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Abstract 
Limited studies exist in the literature on demand related travel patterns, the analysis of which 

requires a rich database of Origin Destination (OD) matrices with appropriate clustering 

algorithms. This paper develops a methodological framework to explore typical travel patterns 

from multi-density high dimensional matrices and estimate typical OD corresponding to those 

patterns. The contributions of the paper are multi-fold. First, to cluster high-dimensional OD 

matrices, we deploy geographical window-based structural similarity index (GSSI) as 

proximity measure in the DBSCAN algorithm that captures both OD structure and network 

related attributes. Second, to address the issue of multi-density data points, we propose 

clustering on individual subspaces. Third, we develop a simple two-level approach to identify 

optimum DBSCAN parameters. Finally, as proof-of-concept, the proposed framework is 

applied on proxy OD matrices from real Bluetooth data (B-OD) from Brisbane City Council 

region. The OD matrix clusters, typical travel patterns, and typical B-OD matrices are 

estimated for this study region. The analysis reveals nine typical travel patterns. The 

methodology was also found to perform better when GSSI was used instead of Euclidian 

distance as a proximity measure, and two-level DBSCAN instead of K-medoids, Spectral, and 

Hierarchical methods. The framework is generic and applicable for OD matrices developed 

from other data sources and any spatiotemporal context. DBSCAN is chosen for this study 

because it does not require a pre-determined number of clusters, and it identifies outliers as 

noise. 

Keywords DBSCAN; typical OD matrices; typical travel patterns; Bluetooth; structural 

proximity; geographical window 

Introduction 
A pattern means the ‘repeated or regular way in which something happens’ (Dictionary, 2018). 

A travel pattern can be defined as repeated travel behaviour related to various features such as 

regularity in individual transit passenger boarding and alighting stops (Kieu et al., 2015a, b); 

mode selection (James, 2020); route selection (Lee and Sohn, 2015); and activity (Yildirimoglu 

and Kim, 2018). The focus of this paper is on demand (OD) related travel patterns, and in this 

paper, the term ‘travel pattern’ should be considered for the same.  
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Researchers and practitioners have long tried to understand travel patterns and answer 

several related research questions, which include: What are the major travel patterns observed 

other than weekdays and weekends?; How do travel patterns during Saturdays differ from those 

of Sundays?; Are travel patterns during public holidays different from those on weekends?; Do 

school holidays during weekdays having different patterns from regular working weekdays?; 

Are there any temporal trends in travel patterns?; What are typical OD matrices for any study 

region? To answer these questions, we need: a) A rich database of OD matrices from the same 

geographical region for several time periods (days); b) A suitable indicator to quantify 

proximity(similarity) between OD matrices; and c) An appropriate method to cluster multi-

density OD matrices and estimate typical OD matrices.  

OD matrix database: OD matrices are not directly obtained for large urban networks and are 

reverse engineered using algorithms such as bi-level optimization (Behara et al., 2020c)  or 

other data driven methods (Behara et al., 2021; Krishnakumari et al., 2020) on the traffic 

monitoring datasets such as loops and Bluetooth. All signalised intersections in the Brisbane 

City Council (BCC) region are equipped with Bluetooth MAC Scanners. For the current 

research, data from these 845 BMS locations over 415 days is available (further details in 

section 3.1). Due to the unavailability of loop detector data for this research, proxy OD matrices 

are developed from Brisbane BMS data and referred to as Bluetooth-based origin destination 

(B-OD) matrices. For reproducibility of the research, these 415 B-OD matrices are publicly 

shared on https://data.researchdatafinder.qut.edu.au/dataset/bluetooth-od-data.  

Indicator to quantify proximity between OD matrices:  Behara et al. (2020b) have established 

the definition of structure in OD matrix context, where OD structure is the skeletal framework 

of the matrix. The corresponding demand for each OD cell is the mass on the skeleton. Behara 

et al. (2020b) advocated “two OD matrices have perfect structural similarity if their structures 

are similar with zero differences in the OD flows. Perfect structural similarity is possible only 

when the OD matrices are the same.” Traditional measures, such as normalised root mean 

square error, are mere Euclidian distances and do not capture OD structure and any network 

related attributes. For a holistic comparison of OD matrices, indicators such as geographical 

window based structural similarity index (GSSI) (Behara et al., 2020a), Levenshtein distance 

(Behara et al., 2020b), correlation coefficient (Behara et al., 2020a; Djukic et al., 2013), and 

Wasserstein distance (Ruiz de Villa et al., 2014) are proposed. In this research, we consider 

GSSI as an indicator to quantify the proximity between OD matrices. 

