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A B S T R A C T   

The loss of complexity in ageing hypothesis (LOCH) has found support from EEG studies, most of which adopted 
signal-domain complexity measures. The present study adopted the largest Lyapunov exponent (LLE) to measure 
complexity from a nonlinear dynamical systems perspective. A total of 144 participants were included and 
divided into young, young-old and old-old groups. Both sensor-space and source-space results showed signifi-
cantly lower LLE for older than younger adults. The age-related differences were region-dependent, being most 
prominent in the frontal region, followed by bilateral temporal regions. The occipital region showed non- 
significant differences. Significant reduction of LLE in the posterior cingulate was also observed by virtue of 
the source-space analysis. We also evaluated the relationships between LLE and other complexity measures. The 
most intriguing result was the negative correlation between LLE and Lempel-Ziv complexity (LZC). The age- 
related decrease in LLE indicated a higher regularity in dynamics, while the higher LZC indicated a higher 
randomness in the signal domain. The new findings support the LOCH by demonstrating the simultaneous in-
crease in regularity and randomness.   

1. Introduction 

Ageing is usually accompanied by deficits in functional components 
and alterations of interactions between these components (Lipsitz and 
Goldberger, 1992), and has been described as a consequence of reduced 
physiological complexity in all levels, including molecular, cellular, 
organismic and behavioral (Kyriazis, 2003; Sehl and Yates, 2001). The 
loss of complexity in ageing hypothesis (LOCH) postulates that the 
deterioration above is manifested by the decrease in complexity in the 
physiological signals (Lipsitz and Goldberger, 1992; Sleimen-Malkoun 
et al., 2014). 

The development of LOCH was closely related to the emergence of 
chaos theory. To investigate how the LOCH is manifested in the ageing 
brain, techniques from nonlinear dynamics were applied to identify the 
presence of chaos in EEG signals (Pritchard et al., 1991; Meyer-Lin-
denberg, 1996; Anokhin et al., 1996). The presence of chaotic activities 

suggests nonlinear interactions among functional components, which is 
a sign of healthy physiologic function and indicates brain plasticity 
(Coffey, 1998; Goldberger et al., 2002a). Early studies suggested a linear 
increase in complexity in developmental stages, from childhood to 
adulthood and to old age (up to age of 60) (Meyer-Lindenberg, 1996; 
Anokhin et al., 1996). Higher spatial complexity was reported in older 
than younger adults in cross-sectional studies (Pierce et al., 2000, 2003). 
However, there were also opposite findings (Pritchard et al., 1991; Bruce 
et al., 2009). Dimensional complexity and nonlinear coupling were 
found to be in opposite relationship (Meyer-Lindenberg, 1996; Müller 
and Lindenberger, 2012), suggesting the heterogeneity of different 
complexity measures. Later studies with extended age range from 
childhood to the age of 80s revealed a more complicated trajectory, 
showing inverted U-shaped trends of complexity that peak around the 
age of 60s (Fernández et al., 2012; Zappasodi et al., 2015; Shumbaya-
wonda et al., 2018). 
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Although there exists a decent number of studies on complexity, a 
great variety of complexity measures was adopted, raising the diffi-
culties in interpretations and comparisons. Early measures including 
correlation dimension (CD) (Pritchard et al., 1991) and the largest 
Lyapunov exponent (LLE) (Adeli et al., 2007; Khoa et al., 2012; Dauwels 
et al., 2011; Jeong, 2004) were stemmed from chaos and nonlinear 
dynamics theory. Information theory based measures like sample en-
tropy (SampEn) (Bruce et al., 2009; Richman and Moorman, 2000; Jia 
et al., 2017) and Lempel-Ziv complexity (LZC) (Fernández et al., 2012; 
Shumbayawonda et al., 2018; Lempel and Ziv, 1976; Aboy et al., 2006; 
McBride et al., 2014) have been gaining popularity in recent years due to 
their relatively low computational cost. In the spectral domain, the 
presence of a 1/f slope in the power spectrum is also a characteristic of a 
complex system, and has been related to ageing (He et al., 2010; Voytek 
et al., 2015). However, measures stemmed from nonlinear dynamics are 
fundamentally different from others in the sense that they are derived by 
assuming the existence of a dynamical system that describes the dy-
namics of EEG signals. Although the true dynamics may never be known, 
one could apply the Takens’s Embedding theorem to reconstruct a to-
pologically equivalent state space and corresponding dynamics (Takens, 
1981; Krakovská et al., 2015). As such, topologically invariant measures 
like CD and LLE can be estimated from the reconstructed dynamics. In 
contrast, other measures like SampEn and LZC directly operate on the 
signal domain, without assuming an underlying nonlinear dynamical 
system. Therefore, it is questionable if the complexity inferred by these 
different measures are describing the same construct. 

Another important issue is the multiple synonyms of complexity 
found in the literature. In many studies, complexity has been made 
synonymous with “variability”, “irregularity”, “randomness”, etc. 
(Fernández et al., 2012; Shumbayawonda et al., 2018; Jia et al., 2017; 
Jeong et al., 2001; Abásolo et al., 2006). When LOCH was proposed, 
complexity was defined as the extent to which the underlying system 
generates aperiodic fluctuations that resemble nonlinear chaos (Lipsitz 
and Goldberger, 1992; Goldberger et al., 2002a). The breakdown of 
complexity could lead to the emergence of a characteristic frequency, or 
completely uncorrelated randomness (Goldberger et al., 2002a; Lipsitz, 
2004). As such, increasing randomness could lead to both increase or 
decrease in complexity. In short, complexity describes a state between 
order and disorder (Chialvo, 2018). Treating these terms equally is akin 
to picking one side of the story and may cause confusions. 

