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In this paper, we propose a decision criterion that characterizes an enveloping bound on monetary risk

measures and is computationally friendly. We start by extending the classical Value at Risk (VaR) measure.

While VaR evaluates the threshold loss value such that the loss from the risk position exceeding that

threshold is at a given probability level, it fails to indicate a performance guarantee at other probability

levels. We define the Probabilistic Enveloping Measure (PEM) to establish the bound information for the

tail probability of the loss at all levels. Using a set of normative properties, we then generalize the PEM

to the Risk Enveloping Measure (REM) such that the bound on the general monetary risk measures at

all levels of risk aversion are captured. The coherent version of the REM (CREM) is also investigated. We

demonstrate its applicability by showing how the coherent REM can be incorporated in distributionally

robust optimization. Specifically, we apply the CREM criterion in the surgery block allocation problems

and provide a formulation that can be efficiently solved. Based on this application, we report favorable

computational results from optimizing over the CREM criterion.
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1. Introduction

When the outcomes in a decision making problem are uncertain, we typically evaluate the

outcome by its expectation and optimize over it. This happens no matter which subject

area we consider — we minimize the expected cost in inventory control problems, maxi-

mize the expected return in portfolio optimization problems, and minimize the expected

waiting times in a hospital when determining the optimal staffing requirement (Ahmed

and Alkhamis 2009). In the past few decades, however, an increasing number of researchers

have become aware of that solely focusing on the expected outcome fails to take into

account the associated risk. To incorporate the practical concern of risk, numerous studies

have adopted the expected utility as a substitute for the expected outcome to evaluate the
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uncertain performance. Examples can be seen in the application in the newsvendor prob-

lem (Eeckhoudt et al. 1995), the multi-period inventory control problem (Chen et al. 2007),

and the reserve capacity determination for a hospital in response to uncertain demand

(Rodriguez-Alvarez et al. 2012). In addition to using the expected utility, valuating the

uncertain outcome by the monetary risk measure can provide a clear quantitative indica-

tion on the associated risk. It has also been applied to the newsvendor problems (Choi

and Ruszczyński 2008, Choi et al. 2011), the inventory-pricing problem (Chen et al. 2009),

and the hospital staffing problems (Pender 2016). We begin with the second approach, the

monetary risk measure, for its intuitive implication on the riskiness. Specifically, we aim

to provide a comprehensive description of riskiness by establishing an enveloping bound

on monetary risk measures. We then demonstrate its connection with the first approach,

the expected utility theory.

Among monetary risk measures, Value at Risk (VaR) is a ubiquitous one that has wide

applications from finance to supply chain management. An extensive overview of the appli-

cability of VaR can be seen in Jorion (2006). Given a probability level, α, the VaR of a

risk position, x̃, is defined as a threshold loss value, such that the probability that the loss

on the position exceeding this threshold is no more than (1−α). Mathematically,

VaRα(x̃) = inf {t : P(−x̃ > t)≤ 1−α} , (1)

where P denotes the probability measure. Hence, VaR is a quantile-based monetary risk

measure that quantifies the risk of the position x̃ via the α-quantile of the loss, −x̃.

As an illustrative example, Table 1 lists three risk positions (x̃1, x̃2 and x̃3), among which

the investor will select exactly one. By varying the probability level α, the VaR in Table 1 

provides a snapshot of the risk distributions at various quantiles of interest. Specifically, for
Position x̃1, VaR0.9(x̃1) = 500, i.e., P(−x̃1 > 500) ≤ 1 − 0.9; it implies the probability that 
x̃1 results in a loss exceeding $500 is less than 10%. By contrast, the investor might have

a 10% chance to incur a $2, 000 loss if Position x̃2 is chosen. Thus, given the probability

level α = 0.9, the investor prefers Position x̃1 over x̃2. However, for a decision criterion, 

the evaluation of risk that is based on a single quantile parameter α may not be adequate.
Position x̃1 is the most preferred position at α ∈ {0.9, 0.95}, while x̃2 is most preferred at 

α = 0.98. While Position x̃1 is preferred at lower quantiles, the associated loss at α = 0.98

is significantly higher than those in other positions. It thus has a low probability of a
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Positions α= 0.9 α= 0.95 α= 0.98

x̃1 500 1,000 20,000

x̃2 2,000 2,000 2,000

x̃3 1,000 1,800 2,100

Table 1 VaRα of three risk positions

potentially catastrophic level of losses. On the other hand, Position x̃2 has the highest VaR 

at lower quantiles but the lowest risk at α = 0.98. However, when considering the statistics 

of the loss quantiles at various levels collectively, Position x̃3 may be preferred over the 

other two. Therefore, while favoring positions with low quantiles at a specific probability 

level, VaR has no performance guarantee at any other probability level. In many practical 

problems, it has been well documented that decision makers are unavoidably sensitive to 

performance at more than one probability level (Payne et al. 1980, 1981).

Motivated by the concept of VaR and the need to encompass a range of quantile values 

in evaluating risk positions, we propose a class of decision criteria that allows us to specify 

the probabilistic bounds of losses exceeding thresholds at all levels. However, in general, 

the optimization problems involving VaR are already computationally difficult to solve 

(Nemirovski 2012). Therefore, a key issue in taking into account probabilistic bounds at a 

range of levels is not placing additional burden on the computational complexity.

Apart from VaR, other monetary risk measures have also received a great deal of atten-

tions in the past decade, such as Conditional Value at Risk (CVaR) and Entropic Risk 

Measure. Interested readers can refer to Föllmer et al. (2004) for more details. Similar to 

the probability level α in VaR, the other monetary risk measures are related to parameters 

that characterize the level of risk aversion. For example, while using CVaR, a correspond-

ing probability level must be declared; and if using Entropic Risk Measure, a risk aversion 

parameter has to be specified as an indicator of the level of concavity for the underlying 

exponential function curve. It is also of great interest to investigate how to incorporate 

the enveloping bound on a general monetary risk measure at all levels of risk aversion. 

Take the CVaR as an example. Given a particular probability level α, the monetary risk 

measure CVaRα evaluates the expected loss beyond the α-quantile. However, it gives no 

information on the expected loss beyond the quantile at any other probability level. In this 

paper, we are going to propose a systematic index that can provide information on the 

bound of CVaR at all levels of α.
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The concept of the enveloping bound can be traced back to the 1970s in the area of 

signal processing (e.g., Evans et al. 1977a,b). Xu et al. (2012) investigate the optimization 

problem with the presence of enveloping chance constraints. In the above studies, the 

enveloping bound serves a constraint such that a feasible solution has to be subject to 

the infinite set of constraints. In contrast, our paper incorporates the enveloping bound 

in the objective function. Hence, by solving the corresponding optimization problem, we 

can design a solution with the lowest risk from an enveloping perspective. This paper also 

generalizes Xu et al. (2012) in the sense that the concept of the enveloping bound can be 

embedded with any monetary risk measure, rather than only focusing on the enveloping 

chance constraints in Xu et al. (2012).

Driven by the enveloping bound, our new optimization framework is then applied on a 

surgery blocks assignment problem, which is a healthcare application from the bin packing 

problems. In this problem, the decision maker selects a subset of operating theaters to open, 

and assigns surgery cases to an open operating theater. Given the uncertain duration of a 

surgery, the decision maker has to mitigate the overtime risk, or there will be operational 

issues when the assignment plan is put into practice — the resources get locked up while 

some patients are in urgent need. Denton et al. (2010) is the first attempt to apply the 

robust linear program with box uncertainty on this problems. After that, Shylo et al.

(2013) use a chance-constraint model to bound the overtime risk. Deng and Shen (2016) 

use the same approach and formulate a two-stage mixed integer programs without the 

need to assume normality on surgery durations. Recently, Zhang et al. (2018) tackle the 

same problem by formulating a distributionally robust chance-constrained problem. In 

their ambiguity sets, the information of means and covariances is included. In this paper, 

we use our approach on this problem and compare the computational performance with 

those from the benchmarks.

In summary, we develop a decision criterion that can both encompass the bound on 

quantiles at all probability levels and add no significant computational burden into the 

stochastic optimization problems. We then extend the idea to obtain a class of decision 

criteria that indicate an enveloping bound on any monetary risk measure for all levels of 

risk aversion. After that, we develop a solution approach to optimize the decision criteria in 

the decision making problem. Finally, we apply the framework on the surgery assignment 

problem and compare its performance against the existing method in the literatures.
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Notations: We denote a random variable by a character with the tilde sign, such as x̃. We

denote the probability space as (Ω,F ,P). An inequality between two risk positions such as

x̃≥ ỹ denotes state-wise dominance, i.e., it is equivalent to x̃(ω)≥ ỹ(ω) for all ω ∈ Ω. In

addition, a strict inequality such as x̃ > ỹ implies that ∃ε> 0 such that x̃≥ ỹ+ ε. Finally,

we define inf ∅=∞. All proofs appear in Appendix A in the online supplement.

2. Risk Enveloping Measure

In this section, we first extend VaR to incorporate a range of quantiles, and we then

generalize it to a class of general risk measures called the Risk Enveloping Measure.

Definition 1. Given a non-increasing function β : ℜ+ → [0,1), we define the corre-

sponding Probabilistic Enveloping Measure (PEM) as

PEMβ(x̃) = inf{k ∈ℜ+ : P(−x̃ > kθ)≤ β(θ), ∀ θ> 0}. (2)

Notice that here we use the term enveloping since we impose a bound on the tail prob-

ability at all levels, and correspondingly, we call the function β(θ) the envelope function. 

In particular, PEM is defined such that for all θ > 0,

P(−x̃ > PEMβ(x̃)θ) ≤ β(θ). (3)

The envelope function β(θ) bounds the tail probability of the loss from the risk position x̃
exceeding the level PEMβ(x̃)θ. When PEMβ(x̃) > 0, we have P(−x̃ > θ) ≤ β(θ/PEMβ(x̃)). 
Therefore, a position with a low value of PEMβ is preferable because the probability that

the loss exceeds any level θ is bounded by a low value. For example, by choosing an exponen-
tial envelope function β(θ) = exp(−θ), we illustrate the enveloping bound exp(−θ/PEM) 

with different values of PEM in Figure 1.

Remark: Noticing that according to Equation (3), different choices of the envelope func-

tion β(θ) correspond to different shapes of the enveloping bound on the tail probability. 

Therefore, in practice, the decision-maker might choose the function β(θ) depending on 

the needs of bounding the tail probabilities. For example, if aiming at a more stringent 

restriction on the long tail probability, a β function which decays faster might be more 

suitable. Moreover, one might also take into account the computational tractability when 

choosing β(θ) since in different applications, different envelope functions lead to different 

level of computational complexity.
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Figure 1 Probabilistic bounds on the losses using an exponential envelope function.

By enforcing constraints on the quantile at all probabilistic levels, the PEM essentially

provides an enveloping bound on VaR, i.e., a bound on VaR at all probabilistic levels.

Specifically, by the definition in Equations (1) and (2), we have

PEMβ(x̃) = inf
!
k ∈ℜ+ : VaR1−β(θ)(x̃)≤ kθ, ∀ θ> 0

"
. (4)

Consider the case in which β−1, the inverse function of β, is well defined on [0, 1). Then,

Equation (4) explicitly implies the enveloping bound, VaRα(x̃) ≤ PEMβ(x̃) ·β−1(1−α) ∀α ∈
(0, 1]. Thus, in problems of optimization under uncertainty, using PEM as an objective 

function can lead to a solution with a performance guarantee on VaR at all probabilistic 

levels.

While PEM carries bounding information for VaR at all probabilistic levels, it is also of 

great interest for extending the enveloping bound to the general monetary risk measure. 

To this end, we define the Risk Enveloping Measure by generalizing the definition of PEM. 

We first note that VaR belongs to the class of monetary risk measures that have several

salient properties. Let X be the set of all risk positions.
Definition 2. A function µ : X → ℜ is a monetary risk measure if it satisfies the fol-

lowing properties for all x̃, ỹ  ∈ X :

(P1) Monotonicity: if x̃ ≥ ỹ, then µ(x̃) ≤ µ(ỹ).

(P2) Positive Homogeneity: µ(kx̃) = kµ(x̃) for all k ≥ 0.