Method to cluster multi-density matrices and estimate typical OD: OD matrices are high 

dimensional data points. The structural differences among OD matrices of different travel 

patterns could result in multiple density regimes and the clustering algorithm to be considered 

for pattern mining should be robust to capture such attributes of the OD database. Clustering 

algorithms such as K-means (Laharotte et al., 2015), and hierarchical (Friedrich et al., 2010) 

have been used to cluster OD matrices. However, density-based methods such as density-based 

spatial clustering of applications with noise (DBSCAN) (Ester et al., 1996) has several 

advantages over most other techniques but never applied for OD clustering process. The 

advantages of DBSCAN include: a) it does not require any predetermined number of clusters 

(this is important because we need to explore travel patterns that are otherwise not common or 

visible); and b) it can handle noise within the database. A traditional DBSCAN cannot handle 

multi-density data points, and there is no formal method to specify the DBSCAN parameters.  

Addressing the above, the paper's objective is to develop a methodological framework to 

cluster multi-density OD matrices and estimate typical OD matrices for different clusters. As 

a proof-of-concept, a database of Bluetooth based static daily OD matrices (B-OD) from 

https://data.researchdatafinder.qut.edu.au/dataset/bluetooth-od-data
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Brisbane network is established which acts as a proxy OD for the network. It is assumed the 

“structure” of B-OD matrix preserves integrity of the actual distribution of travel demand over 

the network and can be used for travel patterns analysis of the Brisbane network. Estimating 

accurate OD matrices from the network is outside the scope of this work.  

This study does not intend to develop a new data mining technique but tailored existing ones 

(subspace clustering and two-level DBSCAN) for clustering OD matrices. The major 

contribution of the paper is the integrated methodological framework developed to gain 

empirical insight into travel patterns from high dimensional multi-density matrices and 

estimate typical OD flows. 

The remainder of the paper is structured as follows: Section 2 reviews the relevant literature 

on the analysis of travel patterns; Section 3 presents the methodology adopted in this study; 

Section 4 is the application of proposed methodology on the earlier mentioned B-OD datasets 

followed by comparative analysis; Section 5 is the discussion section, and finally Section 6 

concludes the paper.  

 Literature Review 

With advances in emerging technologies, and availability of big traffic data, many studies have 

analysed travel patterns from the perspective of individual mobility (e.g., Kieu et al. (2015b) 

and Ma et al. (2013) used trips from smart card, Huang et al. (2018) fused mobile phone data 

with smart card and taxi data, and Huang et al. (2019) used private car trajectories); travel 

modes (e.g., Biljecki et al. (2013) and James (2020) used GPS trajectories, and Hussain et al. 

(2021a) used Bluetooth and smart card); and spatial distribution of activities (e.g., Jiang et al. 

(2017) used mobile phone data, and Yildirimoglu and Kim (2018) combined bus GPS, smart 

card, and Bluetooth data). A travel pattern involves both space and time. Some studies 

investigated patterns across space (e.g., Louail et al. (2015) classified different cities, and Liu 

et al. (2015) compared suburbs within a city); time (e.g., within-the-day by Jirsa and Susilo 

(2016), day-to-day by Zhang et al. (2018), and weekly by Zhao et al. (2019); and both space 

and time (Furno et al., 2017; Laharotte et al., 2015). 

Despite the abundance of literature on travel patterns, the volume of studies based on 

analysing travel patterns directly from OD matrices is very limited. Based on methods to 

analyse OD related travel patterns these studies are categorised as follows:  

1. Clustering methods: Algorithms such as k-means (Guo et al., 2012; Liu et al., 2019), 

and hierarchical (Friedrich et al., 2010) were used to directly cluster OD matrices. 

Density based algorithms such as DBSCAN has been earlier used to cluster trajectories 

(Kim and Mahmassani, 2015; Tang et al., 2021); trip ends (Huang et al., 2019; Lu et 

al., 2015; Tang et al., 2015) and transit stops (Kieu et al., 2015b); but has not been 

considered to cluster high-dimensional OD matrices. 

2. Graph partitioning methods: Guo et al. (2012) applied dynamic graph partitioning to 

identify the clusters of trip ends i.e., origins and destinations based on the distribution 

taxi trajectories; Luo et al. (2017) proposed a k-means approach to cluster OD pairs 

based on flows and spatial distance;  and a few analysed travel patterns from OD flows 

using mobility graphs (as by Naveh and Kim (2018) and Zhang et al. (2018)). These 

methods clustered/classified OD flows and did not cluster OD matrices. 

3. Dimensionality reduction methods: A few studies proposed dimensionality reduction 

methods such as principal component analysis (PCA) (Krishnakumari et al., 2020; 

Yang et al., 2015); singular value decomposition (SVD) (Yang et al., 2017a; Yang et 
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al., 2015); non-negative tensor factorization methods (Naveh and Kim, 2018); and 

spatial abstraction methods (Andrienko et al., 2017) to compare OD matrices. While 

these methods can capture most OD flow information, they might miss subtle 

differences in the underlying travel patterns. For instance, Steinbach et al. (2004) 

mentions that “dimensionality reduction approaches based on PCA or SVD may be 

inappropriate if different clusters lie in different subspaces”. Regarding the spatial 

abstraction methods, discretization of flows and distances might fit different values 

within the same class (Andrienko et al., 2017). 