The present study has two major objectives. The first is to evaluate 
the LOCH in EEG signals via the LLE. Although LLE is an “old” measure 
that has been investigated in the diagnosis of various diseases such as 
epilepsy (Adeli et al., 2007), Parkinson’s disease and dementia (Jeong, 
2004; Jeong et al., 1998, 2001; Stam et al., 1994, 1995; 1995), the 
modulation of LLE in normal ageing has remained unclear. To our 
knowledge, only one study has reported the decrease of LLE in frontal 
regions from infancy to adulthood (Meyer-Lindenberg, 1996). The sec-
ond objective is to investigate the age-related trends of other complexity 
measures that quantify complexity from the signal domain, and the re-
lationships between LLE and these measures. 

2. Methods 

2.1. Data collection 

145 participants that were native Cantonese speakers without known 
neurological disorders were recruited. Younger adults were under-
graduate or postgraduate students recruited from Hong Kong Poly-
technic University, older adults (age ≥60) were recruited via the Prince 
of Wales hospital and the Institute of Active Ageing in Hong Kong 
Polytechnic University. All older adults underwent the Montreal 
Cognitive Assessment Hong Kong Version (Wong et al., 2009) and were 
identified as cognitive normal according to the 7th percentile cutoff of 
normative data, after adjustment for education years (Wong et al., 
2015). 

Three minutes of resting-state EEG in eyes-open and eyes-closed 
condition were collected for each participant. EEG signals were ac-
quired using a 32-channel BioSemi ActiveTwo System with Ag/AgCl 
electrodes, digitized at a sampling rate of 2048Hz. Horizontal and ver-
tical electrooculograms (HEOG and VEOG) were recorded using two 
pairs of electrode placing near the two outer canthi and above or below 
the left eye respectively. Participants sat comfortably about 70 cm in 
front of a monitor. In the eyes-open condition, participants were asked 
to fixate on a cross at the center of the screen. In eyes-closed condition, 
participants were asked to relax and avoid any movements. Both con-
ditions were recorded in a dim room. Written signed informed consent 
was obtained from all participants. All experimental procedures were 
approved by the Ethical Review Committee, Hong Kong Polytechnic 
University. 

2.2. Preprocessing of EEG signals 

The signal processing algorithms were implemented using custom 
scripts in Python with the MNE-Python library (Gramfort et al., 2013). 
The acquired EEG signals were downsampled to 512 Hz, band-pass 
filtered from 1 to 45 Hz, and average referenced. Independent compo-
nent analysis (ICA) was applied to remove eye artifacts. Specifically, 
Spearman correlation was computed between each extracted indepen-
dent component and the VEOG/HEOG. The correlation values were 
transformed to z-scores, and the components z-score values higher than 
3.0 were excluded. After eyes artifacts removal, the EEG signals were 
visually inspected to filter out signals that are contaminated by body 
movements which are several orders of magnitude larger than the EEG 
signal. One participant was excluded from the study, resulting in 144 
participants in total in the statistical analyses. Their demographic in-
formation will be described in later sections. 

2.3. Extracting complexity measures 

The present study included 4 different complexity measures: largest 
Lyapunov exponent (LLE), Lempel-Ziv complexity (LZC), 1/f slope of 
power spectrum (1/f slope) and the sample entropy (SampEn). Fig. 1 
provides an overview of the four selected measures and highlights the 
differences between LLE and the other complexity measures. Each 
complexity measure was computed for each channel and participant. 
The complexity values from 32 channels were averaged over 6 scalp 
regions, as shown in Fig. 2a: Prefrontal (FP: Fp1, Fp2, AF3, AF4); fron-
tocentral (FC: F3, Fz, F4, FC1, FC2); centroparietal (CP: C3, Cz, C4, CP1, 
CP2, P3, Pz, P4); parieto-occipital (PO: PO3, PO4, O1, Oz, O2); left 
temporal (LT: F7, FC5, T7, CP5, P7) and right temporal (RT: F8, FC6, T8, 
CP6, P8). These scalp regions will be referred as sites hereafter to 
emphasize the fact that we are referring to the sensor-space but not the 
source-space. 

2.3.1. Largest Lyapunov exponent (LLE) 
Various methods were proposed for computing the largest Lyapunov 

exponent, including Wolf’s method (Wolf et al., 1985), Rosenstein’s 
method (Rosenstein et al., 1993), etc. The present study adopted Rose-
nstein’s method as it requires much less data points, is faster to compute 
and is more robust to noise as compared with Wolf’s method. Prior to 
computing LLE, Takens’s delay-embedding method was applied to 
embed the target signal into a state space of specified embedding 
dimension (Takens, 1981). After reconstructing the dynamics, the 
nearest neighbor of each point in the trajectory is identified. As the 
system evolves over time, the distance between each point and its 
nearest neighbor increases exponentially. An illustration is given as in 
Fig. 1a–c. Mathematically, for each point and its nearest neighbor, the 
divergence of their distance can be expressed as: 

d(i) ≈ Ceλ1(iΔt) (1) 
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where C, i and Δt are the initial separation between neighbors, index of 
time step and sampling period respectively. Applying logarithm on 
equation (1), one has: 

ln d(i) ≈ ln C + λ1(iΔt) (2) 

The LLE is approximated as the average rate of divergence across all 

pairs of points and their corresponding nearest neighbors. To determine 
suitable delay and embedding dimension of EEG signals, the recom-
mendation is to estimate the delay first, and followed by the estimation 
of embedding dimensions (Krakovská et al., 2015; Adeli et al., 2007). 
Initially, the delay was determined by the first local minimum of the 
mutual information between delayed components of the EEG signal 
(Supplementary Fig. S1a). The embedding dimension was then 

