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An integrated framework for active discovery and optimal allocation 1 

of smart manufacturing services 2 

 3 

Abstract 4 

Smart manufacturing is gradually recognized and widely adopted due to the promising features of 5 
sustainability, flexibility, and collaboration. Service discovery and allocation in smart manufacturing 6 
aim to provide on-demand manufacturing capabilities for meeting customized production requirements. 7 
They are tightly coupled in practice, whereas they are usually considered as two independent processes 8 
and investigated separately in most research. Meanwhile, the collaboration relationship and decision 9 
autonomy of service providers are rarely taken into account to perform sustainable and flexible 10 
production. To deal with these challenges, this paper proposes an integrated framework to holistically 11 
describe the active discovery and optimal allocation of smart manufacturing services. A mechanism is 12 
designed to consider the collaborative relationship of manufacturing resource and promote 13 
collaborative production. The distributed optimization model based on analytical target cascading 14 
method is introduced to maintain the decision autonomy of service providers and achieve the optimal 15 
allocation of smart manufacturing services. A case study is further provided to demonstrate the 16 
effectiveness of the proposed framework. 17 

Keywords: smart manufacturing service; active discovery; optimal allocation; analytical target 18 
cascading 19 

1 Introduction 20 

Currently, due to the significant revolutions in economic globalization and market competition, 21 
industrial enterprises are changing their business modes to meet the raised personalized product 22 
demands and sustainable manufacturing requirements. With the rapid development of information and 23 
communication technologies (ICT), such as Internet of Things (IoT) (Asghari et al., 2019), cloud 24 
computing (Botta et al., 2016), cyber physical system (CPS) (Serpanos, 2018), and digital twin 25 
(Schleich et al., 2017), many service-oriented smart manufacturing paradigms (e.g. IoT-based 26 
manufacturing ( Yang et al., 2019), cloud manufacturing (Ren et al., 2017; Tao et al., 2014; Xu, 2012), 27 
social manufacturing (Ding et al., 2018; Leng and Jiang, 2016)) have been proposed to facilitate 28 
industrial enterprises to implement sustainable production. 29 

Smart manufacturing service (SMS) is a basic element in the newly emerged service-oriented 30 
manufacturing paradigms. The efficient management of SMSs plays an important role in promoting 31 
smart manufacturing. Many research work has been conducted in this area, such as service 32 
management platforms (Alexopoulos et al., 2018), service models (Quintanilla et al., 2016), and service 33 
management methods (Lartigau et al., 2015). Although great progress has been made in improving 34 
enterprises’ service management level, some challenges still exist in realizing smart manufacturing, 35 
especially in the active discovery and optimal allocation of SMSs. Firstly, the discovery and allocation 36 
of SMSs are tightly coupled in practice. Nevertheless, they are usually considered as two independent 37 
processes and investigated separately in most existing studies. A holistic description of the discovery 38 
and allocation of SMSs is thus essential for improving the services management level. Secondly, 39 
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collaborative production is one of the most important characteristics of smart manufacturing. Existing 1 
investigations rarely consider the collaborative relationship between manufacturing resources, which 2 
will affect the efficiency of SMS management. Thirdly, centralized methods have been widely used to 3 
tackle service allocation problems. However, they can hardly protect the decision autonomy of service 4 
providers because only one decision model is adopted in the allocation process. Since decision 5 
autonomy is the core factor for service providers to keep their flexibility and sustainable advantages 6 
during the production processes, distributed optimization strategies are hence needed to facilitate the 7 
allocation process of SMSs. 8 

Given the aforementioned challenges, this research aims to establish an integrated framework for 9 
active discovery and optimal allocation of SMSs to promote sustainable, flexible, and collaborative 10 
production. Under this framework, manufacturing resources can be timely perceived through the 11 
application of ICT. SMSs can thus be obtained based on the dynamic collaboration mechanism of 12 
manufacturing resources. Then, the optimal allocation of SMSs can be implemented by a distributed 13 
optimization model.  14 

The rest of this paper is organized as follows. Section 2 reviews related literature. Section 3 briefly 15 
introduces the overall framework for active discovery and optimal allocation of SMSs. The key 16 
technologies for implementing the proposed architecture are illustrated in section 4. A case study is 17 
given in section 5. Section 6 draws conclusions and highlights the future work. 18 

2 Literature review 19 

Two streams of literature are relevant to this research, namely the ICT-driven smart manufacturing 20 
paradigms and service management in smart manufacturing. 21 

2.1 ICT-driven smart manufacturing paradigms 22 

Due to the promising feature of linking physical world and cyber world, ICT have been increasingly 23 
recognized by academia and industry, and widely used in the manufacturing field (Tao and Qi, 2019). 24 
Many smart manufacturing paradigms are proposed and the key technologies of which are further 25 
investigated as summarized in Table 1.  26 

Table 1 Related studies on ICT driven smart manufacturing paradigms 27 

Paradigms  ICT category Remarks/Contributions 

Internet of 
manufacturing things 

IoT 

Capturing real-time data of manufacturing 
resources and making better-informed enterprises 
decisions (Bi et al., 2014; Zhang et al., 2015); 
improving energy-aware production management 
(Shrouf and Miragliotta, 2015), smart 
production-logistics (Qu et al., 2014), supply chain 
management (Ben-Daya et al., 2019), production 
planning and scheduling (Tian et al., 2019; Wang et 
al., 2019) 

Cloud manufacturing 
IoT, cloud 
computing 

Providing on-demand capabilities of distributed 
manufacturing resources for meeting personalized 
manufacturing requirements (Tao et al., 2014; Xu, 
2012; Zhang et al., 2017b) 

Edge and Fog-based IoT, edge and Enabling the application of business logic between 
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manufacturing fog computing the downstream data of services and the upstream 
data of devices in the smart factory (Chen et al., 2018; 
Wu et al., 2017) 

Social manufacturing IoT, CPS  
Extending the crowdsourcing idea to the 

manufacturing area and establishing a 
cyber-physical-social connection (Jiang et al., 2016) 

Smart product service 
system 

IoT, CPS, big 
data analytics, 
Digital twin 

Combining smart, connected products and 
e-services into on-demand solutions to satisfying the 
needs of individual consumers (Zheng et al., 2018; 
Liu et al., 2019; Ren et al., 2019; Zheng et al., 2019) 

Cyber physical 
production system 

CPS, IoT 

Leading to the 4th industrial revolution (Monostori 
et al., 2016); applying in efficient management for 
energy-intensive industries (Ma et al., 2019), 
proactive material handling (Wang et al., 2020), 
self-organizing and self-adaptive intelligent 
shop-floor (Zhang et al., 2017a) 