(P3) Translation Invariance: for any constant position c, µ(x̃ + c) = µ(x̃) − c.
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Remark: Note that in the literature (e.g., Föllmer et al. 2004), monetary risk measure is

defined solely by Monotonicity and Translation Invariance. Here we also impose Positive

Homogeneity for two reasons. First, it is an important property of VaR (Jorion 2006).

Secondly, we aim to specifically focus on the measures with this cardinal nature — that

is, 2x̃ is “twice” as risky as “x̃” rather than just simply riskier (Artzner et al. 1999). We

observe that Positive Homogeneity implies µ(0) = 0.

Originating from VaR, which belongs to the class of monetary risk measures, PEM

satisfies the properties of Monotonicity and Positive Homogeneity. However, it violates the

property of Translation Invariance. Instead, PEM has the property of Satisficing (proposed

in Brown and Sim 2009). We explore the generalization of PEM by proposing a new class

of criteria termed the Risk Enveloping Measure as follows:

Definition 3. A function ρ : X → [0,∞] is a Risk Enveloping Measure (REM) if it

satisfies the following properties for all x̃, ỹ ∈X :

(P1) Monotonicity: if x̃≥ ỹ, then ρ(x̃)≤ ρ(ỹ).

(P2) Positive Homogeneity: ρ(kx̃) = kρ(x̃) for all k≥ 0.

(P3) Satisficing:

(a) if x̃≥ 0, then ρ(x̃) = 0;

(b) if x̃ < 0, then ρ(x̃) =∞.

(P4) Right Continuity: lima↓0 ρ(x̃ + a) = ρ(x̃).

The properties of Monotonicity and Positive Homogeneity are inherited from monetary

risk measures. The Satisficing property is essentially related to the two extreme cases of
the enveloping bound. In particular, when x̃ ≥ 0, there is no risk at all for the whole class 

of monetary risk measures; hence, the associated REM should be zero. Take the PEM in
Definition 1 as an example. For PEM, the constraint P(−x̃ > kθ) ≤ β(θ), ∀ k, θ > 0 is always 
satisfied in the case of x̃ ≥ 0 and thus the PEM is zero. In contrast, if x̃ < 0, the associated 

REM should be the maximum because there is always non-negligible risk regardless of

the underlying monetary risk measure. The justification for Satisficing can also be seen in 

Brown and Sim (2009). The Right Continuity property implies that if an infinitesimally 

small but positive amount is added to the risk position, the risk level remains unchanged.

To illustrate how REM enables an enveloping bound on the classical monetary risk 

measure, and how we can construct a REM, we provide a representation of REM from the 

monetary risk measures.
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Theorem 1. A function ρ :X → [0,∞] is a REM if it has the representation

ρ(x̃) = inf {k > 0 : µθ(x̃)≤ θk, ∀ θ> 0} , (5)

where µθ is a class of monetary risk measures such that µθ is non-decreasing in θ> 0.

As REM is motivated by generalizing PEM, the enveloping risk measure constructed

based on VaR, REM inherits the lack of convexity from VaR. However, the convexity has

been recognized as a critical concern in risk management since it reflects the prevalent

preference of diversification (Artzner et al. 1999, Föllmer et al. 2004). Moreover, convexity

is a key property for the tractability in optimization problems. Therefore, we extend REM

to incorporate the convex preference as follows.

Definition 4. A function ρ : X → [0,∞] is a Coherent Risk Enveloping Measure

(CREM) if, in addition to Definition 3, it satisfies the following property for all x̃, ỹ ∈X :

(P5) Convexity: ρ(λx̃+(1−λ)ỹ)≤ λρ(x̃)+ (1−λ)ρ(ỹ), for all λ∈ [0,1].

Similar to Theorem 1, the CREM can be dually represented by the coherent risk measure

as follows.

Theorem 2. A function ρ :X → [0,∞] is a CREM if and only if it has the representa-

tion

ρ(x̃) = inf {k > 0 : µθ(x̃)≤ θk, ∀ θ> 0} , (6)

where µθ is a class of coherent risk measure, i.e., in addition to Definition 2, it satisfies

Convexity; and µθ is non-decreasing in θ> 0. Conversely, given a CREM ρ, the underlying

class of coherent risk measures is given by

µθ(x̃) = inf
a
{a+ ρ(x̃+ a)θ}. (7)

Similar to Theorem 1, here Theorem 2 indicates that given any class of coherent risk 

measure µθ, we can construct a corresponding CREM ρ using Equation (6). In addition, 

Theorem 2 implies that for any CREM ρ, there must exist a class of coherent risk measure 

µθ such that ρ can be represented by this particular class of µθ. In other words, CREM 

and coherent risk measure can be dually represented. This is a stronger result than with 

Theorem 1, where we cannot guarantee that all REM ρ can be represented by an underlying 

class of monetary risk measure.
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Remark: In most situations, we can reasonably assume that the REM/CREM depends

on a risk position only through its probability distribution. We call such REM/CREM

law invariant. Formally, a REM/CREM criterion, ρ is law invariant if ρ(x̃) = ρ(ỹ) for

any x̃, ỹ with identical distribution. The property of law invariance relates closely with

stochastic dominance. It is a well-known result that any law invariant coherent risk measure

respects first and second stochastic dominance (see, for instance, Levy 1992). The dual

representation in Theorem 2 immediately implies that so does any law invariant CREM

criterion. Similarly, a law invariant REM criterion must preserve first order stochastic

dominance if it can be constructed by a class of law invariant monetary risk measures in

the form of Equation (1). Note that all examples of REM/CREM in this paper are law

invariant. Hence, they exhibit either first order stochastic dominance (if being REM), or

both first and second order stochastic dominance (if being CREM).

It is worthwhile mentioning that the CREM can also be dually represented by convex

risk measures (i.e., functions satisfying Monotonicity, Translation Invariance, and Con-

vexity and normalized by x̃ = 0 having zero risk). Specifically, Hall et al. (2015) show

that ρ is a CREM if and only if there exists a convex risk measure µ such that ρ(x̃) =

inf
!

1
α

: µ(αx̃)≤ 0, α> 0
"
. Conversely, given a CREM ρ, the underlying normalized con-

vex risk measure is given by µ(x̃) =min{a : ρ(x̃+ a)≤ 1}.
Theorem 1 and Theorem 2 differ from the result in Hall et al. (2015) since we are

able to provide information on the riskiness evaluated by a broad class of monetary risk

measures. In particular, both Equations (5) and (6) demonstrate how REM or CREM, ρ,

can serve as an enveloping bound for the monetary risk measure µθ. By adopting variants

of some classical monetary risk measures, we can obtain corresponding enveloping bounds

by Equations (5) and (6). We next provide a number of concrete examples, where the

detailed reasoning is relegated to Appendix B in the online supplement.

Examples of REM and CREM

Example 1. Choose the underlying monetary risk measure as µθ(x̃) =VaR1−β(θ), where β :

ℜ+ → (0,1) is a non-increasing function. The corresponding REM constructed by Equation

(5) is indeed the PEM defined in Definition 1.

Example 2. Choose the underlying monetary risk measure as µθ(x̃) =CVaR1−β(θ), where

β :ℜ+ → (0,1) is a non-increasing function and CVaR is defined as

CVaRα(x̃) = inf
ν

#
ν+

1

1−α
E
$
(−ν− x̃)+

%&
.
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Because CVaR is a coherent risk measure (Rockafellar and Uryasev 2000, 2002), the cor-

responding REM is indeed a CREM, and it is represented as

ρCVaR,β(x̃) = inf{k > 0 : CVaR1−β(θ)(x̃)≤ θk, ∀θ> 0}. (8)

Example 3. Choose the underlying monetary risk measure as

µθ(x̃) = inf
α>0

#
α lnE

'
exp

(
− x̃

α

)*
+αθ

&
,

which is the coherent version of the entropic risk measure θ lnE
$
exp

+
− x̃

θ

,%
. The corre-

sponding CREM constructed according to Equation (6) can indeed be simplified as

ρEntropic(x̃) = inf

#
k > 0 : k lnE

'
exp

(
− x̃

k

)*
≤ 0

&
,

which coincides with the riskiness index of Aumann and Serrano (2008).

Utility-based Coherent Risk Enveloping Measure

To illustrate the relationship between CREM and the classical expected utility theory, we

pay specific attention to the following CREM.

Definition 5. For any normalized convex non-decreasing function u :ℜ→ℜ such that

u(w)>u(0) = 1 ∀w> 0, we define the utility-based CREM by

ρu(x̃) = inf

#
k > 0 : E

'
u

(
−x̃

k

)*
≤ 1

&
. (9)

By Definition 4, we can check that the ρu defined by Equation (9) is a CREM. The

underlying class of coherent risk measure can be constructed from Theorem 2 as

µu
θ (x̃) = inf

α
{α+ ρu(x̃+α)θ} = inf

k>0,α

#
α+ kθ : E

'
u

(
−x̃−α

k

)*
≤ 1

&

= inf
t

#
t : ∃k > 0 with E

'
u

(
−x̃− t

k
+ θ

)*
≤ 1

&
.

In addition, we have the following relationship among ρu, ρCVaR, and ρVaR.

Proposition 1. Given any utility function u for which the corresponding utility-based 

CREM ρu is well defined, we always have

ρu(x̃) ≥ ρCVaR,β(x̃) ≥ ρVaR,β(x̃).

if choosing β(θ) = 1/u(θ) ∀θ > 0.
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We can then have an enveloping bound, which can be characterized by a general group

of utility functions, on the tail probability.

Corollary 1. Given any x̃ ∈ X with ρ∗ = ρu(x̃) > 0, we have P(−x̃ > φ) ≤ 1
u(φ/ρ∗) ,

∀φ> 0.

Based on Corollary 1, by choosing a different utility function u, we can have a different

probabilistic enveloping bound.

Example 4. Let the utility function u be the classical exponential function, u(w) = exp(w).

The corresponding utility-based CREM constructed by Equation (9) is actually the ρEntropic

defined in Example 3. Therefore, according to Corollary 1, ∀x̃ with ρEntropic(x̃) > 0, we

always have

P (−x̃≥ φ)≤ 1

exp (φ/ρEntropic(x̃))
, ∀φ> 0.

Example 5.We choose the utility function u as the following two-piecewise linear function,

u2(w) =max{x+1,0}. (10)

The corresponding utility-based CREM is

ρu2(x̃) = inf

#
k > 0 : E

'
u

(
− x̃

k

)*
≤ 1

&
= inf

-
k > 0 : E

.(
− x̃

k
+1

)+
/
≤ 1

0
. (11)

Following Corollary 1, ∀x̃∈X , we have

P(−x̃ > φ)≤ 1

1+φ/ρu2(x̃)
, ∀φ> 0.

3. Optimizing CREM in Convex Decision Problems

In this section, we show how CREM can be incorporated with optimization, such that we 

can obtain the optimal decision that leads to the risk position with the lowest CREM.

To achieve explicit results for optimization and elucidate the connection with the classical 

expected utility theory, we pay specific attention to the utility-based CREM. Henceforth, 

we refer to a CREM criterion as one taking the form of Equation (9). In addition, due to the 

potential challenges in characterizing the true probability distribution, we use a distribu-

tionally robust optimization approach (see, for instance, Delage and Ye 2010, Wiesemann 

et al. 2014). Specifically, we do not assume knowledge of exact probability distribution 

in the probability space. Instead, we allow ambiguity in probability. We assume that the
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true distribution, P is merely known to be an element in an ambiguity set P, which is a

set of probability distributions satisfying certain constraints. In this case, the utility-based

CREM ρu becomes

ρu(x̃) = inf

#
k > 0 : sup

P∈P
EP

'
u

(
−x̃

k

)*
≤ 1

&
. (12)

Note that the above ρu actually covers the original CREM defined in Equation (9) if the

ambiguity set P is a singleton.

Consider a general decision making problem under uncertainties. Let v(·) be the payoff

function such that v(y,z) is the payoff associated with the decision vector y when the

random vector z̃ is realized to be z. The problem is to identify the optimal decision, y

such that the CREM of v(y, z̃) is minimal. The optimization problem can be formulated

as
ρ∗ =min k

s.t. sup
P∈P

EP

'
u

(
−v(y, z̃)

k

)*
≤ 1

k > 0

y ∈Y,

(13)

where Y is a closed set and y ∈Y represents the deterministic restrictions on the decision

y. To facilitate the optimization, we make further assumption on the decision making

problem.

