to address the new problem by
replacing constraints (2), (7), (8) and (12) in S3 with (17),
(18), (19) and (20). We note that the robust versions of the
constraints may lose the optimality of the original problem
because the feasible solution space is reduced. In addition,
since the UAVs solve the problem in a decentralized way, the
trajectory of UAV h constructed by UAV i can be different
from the trajectory constructed by UAV h itself. The reason
lies in the estimation error of the position of UAV h at UAV
i. Despite solving the robust version optimization problem
may penalize disguising performance, nonetheless, none of
the original constraints is violated, which guarantees the safe
operation of the UAV team and the effectiveness of the radio
surveillance during the mission. In the next section, we will
show via extensive computer simulations that though different
UAVs may obtain different sets of trajectories, the disguising
performance is negligibly impacted.

IV. PERFORMANCE EVALUATION

This section evaluates the developed approach via computer
simulations. First, we provide the theoretical complexity and
scalability of the overall framework.

A. Theoretical complexity and scalability analysis

We study the complexity and scalability of the proposed
algorithm, subject to the numbers of UAVs and mobile nodes,
i.e., N and M. In S1, each UAV estimates the locations and
headings of other (N −1) UAVs and the locations and speeds
of M target nodes. Using these estimations, it further predicts
the nodes’ positions for future L slots. Thus, the number of
computations required is O(N − 1 +M(L + 1)) = O(N +
ML). Furthermore, the number of possible control commands
from (14) for each UAV is (nv(2nµ + 1)(2nϕ + 1))L. Since
the proposed algorithm is decentralized, at each UAV i, the
computations require calculating future trajectories of all N
UAVs. Therefore, the total number of control inputs considered
at each UAV is (nv(2nµ + 1)(2nϕ + 1))LN . Moreover, the
amount of computations required by (12) depends linearly
on M. Hence, the amount of computations required in S2,
S3 and S4 is O(M(nv(2nµ + 1)(2nϕ + 1))LN ). The to-
tal amount of computations required by the algorithm is
O(N +ML) +O(M(nv(2nµ + 1)(2nϕ + 1))LN ). Consider
fixed L, nv, nµ and nϕ and analyze the complexity in regards
to N and M. Given fixed N , the amount of computations
is approximately linear to M. Given fixed M, the number
of computations increases exponentially with N . Hence, the
proposed algorithm can readily scale with the number of
mobile ground nodes M. Moreover, the number of UAVs
N is typically moderate and the subsequent computations are
manageable in practice.

B. Computer simulations

Now, we present computer simulation results to verify the
effectiveness of the developed approach. We first present a

case with three nodes following a curvy trajectory. There
are two UAVs conducting the surveillance mission. They
apply the developed method to construct trajectories. The
simulation lasts 90 slots with 20 seconds per slot. Other system
parameters are: L = 3, τ = 1, Zmin = 60 m, Zmax = 240
m, P = 20 dBm, σ2

0 = −80 dBm, P0 = −50 dB a = 3,
C = 5 dB, κ = 100, S0 = 100 m, S1 = 160 m, S2 = 140 m,
V max = 30 m/s, Umax = 1 rad/s, Φmax = 0.5 rad, nv = 1,
nµ = 1, nϕ = 1, ∆u

12 = 10 m, ∆u
21 = 20 m, ∆n

11 = 20 m,
∆n

12 = 20 m, ∆n
21 = 30 m, ∆n

22 = 30m, ∆n
13 = 20 m and

∆n
23 = 20 m. At each slot, we randomly create the errors of

the estimation in the bounds, and the errors are integrated into
the actual locations of the UAVs and ground nodes.

The UAVs’ movements are displayed in Figs. 5a and 5b
when the error bounds are not considered. The trajectories
of the UAVs take into account the estimation error bounds
in Figs. 5c and 5d. Clearly, due to the estimation errors,
the UAVs can construct different trajectories. Since no other
references study the considered problem, a randomized method
is regarded as a baseline. Specifically, this baseline addresses
the purpose of disguise by only randomly selecting a set of
control commands from (14). The 3D trajectories are demon-
strated separately in Fig. 5e with the horizontal trajectory
and in Fig. 5f with the altitude. The performance of the
radio surveillance is shown in Fig. 5g under the three sets
of trajectories. In this figure, only the lower value of the
radio eavesdropping achievement of the ground nodes at each
instant is presented. Clearly, due to the estimation errors,
the collaborative radio surveillance requirement is violated
several times when the errors are not accounted for in the
trajectory construction. The random method fails to ensure the
surveillance requirement. Differently, the developed method
with error bounds results in effective surveillance for the
whole horizon. Besides, the achieved performance is above
the threshold as the actual estimation errors do not reach
their (worst-case) maximum values. This is because we design
the trajectories by considering the (worst-case) maximum
possible errors. Moreover, the disguising achievements of the
three sets of trajectories are compared. The developed method
without bounds leads to a nearly indistinguishable disguising
achievement to the randomized baseline. When the estimation
errors are considered in the design, the disguising performance
degrades slightly due to the reduced feasible solution space.