The authors earlier proposed using a structural proximity measure for travel pattern 

identification from OD matrices (Behara et al., 2018). The focus of that conference paper was 

on structural proximity measure, and DBSCAN was directly applied on a small sample of B-

OD matrices. That paper did not consider a) the issues related to multi-density OD matrix 

database; b) an approach for estimating optimum DBSCAN parameters; c) a better 

representation of typical OD matrices; d) a comparison of clusters resulted from using 

traditional and structural proximity measures; and e) comparison across different clustering 

methods. 

To summarise, the literature on OD related travel patterns is sparse; and in the era of big 

data, there is a need to develop a comprehensive methodological framework that employs 

efficient algorithm to explore latent travel patterns by structurally comparing high-dimensional 

multi-density OD matrices. 

 Methodology 

This methodology section is organised as follows. Section 3.1 presents the study location and 

Bluetooth data required for analysis. Section 3.2 suggests using geographical window-based 

structural similarity index (GSSI) as a proximity measure for comparing high-dimensional OD 

matrices. Section 3.3 introduces DBSCAN, and its strengths and limitations. Finally, Section 

3.4 presents the proposed framework to cluster high-dimensional and multi-density OD 

matrices to identify typical travel patterns and typical OD matrices.  

3.1 Study Area and Descriptive Statistics 

The Brisbane City Council (BCC) region is the study area, and the B-OD matrices used for 

analysis were developed at SA3 (20 zones) level as shown in Figure 1. Raw Bluetooth data 

from 845 BMS was obtained for 415 days (June, July, August, and December months of 2015 

and all months except April of 2016). We classified the day types into six categories as shown 

in the Figure 2. Here, SATR and SATSH are Saturdays regular and during school holidays; 

SUNR and SUNSH are Sundays regular and during school holidays; WDR and WDSH are 

weekdays regular and weekdays during school holidays; PH and LW are Public holidays and 

Long Weekends, respectively. 

The BMS detects the MAC ID when the device is within its scanning range (~100 meters). 

The raw Bluetooth data includes a record number, encrypted MAC-ID of Bluetooth device, 

scanner location ID, timestamp (representing the day and time when the device is detected 

within the communication range of Bluetooth scanner), and duration (time period for which 

the MAC-ID was detected at the location) (Bhaskar and Chung, 2013). 
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Figure 1: Location of Bluetooth scanners within SA3 zones of the BCC region 

 

Figure 2: Classification of day types 

Most Bluetooth observations are from cars equipped with Bluetooth devices (Bhaskar et al., 

2015). The penetration rate of Bluetooth equipped vehicle counts in Australia was around 20% 

(Laharotte et al., 2014; Michau et al., 2017b). This was confirmed by Behara (2019), where 

Bluetooth counts with screen line observations were compared and penetration rate reported 

varies between 15% and 35%. Generally, the penetration rate of Bluetooth trips/trajectories is 

lower than that of the Bluetooth counts. However, the values are not thoroughly studied in 

literature primarily due to the unavailability of ground truth for large networks. For a small 

network, Chitturi et al. (2014) reported 4.4% average detection rate for 12 OD pairs at an 

interchange level. The OD flows developed from Bluetooth inferred trajectories are only a 

sample and do not represent actual OD flows. However, the “structure” of Bluetooth based OD 

can be considered as a proxy for the actual OD despite the flows are only a sample. 

To develop a B-OD matrix, raw Bluetooth data from a particular day was spatially and 

temporally matched to define individual Bluetooth vehicle trajectories that were further split 

into trips (Michau et al., 2017a). Here, the Bluetooth dataset for the study date was downloaded 

from the BCC server and unique Device IDs were then identified. Records were retrieved 

individually for each Device ID and were sorted based on timestamp detections for further 

analysis. Within the record of each Device ID, difference in timestamps between successive 

detections, that is, δ, was used to identify unique trips/trajectories. If successive detections were 

from the same scanner, then the threshold value of δ chosen to identify a new trip was 10 

minutes. On the other hand, if the successive detections were from different scanners, the 

threshold value of δ chosen was 30 minutes to identify a new trip. The threshold values were 

chosen in accordance with a similar study on Brisbane Bluetooth datasets by Michau et al. 
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(2017b). This way, all individual trips/trajectories of each Device ID were identified and were 

then used to infer OD trips at a scanner level to form OD matrix of size 845 × 845, which was 

further transformed into B-OD matrix at SA3 levels. For this, the concordance between BMS 

location and the SA3 zones were considered from the BCC. The process was repeated over 415 

days to generate static B-OD matrices for each day.  