Fig. 1. Illustrations on the four complexity measures investigated in this study. This set of figures attempts to point out the differences between LLE and other 
measures in the sense that LLE is computed in the embedded state space but other measures are not. a, Description of the delay-embedding. Given a time series x of 
length N. A new, multivariate time series of dimension m is formed by vectors yi = [yi, yi+1, …, yi+(m− 1)τ] for i = 1, …, N − τ(m − 1), each yi is a state vector of the 
reconstructed state space. b, Left: The reconstructed state space of a Lorenz system as an example. Right: The corresponding Lorenz system equations. c, the enlarged 
part of the black square in b. The two red dots represent a random pair of point and its nearest neighbor, d(t1) is the distance between them at time t1. When time 
evolves to t2, the distance between the two points increase exponentially. The LLE describes the mean divergence rate over all pairs of such combinations. d, A 
demonstration on the calculation of LZC. A signal is binarized into sequence of 0s and 1s according to its median. The number of subsequences needed to represent 
the whole sequence is calculated by the algorithm. e, A demonstration on the calculation of 1/f slope. The blue line represent the PSD of the Pz channel in the log 
scale from one of the participants. The orange line is fitted via linear regression with the PSD from 2 to 30 Hz excluding the alpha band (8–13 Hz). The 1/f slope is the 
slope of the fitted line. f, An intuitive explanation on the idea of the sample entropy. By selecting two random points xi and xj on the signal, the question to be asked is 
if [xi, xi+1] is close to [xj, xj+1], would [xi, xi+1, xi+2] be close to [xj, xj+1, xj+2] too? A higher probability corresponds to lower sample entropy. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 2. The scalp regions defined and the grand-averaged LLE topographies. a, the 32-channel montage used in the present study. The channels were grouped into 6 
scalp regions (referred as site in the main text): prefrontal (FP: Fp1, Fp2, AF3, AF4); frontocentral (FC: F3, Fz, F4, FC1, FC2); centroparietal (CP: C3, Cz, C4, CP1, CP2, 
P3, Pz, P4); parieto-occipital (PO: PO3, PO4, O1, Oz, O2); left temporal (LT: F7, FC5, T7, CP5, P7) and right temporal (RT: F8, FC6, T8, CP6, P8). b, The LLE to-
pographies in eyes-open condition, averaged within age group. c, The LLE topographies in eyes-closed condition, averaged within age group. 
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determined using the Cao’s method (Cao, 1997) (Supplementary 
Fig. S1b), the dimension in which the changes of average distances be-
tween nearest neighbors approach to 0 was chosen. The choices of delay 
and embedding dimension were 19 and 20. Since the computation of 
LLE requires a linearly increasing region in the average divergence be-
tween nearest neighbors against time (Rosenstein et al., 1993), the 
divergence plot was visualized and checked accordingly. However, for 
delay equal to 19, no linear increasing region but oscillating behavior 
was found in the divergence plot (Supplementary Fig. S1c), similar to 
the example shown in the study that introduced the Rosenstein’s algo-
rithm (see Figure 6 of Rosenstein et al., 1993) when the delay parameter 
was too extreme. As such, we then tried to lower the value of delay until 
the average divergence curve no longer exhibited oscillating behaviors. 
Finally, the second largest delay parameter which did not result in 
oscillating behaviors was chosen as it would be more conservative and 
thus guard against potential oscillating behaviors in the divergence 
curve (Supplementary Fig. S1d). The final choices of delay and 
embedding dimension were 4 and 20, respectively. The same parameters 
were applied across all participants to reduce variances originated from 
the parameter choices. 

However, there exists ambiguity in identifying the linear region. In 
this study, we adopted the following process to compute the slope. A 
sliding window of 5 samples (≈ 0.01s) and stride of 1 sample was 
applied to compute multiple slope instances. The LLE was estimated as 
the average slope. Slopes of absolute values below 1 were excluded from 
the computation in order to avoid the saturated flat region that might 
lead to underestimation of the average slope. 

2.3.2. Lempel-Ziv complexity (LZC) 
The computation of the LZC followed the original algorithm devel-

oped in 1976 (Lempel and Ziv, 1976). The first step is to convert the 
target signal (the EEG signal) into a symbolic, binary string. The oper-
ation can be written as: 

c(t) =
{

1, if s(t) > T
0, otherwise (3)  

where c(t), (s(t) and T are the derived binary sequence, the original 
signal and a pre-defined threshold (equal to the median in the present 
study) respectively. The resultant string is then parsed from left to right 
and the LZC is defined as the number of distinct patterns identified. 
Consider the example sequence be 11001010. The algorithm would 
identify 3 distinct segments as 1.10.0 such that the 3 segments can 
effectively represent the whole sequence. The LZC of the sequence is 3. 
However, the resulted LZC depends on the length of the sequence. An 
normalized version of LZC, which is independent of sequence length, is 
expressed as (Fernández et al., 2012): 

Cnorm = Craw
log 2n

n
(4)  

where n is the signal length and Craw and Cnorm are the raw and 
normalized LZC respectively. The above process is illustrated in Fig. 1d. 
LZC hereafter refers to the normalized LZC. While often being inter-
preted as a complexity measure (Fernández et al., 2012; Shumbaya-
wonda et al., 2018), LZC was originally proposed to reflect randomness 
(Lempel and Ziv, 1976). 

2.3.3. 1/f slope 
Prior to the calculation of 1/f slope, the EEG signals were segmented 

into 2-s epochs. Epochs with exceptionally high peak-to-peak amplitude 
(z-score > 3) were excluded. The power spectral density of each epoch 
was computed using Welch’s method (50% overlapped Hamming win-
dow and 1024-point FFT). The 1/f slope was calculated by fitting linear 
regression on log power against frequency on the averaged PSD. The 
frequency range to calculate the 1/f slope was between 2 and 30 Hz and 
alpha band (8–13 Hz) was excluded from the fitting following a previous 

study (Voytek et al., 2015). An example is shown in Fig. 1e. The 1/f slope 
was suggested to reflect the neural noise (Voytek et al., 2015). A flatter 
slope (less negative) might indicate a lower signal-to-noise ratio in 
neuronal communications (Voytek et al., 2015; Cremer and Zeef, 1987). 