Assumption 1. The function v(y,z) is bi-convex in y and z, and can be evaluated in

polynomial time. In addition, the set Y is convex.

We now investigate the solution procedure of Problem (13). Note that due to the con-

straint of k > 0, Problem (13) has the feasible region as an open set, which is an obstacle

for optimization. Therefore, the first step is to ensure the feasible region to be a closed set.

To this end, we observe the following property of the first constraint of Problem (13).

Lemma 1. If ko > 0 is such that supP∈P EP

1
u
2

−v(y,z̃)
ko

34
≤ 1, then ∀k > ko we must have

supP∈P EP

1
u
2

−v(y,z̃)
k

34
≤ 1.

With the above lemma, we are ready to ensure that the feasible region of the optimization 

problem is a closed set. Specifically, instead of directly solving Problem (13), we analyze 

the decision of its ε-closure defined as follows.
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Proposition 2. For any ε> 0, define ρ∗ε as follows,

ρ∗ε =min k

s.t. sup
P∈P

EP

'
u

(
−v(y, z̃)

k

)*
≤ 1

k≥ ε

y ∈Y.

(14)

We then have ρ∗ ≤ ρ∗ε ≤ ρ∗ + ε, and ρ∗ε = ρ∗ if ρ∗ ≥ ε.

According to Proposition 2, Problem (14) can always be made arbitrarily close to Prob-

lem (13). Practically, it is not so likely to have a decision, y with zero risk. In such cases,

Problem (13) has a strictly positive optimal value, i.e., ρ∗ > 0; hence, Problem (14) would

be equivalent to Problem (13) when we choose a sufficiently small ε (we can keep updating

by ε= ε/2 until k= ε is infeasible for Problem (13), in which case we have ρ∗ > ε). For the

above reasons, we refer to an optimal solution of Problem (14) as one that is also optimal

in Problem (13). Henceforth, we focus on Problem (14).

Based on Lemma 1, the optimal k in Problem (14) can be found by a standard bisection

search on k. The search begins by initializing a search space [k, k], where k= ε and k is an

arbitrary large number that is feasible for Problem (14) (we can keep doubling k until it is

feasible). In each iteration of the bisection search, we consider the midpoint k= (k+ k)/2

and evaluate its feasibility to Problem (14) by solving the following problem,

min sup
P∈P

EP

'
u

(
−v(y, z̃)

k

)*

s.t. y ∈Y.

(15)

The search space is then updated by k = k if the optimal value of Problem (15) is no greater 

than 1, or k = k otherwise. The process repeats until the stoping criterion is satisfied.
In Problem (15), the uncertainty set, P is a key factor. It affects both the effectiveness in 

modeling uncertainties and the computational complexity. Various types of uncertainty sets

have been used in the literature, such as those defined by mean and variance (Scarf 1958) 

and general moment information (Delage and Ye 2010). Recently, Wiesemann et al. (2014) 

propose using an ambiguity set that builds on expectation constraints. They demonstrate 

the expressiveness of the proposed ambiguity set by showing that it indeed unifies and
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generalizes several approaches in the literature. We follow Wiesemann et al. (2014), and

let P be in the following standard form

P =

5
6

7P=projz̃ (Q) :
EQ [Az̃+Bũ] = b

Q ((z̃, ũ)∈ Ci)∈
1
p
i
, p̄i

4
∀i∈ I

8
9

: , (16)

where ũ is an auxiliary random vector which is to empower the expressiveness, A∈ℜK×P ,

B ∈ ℜK×Q, b ∈ ℜK are given parameters with P and Q being the dimension of z̃ and

ũ, respectively. In addition, when Q represents a joint probability distribution of the two

random vectors z̃ and ũ, projz̃(Q) denotes the marginal distribution of z̃ under Q. Finally,

we let I = {1,2, . . . , I}; for all i∈ I, 0≤ p
i
≤ p̄i ≤ 1, and the sets Ci represent the confidence

sets, which are conic representable. It has been shown that ambiguity sets P defined as

in Equation (16) are strikingly powerful in modeling. For example, such sets can include

the following information as special cases: the mean, variance, coefficient of variation, and

higher-order moment information (Wiesemann et al. 2014).

To solve Problem (15) with the uncertainty set P defined as in Equation (16), we need

the following assumptions on the confidence sets. Given any two sets A and B, we say that

A⋐B if A is contained in the interior of B.

Assumption 2. 1. For any i, i′ ∈ I, we have either Ci ⋐ Ci′, Ci′ ⋐ Ci, or Ci ∩ Ci′ = ∅.
2. The confidence set CI is bounded and with probability one, i.e., p

I
= p̄I = 1.

3. There exists a probability distribution P ∈ P such that for all i with p
i
< p̄i we have

P ((z̃, ũ)∈ Ci)∈ (p
i
, p̄i).

4. For each i ∈ I, y ∈ Y and θ ∈ ℜ, it can be verified in polynomial time whether

max(z,u)∈Ci v(y,u)≥ θ.

With the above assumption, Wiesemann et al. (2014) illustrate the techniques to incor-

porate the uncertainty set P in optimization. We can thus solve Problem (15) as follows.

Given any i∈ I, denote A(i) = {i}∪ {i′ ∈ I : Ci ⋐ Ci′}.

Proposition 3. Problem (15) is equivalent to the following problem

min bTζ+
;

i∈I

2
p̄iκi − p

i
λi

3

s.t. (Az+Bu)T ζ+
;

i′∈A(i)

(κi′ −λi′)≥ u

(
−v(y,z)

k

)
∀(z,u)∈ Ci, ∀i∈ I

y ∈Y
κ,λ≥ 0,

(17)
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where y,ζ,κ,λ are also decision variables.

Note that Problem (17) has semi-infinite constraints. However, following the analysis in

the supplement of Wiesemann et al. (2014), this problem is still computationally tractable

when Assumptions 1 and 2 hold. Specifically, as Ci is conic representable, the first set of

constraints can be equivalently formulated as a set of finite number of conic constraints by

writing its robust counterpart.

Optimization when the underlying utility function is piecewise linear

In the rest of the paper, we consider a special case of the above decision making problem

where the underlying utility function of the CREM criterion takes a specific form. In

particular, we consider the utility function, u as a piecewise linear utility function as

follows,

u(w) =max
n∈N

{anw+ bn} , (18)

where an ≥ 0, bn, n ∈N = {1, . . . ,N} are given with ai ∕= aj for all distinct i, j ∈N . The

reasons for choosing the piecewise linear utility function are twofold. First, from a practical

point of view, the piecewise linear function can be used to approximate any general utility

function. Second, with the piecewise linear function, the optimization procedure can be

simplified. We now show that the bisection search, which is used in solving Problem (14),

is no longer needed in this special case.

With the utility function u taking the form given in Equation (18), Problem (14) becomes

min k

s.t. sup
P∈P

EP

'
max
n∈N

#
an

−v(y, z̃)

k
+ bn

&*
≤ 1

k≥ ε

y ∈Y.

(19)

We now show that Problem (19) can be reformulated as follows.
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Proposition 4. Problem (19) is equivalent to the following problem,

min k

s.t. bTζ+
;

i∈I

2
p̄iκi − p

i
λi

3
≤ k

(Az+Bu)T ζ+
;

i′∈A(i)

(κi′ −λi′)≥−anv(y,z)+ bnk ∀(z,u)∈ Ci, i∈ I, n∈N

κ,λ≥ 0

k≥ ε

y ∈Y.

(20)

Similar to the discussion following Proposition 3, Problem (20) can be solved efficiently

if both Assumptions 1 and 2 hold.

4. Optimization with Linear Payoff Function and Mean-Covariance
Information

Here we consider a special case of the target-driven distributionally robust optimization

problem and show that it can be solved efficiently even with binary decision variables. In

particular, in this section, we assume the payoff function has the following linear form,

v(y, z̃) = yT z̃.

Though being special, the linear payoff function indeed includes a broad class of appli-

cations already, such as portfolio optimization, and the surgery allocation which will be

discussed with details later. Moreover, the uncertainty set is characterized by the mean

and covariance information of z̃. Mathematically, we let

PM =
<
P : E [z̃] =µ, E

1
(z̃−µ) (z̃−µ)T

4
=Σ

=
.

4.1. Continuous Case

Our first result is on continuous case, i.e., the decision variables can vary continuously.
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Theorem 3. If v(y, z̃) = yT z̃ and P =PM , Problem (19) is equivalent to the following

problem,

min k

s.t. −α+ δ≤ k

δ+ γ ≥
>
yTΣy+β2 +(δ− γ)2

α≤−a2nγ− anβ+ any
Tµ− bnk ∀n∈N

δ,γ ≥ 0

k≥ ε

y ∈Y,

(21)

which is a SOCP when Y is representable using SOCP constraints.

Therefore, when only continuous decision variables are involved, the problem of opti-

mizing CREM can be reformulated as a SOCP, which can be solved efficiently.

4.2. Discrete Case

We now consider the case that Y ⊆ {0,1}n. In this case, Problem (21) is a discrete optimiza-

tion problem with SOCP constraints, and hence is no longer effectively solvable. Therefore,

we need an alternative approach to solve the optimal solution for the main problem (19).

Unlike the continuous case, here we cannot directly solve the optimal solution. Instead,

we need to follow the procedure discussed in Section 3. Specifically, we conduct a binary

search on k. For each given k, we solve the following subproblem

min
y∈Y

#
sup
P∈P

EP

'
max
n∈N

!
−any

T z̃+ bnk
"*&

. (22)

We update the upper bound for the optimal value in Problem (19) as this k if the optimal 

value of Problem (22) is no greater than k, or update the lower bound as this k otherwise. 

We then move to the next iteration by considering k as the mid-point of the new bound. 

Repeat this procedure until the stopping criterion is met.

The underlying utility function has two pieces

We first focus on a simple case where the underlying piecewise linear utility function u has 

only two pieces.

Theorem 4. Consider the case that P = PM , and the underlying utility function is 

u(w) = max{a1w + b1, a2w + b2}, where b2 ≤ b1 = 1. Then Problem (22) has optimal value
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no greater than k if and only if the following problem, which is a quadratic optimization

problem with binary decisions, is with optimal value no greater than 0,

min a1(b2 − 1)kµTy+yTMy

s.t. (a1 + a2)y
Tµ≥ (b2 − 1)k

y ∈Y.

(23)

Here the matrix M = (a2−a1)
2

4
Σ− a1a2µµ

T .

The problem (23) is a quadratic optimization problem with binary decision variables,

and can be solved by solvers like CPLEX.

Multiple Pieces

When the underlying utility function has multiple pieces, in general the related optimiza-

tion problems would become much more computationally demanding. Nevertheless, in this

section, we propose an enumerative algorithm, such that the problem can be solved via a

sequence of quadratic optimization problems with binary decision variables.

The first step is a reformulation.

Proposition 5. Consider the case that P = PM . Then there exists n∗ ∈ N such that

Problem (22) is equivalent to the following problem,

min
(s1 + an∗)2

4s2
+ bn∗k+ s1µ

Ty+ s2y
TMy

s.t. 2s1an∗ +4bn∗ks2 + a2n∗ ≥ 2s1an +4bnks2 + a2n ∀n∈N \{n∗}
s2 > 0, s1 ∈ℜ, y ∈Y,

(24)

where M =Σ+µµT .

However, Problem (24) only states the existence of n∗ such that both Problems (22)

and (24) are equivalent. It does not specify how one can obtain such a value and solve the

corresponding optimization problem. A further investigation into the optimal solutions to

Problem (24) is needed. We consider three cases depending on the redundance of the first

set of constraints in (24).

Case 1. Among the first set of constraints in (24), no constraint is binding. In this case,

the optimal solution must be a local minimizer of the optimization without considering

the first set of constraints, i.e.,

min
s2>0, s1∈ℜ, y∈Y

#
(s1 + an∗)2

4s2
+ bn∗k+ s1µ

Ty+ s2y
TMy

&
. (25)
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To solve Problem (25), we first see the objective function as a univariate function of

s2 and we must have the optimal solution s2 =
1
2
|s1 + an∗ |

>
1/yTMy if s1 ∕=−an∗ and s2

approaches to 0 if s1 =−an∗ . In both cases, the above problem becomes

min
s1∈ℜ, y∈Y

<
|s1 + an∗ |

>
yTMy+ bn∗k+ s1µ

Ty
=
.

