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Abstract—Human-robot collaborative assembly (HRCA)
is vital for achieving high-level flexible automation for mass
personalization in today’s smart factories. However, exist-
ing works in both industry and academia mainly focus on
the adaptive robot planning, while seldom consider human
operator’s intentions in advance. Hence, it hinders the
HRCA transition towards a proactive manner. To overcome
the bottleneck, this research proposes a multimodal trans-
fer learning-enabled action prediction approach, serving as
the prerequisite to ensure the Proactive HRCA. Firstly, a
multimodal intelligence-based action recognition approach
is proposed to predict ongoing human actions by leverag-
ing the visual stream and skeleton stream with short-time
input frames. Secondly, a transfer learning-enabled model
is adapted to transfer learnt knowledge from daily activities
to industrial assembly operations rapidly for online opera-
tor intention analysis. Thirdly, a dynamic decision-making
mechanism including robotic decision and motion control
is described to allow mobile robots to assist operators in
a proactive manner. Lastly, an aircraft bracket assembly
task is demonstrated in the lab environment, and the com-
parative study result shows that the proposed approach
outperforms other state-of-the-art ones for efficient action
prediction.

Index Terms—Human-robot collaboration, multimodal in-
telligence, action recognition, transfer learning.

I. INTRODUCTION

IN today’s industrial transformation towards smart manu-
facturing, modern factories are striving for an ever higher

degree of flexible production with mass efficiency, which is
known as mass personalization [1]. To achieve it, human-robot
collaboration becomes a prevailing strategy, which combines
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high accuracy, strength, and repeatability of robots with high
flexibility and adaptability of human operators to realize
optimal overall productivity [2]. In this paradigm, human-
robot collaborative assembly (HRCA) has been adopted, which
allows seamless communication and cooperation between hu-
man operators and robots to fulfill manufacturing assembly
tasks readily. By monitoring changes in a shared workspace, a
collaborative robot can reactively update its motion to ensure
the safety of operators in a sophisticated assembly side-by-side
[3]. Nevertheless, existing HRCA systems normally co-work
in a pre-defined or adaptive manner by fixed robot arms, which
lack certain intelligence and flexibility in collaborations. Moti-
vated by this, it is naturally for us to consider a new paradigm
of Proactive HRCA, where mobile/fixed collaborative robots
can understand ”what will the worker do next?” [4] and act
subsequent plannings to assist workers in a proactive manner.

To realize it, human action recognition, as the prerequisite of
robotic dynamic decision-making, is of paramount importance.
One of the prevailing research areas is to recognize human
actions from RGB videos [5]. For instance, a 3D convolutional
neural network (3D CNN) was introduced to recognize oper-
ators’ actions during the assembly of a visual controller [6].
Another main pillar aims to deriving action representations
based on the topology of human body, i.e., skeleton joints
[7]. Accordingly, in an HRCA system, assembly contextual
information can be inferred from key points of the human body
[8]. However, the aforementioned efforts can only analyze
human action intentions from one single modality in industrial
settings, either by 1) RGB video-based action recognition or
2) skeleton-based one. The former is effective in capturing
fine-grained details, but too rigid to associate visual patterns
of one same action from different views, let alone the high
computing cost for long timespan videos. For the latter one,
skeleton-based action recognition is computationally efficient,
but lacks much low-level detailed information [9]. Hence,
in real workplace settings towards proactive HRCA, single
modality based methods fail to high-reliably predict operators’
on-going operations due to the following challenges: 1) subtle
and similar motion patterns of human action in a short times-
pan, such as wedging pins and screwing bolts while installing
a mechanical part; 2) diverse visual patterns of the same action
caused by different camera views; and 3) insufficient labeled
data of assembly operations in varying time lengths.

Aiming to fill this research gap towards the Proactive
HRCA, a multimodal intelligence-based transfer learning-
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enabled human action prediction approach is proposed, which
allows higher cooperation flexibility and efficiency between
operators and fixed/mobile robots in a global workspace. The
rest of this paper is organized as follows. Section II reviews re-
cent related works in the HRCA system field. Aiming towards
Proactive HRCA, a three-step based approach is proposed in
Section III, which is achieved by multimodal action pattern
extraction and transfer learning-based industrial deployment.
Section IV further conducts a typical Proactive HRCA task
for aircraft bracket assembly with comparative studies. At last,
conclusions and future works are summarized in SectionV.

II. RELATED WORK

In this section, the recent development of HRCA is firstly
recapped, followed by a comprehensive review of advanced
human recognition methodologies, to reveal the research gaps
and motivations towards Proactive HRCA.