2.3.4. Sample entropy (SampEn) 
To calculate SampEn, we need to define a length m for extracting 

template vectors and a threshold r to determine if a pair of template 
vectors are close to each other. The SampEn is the negative log proba-
bility of two close (Chebyshev distance between vectors less than a 
threshold d) template vectors (xm(i), xm(j)) remaining close when the 
length of the template vectors m is increased by 1 (xm+1(i), xm+1(j)). A 
simplified illustration is shown in Fig. 1f. Let Am(r) and Bm(r) be the 
probability that a pair of template vectors of length m and m + 1 are 
close to each other respectively. The SampEn is defined as (Richman and 
Moorman, 2000): 

− ln
(

Am(r)
Bm(r)

)

(5) 

In the present study, m was chosen as 2 and r was chosen as 0.2 times 
the standard deviation of the target EEG signal, following similar pa-
rameters used in previous studies (Abásolo et al, 2005, 2006). A larger 
SampEn is generally interpreted as higher irregularity or complexity 
(Bruce et al., 2009; Jia et al., 2017). 

2.4. Statistical analysis 

The statistical analysis comprised two parts. First of all, the 144 
participants were divided into three age groups: young (n = 55 (30F), 
mean age 21.5 ± 2.07, range 18.1 − 26.0), young-old (n = 62 (40F), 
mean age 65.7 ± 2.97, range 60.1 − 69.9) and old-old (n = 27 (12F), 
mean age 73.8 ± 3.89, range 70.0 − 85.9). A 3-way 3 × 6 × 2 mixed 
ANOVA (age group: young, young-old and old-old; site: PF, FC, CP, PO, 
LT and RT; eyes condition: open and closed) was fitted with gender 
(female or male) as a covariate. The age group was a between-subject 
factor, while site and eyes condition were within-subject factors. The 
model was fitted with the R (R Core Team, 2020) package lme4 (Bates 
et al., 2015). The Q-Q plot of the dependent variable (LLE) and the re-
siduals versus fits plot of the fitted models were visually inspected. 
Significant main and interaction effects were investigated post hoc with 
ANOVA and 2-sided pairwise t-test with estimated marginal means 
(Lenth, 2020). Greenhouse-Geisser correction was applied if the sphe-
ricity assumption was not met. Multiple comparisons were corrected by 
Holm’s method (Holm, 1979). 

The second part was correlation analysis to assess the relationship 
between complexity measures and age, as well as the relationship be-
tween different complexity measures. Firstly, the Spearman rank cor-
relations between each complexity measure with age were calculated to 
reveal the age-related trend. The correlation was calculated separately 
for the young and old group (merging young-old and old-old group). 
Secondly, the correlation and partial correlation between each pair of 
the four complexity measures were computed for each age group to 
reveal how different complexity measures were related with each other. 
All correlation results were corrected for multiple comparisons by 
Holm’s method (Holm, 1979). 

In addition to the main analysis on age-related differences in 
complexity, the relationship between EEG alpha activities and LLE was 
examined to guard against the possibility that any age-related difference 
observed could be explained by the alpha activities (alpha power and 
alpha blocking effect). To calculate the alpha power, the EEG signals 
were first segmented into 2-s epochs and then the power spectral density 
(PSD) of each 2-s epoch was calculated using the Welch’s method (with 
50% overlapped Hamming window and 1024-point FFT). The alpha 
band was defined from 8 to 13 Hz, the absolute alpha power was defined 
as the area under the PSD curve. The alpha blocking effect was defined 
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as the differences between eyes-closed and eyes-open absolute alpha 
power. Spearman’s correlations between LLE and alpha power were 
calculated in both eyes conditions. Also, a mixed effect model with the 
alpha power as a covariate was fitted. Likelihood ratio test was per-
formed to compared the new model against the original model. Lastly, 
correlation between eyes condition differences in LLE and alpha block-
ing was assessed. 

2.5. Additional source-space analysis 

The major statistical analyses described in section 2.4 were based on 
the complexity measures calculated from the sensor-space EEG signals. 
Any site effects revealed could only be interpreted as potential differ-
ences in the underlying sources. To gather more evidence, source 
localization of the EEG signals was performed using the exact low- 
resolution brain electromagnetic tomography (eLORETA; Pascual-Mar-
qui, 2007). It provides unbiased source estimation in the presence of 
structured noise and allows the localizations of deep structures such as 
the cingulate cortex. As we did not have the individual T1 MRI scan from 
the participants, the forward operator was calculated using template 
MRI head model fsaverage available from the MNE-Python package 
(Gramfort et al., 2013). The recounstructed sources were parcellated 
according to the Desikan-Killany atlas and the parcels were grouped into 
6 different ROIs, including frontal, parietal, temporal, occipital, anterior 
and posterior cingulate (Desikan et al., 2006; Klein and Tourville, 2012, 
see Supplementary Table S10). The source time series were then aver-
aged across all voxels in an ROI, LLEs were computed from averaged 
time series. Similarly, a 3-way 3 × 6 × 2 mixed ANOVA (age group; ROI; 
eyes condition) was fitted with gender (female or male) as a covariate. 