—When s1 + an∗ ≥ 0, i.e., s1 ≥−an∗ , the objective function is

s1

2>
yTΣy+yTµµTy+µTy

3
+ an∗

>
yTMy+ bn∗k.

The coefficient of s1 is strictly positive, so the optimal s1 is the minimal, which is −an∗ .

—When s1 + an∗ ≤ 0, i.e., s1 ≤−an∗ , the objective function is

s1

2
µTy−

>
yTΣy+yTµµTy

3
− an∗

>
yTMy+ bn∗k.

The coefficient of s1 is strictly negative, so the optimal s1 is the maximal, which is −an∗ .

Therefore, in this case, we can conclude that s∗1 =−an∗ and hence s∗2 approaches to 0.

However, with this solution, the first set of constraints in (24) become −a2n∗ ≥ a2n−2anan∗ ,

i.e., (an∗ − an)
2 ≤ 0 ∀n ∈N \ {n∗}, which must be false since we have assumed ai ∕= aj for

all distinct i, j ∈N . It implies that s∗1, s
∗
2 is indeed not feasible to Problem (24). Hence,

Case 1 cannot happen.

Case 2. Among the first set of constraints in (24), exactly one constraint is binding.

Suppose the constraint for n= no is binding. We can solve the following problem,

min
(s1 + an∗)2

4s2
+ bn∗k+ s1µ

Ty+ s2y
TMy

s.t. 2s1an∗ +4bn∗ks2 + a2n∗ = 2s1ano +4bnoks2 + a2no

s2 > 0, s1 ∈ℜ, y ∈Y.

(26)

It is indeed the same type of problem with the two pieces case, with the only difference

that here we do not isolate the mean. We show that the result is the same.

The first constraint of Problem (26) implies

2 (an∗ − ano)s1 =−4k (bn∗ − bno)s2 −
+
a2n∗ − a2no

,

2s1 =−4k
bn∗ − bno

an∗ − ano

s2 − (ano + an∗)

s1 =−1

2

(
ano + an∗ +4k

bno − bn∗

ano − an∗
s2

)
.
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Substituting s1 into the objective function, we have

1

4s2

(
−1

2

(
ano − an∗ +4k

bno − bn∗

ano − an∗
s2

))2

+ bn∗k−
1

2

(
ano + an∗ +4k

bno − bn∗

ano − an∗
s2

)
µTy+ s2y

TMy

=
1

16s2

?
(ano − an∗)2 +8k (bno − bn∗)s2 +16k2 (bno − bn∗)2

(ano − an∗)2
s22

@

−1

2

(
ano + an∗ +4k

bno − bn∗

ano − an∗
s2

)
µTy+ s2y

TMy+ bn∗k

= s2

?
k2 (bno − bn∗)2

(ano − an∗)2
− 2k

bno − bn∗

ano − an∗
µTy+

+
µTy

,2
+yTΣy

@

+
1

s2

(ano − an∗)2

16
− 1

2
(ano + an∗)µTy+

1

2
k (bno − bn∗)+ bn∗k

= s2

?(
k
bno − bn∗

ano − an∗
−µTy

)2

+yTΣy

@
+

1

s2

(ano − an∗)2

16
+

1

2

+
(bno + bn∗)k− (ano + an∗)µTy

,
.

By denoting the coefficient of s2 as A, the coefficient of 1/s2 as B, and the last term

in above expression as C, we should see that this is indeed the univariate minimization

problem in s2, which has been tackled in the proof of Theorem 4. Therefore, the objective

function can be further reduced as below

1

2

ABBC
?(

k
bno − bn∗

ano − an∗
−µTy

)2

+yTΣy

@
(ano − an∗)2 +

1

2

+
(bno + bn∗)k− (ano + an∗)µTy

,
.

With the same procedure as in Theorem 4, we can verify whether this objective function

is no greater than k by solving a quadratic optimization problem as follows.

Lemma 2. The optimal value of Problem (26) is no greater than k if and only if

f1(n
∗, n0)≤ 4k2(1− bn∗)(1− bn0), where the function f1(n

∗, n0) is defined as

f1(n
∗, n0) =min

y∈Y

!
yT

+
(ano − an∗)2Σ− 4anoan∗µµT

,
y− 4k (ano (1− bn∗)+ an∗ (1− bno))µTy

"
.

(27)

Case 3. Among the first set of constraints in (24), no less than two constraints are 

binding. In this case, we have no less than two equalities and only two unknown scalars 

s1, s2. Therefore, there is a chance that we can use binding constraints to solve the exact 

values of s1, s2, which we now show is always practical. Among the binding constraints,
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choose arbitrary two of them and denote their index as n1, n2, i.e., the constraints are

binding for n= n1, n2. We then have

2 (an∗ − an1)s1 =−4k (bn∗ − bn1)s2 −
+
a2n∗ − a2n1

,

2 (an∗ − an2)s1 =−4k (bn∗ − bn2)s2 −
+
a2n∗ − a2n2

,
,

or

2s1 +4k
bn∗ − bn1

an∗ − an1

s2 =−(an∗ + an1)

2s1 +4k
bn∗ − bn2

an∗ − an2

s2 =−(an∗ + an2).
(28)

Recall that we assume an1 ∕= an2 when choosing the utility function, it implies the RHS

of the two equations are different. Hence, the LHS of the two equations are also different,

which indicates that coefficients of s2 in the two equations must not be equal. Therefore,

the two linear equations are independent, and we can obtain the unique solution for s1, s2.

Substituting s1, s2 into the objective function of Problem (24), it now has the only decision

variables y, and is a quadratic optimization as follows,

f2(n
∗, s1, s2) =min

y∈Y

(s1 + an∗)2

4s2
+ bn∗k+ s1µ

Ty+ s2y
TMy. (29)

It can then be solved by standard solvers.

Based on the above results, we propose Algorithm 1: Enumerative Algorithm, for ver-

ifying whether the optimal value of Problem (22) is no greater than k. Recall that by
Proposition 5, there exists n∗ ∈ N such that the corresponding Problem (24) is equivalent 

to Problem (22). After that, the subsequent analysis is focusing the binding status of the

first set of constraints in Problem (24), which provides no information on how n∗ should be 

chosen. Hence, in Algorithm 1, the outermost loop is considering all possible values that

n∗ can take. The inner loops are considering all possible scenarios that give rise to Cases 

2 and 3 (Case 1 is impossible to happen).

Theorem 5. Consider the case that v(y, z̃) = yT z̃, P = PM . Then Problem (22) has 

optimal value no greater than k if and only if Enumerative Algorithm, which solves at most

N(N − 1)2 quadratic optimization problem with binary decision variables, returns obj = 0.
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Algorithm 1: Enumerative Algorithm

Initialize obj = 1;

for n∗ ∈N do

for no ∈N \{n∗} do

Solve for f1(n
∗, no) defined in (27), denote the optimal solution as y∗;

Substitute y∗ into Problem (26) and solve for s1 and s2;

Check the feasibility of constraints

2s1an∗ +4bn∗ks2 + a2n∗ ≥ 2s1an +4bnks2 + a2n, ∀n∈N \{n∗, no};
if above constraints are feasible and f1(n

∗, no)≤ 4k2(1− bn∗)(1− bn0) then

obj = 0;

end

end

for all pairs of n1, n2 ∈N \{n∗} and n1 ∕= n2 do

Solve Problem (28) for s1, s2;

Check the feasibility of constraints

2s1an∗ +4bn∗ks2 + a2n∗ ≥ 2s1an +4bnks2 + a2n, ∀n∈N \{n∗, n1, n2};
if above constraints are feasible then

Solve for f2(n
∗, s1, s2);

if f2(n
∗, s1, s2)≤ k then

obj = 0;

end

end

end

end

return obj

5. Application on surgery allocation

We now apply the CREM framework on a surgery allocation problem. We first describe the 

problem, then provide formulations for the comparison, and finally tabulate and discuss 

the results.
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There are I operating rooms (ORs) available for assignment and J surgery cases that

need to be assigned. The decision-maker has two sets of decisions to make: (i) which OR(s)

to open and (ii) the venue for each surgery case to take place in. We denote the opening

cost for OR i, i= 1, . . . , I as czi and let zi be the binary decision variable such that zi = 1

if OR i is open and zi = 0 otherwise. Regarding the second category of decisions, let yij

denote the binary decision that if case j is assigned to OR i (yij = 1 if it is so, and yij = 0 if

it is not). For each assignment of surgery case to a OR, there is an associated assignment

cost cyij for all i= 1, . . . , I, j = 1, . . . , J .

The durations of surgeries might vary owing to various factors such as medical conditions,

surgeons’ experience levels, and the complexities of operations. The true distribution of

the surgery duration of case j when assigned to OR i, denoted as t̃ij, is not known but is

assumed to be a member of the following ambiguity set

PM =
<
P : E

$
t̃
%
=µ, E

1+
t̃−µ

, +
t̃−µ

,T4
=Σ

=
,

where we put all t̃ij together as the vector t̃.

Moreover, there is a time limit Ti for each OR i, i.e., the sum of realized durations of

cases that are assigned to OR i should be less than or equal to Ti. Accordingly, there is

a trade-off between lower opening costs with more prevalent overtime and higher opening

costs with fewer overtime.

A chance-constrained formulation

Zhang et al. (2018) used a chance-constrained approach to solve the assignment problem

while taking the overtime into account. They defined α as the maximum violation proba-

bility of the time limit constraint of OR i that the decision-maker finds it acceptable. The

objective is to minimize the total cost, which consists of the opening and assignment costs

incurred. Putting it all together, they formulated the problem as below,

min
I;

i=1

czi zi +

I;

i=1

J;

j=1

cyijyij

s.t. inf
P∈PM

P

-
J;

j=1

t̃ijyij ≤ Ti

0
≥ 1−α i= 1, . . . , I

(z1, . . . , zI , y11, . . . , y1J , . . . , yI1, . . . , yIJ)∈Ξ,

(30)
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where

Ξ=

5
DDDDD6

DDDDD7

(z1, . . . , zI , y11, . . . , y1J , . . . , yI1, . . . , yIJ) :

yij ≤ zi i= 1, . . . , I, j = 1, . . . , J
I;

i=1

yij = 1, j = 1, . . . , J

8
DDDDD9

DDDDD:yij , zi ∈ {0, 1}, i = 1, . . . , I, j = 1, . . . , J 

is the set of all possible operational decisions. Specifically, in the definition of Ξ, the first 

set of constraints are to ensure no case will be assigned to a closed OR; the second set of 

constraints imply that each surgery case is assigned to exactly one open OR; the last set 

of constraints enforce that the decisions have to be binary.

In the above problem (30), with the first constraint, the worst-case overtime probability 

for each OR is no greater than the prescribed threshold, i.e., α. Indeed, the ambiguity 

set used by Zhang et al. (2018) coincides with the one we have discussed in Theorem 4, 

and their approach shares similar flavor with ours, which is to mitigate the risk of having 

undesired outcomes. Therefore, it is natural to consider this formulation as a benchmark. 

We remark that apart from Zhang et al. (2018), there are other advances in distribution-

ally robust chance constraint problems, which are Hanasusanto et al. (2017) and Xie and 

Ahmed (2018). Nevertheless, the former focuses on the case where there is no multiplica-

tion between uncertainties and decisions, the latter are more on approximation, and hence 

we do not incorporate them as benchmark approaches.

Utility-based CREM

Now we turn our attention to the corresponding formulation which uses the CREM crite-

rion. More specifically, we focus on the utility-based CREM, which has been extensively 

discussed in Sections 3 and 4. The underlying utility function is chosen to be u(x) =
max{x + 1, 0} (we have tested other utility functions and observed similar results). In the 

rest of this section, we simply call it utility-CREM. With this assumption and the mean-

covariance ambiguity set PM defined above, Theorem 4 can be used to find the optimal 
assignment. The feasible set Y is defined in a way that the last constraint of Problem (30) 

are included appropriately. However, an additional constraint is needed when optimizing

over the utility-CREM criterion, or the comparison would not be fair at all, as one can 

choose to open all ORs in order to minimize the overtime risk, if there is no cost budget. 