A. Human-robot collaborative assembly

Instead of the strictly separated tasks between pre-
programmed industrial robots and shop-floor operators, HRCA
enables collaborative robots to assist human operators side
by side in the shared assembly works [10]. For example,
Wang et al. [11] reviewed human-robot collaborative systems
for welding process, where robots can dynamically modify
their pre-planned tasks to collaborate with human welders. For
seamless cooperation, collaborative robots in current HRCA
systems interact with human operators via user-friendly ap-
proaches, such as Augmented Reality (AR)-based interface
[12], intuitive human body pose [13] or hand gestures [14].
Nevertheless, these collaborative robots are normally fixed in
one monitored zone and controlled by reactive instructions,
thus far from efficient integration of robotic automation and
human cognition.

To overcome this challenge, recent works began to allow
a mobile robot to learn about operators’ next intention and
conduct assistant planning in advance. In this context, a high-
level teamwork intelligence of the Proactive HRCA is enabled
by two preconditions, including contextual awareness of the
industrial scenario and dynamic robot decision-making in the
execution loop. Context-awareness perception ensures basic
characteristics of HRCA, such as active collision avoidance
and coordinated task allocation [15]. For instance, a recurrent
neural network (RNN) was utilized to predict a human opera-
tor’s future motion trajectory for proactive assistance, while
avoiding the collision [16]. Meanwhile, dynamic decision-
making allows mobile robots to make proactive assembly
planning for common goals in a holistic view. In task-oriented
HRCA, based on observable human actions, robots can infer
semantic knowledge of operators’ execution and conduct rea-
sonable assistant plans [17]. For both aspects, accurate human
action recognition and intention analysis are critical.

B. Industrial operation recognition and intention analysis

Industrial operator’s actions represent operation intention
during production, of which the analysis procedure contains

both offline recognition during the model training process,
and online prediction in real implementations. Hence, accurate
online action prediction serves as the prerequisite for Proac-
tive HRCA, which allows robots to reason about operators’
intentions and assist them in a long-term adaptive or even
proactive manner [16]. As analysed in the comprehensive
survey of human action recognition methods [18], current deep
learning techniques [19] can directly predict human activities
and human-object interaction from RGB videos, depth, and
skeleton data.

In today’s HRCA field, ongoing activity prediction [20]
and 3D action estimation [21] are of particular interests in
the human operation recognition tasks. The former one allows
robots to rapidly response and assistance during cooperation.
In this field, a two-layer graph network was utilized to explore
human-object interaction in a video scene, so as to predict
human activities along the time as early as possible [22].
Meanwhile, the latter one extracts features of 3D human
activities [23] and builds a bridge between the accurateness
of robotic control and strict safety requirements for collision
avoidance. Nevertheless, scarcely any work considers action
patterns from more than one modality in HRCA, which can
support ongoing intention prediction with fewer frames.

C. Multimodal intelligence and knowledge transferring
Multimodal perception increases the utilization of digital

resources [24] and creates new information capital towards
Proactive HRCA [10]. With expanded multimodal informa-
tion, e.g., visual and kinematic knowledge, it is realistic to
recognize ongoing human actions ahead of schedule. Mean-
while, some other works provide a procedure of a multimodal
intelligence-based network, which can learn human action
patterns from skeleton sequences and RGB videos [25].

Another critical issue lies in a lack of annotations among
the captured data of operators’ assembly motion in real in-
dustrial settings. These data also suffer from huge distribution
discrepancies caused by different human body characteristics
[26]. To overcome it, transfer learning is an essential procedure
to extract invariant features and refining shared action repre-
sentations across data. A preliminary research of transferable
CNN network (i.e., finetune strategy) showed its capability
of transferring knowledge from non-manufacturing specific
human activities to engine block assembly actions [4]. Also,
some cross-modal similarity metrics were utilized to transfer
action pattern knowledge among images and videos [27].

From the literature, one can find that most existing methods
fail to provide semantic knowledge for HRCA in advance, let
alone to handle the robot planning proactively.