3. Results 

3.1. Averaged effects of age group, site and eyes condition 

The type III ANOVA results (Supplementary Table S1) shows that the 
3 main effects of age group (F(2, 138) = 6.865, p < .001), site (F(3.67, 
507.15) = 121.736, p < .001) and eyes condition (F(1, 138) = 198.726, 
p < .001) were all significant. Post-hoc comparisons were conducted to 
examine the main effects and guide further analyses on higher order 
interactions. The pairwise comparisons between age group (Supple-
mentary Table S2) showed that the averaged LLE of young (t(138) =
3.703, p < .001) and young-old (t(138) = 2.598, p = .021) group were 
significantly higher than that of old-old group. Notably, the averaged 
LLE was not significantly different between the young and young-old 
group (t(138) = 1.398, p = .164). Pairwise comparisons (Supplemen-
tary Table S3) showed that the grand-averaged LLE was significantly 
lower (t(138) = − 14.097, p < .001) in eyes-open than eyes-closed 
condition. The main effect of site was illustrated by the averaged LLE 
topographies shown in Fig. 2b–c. In brief, the LLEs were similar within 
two groups of sites: (1) FC, CP and PO; (2) PF, LT and RT, with the LLEs 
of the latter group being lower than those of the former group. Besides 
the significant main effects, the highest order significant interactions 
were two 3-way interactions, with the first between age group, eyes 
condition, and site, and the second between gender, eyes condition and 
site. Since gender effect is not the primary interest of the present study, 
the focus was on the first interaction. 

3.2. Interaction between age group, eyes condition and site 

The 3-way interaction between age group, eyes condition and site 
(Supplementary Table S1) was significant (F(6.07, 418.52) = 3.029, p =
.006). From the interaction plot shown in Fig. 3a–b, obvious age-related 
reductions were present in both eyes conditions as the three lines were 
separated by an observable margin. Generally, LLE would decrease as 
age increased, but the differences depended on the site, which contrib-
uted to the interaction effect. For example, in eyes-open condition, only 

in LT and RT site were the LLEs of young-old group similar to the young 
group. Also, as reported above, the averaged LLEs were higher in eyes- 
closed than eyes-open condition. 

To address our major question on how LLE is modulated by ageing, 
we followed up by a 2-way ANOVA in each eyes condition (Supple-
mentary Table S4). Significant age group by site interaction was found in 
both eyes-open (F(6.48, 456.89) = 4.596, p = .001) and eyes-closed 
conditions (F(7.49, 528.19) = 2.407, p = .017). Follow-up 1-way 
ANOVA revealed significant or marginally significant simple main ef-
fects of age group (Supplementary Table S5) in most of the ROIs except 
in the PO site for both eyes-open (F(2, 141) = 1.141, p = .322) and eyes- 
closed conditions (F(2, 141) = 1.465, p = .235). The age group main 
effect was marginally significant only for LT of eyes-open condition (F(2, 
141) = 2.615, p = .077) and RT of eyes-closed condition (F(2, 141) =
2.416, p = .093). Pairwise comparisons on estimated marginal means 
from the 3-way ANOVA model were conducted. 

In eyes-open condition (Fig. 3c, Supplementary Table S6), the young 
group showed significantly higher LLE than the old-old group in PF (p <
.001) and FC (p < .001), while such differences were only marginally 
significant in LT (p = .081) and RT (p = .059). Between young and 
young-old adults, significantly higher LLE in the young group was again 
found in PF (p = .021) and FC (p = .014), but LLEs in both temporal sites 
did not differ significantly. Among older adults, the young-old group 
was found to possess significantly higher LLE than old-old group in PF (p 
< .001) and FC (p = .009), while such differences were only marginally 
significant in LT (p = .084) and RT (p = .059). In eyes-closed condition 
(Fig. 3d, Supplementary Table S7), the young group showed signifi-
cantly higher LLE than the old-old group in PF (p = .003), FC (p = .003), 
CP (p = .021) and LT (p = .003), such difference was marginally sig-
nificant in RT (p = .075). Between young and young-old adults, signif-
icantly higher LLE in young adults was only found in FC (p = .049). 
Among older adults, the young-old group exhibited significantly higher 
LLE than the older-old group in PF (p = .017), and LT (p = .006), such 
difference was marginally significant in RT (p = .098). 

The Spearman’s rank correlations between alpha power and LLE 
within different age groups and eyes conditions were shown in Sup-
plementary Fig. S2. Significant correlations were found only in eyes- 
open condition: in the young group, significant correlation was found 
in the CP site (ρ = .450, p = .004); in the old-old group, significant 
correlations were found in CP (ρ = .630, p = .003) and PO (ρ = .570, p =
.010) sites. The likelihood ratio test comparing the original and the 
updated mixed effect model with alpha power as covariate (Supple-
mentary Table S8) showed no significant improvement. Concerning the 
alpha blocking effect, no significant correlation between eyes condition 
differences in LLE and alpha blocking effect were found (Supplementary 
Table S9). 

3.3. Additional source-space analysis 

The results of the source-space ANOVA were shown in Supplemen-
tary Tables S11–13. Corresponding interaction plots and post-hoc pair-
wise compairsons results were shown in Supplementary Fig. S3. The 
result was consistent with our sensor-space findings in that the 3-way 
interaction between age group, ROI and eyes condition was also sig-
nificant (F(4.91, 338.56) = 3.829, p = .002). In eyes-open condition, the 
old-old group showed significantly lower LLE than both the young (p =
.005) and young-old groups (p = .008) in the frontal ROI, while no 
significant differences were found between young and young-old group. 
Significant differences between young group and both young-old (eyes- 
open: p = .057; eyes-closed: p = .009) and old-old groups (eyes-open: p 
= .027; eyes-closed: p = .001) were found in the posterior cingulate. 

3.4. Correlation between age and complexity measures 

Correlation analysis between age and complexity measures was 
conducted to examine the age-related trends of complexity measures as 
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well as their sensitivity towards ageing. While the correlations in both 
young and older adults were calculated, only the results from older 
adults are reported here since our focus is on ageing. The numerical 
correlation results in older adults are summarized in Fig. 4a–b, detailed 
scatter plots and numerical results can be found in Supplementary 
Figs. S4–7 and Table S14. Results on the young group are provided in 
Supplementary Figs. S8–11 and Table S15 for reference. In eyes-open 
condition, significant negative correlation between LLE and age in PF 
(p = .027), FC (p = .021) and RT (p = .024) could be observed. All other 
three measures showed positive effect sizes but only 1/f slope showed 
significant correlation at PF (p = .037). In eyes-closed condition, sig-
nificant correlations were found only in temporal sites. Significant 
negative correlation was found between LLE and age in LT (p = .047) 
and RT (p = .003) sites. On the other hand, LZC (p = .027) and SampEn 
(p = .029) was positively correlated with age in RT site. 