Digital twin-based 
manufacturing 

Digital twin, 
IoT 

Facilitating product design (Tao et al., 2019), 
prognostics of complex equipment (Tao et al., 2018), 
rapid individualized design (Liu et al., 2019), additive 
manufacturing (Knapp et al., 2017) 

2.2 Service management in smart manufacturing 1 

Service management can achieve the circulation, transaction, and sharing of distributed 2 
manufacturing resource capabilities, it thus become a crucial issue for realizing the purpose of smart 3 
manufacturing and sustainable production (Tao et al., 2015). The literature related to service 4 
management in smart manufacturing can be categorized into three aspects.  5 

The first aspect is about the service management platform. A collaborative cloud platform was 6 
designed by integrating additive and subtractive manufacturing resources efficiently and seamlessly to 7 
optimize the production plan, improve resource utilization, and avoiding energy waste (Qian et al., 8 
2019).  Through the seamless integration of digital design and rapid prototyping, a service platform 9 
was constructed to promote the research and development of personalized parts and meet customized 10 
requirements. (Xie et al. 2019). A service-oriented simulation integration platform was developed for 11 
making hierarchical manufacturing planning, reducing part production variance, and improving 12 
production performance (Xu et al. 2016).  13 

The second aspect is about the service model. By integrating time delay and reward/punishment 14 
during service transaction, a trust evaluation model was constructed to quantize the service satisfaction 15 
and meet customers’ manufacturing requirements (Yang et al., 2019). Based on the theory of complex 16 
network, a function availability model of high-end manufacturing equipment was developed by 17 
integrating product-service to achieve effective service configuration (Chang et al., 2018). In order to 18 
improve the agile supply chain, a framework was designed by canonicalizing manufacturing service 19 
capabilities and sharing service information models precisely (Kulvatunyou et al., 2015). Through 20 
considering the user data, a self-organizing evaluation model was proposed to distinguish effective 21 
services and users, then to facilitate the ordering and utilization of manufacturing services (Huang et al., 22 
2018).  23 
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The third aspect is the optimization methods for the service allocation or refers to service 1 
composition and optimal selection, which is the core part of the literature of service management 2 
including two issues. One issue focused on the different service allocation objectives and constraints 3 
for specific requirements, such as energy aware for cleaner production ( Yang et al., 2019), 4 
sustainability consideration for sustainable manufacturing (Wu et al., 2019), quality of service 5 
(QoS)-aware (Bouzary and Chen, 2019; Zhang et al., 2019) for optimizing manufacturing cost, time, 6 
and quality, urgent task-aware for improving customers’ satisfaction (Wang et al., 2018), and 7 
long/short-term utility aware for improving the efficiency of resource utilization ( Zhang et al., 2019). 8 
The other issue emphasized the novel algorithms and approaches for improving the service allocation, 9 
such as ensemble optimization approach to select optimal cloud-based service composition (Fazeli et 10 
al., 2019), multi-population differential artificial bee colony algorithm for simultaneously optimizing 11 
conflicting evaluation criteria (Zhou et al., 2018), extended flower pollination algorithm for solving the  12 
multiple-objectives optimization problems (Zhang et al., 2018), clustering network-based approach (Li 13 
et al., 2017) to get the candidate service sets effectively and efficiently, social network analysis 14 
approach for maximizing the synergy effect of services (Ren et al., 2018).  15 

2.3 Research gaps 16 

Despite the significant progress has been made in aforementioned literature, some research gaps 17 
still need to be fulfilled. 18 

1) In terms of the ICT driven smart manufacturing paradigms, most research focused on the macro 19 
aspects. Limited effort was made on the discovery and allocation of SMSs. Hence, an integrated 20 
framework is proposed to holistically illustrate the processes of services discovery and allocation in the 21 
context of smart manufacturing. 22 

2) Regarding to the service model, most studies provided services based on the intrinsic attributes 23 
of manufacturing resources and rarely considered the collaboration relationship between different 24 
resources. To fill this gap, a collaboration mechanism of manufacturing resources is introduced to 25 
provide value-added services for meeting the requirements of smart manufacturing. 26 

3) In respect of the service allocation, most studies adopted centralized methods to obtain the 27 
optimization results. Those methods with a single decision model may not be suitable to maintain the 28 
decision autonomy and sustainable competitiveness advantages of service providers. Therefore, a 29 
distributed hierarchical model is depicted to perform the optimal allocation of SMSs. 30 

3 Overview of active discovery and optimal allocation of SMSs 31 

The discovery and allocation of SMSs can be defined as the integration of encapsulating manufacturing 32 
resources into services and providing on-demand services for meeting different manufacturing 33 
requirements.  34 

As shown in Fig. 1, the overall framework for active discovery and optimal allocation of SMSs 35 
consists of three modules, i.e. manufacturing resource perception, manufacturing service discovery, and 36 
manufacturing service allocation. 37 

1) Manufacturing resource perception module is used to perceive the real-time information of 38 
manufacturing resources. The sensing capability of the shop-floor can be enhanced by configuring ICT 39 
devices (e.g. sensors). Hence, the real-time data of manufacturing resources can be sensed by the 40 
inserted sensors. Then the real-time information can be actively acquired by the data processing, and 41 
further provided for different manufacturing processes. 42 

2) Manufacturing service discovery module is used to encapsulate the capabilities of manufacturing 43 
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resources into smart manufacturing services. Two components are included in this module. The first 1 
component is responsible for developing a resource collaboration mechanism. Value-added services can 2 
be designed based on the collaboration mechanism. The second component is used to supply 3 
value-added services and form a service pool in the cloud-based manufacturing platform. 4 

3) Manufacturing service allocation module is used to allocate optimal services to complete 5 
personalized manufacturing tasks. Two components are included in this module. The first component is 6 
to identify and illustrate the workflow of the optimal allocation of SMSs. In the second component, a 7 
distribution solution is designed and used to achieve optimal allocation of SMSs in a distributed 8 
manner. 9 