III. METHODOLOGY

To realize Proactive HRCA, three critical steps should be
undertaken. The first step is human ongoing action inference,
which is achieved by decreasing the time dimension of input
data while increasing information modalities, i.e., multimodal
intelligence. Secondly, transfer learning-based online predic-
tion from the real-case data stream is a prerequisite, which
allows quick deployment of the inference model with few
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TABLE I
ARCHITECTURE OF INFLATED RSENET50

Layer Operator Parameter size
Input Frame sampling B,C, T,W,H
Video2Img Reshaping B × T,C,W,H

2D ConvNet 2D Convolution
2D Max Pooling

7× 7, 64, /2
3× 3, 64, /2

Img2Video Reshaping B,C, T,W,H

Res2 block 3D Convolution

1× 1× 1
3× 3× 3
1× 1× 1

× 3, 256, /1

Res3 block 3D Convolution

1× 1× 1
3× 3× 3
1× 1× 1

× 3, 512, /2

Res4 block 3D Convolution

1× 1× 1
3× 3× 3
1× 1× 1

× 3, 1024, /2

Res5 block 3D Convolution

1× 1× 1
3× 3× 3
1× 1× 1

× 3, 2048, /2

Avg-Pool 3D Average Pooling t× w × h
Dense Linear Regression K

annotation data in various industrial scenarios. Lastly, based on
the intention prediction ahead of schedule in today’s Industrial
Internet-of-Things (IIoT) environment of modern factories,
dynamic decision-making can be made to instruct the mobile
robot for proactive collaborations.

A. Multimodal intelligence-enabled human ongoing ac-
tion recognition

A multimodal intelligence-enabled method is proposed to
reliably classify ongoing human actions from RGB videos and
skeleton joints, as shown in Fig. 1. The multimodal fusion net-
work mainly contains three parts. The first one is implemented
by efficient inflated ResNet [5], which can extract subtle visual
action patterns. Based on spatial-temporal graph convolutional
networks (ST-GCN) [7], the second skeleton part element-wise
maximizes action representations of human body topology.
The fusion part adopts intermediate attention to explore cross-
channel relationships of visual and skeleton modalities and to
improve the late fusion [28].

1) Efficient inflated ResNet for video representation classi-
fication: Visual action patterns are recognized by an efficient
video partitioning strategy and an inflated ResNet50 module.

In the visual stream, an input video is firstly split into N
equal sequences, S1, S2, . . . , Sn. Then, one frame is randomly
sampled from each split sequence. The partitioning strategy
enables the visual sub-network to against instance variations of
an action. Meanwhile, this mechanism can allow a lite network
architecture, including either long-term videos or high-frame-
rate clips with redundant information.

Inflated ResNet50 is utilized to extract spatio-temporal fea-
tures of human activities from sampled frames. As presented
in Table I, the module is composed of 2D ConvNet and
inflated 3D ones. Parameters of the network, i.e., B, C, T ,
W and H denote the batch size, channels, temporal length,
width and height of input data, respectively. 2D ConvNet is
utilized to enhance the spatial features of each RGB frame
along the time dimension. Then, inflated 3D ConvNet directly

explores spatial-temporal representations of these features.
The 3D ConvNet can be achieved by inflating all square
filters N × N to cubic ones (N × N × N ). Therefore,
convolutional and pooling filters are endowed with temporal
modeling characteristics. These 3D kernels can be initialized
via repeating pre-trained weights of 2D filters N times along
the time dimension and are divided by N for normalization,
instead of training from scratch. In this way, a 3D ConvNet
can be trained without increasing data scale, despite increased
huge training parameters. Finally, a dense layer is stacked upon
the 3D ConvNet to predict K action classes.

2) Element-wise ST-GCN for human body topology extrac-
tion: Nine ST-GCN layers and an element-wise maximization
mechanism are major components of the skeleton stream.

To provide input for ST-GCN layers, human skeleton se-
quences in 2D or 3D coordinates are mapped to an undirected
spatial-temporal graph G = (V,E). In detail, node set V =
vti|t = 1, . . . , T, i = 1, . . . , N represents N body joints across
T frames in the time dimension. These nodes are connected
based on skeleton sequences in the spatial graph, while the
temporal graph links body joints between contiguous frames.

Then, graph convolution filters of an ST-GCN layer slide
over the skeleton graph to extract latent features of human
actions. The spatial-temporal graph convolution is defined as,

fout = Λ−
1
2 (A+ I)Λ−

1
2 fin(P (vti)) · w(lst(vti)) (1)

where λii =
∑

j A
ij + Iij . Adjacency matrix A and identity

matrix I denote nodes’ connection in graph G. The rest parts
are feature mapping fin, sampling function P , weighting func-
tion w and partition operation lst . Similarly to convolution for
images, sampled graph nodes are mapped to dimension c via
fin : V 2 → Rc, while function w generates a weight vector
of the same dimension for computing their inner product.