3.5. Correlation between the complexity measures 

Both correlation and partial correlation analyses were conducted to 
determine the relationship between complexity measures. Fig. 5 showed 
the correlation matrix between the measures, grouped according to age 
group and eyes condition, detail numerical results can be found in 
Supplementary Tables S16–17. The LLE was found to be negatively 

correlated (p < .001) with all other three complexity measures with high 
effect sizes (averaged Spearman’s ρ across eyes conditions: young: 
-0.850, young-old: -0.844, old-old: -0.820), while the other three 
complexity measures were all positively correlated (p < .001) with each 
other (averaged Spearman’s ρ across eyes conditions: young: 0.830, 
young-old: 0.903, old-old: 0.820). The same ANOVA described in sec-
tion 2.4 was also conducted on LZC as the dependent variable to give a 
better picture on the opposite patterns between LLE and LZC; the 
interaction plots and pairwise comparisons results were shown in Sup-
plementary Fig. S12. While the detailed statistics would not be dis-
cussed, the patterns of age-related differences were clearly opposite to 
that of the LLE. 

The partial correlation showed different patterns in different pop-
ulations and eyes conditions. In eyes-open condition, for all three age 
groups, the negative correlation between LLE and LZC (p < .001) and the 
positive correlation between LZC and SampEn remained significant (p <
.001) after factoring out other complexity measures. LLE remained 
negatively correlated with 1/f slope (p = .03) only in the young group; 
SampEn became positively correlated with LLE (p = .01) only in the old- 
old group. In eyes-closed condition, the positive correlation between 
LZC and SampEn remained significant (p < .001) in all three age groups. 
The correlation pattern of the young group was similar to that of the old- 
old group. In contrast, the young-old group did not show significant 

Fig. 3. Interaction plots by eyes condition and post-hoc comparison results. a, Interaction plot in eyes-open condition, each point corresponds to the estimated 
marginal means of each age group in each region, shaded intervals indicate the 95% confidence intervals of each estimate. b, Same as a but in eyes-closed condition. 
c, Post-hoc comparisons of LLE between age groups in eyes-open condition. Jittering was applied horizontally to improve clarity. d, same as c but in eyes-closed 
condition. c and d were further divided into six subfigures, corresponds to six sites: PF (prefrontal); FC (frontocentral); CP (centroparietal); PO (parieto-occipi-
tal); LT (left temporal); RT (right temporal). The significance level is described as: (†: p < .1, *: p < .05, **: p < .01, ***: p < .001). 
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Fig. 4. a, Spearman’s rank correlations and significance between age and complexity measures in eyes-open condition, a cross in a cell indicates non-significance (p 
> .05). b, same as a but in eyes-closed condition. c, scatter plot showing the relationship between LLE and age in RT in the eyes-closed condition. The corresponding 
Spearman’s rho and p value is shown on the top right hand corner. d, same as c but the plot is illustrating the relationship between LZC and age. 

Fig. 5. Spearman’s rank correlation between complexity measures. Each row corresponds to young, young-old and old-old group from left to right. Each column 
corresponds to eyes-open and eyes-closed condition from top to bottom. For each correlation matrix, upper triangle: partial correlation; lower triangle: ordinary 
correlation. A cross in a cell indicates non-significance (p ≤ .05). 
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correlation between LLE and 1/f slope as the other two groups. Instead, 
the negative correlation between LLE and LZC (p = .004), and the pos-
itive correlation between 1/f slope and SampEn remained significant (p 
= .001), which were not observed in the other two groups. 

4. Discussion 

4.1. Age-related differences in LLE 

Our sensor- and source-space results suggest heterogeneous age- 
related reduction in LLE across different brain regions. As revealed 
from the pairwise comparisons results, the degree of reduction could 
generally be categorized into four different levels. Firstly, the reduction 
was the most pronounced in prefrontal and frontocentral sites, in the 
sense that they were more likely to differ between any two of the three 
age groups. In particular, significant differences among all three groups 
were found in eyes-open condition. The source-space analysis revealed 
significant differences in the frontal ROI, suggesting that the sensor- 
space reduction in frontal sites is originated from the frontal lobe. Sec-
ondly, differences were found only between old-old and the other two 
groups for temporal regions. Specifically, the young-old and old-old 
group significantly differed in both sensor- and source-space in the 
eyes-closed condition. No significant differences were observed between 
young and young-old group regardless of eyes conditions, indicating a 
relatively less reduction as compared with the frontal lobe. Thirdly, in 
the parietal and occipital regions, both sensor- and source-space ana-
lyses revealed no significant differences between any two of the three 
age groups, indicating the relatively stable LLEs among age groups. 
Lastly, the source-space analysis revealed significant differences in LLE 
between the young and the two old groups, but not between the two 
older groups in the posterior cingulate. This result suggested a decline in 
complexity in the deep structure of the brain, and the decline might start 
from an earlier age before senescence. 

For our sensor-space correlation analyses that combined the two 
older groups, significant negative correlations were found in temporal 
sites in both eyes conditions (eyes-open: left temporal, eyes-closed: 
bilateral temporal), while correlations in prefrontal and frontocentral 
sites were significant only in eyes-open but not eyes-closed condition. 
Taking together the ANOVAs and the correlation results, the present 
study suggests that the onset and the degree of decline in prefrontal and 
frontocentral sites appears to be earlier and more severe than temporal 
and centroparietal sites. The decline in parieto-occipital site is the 
slowest in the sense that no significant differences among all three 
groups can be found regardless of eyes condition. Also, the complexity 
loss in older adults is more prominently observed in the eyes-open than 
eyes-closed condition, consistent with a previous study which reported 
that the functional connectivity was associated with age only in eyes- 
open but not eyes-closed condition (Agcaoglu et al., 2019). We specu-
late that it is because the eyes-open condition is a more controlled and 
demanding condition as compared with eyes-closed condition, which is 
often related to mind wandering (Mason et al., 2007; Vago and Zeidan, 
2016; Diaz et al., 2013). 