 10 
Fig. 1. Framework for active discovery and optimal allocation of SMSs 11 

Fig. 2 describes the working logic of the methodology and coupled relationship between modules 12 
in the proposed framework. Manufacturing resource perception module is the basis for the other two 13 
modules. Through constructing sensing environment, it can provide accurate and real-time information 14 
for the manufacturing service discovery module to encapsulate manufacturing resources into services. 15 
Manufacturing resource perception module also supplies real-time information for the manufacturing 16 
service allocation module to acquire more reliable candidate manufacturing services to meet 17 
personalized requirements, and then obtain more satisfied services allocation results. Manufacturing 18 
service discovery module aims to acquire SMSs which are core elements for implementing the optimal 19 
allocation of SMSs. Thus, it provides necessary input (i.e. SMSs) for implementing manufacturing 20 
service allocation module. Meanwhile, manufacturing service discovery module can give 21 
manufacturing resource perception module positive feedback on constructing better sensing 22 
environment to acquire more accurate and reliable manufacturing information. Manufacturing service 23 
allocation module can offer positive feedback for the other two modules. It can give manufacturing 24 
service discovery module suggestions on how to effectively design the services to efficiently 25 
participate in the allocation process of SMSs. In addition, it can also provide advice for manufacturing 26 
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resource module on developing efficient solution of acquiring real-time information to achieve the 1 
seamless interaction between different manufacturing stages. 2 
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Fig. 2. Relationship between modules in the proposed framework 4 

4 Implementation of active discovery and optimal allocation of SMSs 5 

4.1 Active perception of manufacturing resources 6 

Active perception of manufacturing resources aims to acquire real-time information of 7 
manufacturing resources in the shop-floor which can facilitate up-level managers to make 8 
better-informed decisions. The procedure for implementing this technology is described in Fig. 3. 9 
Three components are included, namely smart configuration, real-time data sensing, real-time data 10 
processing. 11 
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Fig. 3. Active perception of manufacturing resources 13 

4.1.1 Smart configuration 14 
This component is used to configure a sensor network to improve the sensing capability of 15 

traditional manufacturing resources in the shop-floor by the application of ICT devices. The following 16 
steps can be used to execute this component. The first step is to identify the data that is needed to 17 
capture, such as the location, temperature, pressure, vibration. The second step is to select appropriate 18 
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ICT devices to capture the required data. For example, RFID devices are available for capturing the 1 
location data of specific manufacturing resources (e.g. machine tools, materials). Then, a sensor 2 
network among related manufacturing resources can be formed based on the selected devices. The third 3 
step is to optimize the sensor network. The objective of the optimization model is to minimize the cost 4 
of all the selected sensors subject to the constraints for the accuracy and reliability of the captured data. 5 
4.1.2 Real-time data sensing 6 

After the smart configuration, the real-time data of and manufacturing resources and production 7 
processes can be actively sensed and captured. Three steps are included in the implementation of 8 
real-time data sensing. The first step is sensor registration and aims to input the basic information of the 9 
sensors. When a sensor is selected to construct the sensor network, its basic information is registered on 10 
the management system, including the sensor type, sensor location, key function parameters of the 11 
sensor, etc. The second step is sensor management and consists of two sub-steps. The first sub-step is to 12 
use driver methods to activate the selected sensor. Two kinds of methods can be involved in this step, 13 
i.e. standard interface (e.g. USB, COM) and specific driver. If the sensor can be activated by the 14 
standard interface, it can be used in a plug and play manner. Other, the sensor can only be used after it 15 
being activated by the specific driver provided the third-party. Then, the sensorThe second sub-step is 16 
to manage the sensors to build a mapping relationship with associated manufacturing resources and 17 
meet diverse requirements for data capturing. For example, use an RFID tag to identify the trolley in 18 
the shop-floor (i.e. build a mapping relationship between the tag the trolley) and track the location of 19 
the trolly (i.e. data capturing requirement). The third step is sensor data capturing. This step aims to 20 
capture the data from sensors and bind the sensed data with corresponding manufacturing resources. 21 
The data in this step is categorized into metadata and status data. The metadata is used to identify the 22 
sensor and manufacturing resources, such as sensor ID, resource ID. The status data can describe the 23 
real-time status of corresponding manufacturing resources, such as the real-time location data. The 24 
bonded data then will be transferred to the up-level system. For example, a machine tool is equipped 25 
with RFID devices, and an operator is equipped with an RFID tag which stores related data of the 26 
operator. When the operator enters the sensing space of the machine tool, the real-time location data of 27 
the operator can be sensed and captured, then transferred to the following component for processing. 28 
4.1.3 Real-time data processing 29 

This component aims to translate the captured real-time data into meaningful information for 30 
decision-making. Three steps are followed to implement this component. The first step is to define the 31 
relationship between the captured data and principles for data processing. The second step is data 32 
combination to judge whether the captured data could match with the principles. The third step is data 33 
interpretation which acts as an engine to processing the data into meaningful information according to 34 
related principles. For better understanding, take the following process as an example to explain each 35 
step. Firstly, define the principles for machine tool A: 1) When A senses operator data in its processing 36 
zone means that the real-time location of the operator is the processing zone of A; 2) When A senses 37 
material data in its in-buffer area means that the material is available in A; 3) An operator in the 38 
processing zone of A uses the material in the in-buffer area to complete assigned task. Secondly, 39 
combine the captured data to judge whether the defined principles should be triggered. Assume that the 40 
data of operator B is captured in the processing zone of A and the data of material C is captured in the 41 
in-buffer area of A. Thirdly, perform the data interpretation, and the following meaningful information 42 
can be acquired: 1) Operator B is currently located in the processing zone of machine tool A; 2) 43 
Material C is available in machine tool A; 3) Operator B will complete the assigned task by machine 44 
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tool A and material C. The acquired information then can be used for up-level decision making. 1 
The real-time information of manufacturing resources can be acquired by executing the 2 

aforementioned components. The real-time track and tracing of manufacturing resources can thus be 3 
achieved, which can promote applications such as material handling, quality control, and dynamic 4 
scheduling. 5 

4.2 Active discovery of SMSs 6 

In order to implement the active discovery of SMSs, two components are designed in this section: 1) 7 
collaboration mechanism of manufacturing resources, and 2) services encapsulation and publishing. 8 
4.2.1 Collaboration mechanism of manufacturing resources 9 

The collaborative production aims to achieve real-time information sharing and autonomous 10 
decision-making of manufacturing resources. As shown in Fig. 4, a mechanism is designed to perform 11 
the collaboration production.  12 