Accordingly, we require our approach to return a solution with the opening and assignment
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costs no greater than that in Problem (30). Given the inputs Ti, c
z
i , c

y
ij for all i= 1, . . . , I,

j = 1, . . . , J , the thresholds of violation probability α, and the ambiguity set PM , Problem

(30) is solved first. The optimal cost to that problem, denoted as C∗, is then used as the

upper bound on the opening and assignment costs when optimizing over the utility-CREM

criterion.

Then the surgery allocation problem based on utility-CREM is formulated as follows,

min k

s.t.
I;

i=1

czi zi +

I;

i=1

J;

j=1

cyijyij ≤C∗

sup
P∈PM

EP

.
max

-
−
Ti −

EJ
j=1 t̃ijyij

k
+1,0

0/
≤ 1 i= 1, . . . , I

k≥ ε

(z1, . . . , zI , y11, . . . , y1J , . . . , yI1, . . . , yIJ)∈Ξ.

(31)

In the above problem, the first constraint makes sure that the solution returned by the

utility-CREM criterion is at least equally good as the one obtained from Problem (30)

in terms of the total cost. The second and third constraints are from the definition of

utility-CREM and to make sure the feasible region of the problem is a closed set. The last

constraint is identical to that in Problem (30).

CVaR-based CREM

Recall that a CREM criterion can be constructed based on convex risk measures. To this

end, we consider a CVaR-based CREM, which has been discussed in Example 2 and we

will simply call it CVaR-CREM in the rest of this section. Consider the problem that

minimizes the CVaR-CREM of the overtime. By selecting an appropriate non-increasing

function β :ℜ+ → [0,1), the problem can be formulated as follows,

min k

s.t.

I;

i=1

czi zi +
I;

i=1

J;

j=1

cyijyij ≤C∗

CVaR1−β(θ)

?
Ti −

J;

j=1

t̃ijyij

@
≤ θk, ∀θ> 0, i= 1, . . . , I

k≥ ε

(z1, . . . , zI , y11, . . . , y1J , . . . , yI1, . . . , yIJ)∈Ξ.

(32)
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Notice that all but the second constraints are identical to those in Problem (31). To connect

with Problem (31), we choose β(θ) = 1/u(θ),∀θ> 0, i.e.,

β(θ) =
1

u(θ)
=

1

max{θ+1,0}

FFFF
θ>0

=
1

θ+1
. (33)

Next we show that, with (33), the second set of constraints in Problem (32) can be formu-

lated as a set of quadratic constraints for any given value of k.

Proposition 6. For given value of k and β(θ) defined by (33), constraints

CVaR1−β(θ)

?
Ti −

J;

j=1

t̃ijyij

@
≤ θk, ∀θ> 0, i= 1, . . . , I

can be formulated as a set of quadratic constraints.

The formulation is presented in Appendix A in the online supplement. Hence, to solve 

Problem (32), we can also use a bisection search method on k and at each given value of 

k, we solve a quadratic optimization problem.

Numerical settings and performance comparison

With the aim of comparing the three approaches mentioned above (Problems (30), (31) 

and (32)), we first outline the parameters and procedures in this numerical study. Following 

the setup in Zhang et al. (2018) closely, we first assume I = 6, J = 32. Time limits Ti are

generated from a uniform distribution, Ti ∼ U(420, 540), and ciz = Ti
2/3600+3∗Ti/60 for all 

i = 1, . . . , 6. The assignment costs ci
y
j for all i = 1, . . . , 6, j = 1, . . . 32 are randomly sampled

from the set {6, 18, 30, 42}. Using the settings of means and standard deviations stated in 

Table 2, a set of 10,000 data points from truncated normal distribution is generated for each

possible match between surgery cases and ORs. The ambiguity sets are then constructed 

based on those empirical means and covariances. Problem (30) is solved first and then the 

optimal cost will be used as the upper bound on the total cost when solving Problems (31) 

and (32). Moreover, we have ε = 0.01 when solving Problems (31) and (32).

Once the solutions from three approaches are obtained, a different set of 100,000 data 

points with the same moment information contained in the ambiguity set is sampled from 

truncated normal distribution again. This will be used for testing the performance of three 

approaches. If the realized total duration of surgery cases assigned to OR i is less than the 

time limit Ti, the overtime of OR i is 0.
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Type 1 2 3 4

Mean 50 50 25 25

Standard Deviation 50 15 25 7.5

Number of Cases 8 8 8 8

Table 2 Input parameters of the random surgery durations.

To provide a fair comparison, 10 replications are done and the reported metrics are

the average value of replications. We utilize six performance measures so as to provide an

all-rounded view on performances of the two approaches. The first two measures are the

expectation and standard deviation of the overtime of an open OR. The third one (denoted

as Prob 1) is the probability that a randomly chosen open OR is having positive overtime,

whereas the fourth one (denoted as Prob 2) is the probability that at least 1 opened

OR is having overtime. The prior emphasizes individual ORs, and the latter considers all

open ORs as a whole. Then it is followed by the conditional average overtime, which is

the expected overtime normalized by the third measure. The last metric is the worst-case

overtime over all the rooms and over all sample paths.

We conduct the experiment for α= 0.05,0.1,0.3,0.5,0.7,0.9. For the CVaR-CREM, we

set a time limit of 600 seconds for solving the subproblem, i.e., the feasibility problem of the

constraints in Problem (32) for given k in the bisection search procedure, in each iteration.

The results are tabulated in Table 3. A smaller value indicates a better performance for all

measures included in the table. Note that all data in this section are accessible on GitHub1.

For values of α which are not small (more specifically, α ∈ {0.3,0.5,0.7,0.9}), the two

CREM approaches lead to expected overtime, standard deviation, conditional expected

overtime, and worst-case overtime around 20% lower than those from the chance-

constrained approach. In terms of probability in having overtime (i.e., Prob 1 and Prob 2),

the CREM approaches also outperform the chance-constrained approach. Nevertheless, we

acknowledge that the difference in the probability is not as substantial as in other metrics.

The reason for the non-substantial advantage in Prob 1 and Prob 2 is intuitive since the

overtime probability is exactly the focus of the chance-constrained model.

For smaller values of α, i.e., 0.05 and 0.1, we have to acknowledge that our CREM

approaches cannot outperform the chance-constrained approach. This is not surprising

1 See https://github.com/vincenttf-chow/crem-surgery-allocation
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α Approach
Expected
Overtime

Std Prob 1* Prob 2†
Conditional

Expected Overtime
Worst
Case

Solving
Time (s)

0.05
utility-CREM 0.00 0.05 0.00 0.00 15.29 31.15 2
CVaR-CREM 0.00 0.08 0.00 0.00 13.21 33.82 3217
Cha. Con‡ 0.00 0.01 0.00 0.00 4.69 6.86 628

0.1
utility-CREM 0.01 0.57 0.08 0.00 16.49 96.04 2
CVaR-CREM 0.04 1.08 0.18 0.00 19.41 124.99 2942
Cha. Con 0.01 0.50 0.05 0.00 17.46 91.35 418

0.3
utility-CREM 0.47 4.29 1.78 0.25 24.86 177.50 2
CVaR-CREM 0.47 4.26 1.76 0.24 24.65 178.16 51
Cha. Con 0.68 5.82 2.31 0.32 29.05 215.75 57

0.5
utility-CREM 3.15 12.96 8.04 2.95 34.99 257.29 2
CVaR-CREM 3.01 12.63 7.83 2.54 34.40 257.11 858
Cha. Con 3.41 14.55 8.66 2.83 37.85 275.17 43

0.7
utility-CREM 6.28 19.87 14.41 6.89 40.75 294.53 2
CVaR-CREM 6.30 19.92 14.55 6.99 40.52 305.33 682
Cha. Con 7.39 23.14 16.26 8.14 44.94 325.07 139

0.9
utility-CREM 13.47 31.42 26.46 18.47 48.97 348.68 2
CVaR-CREM 13.50 31.51 26.41 18.40 49.12 339.00 65
Cha. Con 14.26 33.81 26.68 18.25 52.49 380.79 2

* Prob 1: Probability that a randomly chosen open OR has positive overtime.

† Prob 2: Probability that at least one opened OR has positive overtime.

‡ Cha. Con: Chance-constrained model

Table 3 Comparison between CREM models and Chance-constrained approach in Surgery

Assignment Problem.

since the performance criterion in Table 3 are measures of risk, while the chance-constrained 

approach are extremely risk averse for small α. While in the case of α = 0.1, our utility-

based CREM approach performs very similarly to the chance-constrained approach, for 

α = 0.05, the risk is really neglectable since we have very low level for both the chance of 

having overtime (almost zero) and the worst-case overtime (around 1% to 7% of the time 

limit of one OR). Therefore, in such case, we can conclude that both CREM approaches 

and chance-constrained approach lead to solutions with sufficiently low risk.

In general, as we increase the value of α, the optimal cost of Problem (30) has a tendency 

to decrease since the need of risk mitigation is decreasing. Consequently, the solution space 

of Problem (31) becomes smaller since the upper bound on the total cost gets tightened. 

Interestingly, Table 3 shows that even with a smaller solution space, the CREM approaches 

still lead to a solution with more attractive performances than those from the chance-

constrained model. However, the advantage is decreased due to the lost of flexibility implied 

by the smaller solution space. In summary, the CREM provides adequate protection against 

unfavorable outcomes while keeping the tractability of underlying problems.
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To solidify the validity of the conclusion above, we have conducted another computa-

tional test that uses another distribution throughout the process. The procedure is almost

identical to the previous one, except now lognormal distributions, rather than truncated

normal distributions, are used. Specifically, based on the same parameters in Table 2,

we generate samples using lognormal distribution and then construct the ambiguity set

based on the samples. In the out-of-sample test, we also generate the out-of-samples using

lognormal distributions.

As lognormal distributions are more heavy-tailed, it is expected that all the out-of-

sample performances of the three approaches will deteriorate. The results are given in

Table 4.

α Approach
Expected
Overtime

Std Prob 1* Prob 2† Conditional
Expected Overtime

Worst
Case

Solving
Time (s)

0.1
CREM 1.18 16.65 1.24 0.15 95.93 1683.93 2

CVaR-CREM 1.25 16.89 1.35 0.18 93.26 1599.51 2705
Cha. Con 1.08 16.10 1.11 0.12 97.56 1663.65 297

0.3
CREM 3.16 25.27 3.71 0.84 86.07 1698.94 2

CVaR-CREM 3.16 25.27 3.72 0.83 85.96 1713.55 1300
Cha. Con 3.36 26.19 3.91 0.86 86.36 1937.30 31

0.5
CREM 5.97 33.24 7.14 2.03 83.78 1750.74 2

CVaR-CREM 5.96 33.21 7.13 2.02 83.73 1772.91 1024
Cha. Con 6.37 34.57 7.56 2.21 84.02 1888.82 37

0.7
CREM 10.29 42.67 12.52 4.90 82.41 1864.16 2

CVaR-CREM 10.32 42.72 12.58 4.95 82.10 1861.41 681
Cha. Con 10.99 44.87 13.08 5.04 84.11 2019.24 81

0.9
CREM 14.75 50.27 18.20 9.12 81.38 2016.04 2

CVaR-CREM 14.73 50.32 18.10 9.01 81.65 2018.32 57
Cha. Con 16.24 53.64 19.29 9.43 85.15 2098.60 1

* Prob 1: Probability that a randomly chosen open OR has positive overtime.

† Prob 2: Probability that at least one opened OR has positive overtime.

‡ Cha. Con: Chance-constrained model

Table 4 Comparison between CREM model and Chance-constrained approach in Surgery

Assignment Problem with Lognormal Distributions.

Notice that the chance-constrained approach could not return an optimal solution within 

2 hours for α = 0.05. Therefore, unlike Table 3, here in Table 4 we do not include the result 

for the case of α = 0.05. By the results in Table 4, the two CREM approaches in general 

dominate the chance-constraint approach under lognormal distributions. The performances 

of the three approaches are close when α is relatively small, i.e., α = 0.1, whereas the edges 

of the CREM are more obvious as we increase the value of α.
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6. Concluding Remarks

In this paper, we propose the Risk Enveloping Measure (REM) to help decision makers

evaluate the risk from a broad perspective. For example, the Probabilistic Enveloping

Measure (PEM), which is a special case of REM, carries information for the bound on tails

probability at all levels. Generalizing from PEM, REM criterion can build an enveloping

bound for any monetary risk measure at all levels of risk aversion. We then study the

coherent version of REM (CREM), and develop the dual representation between CREM

and the classical coherent risk measure.