3.2 Structural Proximity Measure 

The OD matrices are high-dimensional data points, and comparison of which require suitable 

proximity measures. Many studies in the past emphasised on the significance of structural 

proximity measure in clustering high dimensional data points such as documents (as by Zhang 

et al. (2011) and Lin et al. (2013)). In the literature, Djukic et al. (2013) proposed mean 

structural similarity index (MSSIM) for the structural comparison of OD matrices. MSSIM is 

the average of local window comparisons. Each window consists of a group of OD flows from 

an OD matrix. This method has a few unaddressed questions including a) what should be the 

window size?; and b) what is the physical meaning of this window? To address them, Behara 

et al. (2020a) proposed geographical window-based structural similarity index (GSSI). In the 

GSSI approach the OD matrix is rearranged so that the lower-level origins (oi) and destinations 

(dj) can be grouped into respective higher-level origin (Ok) and destination (Dl) zones. The 

higher-level boundaries define the geographical windows that capture network related 

attributes. For instance, the grey coloured rectangle in Figure 3 represents geographical 

window for the higher-level OD pair O1-D1 and consists of lower zonal level OD pairs – o1d1 

to oidj. In Australia, the hierarchy levels in statistical area2 can be used to define the lower and 

higher zonal levels.  

 

Figure 3: The concept of geographical window 

The SSIM is computed on these geographical windows as shown by Equations (1) - (4) and 

the average of all local SSIM values is referred as GSSI (refer Equation (5)) 

 
2 Australian Statistical Geography Standard (ASGS) defines the hierarchy of geographical areas for the release 

of statistical information. This includes statistical areas (SA) for four levels: SA1, SA2, SA3, and SA4 (ASGS, 

2018). 
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(3) 

SSIM(𝐱𝐰, 𝐲𝐰) = [l(𝐱𝐰, 𝐲𝐰)α][c(𝐱𝐰, 𝐲𝐰)β][s(𝐱𝐰, 𝐲𝐰)Υ] 

α > 0, β > 0 and Υ > 0; 

(4) 

Assuming α = β =  Υ = 1 and C3=C2/2  

SSIM(𝐱𝐰, 𝐲𝐰) =
(2µ𝐱𝐰

µ𝐲𝐰
+ C1)(2σ𝐱𝐰𝐲𝐰

+ C2)

(µ𝐱𝐰
2 +  µ𝐲𝐰

2 + C1)(σ𝐱𝐰
2 +  σ𝐲𝐰

2 + C2)
 

(4a) 

GSSI(𝐗, 𝐘) =
1

W
∑ SSIM(𝐱𝐰, 𝐲𝐰)

wϵW

 
(5) 

where, 𝐗 and 𝐘 represent two OD matrices to be compared;  𝐱𝐰 and 𝐲𝐰 represent the group of 

OD pairs within the wth local geographical windows (total W in number) in both matrices. The 

individual components of l(𝐱𝐰, 𝐲𝐰), c(𝐱𝐰, 𝐲𝐰) and s(𝐱𝐰, 𝐲𝐰) compare the mean values 

(µ𝐱𝐰
and µ𝐲𝐰

), the standard deviations (σ𝐱𝐰
 and σ𝐲𝐰

), and the structure (through covariance) 

between the group of OD pairs in both matrices. The constants C1, C2 and C3 are meant to 

stabilize the result when either mean or standard deviation is close to zero. Generally, C3 is 

assumed to be C2/2. In the analysis conducted for this study, the OD flows within the 

geographical window are not all zero, hence the assumption is that both C1 and C2 are zero. 

The parameters α, β and Υ are used to adjust the relative importance of mean, standard 

deviation, and structural components respectively, and are generally assumed to be unity. The 

SSIM (𝐱𝐰, 𝐲𝐰) is the structural similarity of wth geographical windows and GSSI(𝐗, 𝐘) reports 

the overall structural similarity of the OD matrices, X and Y. The values of both SSIM and 

GSSI lie between -1 and 1. Interested readers can refer Behara et al. (2020a) for more details 

about the robustness of GSSI technique. 

3.3 Density based Clustering Algorithm with Noise 

The DBSCAN algorithm first marks all the data points (note that data point in the current study 

should be read as a B-OD matrix) as ‘non-visited’, starting with an arbitrary selection of a ‘non-

visited’ point and identifying all other data points within the distance threshold, ε (note that 

GSSI converted to dissimilarity measure is ε in this study). These data points, if any, are termed 

as neighbourhood points. If the number of neighbourhood points is at least MinPts (size 

threshold) then the data point under consideration becomes the first point of a new cluster 

where the neighbourhood points are part of the same cluster; otherwise, the data point is 

labelled as noise. In either case, the data point is now marked as ‘visited’. If a cluster is 

identified, then the above process for defining neighbourhood points is repeated for all of the 

new points identified as neighbourhoods in the current cluster and the number of points in the 

cluster is extended. Thereafter, a new ‘non–visited’ point is selected, and the process is repeated 

until all the points are marked as ‘visited’. This leads to each point either being defined as a 

cluster or a marked as noise. 