 13 

 14 
Fig. 4. Collaboration mechanism of manufacturing resources 15 

The proposed collaboration mechanism can be described as two processes. The first process is 16 
real-time information sharing which aims to share information with smart manufacturing resources 17 
(SMRs) and make better-informed decisions. SMRs mainly refer to the resources which have the 18 
capabilities of active sensing and autonomous decision-making. During the real-time information 19 
sharing, the SMR sends real-time information to its upstream and downstream SMRs, and receives 20 
real-time information from its upstream and downstream SMRs. For example, smart machine tool A in 21 
smart cell (i) can send the real-time information (e.g. the required material information and task 22 
operation information) to the trolley and operator; it can also receive the real-time information from the 23 
trolley and operator; moreover, the machine tool can also send/receive the real-time information 24 
to/from its downstream machine tool in the same cell (i) or different cell (j). The interaction between 25 
different cells can then be achieved based on the real-time information sharing. The second process is 26 
the autonomous decision-making. It can be performed as the following steps. The first step is to 27 
identify the real-time status of SMRs according to the shared information. The second step is to 28 
optimize the manufacturing processes according to the identified status of SMRs. The third step is to 29 
share the local optimization information with related SMRs. For example, machine tool A in cell (i) 30 
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will firstly identify its and the collaborated SMRs’ real-time status to judge whether exceptions (e.g. 1 
material lack, resources breakdown) occur during production processes. Secondly, machine tool A 2 
executes local manufacturing process optimization according to the identified exceptions. For example, 3 
machine tool A will optimize its task queue when exceptions occur to its upstream/downstream SMRs 4 
to avoid extra work-in-progress (WIP) cost. Then, the obtained local optimization information of 5 
machine tool A will be shared with its upstream/downstream SMRs. 6 
4.2.2 Services encapsulation and publishing 7 

This component aims to construct the service model of SMRs and publish it on the cloud-based 8 
platform. A shown in Fig. 5, two modules are included to implement this component, i.e. 1) service 9 
encapsulation and 2) publishing services. 10 

 11 

 12 
Fig. 5. Service encapsulation and publishing 13 

 Services encapsulation 14 
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and designing value-added services of SMRs.  16 
The description model is to describe the capabilities of an SMR . The description model of an SMR 17 

consists of four parts, i.e. basic information, processing capability information, real-time status 18 
information, and quality of service information. 19 
 Basic information of SMR 20 
Basic information of an SMR is the basic part of the description model, which could facilitate 21 

up-level managers to find the service provider efficiently. The basic information mainly includes the 22 
information of name, specification, type, identity document (ID), etc.  23 
 Processing capability information of SMR 24 
Processing capability information is the core part of the description model. It is the most important 25 

evaluation criterion to judge whether the provided services can meet manufacturing requirements and 26 
participate in the optimal allocation process of SMSs. The processing capability information includes 27 
processing methods (e.g. machining and heat treatment), machining features (e.g. hole, groove, and 28 
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plane), machinable materials (e.g. steel, cast iron, and alloy), etc. 1 
 Real-time status information of SMR 2 
The real-time status information is an important part of the description model, which provides 3 

accurate and timely information for the optimal allocation of SMSs. The real-time information of the 4 
SMR includes service status (e.g. working, idle, maintenance), material information (e.g. material kinds, 5 
material quantity), task queue (e.g. task ID, due time, task progress), workload, etc. 6 
 Quality of service information of SMR 7 
The quality of service information reflects the service level of the SMR. It is the key parameter to 8 

evaluate the candidate services and form the optimal allocation results of SMSs. The quality of service 9 
information includes manufacturing cost, manufacturing time, product quality, service times, customer 10 
satisfaction, on-time delivery, etc. 11 

Based on the collaboration mechanism of SMRs, some value-added services can be designed, such 12 
as task queue optimization, online quality control, and active material handling.  13 
 Task queue optimization 14 
This service aims to timely optimize the local task queue of SMRs according to the shared real-time 15 

information. The general optimization model of this service can be stated as formula (1)-(3).16 

SMROptQue  represents the optimal task queue of the SMR, SMRTSet  represents the assigned task set 17 

of the SMR, SMRI  represents the shared information acquired the SMR, SMRG  and SMRH  represent 18 

the inequality and equality constraints for completing SMRTSet  by SMR. 19 

Objective ( , )SMR OptQue SMR SMR= FOptQue TSet I                   (1) 20 

Subject to    ( , ) 0SMR SMR SMR ≤G TSet I                         (2) 21 

       ( , )=0SMR SMR SMRH TSet I                         (3) 22 

 Online quality control 23 
This service aims to monitor and diagnose the processing quality of SMRs online. The workflow of 24 

online quality control can be described as follows. Firstly, set up an allowable deviation δ  for the 25 

processing quality. Secondly, get the standard quality requirement  Sτ  and real-time quality 26 

information Rτ . Thirdly, judge whether exceptions of processing quality occur according to formula 27 

(4). When the exceptions are monitored or diagnosed, the up-level system will be informed, and 28 
measures will be taken to tackle the exceptions. 29 

|| - || , exceptionsdo not occur.
If

|| - ||> ,exceptionsoccur.
R S

R S

≤



τ τ δ
τ τ δ

                    (4) 30 

 Active material handling 31 
This service aims to actively deliver the required material to SMRs to complete the assigned 32 

manufacturing tasks. The workflow of active material handling can be described as follows. The first is 33 
to check the real-time status of the required material according to the shared information. If the 34 
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required material is not enough to complete the assigned manufacturing tasks, the second is to send the 1 
information (e.g. material type, material quantity) of the required material to the up-level system. Then, 2 
trolleys will get material handling tasks and deliver the required material to associated SMRs. 3 
 Publishing services 4 

After obtaining the description model and value-added services of SMRs, the next is to publish 5 
them on the cloud-based manufacturing platform. In this section, MS-UDDI (UDDI for manufacturing 6 
service) which integrates ontology web language for services (OWL-S) and UDDI technologies is 7 
introduced to complete the SMSs publishing. Three modules are included in the MS-UDDI, i.e. 8 
registration module, publishing module, and search module. In the registration module, the ontology 9 
model of SMSs is constructed by specific development tools (e.g. Protégé) and described by OWL-S. 10 
Then, the OWL-S description of SMSs is transformed into UDDI data according to the mapping 11 
relationship between the OWL-S profile and UDDI (Srinivasan et al., 2005). In the publishing module, 12 
all the related UDDI data of the SMSs is published on the cloud-based manufacturing platform through 13 
the standard interface. Then, a service pool is formed by the published SMSs. The information of SMSs 14 
can be acquired and invoked by the search module, which can make the SMRs quickly respond to 15 
different manufacturing requirements and participate in the allocation process of SMSs. More details 16 
about MS-UDDI can be referred to the research work (Zhang et al., 2017b). 17 