We incorporate the CREM framework with distributionally robust optimization, and

provide an efficient method for solving the optimal solution. Applying the CREM criterion

to the surgery assignment problem, we obtain a formulation which can be solved efficiently.

Comparing the formulation to the selected literature which also mitigates the overtime

risk in a distributional robust setting, our numerical study suggests that our CREM model

provides an interesting alternative for regulating risk.
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Appendix A: Proof of statements

Theorem 1 A function ρ :X → [0,∞] is a REM if it has the representation

ρ(x̃) = inf {k > 0 : µθ(x̃)≤ θk, ∀ θ> 0} ,

where µθ is a class of monetary risk measures such that µθ is non-decreasing in θ> 0.

Proof of Theorem 1

We complete the proof by showing that the ρ defined by Equation (5) satisfies all of the properties in

Definition 3. The property of Monotonicity is trivial. To show Positive Homogeneity, observe that ∀k > 0,

ρ(kx̃) = inf {α> 0 : µθ(kx̃)≤ θα, ∀ θ> 0}

= inf {kβ > 0 : kµθ(x̃)≤ θkβ, ∀ θ> 0}

= k inf {β > 0 : µθ(x̃)≤ θβ, ∀ θ> 0}

= kρ(x̃),

where the second equality follows from the replacement of α with kβ and Positive Homogeneity of µθ.

We now show Satisficing. For the case that x̃ ≥ 0, ∀k,θ > 0, we have µθ(x̃) ≤ µθ(0) = 0 ≤ kθ and hence

ρ(x̃) = 0. When x̃ < 0, we can have ε < 0 such that P(x̃ ≤ ε) = 1; ∀k > 0, choose θ = −ε/2k > 0 and hence

µθ(x̃)≥ µθ(ε) =−ε> θk, and ρ(x̃) =∞.

We prove the Right Continuity in three scenarios. Note that ρ(x̃+a) is non-decreasing when a is decreasing,

and ρ(x̃+ a)≤ ρ(x̃) for a> 0. Hence, lima↓0 ρ(x̃+ a) always exists.

• Consider the case of ρ(x̃) = 0. As 0≤ ρ(x̃+ a)≤ ρ(x̃) = 0 ∀a> 0, lima↓0 ρ(x̃+ a) = 0.

• Consider the case of ρ(x̃) ∈ (0,∞). To prove lima↓0 ρ(x̃+ a) = ρ(x̃), we consider any ε ∈ (0,ρ(x̃)), and

we need to show that ∃ā > 0 such that ∀a ∈ (0, ā), ρ(x̃ + a) ≥ ρ(x̃) − ε. Note that by the representation

of Equation (5), ρ(x̃) = inf{k < 0 : µθ(x̃) ≤ θk,∀θ > 0} ∈ (0,∞). Hence, we must have θ∗ > 0 such that

µθ∗(x̃)> θ∗(ρ(x̃)− ε). Choose ā= µθ∗(x̃)− θ∗(ρ(x̃)− ε). For any a∈ (0, ā),

µθ∗(x̃+ a) = µθ∗(x̃)− a> µθ∗(x̃)− ā= θ∗(ρ(x̃)− ε).

Therefore, we have ρ(x̃+ a)≥ ρ(x̃)− ε according to the representation (5).

• Consider the case of ρ(x̃) =∞. Assume to the contrary that k∗ = lima↓0 ρ(x̃+ a) <∞. Consider any

small positive ε. By the definition of the limit, we have ā > 0 such that ∀a ∈ (0, ā), ρ(x̃+ a) ≤ k∗ + ε. In

contrast, observe that ρ(x̃) = inf{k > 0 : µθ(x̃) ≤ θk,∀θ > 0} = ∞; then, we must have θ∗ > 0 such that

µθ∗(x̃)> θ∗(k∗ +2ε). Let ∆= µθ∗(x̃)− θ∗(k∗ +2ε)> 0, and choose a=min{ ā
2
, ∆

2
}. We then have ρ(x̃+ a)≤

k∗ + ε because a∈ (0, ā). However,

µθ∗(x̃+ a) = µθ∗(x̃)− a≥ µθ∗(x̃)−
∆

2
= µθ∗(x̃)−∆+

∆

2
= θ∗(k∗ +2ε)+

∆

2
> θ∗(k∗ +2ε),

contradicts with inf{k > 0 : µθ(x̃+ a) ≤ θk,∀θ > 0}= ρ(x̃+ a) ≤ k∗ + ε. Therefore, the assumption is false,

lima↓0 ρ(x̃+ a) =∞.
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Q.E.D.

Theorem 2 A function ρ :X → [0,∞] is a CREM if and only if it has the representation

ρ(x̃) = inf {k > 0 : µθ(x̃)≤ θk, ∀ θ> 0} ,

where µθ is a class of coherent risk measure, i.e., in addition to Definition 2, it satisfies Convexity; and µθ

is non-decreasing in θ > 0. Conversely, given a CREM ρ, the underlying class of coherent risk measures is

given by

µθ(x̃) = inf
a
{a+ ρ(x̃+ a)θ}.

Proof of Theorem 2

“⇒” We first prove the “if” direction. As we have Theorem 1 already, here it suffices to show that the ρ

defined by Equation (6) has Convexity when µθ is a coherent risk measure. To this end, consider any λ ∈
(0,1), x̃, ỹ ∈X with ρ(x̃),ρ(ỹ)<∞. Observe that given any k > λρ(x̃)+ (1−λ)ρ(ỹ), there exists mx > ρ(x̃),

my > ρ(ỹ) such that k= λmx +(1−λ)my. Hence, ∀θ> 0,

µθ(λx̃+(1−λ)ỹ) ≤ λµθ(x̃)+ (1−λ)µθ(ỹ)

≤ λθmx +(1−λ)θmy

= θk,

where the first equality is due to Convexity of µθ, the second equality follows from the representation (6)

and mx > ρ(x̃), my > ρ(ỹ). Therefore, ρ(λx̃+(1−λ)ỹ)≤ λρ(x̃)+ (1−λ)ỹ.

“⇐” We now prove the “only if” direction. First, we show that the µθ defined by Equation (7) is a class of

coherent risk measures that is non-decreasing in θ. The non-decreasing property in θ is trivial. The property

of Monotonicity of µθ is also straightforward. To show Positive Homogeneity, observe that ∀k > 0,

µθ(kx̃) = inf
a
{a+ ρ(kx̃+ a)θ}

= inf
a
{a+ kρ(x̃+ a/k)θ}

= inf
β
{kβ+ kρ(x̃+β)θ}

= k inf
β
{β+ ρ(x̃+β)θ}

= kµθ(x̃),

where the second equality follows from the Positive Homogeneity of ρ, and the third equality just follows

from the replacement of a with kβ. To prove Translation Invariance, notice that ∀c∈ℜ,

µθ(x̃+ c) = inf
a
{a+ ρ(x̃+ c+ a)θ}

= inf
β
{β− c+ ρ(x̃+β)θ}

= inf
β
{β+ ρ(x̃+β)θ}− c

= µθ(x̃)− c,
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where the second equality just follows from the replacement of a with β − c. To show Convexity, consider

any ax, ay ∈ℜ,

λ(ax + ρ(x̃+ ax)θ)+ (1−λ)(ay + ρ(ỹ+ ay)θ)

≥ (λax +(1−λ)ay)+ ρ(λx̃+(1−λ)ỹ+λax +(1−λ)ay)θ

≥ µθ(λx̃+(1−λ)ỹ),

where the two inequalities follow from Convexity of ρ, and the representation (7), respectively. Taking the

infimum over ax, ay, we have Convexity of µθ.

To close the loop, we next show that the right-hand-side (RHS) of Equation (6) is also ρ when µθ is given

in the form of (7). Denote k∗ as RHS of Equation (6). When µθ is given in the form of (7),

k∗ = inf {k > 0 : µθ(x̃)≤ θk, ∀θ> 0}
= inf {k > 0 : ∀θ> 0, infa{a+ ρ(x̃+ a)θ}≤ θk}
= inf {k > 0 : ∀θ> 0, infa{a/θ+ ρ(x̃+ a)}≤ k}
= max{0, ko} ,

where the third equality holds for Positive Homogeneity of ρ, and we denote

ko = sup
θ>0

inf
a
{a/θ+ ρ(x̃+ a)}. (34)

We first notice that

ko = sup
θ>0

inf
a
{a/θ+ ρ(x̃+ a)}≤ sup

θ>0
{0/θ+ ρ(x̃+0)}= ρ(x̃). (35)

We now complete the proof by showing k∗ = ρ(x̃) in all three possible scenarios.

1. Consider the case that ρ(x̃) = 0. According to Equation (35), ko ≤ 0, k∗ =max{0, ko}= 0= ρ(x̃).

2. Consider the case that ρ(x̃) =∞. In this case, when θ= 1,

inf
a
{a/θ+ ρ(x̃+ a)} = inf

a
{a+ ρ(x̃+ a)}

= inf
a>0

{a+ ρ(x̃+ a)}
> 0,

where the second equality is due to that ρ(x̃ + a) = ∞ ∀a ≤ 0, and the inequality holds because Right

Continuity of ρ implies lima↓0 ρ(x̃+ a) = ρ(x̃) =∞. Hence, we have

ko = sup
θ>0

inf
a
{a/θ+ ρ(x̃+ a)}≥ inf

a
{a/1+ ρ(x̃+ a)}> 0.

We now prove ko =∞ by contradiction. Assume to the contrary, i.e., ko ∈ (0,∞). Due to ρ(x̃) =∞ and Right

Continuity, ∃ā ∈ (0,∞) such that ∀a ∈ (0, ā), ρ(x̃+ a) =∞. Choose θ∗ = ā/2ko ∈ (0,∞). Note that ∀a≤ ā,

a/θ∗ + ρ(x̃+ a) =∞ because ρ(x̃+ a) =∞; ∀a> ā, a/θ∗ + ρ(x̃+ a)≥ a/θ∗ > ā/θ∗ = 2ko. Hence,

ko = sup
θ>0

inf
a
{a/θ+ ρ(x̃+ a)}≥ inf

a
{a/θ∗ + ρ(x̃+ a)}= inf

a>ā
{a/θ∗ + ρ(x̃+ a)}≥ 2ko,

which contradicts with the equation ko ∈ (0,∞). Therefore, the assumption is false, ko = ∞, and hence

k∗ =∞.
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3. Consider the case that ρ(x̃)∈ (0,∞). Due to the Monotonicity and Convexity of ρ, we have that f(a) =

ρ(x̃+ a) is convex and non-increasing in a. Hence, we can find d < 0 such that d ∈ ∂f(0) where ∂ denotes

the subdifferential. Choose θ∗ =−1/d > 0. Then 0 = 1/θ∗ + d ∈ ∂g(0) where we denote g(a) = a/θ∗ + f(a) =

a/θ∗ + ρ(x̃+ a). Thus, 0 minimizes the convex function g(a),

ko = sup
θ>0

inf
a
{a/θ+ ρ(x̃+ a)}≥ inf

a
{a/θ∗ + ρ(x̃+ a)}= inf

a
g(a) = g(0) = ρ(x̃),

where the last equality follows from the fact that 0 minimizes g(a). Together with Equation (35), we have

ko = ρ(x̃). Hence, k∗ = ρ(x̃).

In conclusion, we always have k∗ = ρ(x̃). Q.E.D.

Proposition 1 Given any utility function u for which the corresponding utility-based CREM ρu is well

defined, we always have

ρu(x̃)≥ ρCVaR,β(x̃)≥ ρVaR,β(x̃).

if choosing β(θ) = 1/u(θ) ∀θ> 0.

Proof of Proposition 1

The second inequality is straightforward because CVaRα(x̃)≥VaRα(x̃) for all α∈ (0,1). We now just focus

on the first inequality. To this end, it suffices to show that the set in the RHS of Equation (9) is a subset

of that on the RHS of Equation (8). Consider any k > 0 such that E[u(−x̃/k)]≤ 1, and any θ > 0. As u is

non-decreasing and convex and u(w)> u(0) ∀w > 0, we can find b ∈ ∂u(θ)> 0. Denote a= u(θ)/b > 0. We

then have ∀x∈ℜ, u(x)≥ u(θ)+ b(x− θ), i.e., max{0,1+ (x− θ)/a}≤ u(x)/u(θ). This implies

E

!"
1+

−x̃
k
− θ

a

#+
$
=E

%
max

&
0,1+

−x̃
k
− θ

a

'(
≤

E
)
u
*
−x̃
k

+,

u(θ)
≤ 1

u(θ)
.