The optimum DBSCAN parameters in the traditional approach are identified using a simple 

and interactive heuristic proposed by Ester et al. (1996), as follows (refer Figure 4): 
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Step 1: First, a k-dist function is defined that maps each data point, p, to the distance values (k-

dist (p)) corresponding to their kth-nearest neighbour.  

Step 2: For a given value of k, choose the kth neighbourhood of every point in the database and 

plot the points (x-axis) in the descending order of k-dist values (y-axis). The graph resulting 

from this distribution is referred to as sorted k-dist graph. 

Step 3: The shape of the sorted k-dist graph further helps to identify the threshold point. The 

parameter MinPts is set to k and ε is chosen corresponding to the valley of the sorted k-dist 

graph. The valley point is identified through a visual observation, and as such, this technique 

is an interactive approach. All data points on the left side of the threshold point (i.e., higher k-

dist value) are considered to be noise and the remaining points (on the right of the threshold 

point) are assigned to some clusters. 

 

Figure 4: Typical shape of sorted k-dist graph 

DBSCAN does not require a-priori specification of number of clusters, and it identifies 

outliers as noise. These are two major advantages of DBSCAN compared to other methods 

including Partition (e.g., K-means by Laharotte et al. (2015)), Spectral (Yang et al., 2017b), 

and Hierarchical (Liu et al., 2019). Table 1 summarised from Rodriguez et al. (2019) and 

IndiraPriya and Ghosh (2013) compares DBSCAN with the above-mentioned methods. 

Table 1: Qualitative comparison of some clustering methods 

Features 
Density-

based  
Partition Spectral Hierarchical 

Does not require a-priori specification 

of the number of clusters 
Yes - - - 

Ability to handle noise Yes - - - 

Ability to handle arbitrarily sized and 

arbitrarily shaped clusters. 
Yes - - - 

Ability to handle any form of 

similarity or distance matrix 
Yes Yes Yes Yes 

Have a logical structure, and easy to 

read and interpret 
- - - Yes 

Ability to handle varying density 

clusters 
- - - - 

Computational complexity 

Medium 

O(nlog(n)) 
(Ester et 

al., 1996) 

Medium 

O(nlog(n)) 

(IndiraPriya 

and Ghosh, 

2013) 

High 

O(n3) 

(IndiraPriya 

and Ghosh, 

2013) 

High 

O(n3) 

(IndiraPriya and 

Ghosh, 2013) 

Note: n is number of data points; and O is the order of complexity. 
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In general, the results of clustering algorithms are sensitive to their hyper parameters.  

DBSCAN is sensitive to the setting of ε and MinPts and it is reported that DBSCAN does not 

perform well for multi-density data sets (Huang et al., 2009). Moreover, if the data points are 

high dimensional matrices, a relevant indicator is required to define the ε. 

To address the issue with multi-density data, few researchers suggested dividing datasets 

based on different density levels prior to the clustering process (Elbatta and Ashour, 2013; 

Parsons et al., 2004). The initial clusters of these datasets are referred as subspaces, and the 

method is termed as subspace clustering approach. To explain different subspaces (initial 

clusters) in a multi-density OD database, consider one subspace that includes all daily OD 

matrices from weekends and public holidays, and another with all OD matrices from weekdays. 

The density difference between these two sub-spaces is primarily due to difference in total 

daily travel demand flows. 

The multi-density in the high dimensional dataset can be visualised by k-dist graph (as 

presented by Louhichi et al. (2019),  Mu et al. (2020), and Pradeep and Sowjanya (2015)) where 

the difference in density levels is observed from the valleys. Data points belonging to the same 

valley are susceptible to have approximately the same density of data within it. For instance, 

Figure 5 illustrates two valleys in a typical sorted k-dist plot of two-density database. Thus, the 

decision to consider subspace clustering should be made based on the density levels following 

which clustering process needs to be performed within the individual subspaces. 

 

Figure 5: A sorted k-dist plot for two-density regimes 

3.4 Proposed Framework 

This section discusses the entire methodological framework to cluster multi-density high-

dimensional OD matrices, identify travel patterns from the resulting clusters, and estimate 

typical OD matrices. The steps involved in this methodology are shown in Figure 6, and are 

also presented in the following: 

• Step-1: Prior to clustering, the OD matrix database is divided into “S” number of 

subspaces based on density variations and set s=1 (see section 3.4.1). This step 

addresses the issue related to multi-density database. 

• Step-2: Perform two-level DBSCAN clustering on sth subspace using a structural 

proximity measure (see section 3.4.2). This step addresses the issues related to high 

dimensionality of OD matrices as well as identification of DBSCAN parameters. 

• Step-3a: Create a homogeneous database of OD matrices for each resulting cluster of 

sth subspace. It is homogeneous because OD matrices within a cluster represent similar 

travel patterns.  
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• Step-3b: If s <= S, set s=s+1, and repeat the process from Step-2 to Step-4. If all 

subspaces are analysed (s > S), then proceed to Step-5. This completes identification 

of typical travel patterns through OD matrix clusters. 