4.3 Optimal allocation of SMSs 18 

4.3.1 Working logic of optimal allocation of SMSs 19 
The optimal allocation of SMSs can be considered as the process of SMSs composition and optimal 20 

selection for completing specific manufacturing tasks. Three different roles participate in the SMSs 21 
allocation process, i.e. customer, resource owner, and cloud-based manufacturing platform. The 22 
customer is the demander of SMSs, and submits manufacturing tasks to the cloud-based manufacturing 23 
platform. The resource owner acts as the SMSs provider, and provides capabilities for manufacturing 24 
tasks. The cloud-based manufacturing platform is responsible for providing transaction mechanisms 25 
and tools for the customer and resource owner. 26 

 27 
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 1 
Fig. 6. Working logic of allocation of SMSs 2 

As shown in Fig. 6, the working logic of optimal allocation of SMSs can be described as follows. 3 
Firstly, customers submit the manufacturing task information and requirements to the cloud-based 4 
platform. Resource owners published the SMSs which are acquired from the SMRs on the cloud-based 5 
manufacturing platform, and then an SMSs pool is formed. The submitted task will be decomposed into 6 
several subtasks according to its production processes. Based on the manufacturing requirements for 7 
the capability and QoS of SMSs, candidate service sets are selected from the service pool. Then, the 8 
optimal allocation of SMSs will be implemented by invoking optimization methods. After the 9 
allocation, the service provider can get a piece of subtasks to complete, and the customer can obtain a 10 
set of SMSs to perform its manufacturing task. All the production information can be timely acquired 11 
and shared with the resource owner and customer by the cloud-based manufacturing platform.  12 
4.3.2 Distributed optimization model of SMS allocation 13 

To maintain the decision autonomy of service providers, a distributed optimization model is 14 
proposed for the optimal allocation of SMSs. 15 

As shown in Fig. 7, the distributed optimization model is constructed based on the hierarchical 16 
structure of complex manufacturing task and manufacturing resources. Three levels are included in the 17 
proposed model, i.e. system level, cell level, and machine level. Each level has different elements. Only 18 
one element which represents the manufacturing system is at the system level. It is used to get the 19 
overall requirements of the submitted manufacturing task, and cascade manufacturing targets to the 20 
elements in the cell level. The elements in the cell level represent the manufacturing requirements for 21 
the decomposed parts. They aim to select the right manufacturing cells to fulfill the targets cascaded 22 
from the system level and cascade targets to the elements at the machine level. The elements in the 23 
machine level are employed to select the right machine tools to accomplish specific manufacturing 24 
processes to fulfill the cascaded manufacturing targets from the cell level. Each element in the model 25 
can perform local optimization within its decision autonomy, and send the feedback to its upper level 26 
element. When elements in the lower level cannot fulfill the cascaded targets, the elements in the upper 27 
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level will adjust the targets according to the feedback. The interaction hence can be achieved through 1 
the loop of cascade and feedback. The optimal allocation results can be obtained by the iterative 2 
interaction. 3 
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Machine
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Cell level
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Fig. 7. Distributed optimization model of SMS allocation 5 

4.3.3 Solutions for the distributed optimization model of SMS allocation 6 
Since the constructed optimization model is distributed, a distributed optimization solution/method 7 

is needed to solve the proposed model. Analytical target cascading (ATC) is a decomposition-based, 8 
multilevel, and hierarchical optimization method. During the implementation of the ATC method, the 9 
whole problem is decomposed into a few individual elements in a hierarchical structure. Each element 10 
is iteratively solved within its own decision autonomy, and then the final optimization results can be 11 
achieved. More detailed information about the implementation of ATC can refer to Kim et al. (2003), 12 
Tosserams et al. (2006), and Zhang et al. (2017c). 13 

Given the promising features of ATC in solving engineering problems, it is applicable to solve the 14 
distributed optimization model of SMSs allocation. According to the conventions of ATC, the 15 
formulation of elements in the model can be presented below and related notations are listed in Table 2. 16 

 17 
Table 2 Notations 18 

Notations Description 

.a b  
bth element in the ath level, a=1,2,3: 1 represents the system level, 2 represents the 

cell level, and 3 represents the machine level 

.a bx  Vector of local parameters in the element .a b  

.( )a bf x  Local optimization objective of bth element in the ath level 

.a bg  Inequality constraints for the element .a b  

.a bh  Equality constraints for the element .a b  

.a bT  Vector of target variables for element .a b  

.a bR  Vector of response variables for element .a b  



14 
 

.
c

a bT  Cascaded target for the total manufacturing cost of element .a b  

.
t

a bT  Cascaded target for the total manufacturing time of element .a b  

.
c
a bR  Backtracked response for the total manufacturing cost of element .a b  

.
t
a bR  Backtracked response for the total manufacturing time of element .a b  

.a bν  Vector of Lagrangian multiplier parameters of element .a b  

.
c
a bν  Lagrangian multiplier parameter for the total manufacturing cost of element .a b  

.
t
a bν  Lagrangian multiplier parameter for the total manufacturing time of element .a b  

.a bw  Vector of weight coefficients of element .a b  

.
c
a bw  Weight coefficient for the total manufacturing cost of element .a b  

.
t
a bw  Weight coefficient for the total manufacturing time of element .a b  

.
k
a bO  kth candidate service for completing the element .a b  

.
k
a bs  

Selection coefficient for service .
k
a bO  (If service .

k
a bO  is selected, . =1k

a bs ; 

otherwise, . =0k
a bs ) 

.a bc  Local manufacturing cost for completing the element .a b  

.a bt  Local manufacturing time for completing the element .a b  

.
k
a bc  

Manufacturing cost per unit time (for element in the cell level)/Manufacturing cost 

(for element in other levels) for .
k
a bO  completing the element .a b  

.
k
a bt  Manufacturing time for .

k
a bO  completing the element .a b  

 1 
 Element in the system level` 2 

Objective function 2 2.
1.1 1.1 1.1 1.1 2 2. 2.