The most significant complexity loss at prefrontal and frontocentral 
regions could be related to the structural decline in ageing. In particular, 
the shrinkage of the frontal lobe was the steepest compared to other 
lobes (Raz et al., 1997; Dennis and Cabeza, 2008). Our results is 
consistent with previous structural studies as the most significant re-
ductions were observed in the frontal sites. Integrating with a previous 
study that revealed the age-related reductions in LLE from infancy to 
adulthood (Meyer-Lindenberg, 1996), it is possible that the frontal sites 
show monotonic decline in LLE over the life span without limiting to the 
age range investigated in the present study. More importantly, the 
frontal lobe has been extensively studied and regarded as the central hub 
of executive functions (EF) (Lacreuse et al., 2020). The robust rela-
tionship between the prefrontal cortex (PFC) and EF was confirmed by 
lesion (Alvarez and Emory, 2006) and structural neuroimaging studies 

(Yuan and Raz, 2014). The anatomical and functional deterioration of 
frontal lobe are suggested to be the cause of cognitive deficits in older 
adults, known as the frontal lobe hypothesis (West, 2000; Cabeza and 
Dennis, 2013). Also, the source-space analysis revealed significant dif-
ferences in the posterior cingulate, which is a key region of the 
default-mode network (DMN). Some previous studies have also reported 
the relationships between sample entropy and the BOLD activity of 
posterior cingulate (Yang et al., 2013), as well as the within-network 
conenctivity of DMN (Mevel et al., 2013). The DMN has been associ-
ated with cognitive processes and it is believed to play an important role 
in suppressing task-unrelated inputs (Grieder et al., 2018). Ageing could 
reduce the activity in the DMN, its within-network connectivity and in 
turns affect the cognitive performance of older adults (Mevel et al., 
2011, 2013; Hansen et al., 2014). Therefore, we speculate that our re-
sults might also reflect the decline in cognitive abilities in older adults. 
However, further investigation is needed to confirm the connections 
between LLE and both structural and cognitive factors. 

A few previous studies reported relatively stable LLE at the occipital 
site during development (Meyer-Lindenberg, 1996) and in dementia and 
AD (Jeong et al, 1998, 2001). In particular, the occipital LLE was not 
significantly different even between AD patients and normal older 
adults, while significant decline was observed in other sites. In EEG 
studies, the occipital alpha is a hallmark of resting-state activities and 
related to memory, attention and other cognitive abilities (Klimesch, 
1999, 2012). It was reported to decline in ageing and cognitive 
impairment (Babiloni et al., 2015). On the other hand, it has also been 
connected to visual functions and found to be modulated by sensory 
input (Webster and Ro, 2020). In fMRI studies, similar activation of 
visual areas (Aizenstein et al., 2004) and preserved connectivity be-
tween left and right visual areas (Andrews-Hanna et al., 2007) between 
younger and older adults were reported. To investigate if the LLE dif-
ferences were modulated by the alpha activities, we computed the cor-
relation between alpha power and LLE in each site and eyes conditions. 
Our results showed significant correlations only in the eyes-open con-
dition, in the CP or PO site of young and old-old groups. Moreover, there 
were no significant relationship between the alpha blocking and the eyes 
condition differences in LLE. The above results hence suggested that the 
age-related differences revealed by LLE were unlikely to be explained by 
the dominant alpha activities in resting-state. Also, our LLE calculation 
did not specifically target the alpha band, we suspect that the LLE might 
reflect the relatively preserved occipital lobe functions of the 
participants. 

4.2. Age-related trend in older adults by different complexity measures 

Not all complexity measures revealed significant age-related corre-
lation within older adults. For instance, in the eyes-closed condition, 
only in temporal sites where LLE, LZC and SampEn were significantly 
correlated with age. LLE and SampEn showed negative while the LZC 
showed positive correlations. While inverted U-shaped trajectories of 
LZC in eyes-closed condition were reported in previous studies 
(Fernández et al., 2012; Shumbayawonda et al., 2018), the present re-
sults suggest a monotonic decrease of LLE from young to old adults. 
There are two possible reasons that might cause the disagreement. First, 
the LLE would remain stable or slightly decreasing from young to 
young-old, and the onset of decline would begin around 60s to 70s. 
Second, the LLE could exhibit an inverted U-shaped trajectory that peaks 
before 60s and decreases afterwards, resulting in a similar LLE level of 
the young and young-old groups. In fact, although the previous study 
described the age-related trajectory of LZC as an inverted U-shape, the 
trends in late life most likely remained flat or decreased at a slow rate as 
the reported peaks were around 60s to 70s of age (Fernández et al., 
2012). In particular, they showed that the peak of the trajectory of the 
right lateral site was at around late 70s, which was the latest among all 
sites. In the present study, the absence of significant correlation between 
age and LZC in all sites except RT was therefore not unexpected. In 
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general, it could be observed that the LLE revealed significant correla-
tions with age in both eyes conditions, while other measures were only 
sensitive to particular eyes condition. A speculation is that, the LLE was 
more sensitive than other measures in showing the age-related decline in 
this age range. 