• Step-4: Estimate typical OD matrix database for all S subspaces. A typical OD matrix 

includes mean OD flow values and demand fluctuations for each OD flow (see section 

3.4.3). 

 

 

Figure 6: Proposed methodological framework 

3.4.1 Subspaces and Distance Matrix 

Sorted k-dist plots for a range of k values provide information about the density distribution of 

data points. If plots show ‘S’ distinct valleys, then it is a S-density dataset. Thus, the data points 

are further split into S subspaces for subspace clustering. If the plots represent only one valley 

then no subspace clustering is undertaken. 

The distance between each pair of OD matrices (𝐗 and 𝐘) is computed using a structural 

proximity measure as shown in Equation (6). The pre-computed GSSI value is multiplied by 

1000 so that the distance value is close to one decimal place. 

dGSSI = 1000 ∗ (1 − GSSI(𝐗, 𝐘)) (6) 

The distance matrix for DBSCAN algorithm comprises dGSSI values computed using 

Equation (6) for all OD matrix combinations within each subspace. Thus, if there are P number 

of OD matrices in the database of each subspace, the dimensions of the subspace specific 

distance matrix would be P x P symmetrical matrix. 
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3.4.2 Two-level DBSCAN 

Here, we discuss the proposed two-level approach to identify optimum DBSCAN parameters 

and then cluster multi-density OD matrix database. The final clusters identified in this step 

represent the typical travel patterns and are further used to estimate typical OD matrices. 

• First level: The first level identifies the initial set of DBSCAN parameters, [(𝛆, 𝐌)]. 

A visual inspection to identify ε is tedious task. Instead, we propose shortest distance 

from origin criterion to arrive at the optimal ε.  According to this criterion, the valley 

of a sorted k-dist graph corresponds to the shortest distance from the origin of axes 

formed by k-dist values in the y-axis, and sorted data points (OD matrices) in the x-

axis. We apply this criterion on K sorted k-dist plots so that we have the initial set of 

DBSCAN parameters represented by [(𝛆, 𝐌)] = [(ε1, 1),… (εk, k) … . (εK, K)] where 

εk is the distance threshold for MinPts = k as shown in Figure 7. 

 

 

Figure 7: Initial set of parameters from the first level DBSCAN 

• Second level: The second level identifies optimum set of DBSCAN parameters 

represented by [(�̃�, �̃�)], and the final clusters of OD matrices. We plot the number of 

clusters formed against the MinPts. For instance, refer to Figure 8 where x-axis is 

MinPts, and y-axis is number of clusters. The values of MinPts (and the 

corresponding ε) for which the number of clusters is less sensitive are selected. This 

means that there is no significant change in the data points that form clusters, and the 

proportional share of all such clusters remain almost the same. Generally, this is 

indicated from the longest plateau section of the plot. These DBSCAN parameters 

are identified as [(�̃�, �̃�)]. For instance, in Figure 8 the values from 2 to 4 has the same 

number (that is, 5) of clusters, and we define the optimal set as [(�̃�, �̃�)] = [(ε2, 2), 

(ε3, 3), (ε4, 4)]. Since the clusters for [(�̃�, �̃�)] are same they are the final clusters that 

are representative of typical travel patterns. 

 

Figure 8: Number of clusters vs MinPts  
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3.4.3 Estimation of Typical OD Matrices 

The typical OD matrix for each cluster is represented by typical OD flows. A typical flow of 

an OD pair is the sum of mean demand and its corresponding demand fluctuations within the 

cluster. The mean OD matrix is obtained by computing the average value of OD matrices 

belonging to the same cluster. While OD matrices within a homogeneous cluster represent 

similar travel patterns, subtle variations in OD flows do exist. An average OD demand is a 

deterministic value and may not be a good representation of real-world traffic conditions. The 

knowledge of this demand fluctuations is important in traffic demand modelling and simulation 

(Wen et al., 2018). Thus, we have considered both mean flows and demand fluctuations in the 

estimation of typical OD matrix (�̃�c) for cth typical travel pattern as shown in Equation (7) 

�̃�c = 𝛍𝐗𝐜
± 𝛔𝐗𝐜

 

 

 (7)  

where 𝛍Xc
 and 𝛔Xc

 represent the mean (μt,c) and standard deviations (σt,c) of tth OD flows 

within cth cluster. This method of estimating typical OD from the clusters is simple and easy to 

represent. 

 Analysis and Results 

This section presents the results from clustering analysis of B-OD database. It is organised as 

follows: first, subspaces within multi-density B-OD matrices were identified in Section 4.1; 

second, application of two-level DBSCAN on this database revealed typical travel patterns as 

listed in Section 4.2; third, examples of typical OD flows and a typical B-OD matrix were 

presented in Section 4.3; finally, a comparative analyses demonstrating the benefits of the 

proposed framework were shown in Section 4.4.     