2. (1.1)
min ( ) || ( ) || ( )i

AL i i
i

f
ν

φ
∈

+ − + −∑x w T R T R             (5) 3 

Subject to          1.1 1.1 1.1 2.[ , , ( | 2. (1.1))]i i ν= ∈x x R T                       (6) 4 

1.1 1.1( ) ≤ 0g x                                 (7) 5 

1.1 1.1( ) = 0h x                                 (8) 6 

2. 2
2. 2. 2. 2. 2. 2. 2. 2. 2( ) ( ) || ( ) ||i T

AL i i i i i i i iφ − = − + −T R v T R w T R            (9) 7 

Three parts are included in the objective function of the element. The first part is used to minimize 8 
the local objective of the system level. The second part is used to minimize the deviation between the 9 
system responses and overall manufacturing targets. The third part is used to cascade targets for the 10 
elements at the cell level. Eq. (6) presents the variables in this element. Eqs. (7)-(8) present the 11 
constraints in the system level. Eq. (9) presents the augmented Lagrangian relaxation technique for the 12 
target cascading process, the detailed information of which can refer to Tosserams et al. (2006). 13 
 Element in the cell level 14 

Objective function 2. 3.
2. 2. 2. 3. 3.

3. (2. )
min ( ) ( ) ( )i j

i AL i i AL j j
j i

f
ν

φ φ
∈

+ − + −∑x T R T R             (10) 15 
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Subject to        2. 2. 2. 3.[ , , ( | 3. (2. ))]i i i j j iν= ∈x x R T                     (11) 1 

2. 2.( )i i ≤ 0g x                               (12) 2 

2. 2.( )i i = 0h x                               (13) 3 

3. 2
3. 3. 3. 3. 3. 3. 3. 3. 2( ) ( ) || ( ) ||j T

AL j j j j j j j jφ − = − + −T R v T R w T R             (14) 4 

Similarly, three parts are included in the objective function of the element. The first part is to 5 
minimize the local objective of element 2.i. The second part is used to minimize the deviation between 6 
the responses of the current element and the cascaded targets from the system level. The third part is 7 
used to cascade targets for the elements at the machine level. Eq. (11) presents the variables in element 8 
2.i. Eqs. (12)-(13) represent the manufacturing constraints for completing element 2.i. Eq. (14) presents 9 
the augmented Lagrangian relaxation technique for the target cascading process. 10 
 Element in the machine level 11 

Objective function   3.
3. 2. 2.min ( ) ( )j

j AL i if φ+ −x T R                        (15) 12 

Subject to        2. 3. 3.[ , ]i j j=x x R                             (16) 13 

3. 3.( )j j ≤ 0g x                               (17) 14 

3. 3.( )j j = 0h x                               (18) 15 

Because the machine level is the bottom level of the distributed optimization model, the 16 
elements in this level have no targets to cascade. Thus, the objective function of the element in the 17 
machine level is composed of two parts. The first part is the local objective of element 3.j. The 18 
second part aims to minimize the deviation between the responses of element 3.j and the cascaded 19 
targets from element 2.i. Eq. (16) presents the variables in element 3.j. Eqs. (17)-(18) represent 20 
the manufacturing constraints for completing element 3.j. 21 

After the formulation of each element, the constructed model can be solved according to the 22 
steps of implementing the ATC method, and the optimal results of the allocation of SMSs can be 23 
achieved. 24 

5 Case study 25 

The case referred in this paper is a task of producing some key parts of an automotive engine (Zhang et 26 
al., 2018). Firstly, the effectiveness of ATC in solving the distributed optimization model of SMS 27 
allocation is to verify. Then, a prototype system is used to achieve a proof-of-concept validation of the 28 
proposed framework. 29 

5.1 Effectiveness of the distributed optimization model 30 

As shown in the upper part of Fig. 8, six subtasks (i.e. valve, crankcase, connecting rod, oil pan, 31 
gear housing, and EGR passage) are included for completing the assembly process of the engine. The 32 
engine has its specific process flow and logistics flow. For simplicity of understanding, the connecting 33 
rod, one of the subtasks, is considered as an example to explain the effectiveness of ATC in solving the 34 
distributed optimization model of SMS allocation. 35 
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As shown in the lower left part of Fig. 8, when the manufacturing task is submitted to the 1 
cloud-based platform, the manufacturing system can receive the manufacturing requirements for 2 
producing the connecting rod. Then, the connecting rod is decomposed into three processes, i.e. milling, 3 
drilling, and boring. A distributed optimization model in a hierarchical structure can be constructed 4 
based on the decomposition of the subtask. As shown in the lower right part of Fig. 8, the distributed 5 
model consists of five elements which are in a three-level structure. Element 1.1 is in the system level, 6 
element 2.1 is in the cell level, and the other three elements (i.e. 3.1, 3.2, and 3.3) are at the machine 7 
level. Based on analyzing the manufacturing capabilities of the registered SMSs in the cloud-based 8 
platform, the qualified candidate services are acquired from the service pool and listed near the related 9 
elements. Table 3 lists the information of each candidate SMS which comes from an automotive parts 10 
association. Note that the data in Table 3 is treated to keep the confidentiality of their key businesses. 11 

 12 
Fig. 8. Distributed model of the case 13 

Table 3 Information of Candidate Services 14 
Element  Candidate manufacturing services 

Number Element Level  Service Option Service Style .
k
a bc  .

k
a bt  

1.1 System Level  1
1.1O  Manufacturing System - - 

2.1 Cell Level  1
2.1O  Manufacturing Cell 0.2 - 

3.1 Machine Level  1
3.1O  Machine Tool 14 4 

 2
3.1O  Machine Tool 11 5 

3.2 Machine Level  1
3.2O  Machine Tool 5 4 

 2
3.2O  Machine Tool 6 3 
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3.3 Machine Level  1
3.3O  Machine Tool 12 5 

 2
3.3O  Machine Tool 11 8 

 1 
After obtaining the distributed model of the case, the elements in each level can be formulated 2 

according to the formulations described in section 4.3. The formulations of the elements in system level, 3 
cell level, and machine level are presented as Table 4, 5, and 6, respectively. In this case, the overall 4 
manufacturing targets for total manufacturing cost and time are 31 and 15, and the weight coefficients 5 
are 0.3 and 0.7. As shown in Table 4, the overall manufacturing requirements of the connecting rod are 6 
included in the objective function of element 1.1. It can be considered as the local objective of element 7 
1.1 at the system level. The total manufacturing cost/time of each element is generally composed of its 8 
local manufacturing cost/time and the total manufacturing cost/time of its upstream elements. Because 9 
no local manufacturing cost and time are produced in element 1.1, the total manufacturing cost and 10 
time of element 1.1 are equal to its upstream element 2.1. As shown in Table 5, no local manufacturing 11 
time is produced, thus the total manufacturing time of element 2.1 is equal to the total manufacturing 12 
time of its upstream elements at the machine level. The local manufacturing cost of element 2.1 denotes 13 
the manufacturing cost which is consumed for running the cell service. Since the machine level is the 14 
bottom level in the distributed model, no upstream elements are related to the elements at the machine 15 
level. Therefore, as shown in Table 6, the total manufacturing cost/time of the element at the machine 16 
level is equal to its local manufacturing cost/time. 17 