Therefore,

1

β(θ)
E
-
(−x̃− kθ+ ak)

+
.
=

1

1/u(θ)
E
-
(−x̃− kθ+ ak)

+
.
≤ ak,

inf
v∈ℜ

&
v+

1

β(θ)
E
-
(−x̃− v)

+
.'

≤ (kθ− ak)+
1

β(θ)
E
-
(−x̃− (kθ− ak))

+
.
≤ (kθ− ak)+ ak= kθ.

In other words, CVaR1−β(θ)(x̃)≤ kθ ∀θ> 0, k belongs to the set in the RHS of Equation (8). Q.E.D.

Corollary 1 Given any x̃∈X with ρ∗ = ρu(x̃)> 0, we have P(−x̃ > φ)≤ 1
u(φ/ρ∗) , ∀φ> 0.

Proof of Corollary 1

It is straightforward from Equation (3), Proposition 1 and the fact that ρVaR,β(x̃) = PEMβ(x̃). Q.E.D.

Lemma 1 If ko > 0 is such that supP∈P EP

-
u
/

−v(y,z̃)
ko

0.
≤ 1, then ∀k > ko we must have

supP∈P EP

-
u
/

−v(y,z̃)
k

0.
≤ 1.

Proof of Lemma 1
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To simplify the notation, we denote x̃ = v(y, z̃). We prove the lemma by contradiction. Assume the

contrary, i.e., ∃ku > ko such that supP∈P EP
)
u
*
−x̃
ku

+,
> 1. We then have

ko

ku
sup
P∈P

EP

%
u

"
−x̃

ko

#(
+

"
1− ko

ku

#
=

ko

ku
sup
P∈P

EP

%
u

"
−x̃

ko

#(
+

"
1− ko

ku

#
u(0)

= sup
P∈P

EP

%
ko

ku
u

"
−x̃

ko

#
+

"
1− ko

ku

#
u(0)

(

≥ sup
P∈P

EP

%
u

"
ko

ku
· −x̃

ko
+

"
1− ko

ku

#
· 0
#(

= sup
P∈P

EP

%
u

"
−x̃

ku

#(

> 1,

where the first equality follows from the normalization of u(0) = 1, and the inequality is due to

the convexity of u. It implies supP∈P EP
)
u
*
−x̃
ko

+,
> 1, and contradicts with the original condition of

supP∈P EP

-
u
/

−v(y,z̃)
ko

0.
≤ 1. Therefore, the assumption is wrong and the proof is completed. Q.E.D.

Proposition 2 For any ε> 0, define ρ∗
ε as follows,

ρ∗
ε =min k

s.t. sup
P∈P

EP

%
u

"
−v(y, z̃)

k

#(
≤ 1

k≥ ε
y ∈Y.

We then have ρ∗ ≤ ρ∗
ε ≤ ρ∗ + ε, and ρ∗

ε = ρ∗ if ρ∗ ≥ ε.

Proof of Proposition 2

Note that ρ∗ ≤ ρ∗
ε is straightforward because the feasible set of Problem (14) is a subset of that from

Problem (13). According to Lemma 1, with every feasible solution (k,y) in Problem (13), we can construct

a solution (k + ε,y) that is feasible in Problem (14) and with an objective value only increased by ε.

Therefore, we have ρ∗
ε ≤ ρ∗ + ε. Finally, if ρ∗ ≥ ε, the two feasible sets of Problem (13) and Problem (14) are

identical; and hence, we have ρ∗
ε = ρ∗. Q.E.D.

Proposition 3 Problem (15) is equivalent to the following problem

min bTζ+
1

i∈I

/
p̄iκi − p

i
λi

0

s.t. (Az+Bu)
T
ζ+

1

i′∈A(i)

(κi′ −λi′)≥ u

"
−v(y,z)

k

#
∀(z,u)∈ Ci, ∀i∈ I

y ∈Y
κ,λ≥ 0,

where y,ζ,κ,λ are also decision variables.

Proof of Proposition 3

It follows immediately from Theorem 1 in the supplement of Wiesemann et al. (2014). Q.E.D.
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Proposition 4 Problem (19) is equivalent to the following problem,

min k

s.t. bTζ+
1

i∈I

/
p̄iκi − p

i
λi

0
≤ k

(Az+Bu)
T
ζ+

1

i′∈A(i)

(κi′ −λi′)≥−anv(y,z)+ bnk ∀(z,u)∈ Ci, i∈ I, n∈N

κ,λ≥ 0
k≥ ε
y ∈Y.

Proof of Proposition 4

To complete the proof, it suffices to show the equivalence between the first constraint in Problem (19) and

the first two constraints in Problem (20). To this end, observe that the former can be reformulated as

sup
P∈P

EP

%
max
n∈N

{−anv(y, z̃)+ bnk}
(
≤ k

by multiplying both sides by k. Similar to Proposition 3, the left-hand-side of the above inequality is indeed

the optimal value of

min bTζ+
2

i∈I

/
p̄iκi − p

i
λi

0

s.t. (Az+Bu)
T
ζ+

2
i′∈A(i) (κi′ −λi′)≥−anv(y,z)+ bnk ∀(z,u)∈ Ci, i∈ I, n= 1, . . . ,N.

Q.E.D.

Theorem 3 If v(y, z̃) = yT z̃ and P =PM , Problem (19) is equivalent to the following problem,

min k

s.t. δ+ γ ≥
3
yTΣy+β2 +(δ− γ)2

α≤−a2nγ− anβ+ any
Tµ− bnk ∀n∈N

δ,γ ≥ 0
k≥ ε
y ∈Y,

which is a SOCP when Y is representable using SOCP constraints.

Proof of Theorem 3

Denote w̃ = z̃−µ, i.e., z̃ = w̃+µ. For the first constraint in Problem (19), multiplying k on both sides,

then the LHS is equivalent to

sup
EP[w̃]=0, EP[w̃w̃T ]=Σ

EP

%
max
n∈N

4
−any

T w̃− any
Tµ+ bnk

5(
. (36)

According to the projection theorem by Popescu (2007), the value of equation (36) equals to

sup
EP[x̃]=0, EP[x̃2]=yTΣy

EP

%
max
n∈N

4
−anx̃− any

Tµ+ bnk
5(

,

which is

max EP

%
max
n∈N

4
−anx̃− any

Tµ+ bnk
5(

s.t. EP[x̃] = 0
EP[x̃

2] = yTΣy
EP[1] = 1.
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Its duality is
min s0 + s2y

TΣy
s.t. s0 + s1x+ s2x

2 ≥−anx− any
Tµ+ bnk ∀x∈ℜ, n∈N .

(37)

The constraint in the problem (37) actually implies s2 > 0, and can be reformulated as

s0 + any
Tµ− bnk≥max

x

4
−s2x

2 +(−an − s1)x
5
=

(s1 + an)
2

4s2
∀n∈N . (38)

Therefore, the problem (37) is

min s0 + s2y
TΣy

s.t.
(s1 + an)

2

4s2
≤ s0 + any

Tµ− bnk ∀n∈N
s2 > 0.

(39)

We change the decision variables as follows,

s0 =−α+
β2

4γ

s1 =
β

2γ

s2 =
1

4γ
.

The problem (39) is then changed to

min −α+
β2

4γ
+

yTΣy

4γ

s.t.
(β/2γ+ an)

2

1/γ
≤−α+

β2

4γ
+ any

Tµ− bnk ∀n∈N

γ > 0,

(40)

which is equivalent to
min −α+ δ

s.t. δ≥ β2 +yTΣy

4γ
α≤−a2nγ− anβ+ any

Tµ− bnk ∀n∈N
γ > 0.

. (41)

The original problem then becomes Problem (21). Q.E.D.

Theorem 4 Consider the case that P = PM , and the underlying utility function is u(w) = max{a1w +

b1, a2w+ b2}, where b2 ≤ b1 = 1. Then Problem (22) has optimal value no greater than k if and only if the

following problem, which is a quadratic optimization problem with binary decisions, is with optimal value no

greater than 0,
min a1(b2 − 1)kµTy+yTMy
s.t. (a1 + a2)y

Tµ≥ (b2 − 1)k
y ∈Y.

Here the matrix M = (a2−a1)
2

4
Σ− a1a2µµ

T .

Proof of Theorem 4

Following the proof for Theorem 3, the objective function of Problem (22) can be reformulated as Problem

(37), with the constraint equivalent to s2 > 0 together with constraint (38). We note that the constraint (38)

can be reformulated as s0 ≥ (s1+an)2

4s2
− any

Tµ+ bnk, n∈ {1,2}. Hence, we have

s0 ≥max

&
(s1 + a1)

2

4s2
− a1y

Tµ+ b1k,
(s1 + a2)

2

4s2
− a2y

Tµ+ b2k

'
.
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The optimal s1 solves the following equation,

(s1 + a1)
2

4s2
− a1y

Tµ+ b1k=
(s1 + a2)

2

4s2
− a2y

Tµ+ b2k

s1 =
1

2

"
−a1 − a2 +

4s2
a1 − a2

*
(a1 − a2)y

Tµ+(b2 − b1)k
+#

s0 =
(s1 + a1)

2

4s2
− a1y

Tµ+ b1k=As2 +
B

s2
+C,

where

A=
((a1 − a2)y

Tµ+(b2 − b1)k)
2

(a1 − a2)2

B =
(a1 − a2)

2

16

C =
1

2

*
− (a1 + a2)y

Tµ+(b1 + b2)k
+
.

Therefore, the optimal value for the problem (37), and hence the objective function of Problem (22) is

min
s2>0

&*
A+yTΣy

+
s2 +

B

s2
+C

'
= 2

3
(A+yTΣy)B+C.

The Problem (22) has optimal value no greater than k is equivalent to

2
3
(A+yTΣy)B+C ≤ k.

Then we have &
4 (A+yTΣy)B ≤ (C − k)2

k−C ≥ 0.
(42)

For the first constraint in (42),

4
*
A+yTΣy

+
B ≤ (C − k)2

4

6
((a1 − a2)y

Tµ+(b2 − b1)k)
2

(a1 − a2)2
+yTΣy

7
(a1 − a2)

2

16
≤ 1

4

*
− (a1 + a2)y

Tµ+(b1 + b2 − 2)k
+2

*
(a1 − a2)y

Tµ+(b2 − b1)k
+2

+yTΣy (a1 − a2)
2 ≤

*
− (a1 + a2)y

Tµ+(b1 + b2 − 2)k
+2

yTΣy (a1 − a2)
2 ≤

*
−2a2y

Tµ+2(b2 − 1)k
+ *

−2a1y
Tµ+2(b1 − 1)k

+

yTΣy (a1 − a2)
2 ≤ 4

*
−a2y

Tµ+(b2 − 1)k
+ *

−a1y
Tµ+(b1 − 1)k

+
.

This constraint is indeed

(a2 − a1)
2

4
yTΣy ≤ a1a2

*
yTµ

+2 − (a1(b2 − 1)+ a2(b1 − 1))kµTy+(b1 − 1)(b2 − 1)k2

= a1a2y
TµµTy− a1(b2 − 1)kµTy,

where the last equality holds from b1 = 1. It can be further reformulated as

a1(b2 − 1)kµTy+yTMy≤ 0,

where

M =
(a2 − a1)

2

4
Σ− a1a2µµ

T
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is symmetric but not necessarily positive-semidefinite.

For the second constraint in (42), given b1 = 1, we have

1

2

*
− (a1 + a2)y

Tµ+(b1 + b2)k
+
≤ k

(1− b2)k+(a1 + a2)y
Tµ≥ 0.

Q.E.D.

Proposition 5 Consider the case that P =PM . Then there exists n∗ ∈N such that Problem (22) is equivalent

to the following problem,

min
(s1 + an∗)2

4s2
+ bn∗k+ s1µ

Ty+ s2y
TMy

s.t. 2s1an∗ +4bn∗ks2 + a2n∗ ≥ 2s1an +4bnks2 + a2n ∀n∈N \{n∗}
s2 > 0, s1 ∈ℜ, y ∈Y,

where M =Σ+µµT .