For a node vti, input neighbors for graph convolutional filter
are enumerated via sampling function P

P (vti) = vqj |d(vtj , vti) ≤ D, |q − t| ≤ Γ (2)

where d(vtj , vti) denotes the distance between these two nodes
for a graph in frame t, while Γ is the time length across two
spatial graphs. D and Γ are set to 1 in our experiment. For
each node vtj in a spatial graph, its neighbor nodes are then
divided into three subsets via partition strategy l. These With
vc denoting the gravity center of one spatial graph, the partition
strategy can be achieved by

lti(vtj) =


0, if d(vtj , vc) = d(vti, vc)

1, if d(vtj , vc) < d(vti, vc)

2, if d(vtj , vc) > d(vti, vc)

(3)

Similarly, the neighbor node vqj of vti follows strategy lst
in the spatial temporal graph. The graph convolution filters
slide over the graph with weighting different values to these
nodes, extracting their spatial and temporal relationships.

lst(vtj) = lqi(vqj) + (q − t+ Γ)× 3 (4)
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Fig. 1. The architecture of our multimodal fusion network, including a visual stream, a skeleton stream, and fusion modules.

In this way, six ST-GCN layers are stacked on graph G and
to distill low-level information (e.g., motion of a joint) of hu-
man actions. Then, the extracted feature maps are split into M
(i.e., the number of input persons) groups. The element-wise
maximization mechanism compares every element in feature
maps across these groups for retrieving the maximum value,
which is fed to the extra three ST-GCN layers to extract high-
level skeleton patterns of human actions. Pooling operation
and linear regression are utilized as the final classifier.

3) Intermediate attention and fusion for multi-modalities:
The visual and skeleton modalities are integrated via interme-
diate attention and late fusion. As presented in Fig. 2, the
intermediate attention can generate optimized feature maps
M̂1, . . . , M̂n by exploring inter-context relationships of input
modalities M1, . . . ,Mn. This can be achieved by three steps,

(a) Segmentation. From modality M1 to Mn, features maps
are split into equal blocks Si, i ∈ 1, . . . , n. The number of
blocks in modality Mi is calculated by |Si| = dCi/Cse,
where Ci is the number of channels of data in Mi and
Cs = min[S1, ..., Sn]/2. The last block in Si can be
padded with zeros if Ci is not a multiple of Cs. Then,
blocks in one modality Mi are related via element-wise
summing over S1, . . . , Si.

(b) Connection. The output of the above part is denoted as Di

in modality Mi, where Di ∈ RN1×···×Nk×Cs . After global
average pooling Pi on Di, as denoted in (5), multimodal
contextual information is connected together by summing
P1, . . . , Pn. Then, a 1×1 CNN layer is introduced to learn
cross-channel relationships of these multimodal features.

(c) Activation. The connection part outputs global shared
representation G. Attention weight W j

i of the j-th block of
the i-th modality is generated from sequential executions
of linear transformation and SoftMax activation on G (see
(6)), where i ∈ 1, . . . , n and j ∈ 1, . . . , |Si|. Then, a
optimized feature block Ŝj

i is obtained via (7). λ is set
to 0.5 in our paper. Finally, optimized M̂i is output after
concatenation over Ŝj

i , i.e., M̂i =
[
Ŝ1
i , . . . , Ŝ

|Si|
i

]
.

Pi(Cs) =
1∏k
j=1

∑
(N1,...,Nk)

Di(N1, . . . , Nk, Cs) (5)

... ...

... ...

B,C1,T,W,H B,Cn,T,V

Split 1 Split S1

B,Cs,
T,W,H

. . .

+

Avg-Pool T×W×H

Split 1 Split Sn. . .

+

Avg-Pool T×V

+

. . .
B,Cs,
T,V

Conv 1×1, /4

B,Cs

Linear 
1, ×4

Linear 
S1, ×4

... Linear 
1, ×4

Linear 
Sn, ×4

...

SoftMax

Concat Concat

... ...

. . .

. . .

1M̂ nM̂

1M nM

Fig. 2. The architecture of the intermediate attention module.

W j
i =

exp(hjiG+ bji )∑n
i

∑|Si|
j exp(hjiG+ bji )

(6)

Ŝj
i =

[
λ+ (1− λ)×W j

i

]
× Sj

i (7)

As illustrated in Fig. 1, the first intermediate attention is
inserted between the fourth layer of inflated ResNet50 and
person-wise groups of the sixth ST-GCN layer. Another one is
positioned between the fifth layer of the visual stream and the
ninth ST-GCN layer. They can relate the block-wise correlation
of visual and skeleton representations, from shallow feature
recalibration to high-level contextual awareness. Then, the
output of the visual part and the skeleton one are element-
wise added for the late fusion, followed by a SoftMax layer
for action pattern classification. In the training procedure, the
cross-entropy loss is utilized to fit the weights of our model.