The distributed optimization model can be solved according to the procedure of implementing the 18 
ATC method. Table 7 lists the obtained optimization results. The total manufacturing cost is 30.8 and 19 
the total manufacturing time is 14. Though the results are not exactly the same as the given targets (31 20 
and 15), the deviations are allowable in practice. All the service options are the same as the results 21 
obtained by the centralized optimization method (e.g. particle swarm optimization). It means that the 22 
proposed distributed model is effective in dealing with the optimal allocation of SMSs. 23 

Table 4 Formulation of the element in the system level 24 

Element in the system level (1.1) 

Objective function 2 2.1
1.1 1.1 1.1 2 2.1 2.1min || ( ) || ( )ALφ− + −w T R T R   

Subject to 

1.1 1.1 2.1[ , ]=x R T , 1.1 1.1 1.1[ , ]c tT T=T , 

1.1 1.1 1.1[ , ]c tR R=R , 2.1 2.1 2.1[ , ]c tT T=T , 

2.1 2.1 2.1[ , ]c tν ν=ν , 2.1 2.1 2.1[ , ]c tw w=w , 

2.1 2
2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2( ) ( ) || ( ) ||T

ALφ − = − + −T R v T R w T R , 

  1.1 2.1− = 0R T , 

1.1 ≥ 0x   

 25 
 26 
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Table 5 Formulation of the element in the cell level 1 

Element in the cell level (2.1) 

Objective function 
2.1 3.

2.1 2.1 3. 3.
3. (2.1)

min ( ) ( )j
AL AL j j

j ν

φ φ
∈

− + −∑T R T R   

Subject to 

2.1 2.1 2.1 3.[ , , ( | 3. (2. ))]j j iν= ∈x x R T , 

2.1 2.1 2.1[ , ]c t=x , 2.1 2.1 2.1[ , ]c tR R=R , 

3. 3. 3.[ , ]c t
j j jT T=T , 

3. 3. 3.[ , ]c t
j j jν ν=ν , 3. 3. 3.[ , ]c t

j j jw w=w , 

3. 2
3. 3. 3. 3. 3. 3. 3. 3. 2( ) ( ) || ( ) ||j T

AL j j j j j j j jφ − = − + −T R v T R w T R , 

1
2.1 2.1 3.

3. (2.1)

t t
j

j
R t T

ν∈

= + ∑ , 1
2.1 2.1 2.1 3.

3. (2.1)

c t c
j

j
R c R T

ν∈

= ⋅ + ∑ , 

2.1 ≥ 0x   

 2 
Table 6 Formulation of the element in the machine level 3 

Element in the machine level (3.j) 

Objective function 3.
3. 3.min ( )j

AL j jφ −T R   

Subject to 

3. 3. 3.[ , ]j j j=x x R , 3. 3. 3. 3. 3. 3.[ , , , , ]k k k
j j j j j jc t s c t=x , 

3. 3. 3.[ , ]c t
j j jR R=R , 

3. 3. 3.[ , ]c t
j j jν ν=ν , 3. 3. 3.[ , ]c t

j j jw w=w , 

3. 3.
t

j jR t= , 3. 3.
c

j jR c= , 

3. 3. 3.
k k

j j jt s t= ⋅∑ , 3. 3. 3.
k k

j j jc s c= ⋅∑ , 

3. 1k
js =∑ , 

3. j ≥ 0x   

 4 
Table 7 Optimal service allocation results 5 

Element  Service Allocation Results 

Number Element Level  Service Option Service Provider .
k
a bc  .

k
a bt  

1.1 System Level  1
1.1O  Manufacturing System - - 
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2.1 Cell Level  1
2.1O  Manufacturing Cell 0.2 - 

3.1 Machine Level  2
3.1O  Machine Tool 11 5 

3.2 Machine Level  1
3.2O  Machine Tool 5 4 

3.3 Machine Level  1
3.3O  Machine Tool 12 5 

Total Manufacturing Cost  30.8 

Total Manufacturing Time  14 

 1 
The most important reason to adopt the distributed optimization model is the feature of maintaining 2 

the decision autonomy of service providers. An assumption is made as follows to verify this feature. 3 

The SMS 1
2.1O  is assigned many tasks, and the service provider prefers to complete the connecting 4 

rod task as soon as possible to release the workload of 1
2.1O . Then, a local objective 2.1min tR  will be 5 

added to element 2.1 to minimize its total manufacturing time. The objective function of element 2.1 6 
can be revised as Eq. (19).  7 

2.1 3.
2.1 2.1 2.1 3. 3.

3. (2.1)
min + ( ) ( )t j

AL AL j j
j

R
ν

φ φ
∈

− + −∑T R T R                  (19) 8 

Then, the optimization results can be obtained by implementing the ATC method. Table 8 compares 9 

the SMSs allocation results with and without the decision autonomy of the service provider of 1
2.1O . 10 

When the decision autonomy is not considered in the SMSs allocation process, the total manufacturing 11 

time 2.1
tR  for 1

2.1O  completing element 2.1 is 14. When the decision autonomy is considered, the 12 

2.1
tR  is 12. It can be seen that the decision autonomy of the service provider of 1

2.1O can be maintained 13 

by the distributed optimization model. However, the total manufacturing cost is increased from 30.8 to 14 

34.4. That because reducing the total manufacturing time of  1
2.1O  brings extra manufacturing cost to 15 

complete element 3.1 and 3.2, i.e. 3.1
cR  is increased from 11 to 14, 3.2

cR  is increased from 5 to 6. 16 

Though their cost is increased, the manufacturing time is saved. 17 
 18 

Table 8 Optimization results of with and without decision autonomy 19 

Element 
Without 2.1min tR   With 2.1min tR  

Service option .
k
a bc  .

k
a bt   Service option .

k
a bc  .

k
a bt  

1.1 
1
1.1O  - -  1

1.1O  - - 

2.1 1
2.1O  0.2 0  1

2.1O  0.2 - 

3.1 2
3.1O  11 5  1

3.1O  14 4 

3.2 1
3.2O  5 4  2

3.2O  6 3 

3.3 1
3.3O  12 5  1

3.3O  12 5 
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2.1
tR  14  12 

Total manufacturing cost 30.8  34.4 

Total manufacturing time 14  12 

 1 
5.2 Prototype System 2 

In order to better explain the key technologies proposed in this research, a proof-of-concept 3 
prototype system is developed to acts as a platform to achieve SMS management. The process of active 4 
discovery and optimal allocation of SMSs can be demonstrated by the designed system. 5 