Proof of Proposition 5

Given the information set P as PM , we can use the projection theorem by Popescu (2007) and reformulate

the value of equation (36) as

sup
EP[z̃]=µ, EP[(z̃−µ)(z̃−µ)T ]=Σ

EP

%
max
n∈N

4
−any

T z̃+ bnk
5(

= sup
EP[x̃]=yTµ, EP[x̃2]=yTMy

EP

%
max
n∈N

{−anx̃+ bnk}
(
.

where M =Σ+µµT . The dual of the above optimization problem is

inf s0 + s1µ
Ty+ s2y

TMy
s.t. s0 + s1x+ s2x

2 ≥−anx+ bnk, ∀n∈N , x∈ℜ. (43)

Note that the constraint being true for all x ∈ ℜ implies feasible s2 must be strictly positive. In that case,

for any n∈N ,

s0 + s1x+ s2x
2 ≥−anx+ bnk ∀x∈ℜ

is equivalent to

s0 ≥max
x∈ℜ

{−s2x
2 +(−an − s1)x+ bnk}=

(s1 + an)
2

4s2
+ bnk.

Therefore, Problem (43) is

inf
s2>0,s1∈ℜ

&
max
n∈N

&
(s1 + an)

2

4s2
+ bnk

'
+ s1µ

Ty+ s2y
TMy

'
. (44)

Denote the optimal n by n∗. Problem (44) can be equivalently solved by

min
(s1 + an∗)2

4s2
+ bn∗k+ s1µ

Ty+ s2y
TMy

s.t.
(s1 + an∗)2

4s2
+ bn∗k≥ (s1 + an)

2

4s2
+ bnk ∀n∈N \{n∗}

s2 > 0, s1 ∈ℜ, y ∈Y,

which is indeed Problem (24). Q.E.D.
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Lemma 2 The optimal value of Problem (26) is no greater than k if and only if f1(n
∗, n0)≤ 4k2(1−bn∗)(1−

bn0), where the function f1(n
∗, n0) is defined as

f1(n
∗, n0) =min

y∈Y

8
yT

/
(ano − an∗)

2
Σ− 4anoan∗µµT

0
y− 4k (ano (1− bn∗)+ an∗ (1− bno))µTy

9
.

Proof of Lemma 2

Similar to the proof for Theorem 4, we reformulate the constraint as follows,

1

2

:;;<
6"

k
bno − bn∗

ano − an∗
−µTy

#2

+yTΣy

7
(ano − an∗)

2
+

1

2

*
(bno + bn∗)k− (ano + an∗)µTy

+
≤ k

:;;<
6"

k
bno − bn∗

ano − an∗
−µTy

#2

+yTΣy

7
(ano − an∗)

2 ≤ (ano + an∗)µTy+ k (2− bno − bn∗)

*
k (bno − bn∗)− (ano − an∗)µTy

+2
+(ano − an∗)

2
yTΣy≤

*
(ano + an∗)µTy+ k (2− bno − bn∗)

+2

(ano − an∗)
2
(µTy)

2 − 2k (bno − bn∗) (ano − an∗)µTy+ k2 (bno − bn∗)
2
+(ano − an∗)

2
yTΣy ≤

(ano + an∗)
2
(µTy)

2
+2k (2− bno − bn∗) (ano + an∗)µTy+ k2 (2− bno − bn∗)

2

−4anoan∗
*
µTy

+2 − 4k (ano (1− bn∗)+ an∗ (1− bno))µTy+(ano − an∗)
2
yTΣy≤ 4k2 (1− bno) (1− bn∗)

−4k (ano (1− bn∗)+ an∗ (1− bno))µTy+yT
/
(ano − an∗)

2
Σ− 4anoan∗µµT

0
y≤ 4k2 (1− bno) (1− bn∗) .

Q.E.D.

Theorem 5 Consider the case that v(y, z̃) = yT z̃, P =PM . Then Problem (22) has optimal value no greater

than k if and only if Enumerative Algorithm, which solves at most N(N−1)2 quadratic optimization problem

with binary decision variables, returns obj = 0.

Proof of Theorem 5

It is straightforward from the definition of f1, f2 and the preceding discussion of the three scenarios

for solving Problem (24). For case 2, we enumerate all pairs of n∗, no ∈ N with n∗ ∕= no. There are

N(N − 1) combinations. For case 3, we choose 3 different n∗, n1, n2 from set N and solve at most

N(N − 1)(N − 2) quadratic problems. Therefore, when implementing Enumerate Algorithm, we solve at

most N(N − 1)+N(N − 1)(N − 2) =N(N − 1)2 quadratic problems. Q.E.D.

Proposition 6 For given value of k and β(θ) defined by (33), constraints

CVaR1−β(θ)

6
Ti −

J1

j=1

t̃ijyij

7
≤ θk, ∀θi > 0, i= 1, . . . , I

can be formulated as a set of quadratic constraints.

Proof of Proposition 6

Observe that by definition, for any random variable x̃ and α∈ (0,1),

CVaRα(x̃) = inf
ν

&
ν+

1

1−α
sup
P∈P

EP

-
(−ν− x̃)

+
.'

.
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Then we reformulate the constraint as follows,

CVaR1−β(θ)(T −yT t̃)≤ θk, ∀θ> 0
⇔ sup

θ>0

4
CVaR1−β(θ)(T −yT t̃)− θk

5
≤ 0

⇔ sup
θ>0

inf
ν

&
ν+(θ+1) sup

P∈P
EP

-*
−ν− (T −yT t̃)

++.− θk

'
≤ 0

⇔ inf
ν
sup
θ>0

&
ν+(θ+1) sup

P∈P
EP

-*
−ν− (T −yT t̃)

++.− θk

'
≤ 0

⇔ sup
θ>0

&
(θ+1) sup

P∈P
EP

-*
−ν− (T −yT t̃)

++.− (θk− ν)

'
≤ 0

⇔ sup
θ>0

&
sup
P∈P

EP

-*
−ν− (T −yT t̃)

++.− θk− ν

θ+1

'
≤ 0

⇔ sup
P∈P

EP

-*
−ν− (T −yT t̃)

++.≤ inf
θ>0

θk− ν

θ+1
.

(45)

Here the third equivalence holds since the function inside the big bracket is concave in θ and convex in ν

and hence by Sion’s minimax Theorem (Sion 1958), supθ>0 and infν can be exchanged.

We next see the problem infθ>0 f(θ) where f(θ) := θk−ν
θ+1

. Taking derivative, we have f ′(θ) = k+ν
(θ+1)2

. We

consider two cases.

• Case 1: if k+ ν ≥ 0, i.e., k ≥−ν, then f ′(θ)≥ 0 and f(θ) is non-decreasing in θ. We have infθ>0 f(θ) =

f(0) =−ν.

• Case 2: if k + ν < 0, i.e., k < −ν, then f ′(θ) < 0 and f(θ) is decreasing in θ. We have infθ>0 f(θ) =

lim
θ→∞

f(θ) = k.

Combining two cases, we have infθ>0 f(θ) =min{k,−ν}. Therefore, the constraint in (45) is equivalent to

=
>?

>@

sup
P∈P

EP

-*
−ν− (T −yT t̃)

++.≤ k

sup
P∈P

EP

-*
−ν− (T −yT t̃)

++.≤−ν.
(46)

Following the same analysis of Theorem 4, supP∈PM
EP

-
max{−ν− (T − t̃

T
y),0}

.
≤ k is equivalent to

=
>?

>@

k(µTy−T − ν− k)+
1

4
yTΣy≤ 0

k+
1

2
(ν+T −µTy)≥ 0,

and supP∈PM
EP

-
max{−ν− (T − t̃

T
y),0}

.
≤−ν is equivalent to

=
>?

>@

ν(T −µTy)+
1

4
yTΣy≤ 0

−ν+
1

2
(ν+T −µTy)≥ 0.

However, there’s a product of two decision variable νy. We use big-M method to replace νy with p−q and

add constraints
ν = p̂− q̂
p≤ p̂1 q≤ q̂1
p≤My q≤My
p≥ p̂1−M(1−y) q≥ q̂1−M(1−y)
p≥ 0 q≥ 0
p̂≥ 0 q̂≥ 0,
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where 1 is the vector with all entries being 1. Then the constraints (46) are equivalent to

=
>>>>>>>>>>>>>>>>>>>>>>>>?

>>>>>>>>>>>>>>>>>>>>>>>>@

k(µTy−T − ν− k)+
1

4
yTΣy≤ 0

k+
1

2
(ν+T −µTy)≥ 0

νT −µT (p− q)+
1

4
yTΣy≤ 0

−ν+
1

2
(ν+T −µTy)≥ 0

ν = p̂− q̂
p≤ p̂1
q≤ q̂1
p≤My
q≤My
p≥ p̂1−M(1−y)
q≥ q̂1−M(1−y)
p,q≥ 0
p̂, q̂≥ 0.

Q.E.D.

Appendix B: Mathematical Derivation for Examples 1 and 3

Example 1. Choose the underlying monetary risk measure as µθ(x̃) =VaR1−β(θ), where β :ℜ+ → (0,1) is a

non-increasing function. The corresponding REM constructed by Equation (5) is

ρVaR,β(x̃) = inf{k > 0 : VaR1−β(θ)(x̃)≤ θk, ∀θ> 0}= inf{k > 0 : P(−x̃ > kθ)≤ β(θ), ∀θ> 0},

which is indeed the PEM defined in Definition 1, i.e., ρVaR,β(x̃) = PEMβ(x̃).

Example 3. Choose the underlying monetary risk measure as

µθ(x̃) = inf
α>0

&
α lnE

%
exp

"
− x̃

α

#(
+αθ

'
,

which is the coherent version of the entropic risk measure θ lnE
)
exp

*
− x̃

θ

+,
. The corresponding CREM

constructed according to Equation (6) is

ρEntropic(x̃) = inf

&
k > 0 : inf

α>0

&
α lnE

%
exp

"
− x̃

α

#(
+αθ

'
≤ θk, ∀θ> 0

'
. (47)

We now show that the representation of ρEntropic(x̃) can indeed be simplified as

ρEntropic(x̃) = inf

&
k > 0 : k lnE

%
exp

"
− x̃

k

#(
≤ 0

'
(48)

by demonstrating the equivalence between the set in the RHS of Equation (47) and that in the RHS of

Equation (48). To this end, we consider any k > 0. If k lnE
)
exp

*
− x̃

k

+,
≤ 0, then ∀θ> 0, and we have

inf
α>0

&
α lnE

%
exp

"
− x̃

α

#(
+αθ

'
≤ k lnE

%
exp

"
− x̃

k

#(
+ kθ≤ θk.
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The case of k lnE
)
exp

*
− x̃

k

+,
> 0 can be proved as follows. We observe that α lnE

)
exp

*
− x̃

α

+,
is 1) non-

increasing in α> 0 (see, for instance, Hall et al. 2015), and 2) convex in α> 0 since ∀λ∈ (0,1),α1,α2 > 0,

λα1 lnE
%
exp

"
− x̃

α1

#(
+(1−λ)α2 lnE

%
exp

"
− x̃

α2

#(

= αλ ln

A

BC

6
E

!"
exp

"
−λx̃

αλ

## αλ
λα1

$7λα1
αλ

×
6
E

!"
exp

"
− (1−λ)x̃

αλ

## αλ
(1−λ)α2

$7 (1−λ)α2
αλ

D

EF

≥ αλ lnE
%
exp

"
−λx̃

αλ

#
exp

"
− (1−λ)x̃

αλ

#(

= αλ lnE
%
exp

"
− x̃

αλ

#(
,

where we denote αλ = λα1 + (1− λ)α2, and the inequality follows from Hölder’s Inequality. Thus, we can

always choose θ∗ > 0 such that 0 is in the subdifferential of
*
α lnE

)
exp

*
− x̃

α

+,
+αθ∗

+
at α= k, then we have

inf
α>0

&
α lnE

%
exp

"
− x̃

α

#(
+αθ∗

'
= k lnE

%
exp

"
− x̃

k

#(
+ kθ∗ > kθ∗.

Hence, the set in the RHS of Equation (47) equals to that in the RHS of Equation (48), and the representation

of ρEntropic(x̃) in (48) is equivalent to the original definition in (47).
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