Another scenario with two nodes travelling on a closed road
is considered. The moving nodes may represent some security
guys patrolling a large asset, and they have to exchange
sensing data in the mission. Here, ∆u

12 = 10 m, ∆u
21 = 20 m,

∆n
11 = 20 m, ∆n

12 = 25 m, ∆n
21 = 10 m and ∆n

22 = 15
m. All the other parameters keep the same as they are in
the above case. The UAVs’ trajectories are shown in Figs. 6a
and 6b, where the estimation errors are not considered, and
Figs. 6c and 6d when the error bounds are taken into account.
The trajectories generated by the benchmark method are
shown in Figs. 6e and 6f. The radio surveillance performance
and disguising performance are shown in Figs. 6g and 6h,
respectively. Similar to the first case, neither of the proposed
method with no error bounds considered and the random
method can ensure the radio surveillance performance to be
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Fig. 5: Case 1: Three moving nodes and two UAVs. (a-b)
UAVs’ trajectories with no error bounds considered. (c-d)
UAVs’ trajectories with error bounds considered. (e-f) UAVs’
trajectories of the baseline. (g) Eavesdropping performance.
(h) Disguising performance.

above the threshold C at any time. From the simulation results,
we see that the proposed method considering the estimation
error allows each UAV to construct its trajectory independently
without sharing information. It guarantees the required radio
surveillance performance (which cannot be guaranteed by
the benchmark method) and achieves comparable disguising
performances with the benchmark method.

Moreover, we add one more UAV to the above case. The
parameters relating to this UAV are as follows. S3 = 120
m, ∆u

13 = 10 m, ∆u
23 = 20 m, ∆u

31 = 15 m, ∆u
32 = 15

m, ∆n
31 = 10 m and ∆n

32 = 10 m. Other parameters are
the same as above. The trajectories of the three UAVs by the
developed approach considering the error bounds are shown
in Fig. 7a, and their altitudes are shown in Fig. 7b. Fig.
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Fig. 6: Case 1: Two moving nodes and two UAVs. (a-b)
UAVs’ trajectories with no error bounds considered. (c-d)
UAVs’ trajectories with error bounds considered. (e-f) UAVs’
trajectories of the baseline. (g) Eavesdropping performance.
(h) Disguising performance.

7c shows the radio surveillance performance, which is above
the threshold C at any time. Fig. 7d displays the cumulative
disguising performance. Compared to the case of two UAVs,
we see that the UAVs change their movement more drastically
since having one more UAV reduces the workload on the other
UAVs. The average disguising performance per UAV per node
is about 11, while it is about 9 in the case of two UAVs (see
Fig. 6h).

To demonstrate the scalability of the proposed algorithm,
we consider different N and M. We measure the execution
time of the algorithm in MATLAB. We use a normal personal
computer an Intel Core i7-7500U CPU. Other relevant param-
eters are the same as above. As seen from Fig. 8, with the
increase of M, the computing time of our method increases
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Fig. 8: The computing time of the proposed approach under
various M and N .

almost linearly. The computing time of the proposed algorithm
increases significantly with N . In this sense, the proposed
algorithms scale well with the number of ground nodes M.

In terms of efficiency, we evaluate numerically the number
of floating-point operations of our method by using the MAT-
LAB command, FLOPs1. Consider the case with three UAVs
and two ground nodes. With the aforementioned parameters
L, nv , nµ and nϕ, the number of floating-point operations is
about 0.3×106. Take an off-the-shelf UAV on-board computer,
Qualcomm Snapdragon Flight [32, Tab. IV], for example,
whose on-board computer has the computing capability of 167
GFLOPs (which can execute 167×109 floating-point opera-
tions per second). The proposed method can be implemented
in real-time with the frequency of planning less than 1 Hz.

1https://www.mathworks.com/matlabcentral/fileexchange/50608-counting-
the-floating-point-operations-flops

V. CONCLUDING REMARK

This paper considers the usage of a team of UAVs for moni-
toring a group of moving nodes collaboratively and secretively.
To this end, the UAVs need to construct their trajectories online
and decentralizedly. A measurement to describe the disguising
performance of UAVs is adopted. The trajectory planning
task is modelled as a constrained optimization problem. The
objective is the maximization of the disguising metric, and
the constraints include an instantaneous radio surveillance
requirement, the requirement of avoiding collision, and the
aeronautic manoeuvrability. A trajectory construction method
based on MPC is presented to solve the problem online. The
method tolerates inaccurate position estimations. Simulations
have been conducted to evaluate the developed approach, and
the results reveal that the developed approach ensures the
instantaneous radio surveillance requirement on the targets,
while not compromising the disguising purpose, as compared
to a random method.
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