 6 

 7 

Fig. 9. SMSs management in the prototype system 8 

Fig. 9 shows the SMS management module of the prototype system. A machine tool for milling is 9 
taken as an example to explain this module. The first function of this module is to achieve service 10 
registration. Four aspects of attributes are required to describe in this module. The basic attribute is 11 
used to describe the basic information of the machine tool. The capability attribute is used to describe 12 
the processing capability information of the machine tool. The real-time attribute is used to describe the 13 
real-time information of the machine tool. The quality attribute is used to describe the quality of service 14 
information the machine tool. After completing all the related attributes, the machine tool service can 15 
be registered at the prototype system. The second function of this module is to achieve service 16 
monitoring. As can be seen in Fig. 9, the real-time production information of the machine tool can be 17 
timely monitored, such as the real-time workload and task queue of the machine tool, online quality 18 
information, the historical production information, and the required material information. 19 

Fig. 10 shows the workflow of SMS allocation in the prototype system. A task of producing key 20 
parts of an automotive engine is taken as the example. Firstly, the customer describes the information 21 
(e.g. due time, maximum cost) of the task and submits it to the system. The prototype system partitions 22 
the complex task into many subtasks, and assigns each subtask to the qualified service provider. The 23 
subtask, such as the connecting rod, will be decomposed into several elements in a hierarchical 24 
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structure according to its detailed process information, and the qualified candidate SMSs will be 1 
acquired from the services pool. After implementing the ATC-based service allocation, the optimization 2 
results will be obtained. When the service (e.g. machine tool for milling) gets the manufacturing task, 3 
the service provider will timely optimize the task queue based on its real-time status, and perform the 4 
obtained task according to the updated queue. During the whole production process, all the real-time 5 
manufacturing information of the task can be monitored and shared between the participants (i.e. 6 
customer, service provider, and manufacturing system). Once an exception occurs, it can be identified 7 
quickly, and the re-allocation of SMSs will be implemented to ensure that the task can be accomplished 8 
on time. 9 

 10 
Fig. 10. Workflow of SMS allocation in the prototype system 11 

5.3 Discussions and Managerial implications 12 

Based on the research results, some advantages of the proposed framework for participants in smart 13 
manufacturing can be found and discussed as follows. For the service providers, they can have 14 
autonomous decision rights during the SMS allocation process. Hence, the collaboration relationship 15 
between different service providers can be protected, and the competitiveness of service alliances or 16 
communities can be further enhanced. For operators of the cloud-based manufacturing platform, they 17 
can get more accurate and transparent information of SMSs and tasks. The utilization rate of services 18 
can be increased. Then, idle manufacturing resources and unnecessary energy consumption can be 19 
reduced. In addition, the operators can have an alternative optimization tool (i.e. the proposed 20 
distributed optimization strategy) to perform global or local SMS allocation regarding different 21 
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circumstances. For the customers, they can obtain the production information of their tasks through the 1 
cloud-based manufacturing platform. Also, they can timely provide their internal feedback for the 2 
service providers to improve the production processes. Finally, they can get satisfactory products 3 
efficiently. 4 

Moreover, the case study demonstrates that the proposed framework has potential to be applied in 5 
industry. Specifically, it can promote the shift of traditional manufacturing paradigm to service-oriented 6 
smart manufacturing, and contribute to enhance the sustainability, flexibility, and collaboration of 7 
production processes. The implications to improve production management of enterprises can be 8 
depicted as follows. Firstly, the proposed framework can be applicable for monitoring and acquiring 9 
real-time information from manufacturing processes. The up-level managers can utilize the information 10 
to analyze service status of manufacturing resources, identify the task progress, and optimize 11 
manufacturing processes. Thus, the proposed framework can be used to support dynamic optimization 12 
management of manufacturing execution systems. Secondly, the application of the proposed framework 13 
presents the potential of bringing more benefits to enterprises. The decision autonomy of service 14 
providers can be maintained under this framework. Hence, the service management can be more 15 
flexible, which will benefit the enterprises to keep their sustainable competitive advantages. Thirdly, 16 
the proposed framework provides the possibility for facilitating enterprises to efficiently deal with 17 
production exceptions. Based on the acquired real-time information, production exceptions can be 18 
quickly identified. The distributed optimization model in the framework allows enterprises to solve 19 
production exceptions with only considering local optimization parameters, which is more efficient 20 
than traditional centralized optimization method. Ultimately, the production of enterprises can proceed 21 
normally. 22 

6 Conclusions 23 

Nowadays, smart manufacturing has attracted wide attention from both academia and industry. This 24 
research is considered an attempt in the active discovery and optimal allocation of SMSs to facilitate 25 
sustainable production. 26 

The major contributions of this paper are summarized as follows. Firstly, an integrated framework is 27 
proposed to accomplish the holistic description of the active discovery and optimal allocation of SMSs 28 
and improve the SMS management. Secondly, three key technologies are identified to implement the 29 
proposed framework, i.e. active perception of manufacturing resources, active discovery of SMSs, and 30 
optimal allocation of SMSs. Thirdly, a collaboration mechanism is designed to achieve the real-time 31 
information sharing between manufacturing resources, promote collaborative production, and provide a 32 
basis for the active discovery of SMSs. Fourthly, the working logic of optimal allocation of SMSs is 33 
identified, and a distributed optimization model based on the ATC method is constructed to maintain 34 
the decision autonomy of service providers and promote the flexibility and sustainability of smart 35 
manufacturing. A case study is further implemented to verify the effectiveness of the proposed 36 
methodology in this research. 37 

The future work may follow several aspects. Firstly, how to design a more comprehensive and 38 
standard model to describe the services in the context of smart manufacturing? This research is limited 39 
to describe the service model of manufacturing resources in the shop-floor. Actually, all the resources 40 
in smart manufacturing can provide services for meeting different manufacturing requirements. 41 
Secondly, how to accurately describe the submitted manufacturing tasks and accomplish the matching 42 
between tasks and candidate services? Effective and accurate description of manufacturing tasks plays 43 
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an important role in promoting efficient service allocation. Thirdly, how to develop a platform to 1 
implement the active discovery and optimal allocation of SMSs in real-life? A platform in practice can 2 
not only improve the proposed method but also popularize the applications of smart manufacturing. 3 
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