B. Transfer learning-based online operator intention anal-
ysis for proactive HRCA

Based on ongoing human action recognition via multimodal
fusion, a transfer learning-based online operator intention
analysis method is further proposed to allow proactive HRCA,
as presented in Fig. 3. The method mainly tackles three crucial
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issues: 1) knowledge transfer with limited annotation data, 2)
online operation intention analysis, and 3) dynamic decision-
making mechanism, which are elaborated below.

1) Operator action recognition with knowledge transfer-
ring: There are two major challenges in the industrial opera-
tion recognition tasks. First, it is unrealistic to build a universal
HRCA model covering all potential assembly sequences. Sec-
ond, it is expensive and time consuming for data annotation
in various scenarios under massive sensor networks in modern
factories. Hence, a semi-supervised transfer learning procedure
is presented. Finetune strategy is firstly adopted to enable the
extractor G to learn action patterns from daily activities to
industrial actions. Then, a domain adaptation module θm is
connected to the G. In terms of visual and skeleton streams,
θvm and θsm are utilized to reduce the distribution discrepancy
of source and target data, respectively. For each action pattern
among two domains, this allows G to align learned action
representations of few labeled data to the remaining unlabelled
ones. Specifically, a fully connected layer is stacked on the G
to map features of the source domain δs and the target domain
δt. The distribution distance between these two domains is cal-
culated by the maximum mean discrepancy (MMD) metrics,

D = ‖δs − δt‖H = ‖〈δs, δt〉H‖ (8)

where H is the reproducing kernel Hilbert space (RKHS).
The unbiased estimation value of 〈δs, δt〉H is calculated by the
Gaussian radial basis function, i.e., D̂ = exp(‖δs − δt‖2 /2σ).

The training strategy contains three stages. The first one
is to fine-tune weights of the extractor G and the classifier
θc with a portion of annotation assembly action data, as they
are pre-trained from other domains. Then, MMD metrics θvm
and θsm are introduced to train the extractor G to learn latent
sharing representations of assembly actions between labeled
and unlabeled data. This semi-supervised training stage keeps
weights of the classifier θc frozen. The final stage is to further
fine-tune the classifier θc with annotation data while freezing
the extractor G and removing MMD metrics.

2) Online operation intention analysis in industrial settings:
The procedure of online operation intention analysis is divided
into five steps, (a) RGB-D video acquisition, (b) color-depth
camera calibration, (c) visual and skeleton output, (d) feature
extraction, and (e) pattern classification, as shown in Fig. 3.
In workshops, Azure Kinect can be adopted to record RGB-
D videos and output 3D skeleton joints. However, human
subject only accounts for a small part of videos. To remove
background interference, pre-processing strategies are applied.

To acquire 2D pixel coordinates from 3D joints, the color
camera and the depth camera in Kinect are calibrated first.
Based on camera model Puv = TPc = KTPw, the transform
matrix from depth camera to the color image is calculated by,

Puv−c = KcTcT
−1
d Pd (9)

where c denotes the parameters of the color camera and d is
the depth one, while K is camera intrinsics and T = [R|t]
is camera extrinsics. In this way, 2D body joints can be
acquired. The width wb and height hb of a bounding box
of this person can be obtained as well. Then, a crop mask

(wm, α × wm) in a uniform aspect ratio α is introduced to
crop the human part from images. The width wm is calculated
by wm = max{bwb, hb/2c} + dh, where dh is the distance
from pelvis to the middle of spine. α is set to 2 in this work.
For skeleton data, we apply a normalization processing similar
to [29]. With the visual and skeleton output, a pre-trained
multimodal model estimates human operation intentions.

Meanwhile, for live data streams, the detailed procedures
of online intention analysis are presented in algorithm 1. A
queue Q which can hold N frames is utilized to record the
incoming video stream. Besides, a memory queue M stores
T temporal-video segments, each of which is in the same size
of Q. N frames stand for a timestamp and it is the number of
input frames for the action recognition model. When the live
video stream starts, all frames will fill into M uniformly with
N frames until overflow. Then, half frames of Q are queued
to M in the case of passing N frames. Input container Id
samples frames from these T temporal segments of M for
action prediction. Assuming T = 3, Id includes 25% samples
of Q at the time step M0, 25% samples of Q at M1 and
50% samples of Q at the last timestamp M2. Long-range
information of the incoming stream is recorded in this online
mode while recent frames are given more importance. Hence,
the online mode can foresee operator operations of varying
time lengths.