4.1 Prior Identification of Subspaces 

To identify the subspaces, sorted k-dist graphs for k=1 to k=15 were plotted. We selected an 

upper limit of k as 15 because for k>15 no more than two clusters were formed. The intial 

observations from sorted k-dist plots indicated two different density regimes in the datasets as 

shown in Figure 9. Thus, all data points were first divided into two different subspaces. It was 

observed that the first 129 points (in the order shown by x-axis in Figure 9) defined subspace-

1 and belonged to Saturdays, Sundays, public holidays, and long weekends. The rest of the data 

points belonged to subspace-2 including regular weekdays and weekday school holidays. 

 

Figure 9: Identification of subspace from sorted k-dist plots 
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The major difference between two subspaces was the difference in total daily demand flows. 

This is illustrated in Figure 10 where x-axis refers to OD data points and y-axis is total daily 

demand flows. Since the direct application of simple DBSCAN resulted in only two clusters, 

we proposed to apply two-level DBSCAN on each individual sub-space as shown in the 

following Section 4.2. If we apply a simple DBSCAN (involves visual identification of ε from 

the elbow of sorted k-graph) instead of the two-level DBSCAN (auto-selection of ε) the 

resulting clusters will not be different. However, we claim the proposed two-level technique is 

a major contribution in this methodological framework because of the following reasons. First, 

it is an automated selection of DBSCAN parameters instead of cumbersome visual extraction. 

Second, the selection of optimum parameters has a practical relevance associated with it and is 

based on sensitivity towards the number of clusters; that is, there should be no significant 

change in the data points that form clusters, and the proportional share of all such clusters 

remain almost the same.  

 

Figure 10: Difference between both subspaces in terms of total daily demand 

4.2 Typical Travel Patterns 

The typical daily travel patterns from each of the subspaces are discussed in this section. 

Travel patterns from subspace-1: Here, the analysis was performed on 129 data points of 

subspace-1. The initial set of DBSCAN parameters; that is, [(𝛆, 𝐌)] were identified based on 

the shortest distance from origin criterion. Figure 11 presents the number of clusters formed 

for different MinPts. The number of final clusters is 5 (as represented in the pie-chart) and is 

least sensitive to MinPts = 4 to MinPts = 9 (refer to the longest plateau region in Figure 11). 

Figure 12 illustrates the proportional share of the clusters in subspace-1 for different MinPts. 

The percentage of noise was nearly 14% for subspace-1. 

The clusters of subspace-1 that correspond to unique travel patterns are: 

• Cluster-1 (C1) included Sundays and Saturdays – both regular and during school holidays 

periods from 2015 and 2016. Public holidays during the school holiday season such as 

28th Dec 2015 (Boxing Day), 26th Jan 2016 (Australia Day), 26th March 2016 (The day 

after Good Friday), 28th March 2016 (Easter Monday), and 2nd May 2016 (Labour Day). 

It constitutes 41% of total subspace-1. 

• Cluster-2 (C2) included Sundays of 2016 and constituted 13% of subspace-1. 

• Cluster-3 (C3) included Saturdays of 2016 and constituted 11% of subspace-1. 

• Cluster-4 (C4) included Sundays of 2015 and constituted 11% of subspace-1.  



14 

 

• Cluster-5 (C5) included Saturdays of 2015 and constituted 10% of subspace-1. 

  

Figure 11: Number of clusters vs MinPts for subspace-1  

 

Figure 12: Proportion of subspace-1 clusters for different selection of MinPts 

Figure 12 clearly illustrated that the proportional share is almost the same for MinPts ranging 

from 4 to 9, and for these values the clusters are less sensitive to MinPts. 

Travel patterns from subspace-2: Similar to the last analysis, the graph presented in Figure 13 

indicates the number of clusters formed for different MinPts. The number of final clusters is 4 

(as represented in the pie-chart) and is least sensitive to MinPts = 3 to MinPts = 12 (refer to the 

longest plateau region in Figure 13). Figure 14 illustrates the proportional share of the clusters 

in subspace-2 for different MinPts. The percentage of noise was nearly 5% for subspace-2. 
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Figure 13: Number of clusters vs MinPts for subspace-2 

 

 

Figure 14: Proportion of subspace-2 clusters for different selection of MinPts 

Similarly, it is evident from Figure 14 that the clusters are less sensitive for MinPts ranging 

from 3 to 12. 

The following are the observed clusters that corresponded to unique travel patterns: 

• Cluster-6 (C6) included WDR of 2016 except summer and constituted 44% of 

subspace-2 

• Cluster-7 (C7) included WDR, 2015 and constituted 24% of subspace-2. 

• Cluster-8 (C8) included WDSH, 2015 and 2016 and constituted 24% of subspace-2.  
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4.3 Typical B-OD matrices 

To demonstrate typical flows (that is, combination of mean flows and the demand fluctuations) 

for an OD pair for nine typical patterns, refer to the box plot shown in Figure 15 for the OD 

pair- Mt. Gravatt and Brisbane CBD. The x-axis and y-axis of the box plot shows typical 

clusters and OD flows, respectively. 