4.3. Interpretation of LLE and relationship between complexity measures 

The present study also examined the relationship between common 
complexity measures. The correlation results showed that the 
complexity measures were all highly correlated with each other. More 
precisely, LLE was significantly negatively correlated with other three 
complexity measures. To our knowledge, there were no similar findings 
in the literature. The results were highly surprising as these measures 
were developed from different theoretical backgrounds. The LLE quan-
tifies the rate of divergence of neighboring points in a state space. A 
lower LLE corresponds to higher predictability of the dynamics, such 
that one can track the changes of the dynamics for a longer time. In 
contrast, LZC was developed to quantify randomness (Lempel and Ziv, 
1976) and SampEn was usually referred as irregularity (Richman and 
Moorman, 2000; Jia et al., 2017). The 1/f slope of power spectrum is the 
sign of a critical complex system (He et al., 2010) and was suggested to 
indicate the signal-to-noise ratio of EEG (Voytek et al., 2015; Faisal 
et al., 2008). As it is natural to expect coherent relationship between 
lower predictability and higher irregularity, the significant negative 
correlation was counter-intuitive as it does not seem possible to become 
more predictable and more random simultaneously. An explanation can 
be raised from the fact that LLE is a measure characterizing the dynamics 
from the reconstructed state space. With the embedding dimension 
being 20, the LLE was describing the dynamics of 20-dimensional vec-
tors instead of 1-dimensional points. On the other hand, LZC and 
SampEn were directly calculated from the signal domain, and 1/f slope 
was computed by regression on the power spectrum. As such, the 
“predictability” quantified by LLE was unlikely to be the same construct 
as the “irregularity” or “randomness” from other measures qualitatively. 
Our results indicate that ageing is accompanied by an increase in pre-
dictability in the embedded state space and randomness at the signal 
level. Our results thus support the LOCH by showing that ageing is 
accompanied by the loss of complexity. More importantly, we showed 
that the loss of complexity is not only manifested by an one-sided 
shifting towards regularity or irregularity. Instead, the EEG is more 
regular as observed in an embedded state space, and meanwhile is more 
random as observed from the raw signal domain. 

Empirically, an important question is whether our highly interre-
lated correlation results suggest against the recommendation that one 
should not just rely on a single complexity measure (Goldberger et al., 
2002b). We conducted partial correlation analysis to answer the ques-
tion. The results revealed different correlation patterns in different 
groups and conditions. For instance, the negative correlation between 
LLE and SampEn in old-old group in eyes-open condition was flipped to 
positive after removing the variances from LZC and the 1/f slope, while 
this pattern was not observed in young or young-old group. The impli-
cation is that there exists variances that are unique to certain pairs of 
measures, although they were all highly correlated with each other. 
Also, the relationships between measures appeared to be modulated by 
different experimental conditions and populations. 

4.4. Limitations and future studies 

First, our study is limited by its cross-sectional design. The results 
were limited to the differences between age groups and the trajectory 
within a restricted age range of older adults. Including middle-aged 
adults would be crucial in the future to reveal the full picture of LLE 
trajectories in ageing. Also, participants of this study were not part of the 
WEIRD population (Henrich et al., 2010). A complexity trajectory over 
the life span with the present population would allow one to examine if 

the trajectory could be generalized across populations. Second, the 
structural and cognitive correlates of LLE should be explored. This 
would allow comparisons between trajectories of LLE and other brain 
structures or cognitive functions (Walhovd et al., 2011; Hartshorne and 
Germine, 2015). Structurally, the decline in grey matter volume of 
cortical structures might be very different from that of subcortical 
structures (Walhovd et al., 2011), it is important to identify the struc-
tural correspondence of the declining LLE. On the possible cause of 
decline, volume reduction in the prefrontal cortex during adolescence 
was suggested to reflect to the removal of excessive neurons and prun-
ing, while such reduction was related to shrinkage and loss of neurons in 
ageing (Raz et al., 2005). Identifying potential cognitive correlates of 
LLE could help to clarify the mechanisms behind the decline in brain 
structures. Moreover, hypotheses besides the frontal lobe hypothesis 
(West, 2000) such as the HAROLD (Cabeza, 2002) and PASA (Davis 
et al., 2008) have predicted regional asymmetries in functional activa-
tions, with older adults tending to recruit more frontal and right hemi-
spheric resources as the task demand increases. How EEG complexity is 
modulated by task demand should be examined in future to provide 
further evidence for these important hypotheses. Although source 
localization was performed to gather evidence on the regional effects, it 
should be noted that the source localization was performed on a 
32-channel EEG with a template head model while 64 or more channels 
is usually recommended (Akalin Acar and Makeig, 2013). The template 
head model also limited the accuracy of the source localization. Utilizing 
64-channel EEG or simultaneous EEG-fMRI could greatly enhance the 
interpretability of the present study and help investigating the structural 
and cognitive correlates in the future. Third, the true dimension of EEG 
signals is never known and can only be determined empirically. Besides 
time-delay embedding, spatial embedding has also been proven useful 
for analyzing EEG (Lachaux et al., 1997; Pezard et al., 1998, 1999). The 
impact of embedding dimensions and other embedding techniques 
should be further investigated. On the other hand, multiscale variants of 
complexity have been applied and revealed timescale-dependent pat-
terns in ageing (Sleimen-Malkoun et al., 2015; Labate et al., 2013; 
Ibáñez-Molina et al., 2015). The connections between LLE and 
timescale-dependent complexity will be interesting to find out. 

5. Conclusion 

As revealed by both sensor-space and source-space analyses, the 
largest Lyapunov exponent (LLE) decreases with age. The decline was 
found earlier and more severe in frontal region and posterior cingulate 
than in temporal and occipital regions. Compared with other complexity 
measures, the LLE possesses high sensitivity towards detecting age- 
related changes. An important observation was the negative correla-
tion between LLE and other measures. This shows that the loss of 
complexity in ageing is manifested not only by one-sided shifting to-
wards regularity or irregularity. Instead, the brain signals became 
simultaneously more regular, as viewed from the perspective of 
dynamical systems perspective, and more random at raw signal level. 
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