Algorithm 1: Online operation intention recognition
input: RGB-D live video stream (Vd)

Number of visual-stream input (N )
Pre-processing module (∆)
Pre-trained action recognition model (Φ)

Output: Action predictions
Calculate the number of timestamps T =

⌈
log0.5

1
N

⌉
;

Initialize video queue Q for N coming frames;
Initialize memory queue M for N × T frames;
Mark M with timestamps, i.e., M = {M0, . . . ,MT };
Initialize input container Id for N RGB-D frames;
while new frames available from Vd do

Add RGB-D frame fi from Vd to queue Q;
if i%N then

if i < N × T then
Add N frames from Q to queue M ;
Id := {0.5i/NM0} ∪i/Nt=1 {0.5i/N−t+1Mt};

else
Add 50% frames from Q to M and update;
Id := {0.5TM0} ∪Tt=1 {0.5T−t+1Mt};

end
Feed Id to ∆ and Φ to obtain prediction;

end
end

3) Dynamic decision-making mechanism towards proactive
HRCA: Based on human ongoing operation analysis ahead of
schedule, a dynamic decision-making mechanism is adopted to
make proactive robotic planning, which allows a mobile robot
to assist the operator intelligently. The mechanism includes
robotic decision and adaptive control in the world coordinates.
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Fig. 3. The proposed flowchart towards proactive HRCA in the IIoT environment.

TABLE II
SAMPLES OF HUMAN ACTIONS AND ROBOT PLANNING

Production Communication Robotic planning
Part picking/fixing Robotic guiding Obstacle avoidance
Station changing Robotic leaving Vision inspection
Screwing Part selection Toolbox picking/holding/placing
Taping Tool selection Motion following/pausing/leaving

The robotic motion decisions is made for Proactive HRCA
considering operators’ intentions, which are computed in real-
time by edge computing infrastructure. Typical samples of
human actions and robotic planning are listed in Table II.
Human workers may perform these actions in the production
process or during human-robot communication. The collabora-
tive robot can conduct corresponding planning to assist human
operators in an industrial task. All of these are encapsulated
as retrievable knowledge in the IIoT environment. Moreover,
proactive robotic planning is executed in the world coordi-
nates. Similarly to the color-depth camera calibration, robot
hand-eye calibration is conducted to connect visual sensors
and robot kinematics. Robot base motion can be described
as Oi

b = T i
bOw, i = p1, . . . , pn, where i denotes different

locations of the robot base. Similarly, the trajectory of the
robot end operator is denoted by {Op1

ej , . . . , O
pn
ej }, where

j = a1, . . . , an is robot controllers’ action. Programming
with these real-time updated robot states, the robot controller
dynamically adjusts the relating contact force and robot posi-
tion. The calibration ensures the accuracy of robot control and
safety of co-work with human operators in close proximity.

IV. CASE STUDY AND EXPERIMENTAL RESULTS

In this section, a demonstrative case study of Proactive
HRCA for bracket assembly task in aircraft cabins is carried
out in the lab environment, to further evaluate the performance
of our proposed approach.

In current aviation industry, the interior assembly tasks
largely rely on manual operations with domain expertise,
due to the narrow workspace in aircraft cabins. During the
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Fig. 4. Demonstration of proactive HRCA in aircraft bracket assembly.

assembly process, an operator has to constantly pass between
an assembly area and a tool storage area for toolbox change
with heavy workload, which is tedious with low efficiency.
To overcome this challenge, a mobile robot is leveraged to
conduct pick-and-place work in the human-centered assembly.
As demonstrated in Fig. 4, the Proactive HRCA for bracket
assembly is achieved by online operator intention analysis,
robotic dynamic decision and adaptive control stepwisely.

A. Operator action recognition and intention analysis

Operator action recognition and intention analysis is per-
formed by our proposed multimodal transfer learning-based
network, which is the prerequisite to ensure Proactive HRCA.
In our settings, a large-scale human action dataset is firstly
leveraged to evaluate the performance of the proposed mul-
timodal fusion network, including accuracy, efficiency, and
universality. Then, an assembly action dataset (AAD) is de-
veloped to demonstrate that the proposed action recognition
model can estimate ongoing human operations with knowledge
transferring.

1) Evaluation of numerous action recognition: NTU-
RGB+D is an open human action dataset, which covers 60
daily action classes [29]. Two benchmarks of this dataset,
cross-subject (X-sub) and cross-view (X-view) [7], are used
to verify the top-1 recognition accuracy of our model.
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TABLE III
ACTION RECOGNITION PERFORMANCE ON THE NTU-RGB+D DATASET

Model X-Sub X-View
ST-GCN (Skeleton only) [7] 81.50% 88.30%
Glimpse Clouds (RGB only) [30] 89.60% 93.20%
RGB-Skeleton fusion [9] 85.40% 91.60%
IR-Skeleton fusion [31] 91.80% 94.90%
Ours (RGB-Skeleton) 91.10% 96.00%

A1  Part picking

A1

A2 A4

A3 A5

A2  Bracket fixing

A3  Robot guiding

A4  Robot leaving

A5  Station changing

Fig. 5. Samples of industrial operator’ assembly action.

Training. For visual stream, the efficient video partitioning
strategy samples 15 RGB frames, while the skeleton stream
initializes 300 frames. The multimodal fusion model is opti-
mized by stochastic gradient descent with an initial learning
rate of 0.001, which is multiplied by 0.1 after every 10 epochs.

Result. As shown in Table III, compared with single modal-
ity, e.g., RGB or skeleton, our proposed multimodal fusion
method presents an obvious improvement in the recognition
accuracy. Further, the proposed model enables a better fusion
result in comparison with another two feature fusion methods.
Similar to the definition of frames per second (fps), the speed
of our approach can be measured by videos per second (vps).
On a Tesla V100 GPU (16G), our model runs at 17 vps, which
definitely meet the real-time requirement for online action
prediction.

2) Evaluation of action recognition with fewer frames: As
presented in Fig. 5, the AAD contains operators’ operation
for the bracket assembly task. In this case, operators may
carry tools and wear smart equipment (e.g. AR glasses)
to collaborate with a mobile robot. The dataset consists of
256 RGB-D videos captured by Azure Kinect, including five
different operations: A1) part picking, A2) bracket fixing, A3)
robot guiding, A4) robot leaving, and A5) station changing. It
is noted that the time consumption that an operator executes
different operations is normally uncertain. Therefore, these
actions last for two seconds to five seconds in unequal time
lengths. There are around three to five action groups in one
clip on average. Hence, up to 939 action samples are available
in this dataset. The RGB-D video comprises visual frames
(640×576 resolutions) and 3D skeleton poses (25 body joints).

Experimental setting. The AAD is divided into a training
set (467 samples) and the testing one (472 samples). For the
training dataset, we control the percentage µ of annotation data
to simulate the real cases in today’s factories, where data ac-
quired by massive sensor networks are unlabeled. Meanwhile,
settings of optimizer remain the same as the training procedure
of the multimodal fusion model. During the training process,
our semi-supervised model transfers knowledge from the NTU

TABLE IV
ACTION RECOGNITION PERFORMANCE ON THE AAD DATASET

µ A1 A2 A3 A4 A5 mAP
0.05 91.11% 98.55% 92.59% 99.26% 94.23% 95.15%
0.10 97.04% 100.00% 100.00% 100.00% 98.08% 99.02%
0.20 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
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Fig. 6. Early Action Prediction Results for Assembly Operation.

dataset to the assembly pattern, as well as to extract the shared
and domain-invariant features between labeled target domain
and unlabeled source domain.

Results. As shown in Table IV, the mean average precision
(mAP) is utilized to measure the accuracy performance of
our model under different thresholds µ. The results evaluate
the effectiveness of the knowledge transferring ability of the
approach, despite the discrepancy of motion sequences and
visual patterns of surrounding scenarios. Since the transfer
learning-based model aims to infer ongoing operator actions
from visual and skeleton topology, input frames are largely
reduced. The visual stream uses 15 RGB frames as input,
while the skeleton subnet samples 50 frames. Besides, the
model can predict operators’ actions ahead of time with partial
observations of videos. As illustrated in Fig. 6, the proposed
model can output early action prediction results ahead of 30%
timestamps for action video streams. The prediction manner
is practically significant in real industrial scenarios. Different
workers spend inconsistent time for one same operation ex-
ecution. But the content of an industrial operation normally
contains several exact action sequences. In this case, despite
uncertain time consumption for one operation, our model can
predict the operator’s action ahead of time after seeing a short
part of these exactly essential sequences.

B. Towards proactive HRCA in aircraft bracket assembly
On the basis of operation prediction and intention analysis,

Proactive HRCA can be achieved via robotic dynamic decision
and adaptive control in advance.

1) Robotic dynamic decision-making: In the human-
centered aircraft bracket assembly task, the mobile robot can
proactively assist the operator in these plannings. Table V
lists six different cooperation samples. In response to human
actions during the production and communication process,
there are three assisted robot plannings, namely: a) moving
away from the operator to pick toolboxes from storage areas
(RP1), b) moving towards the operator to give him tool-
boxes (RP2), and c) following operators’ motion to help him
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TABLE V
ROBOT PLANNING IN RESPONSE TO OPERATOR ACTIONS

Num. Production Communication Robot planing
1 Part picking (A1) Robot leaving (A4) RP1
2 Part picking (A1) Robot guiding (A3) RP2
3 Bracket fixing (A3) Robot guiding (A3) RP2
4 Bracket fixing (A3) Robot leaving (A4) RP1
5 Station changing (A5) Robot guiding (A3) RP3
6 Station changing (A5) Robot leaving (A4) RP1

hold tools or parts (RP3). To learn these semantic links of
cooperation, Iterative Dichotomiser 3 (ID3) can be utilized
to generate three potential decisions for robot planning. ID3
create a multi-way tree via the largest decision information,
i.e., Ent(D) = −

∑|y|
k=1 pk logpk

2 , where |y| is the number
of decision categories and pk is the proportion of the k-the
decision.

2) System deployment toward proactive HRCA: Under the
IIoT environment, the demonstrative system towards proactive
HRCA for bracket assembly is deployed as Fig. 4. Firstly,
Azure Kinect is employed in the middle cabin to capture the
living video stream at 30 fps. In the online mode, our action
recognition model can predict operators’ intentions ahead of
the schedule. This inference process is conducted on the edge
service and predictions are uploaded to the cloud server in
time. Based on the predictions, the lite decision-making model
(ID3) can generate robot decisions dynamically in the cloud.
The mobile robot, which consists of a Universal Robots UR5
and an AGV base, can obtain the generated robotic control
instruction (e.g., programming position and speed) in advance.
In this way, the robot can proactively assist the operator in
considering his coming operation goals. The proactive HRCA
allows for high-level collaboration and productivity in the
bracket assembly task.

V. DISCUSSIONS

Proactive HRCA allows a mobile robot to learn about op-
erators’ intentions and to conduct corresponding assistance in
advance. From the experimental results, it can be found that by
leveraging the proposed multimodal fusion network, ongoing
human action can be predicted with fewer frames, owing to the
ample information integration in a short timespan. Meanwhile,
the transfer learning-based online prediction algorithm can
estimate operators’ ongoing intentions ahead of time with
contextual information of the incoming data stream, no matter
with short actions (e.g., robot leaving) or long ones (e.g.,
bracket fixing). It allows universal feasibility for all potential
industrial scenarios with knowledge transferring.

This proactive HRCA paradigm is expected to lead to yet
unattained efficiency for flexible production in real industrial
cases, regardless of the complex structures or narrow spaces
in the workspace. Despite these advantages, the computing
efficiency in the inference process of our propopsed model
can be further accelerated by more explorations, for example,
by taking fewer frames (i.e. ten RGB images) as input.

VI. CONCLUSIONS

With the prevailing implementation of IIoT and robot learn-
ing, it is foreseen that proactive HRCA will become dominant

in the next generation smart manufacturing paradigm, which
can largely facilitate flexible production for mass personal-
ization. As the prerequisite, human ongoing action prediction
can be achieved by feeding short-time frames but multi-
modalities information. Then, with knowledge transferring
from daily activities to assembly patterns, the online operation
intention analysis can be performed in advance. Based on
the predictions, the dynamic decision can be further made in
advance to allow a mobile robot to assist the human operators
in a proactive manner. To summarize, the main scientific
contributions of this research lies in two aspects:
1) Proposed a multi-modal fusion network to recognize on-

going human actions with fewer incoming frames. This
overcomes a persistent challenge in industrial action recog-
nition, of which many fine-grained operations lie in, such
as wedging pins and screwing bolts.

2) Introduced an online prediction procedure based on knowl-
edge transferring to predict operators’ ongoing operations
ahead of time even in a new industrial scenario. This
work allows quick model deployment with less supervised
information, which can also be applied to many other man-
ufacturing scenarios, in lack of annotations from massive
sensor data.

Moreover, based on the comparative results by testing
on both daily activity dataset and assembly operations, our
proposed action recognition model achieves competitive per-
formance than other existing ones. Apart from these achieve-
ments, several potential future research directions are also
highlighted here, including 1) developing an adaptive robot
control program (precision location and tracking) considering
human safety, availability of resources, and the required time
of operation holistically, 2) accelerating the training process of
the model by leveraging all the available distributed computing
resources in the IIoT environment, i.e., federated learning,
and 3) augmenting human intelligence, e.g., AR glasses, to
well equip operators for collaborating with robots in a more
cognitive manner.
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