 

Figure 15: Typical OD flows between Mt. Gravatt and Brisbane CBD. 

The inferences made from Figure 15 are: 

• The magnitude of travel demand was less for clusters of subspace-1 (C1 to C5) 

compared to that of subspace-2 (C6 to C9). This was because the number of trips 

during non-working days (subspace-1) were generally less compared to trips during 

working days (subspace-2).  

• From subspace-1 we observed that the mean OD demand was higher during 

Saturdays (C3 and C5) compared to Public holidays (C1) and Sundays (C2 and C4). 

• From subspace-2 we observed that the mean OD demand was higher during 

weekdays, 2015 (C7) compared to weekdays of 2016 and other cluster types. The 

mean demand was almost same during weekday school holidays (C8) and WDR, 

November 2016 (C9). 

An example of a typical weekday B-OD matrix is presented in Figure 16. The inner level 

column and row headers represent zonal IDs of SA3s from the BCC region. The outer level 

column and row headers; that is, East, North, South, West, and Inner identify the corresponding 

SA4 zones. Each cell in the matrix shown in Figure 16 represent a mean ± standard deviation 

for flows from the same OD pair.  

 

Figure 16: Typical B-OD matrix for weekdays regular of 2016, expressed as 𝛍𝐗𝐜
± 𝛔𝐗𝐜

 

30101 30103 30201 30202 30203 30204 30301 30302 30303 30304 30305 30306 30401 30402 30403 30404 30501 30502 30503 30504

30101 7005 ± 137 10575 ± 226 35 ± 3 95 ± 5 443 ± 11 172 ± 8 872 ± 22 309 ± 8 230 ± 7 74 ± 4 72 ± 4 43 ± 3 2 ± 1 1 ± 0 67 ± 4 34 ± 2 693 ± 61 292 ± 8 505 ± 13 132 ± 6

30103 10321 ± 220 84476 ± 1436 211 ± 9 492 ± 12 2080 ± 37 1295 ± 39 8175 ± 196 2503 ± 48 2393 ± 59 1000 ± 22 1072 ± 26 695 ± 17 52 ± 4 4 ± 1 447 ± 15 249 ± 7 4200 ± 484 3386 ± 53 2465 ± 55 756 ± 17

30201 32 ± 3 240 ± 9 23079 ± 706 8556 ± 146 2858 ± 65 4246 ± 90 103 ± 5 383 ± 13 120 ± 6 147 ± 9 101 ± 6 40 ± 3 38 ± 3 6 ± 1 473 ± 41 1191 ± 49 864 ± 28 86 ± 4 1827 ± 56 570 ± 25

30202 90 ± 5 532 ± 12 8030 ± 156 54665 ± 846 4959 ± 103 5067 ± 89 256 ± 8 1166 ± 25 337 ± 9 457 ± 13 231 ± 8 136 ± 5 64 ± 4 7 ± 1 899 ± 46 2502 ± 43 3043 ± 48 257 ± 8 9120 ± 124 1520 ± 37

30203 426 ± 13 2593 ± 62 2518 ± 59 5479 ± 115 55827 ± 763 9128 ± 199 887 ± 29 1513 ± 44 818 ± 20 921 ± 19 955 ± 24 429 ± 11 125 ± 6 14 ± 2 1663 ± 114 651 ± 17 4068 ± 153 371 ± 10 9924 ± 164 1567 ± 48

30204 171 ± 6 2036 ± 53 3835 ± 70 5096 ± 98 9466 ± 154 82212 ± 1407 550 ± 22 549 ± 15 402 ± 12 323 ± 9 367 ± 16 197 ± 7 36 ± 3 3 ± 1 480 ± 31 546 ± 17 1557 ± 127 173 ± 6 3197 ± 46 533 ± 15

30301 904 ± 24 8585 ± 185 102 ± 5 291 ± 9 983 ± 26 612 ± 23 45849 ± 744 8482 ± 117 5808 ± 113 1510 ± 29 621 ± 16 489 ± 14 71 ± 3 8 ± 1 654 ± 16 257 ± 8 5389 ± 111 3863 ± 69 2288 ± 46 1166 ± 23

30302 295 ± 9 2459 ± 53 371 ± 13 1103 ± 30 1434 ± 34 552 ± 16 8628 ± 144 85436 ± 1211 9196 ± 163 11193 ± 185 4655 ± 79 1545 ± 31 429 ± 13 31 ± 3 3381 ± 59 1231 ± 37 16375 ± 351 4249 ± 77 10097 ± 323 4019 ± 96

30303 266 ± 8 2271 ± 48 150 ± 7 392 ± 10 908 ± 19 431 ± 14 5406 ± 109 9840 ± 143 106806 ± 1492 7511 ± 109 3487 ± 64 8136 ± 192 192 ± 8 15 ± 2 1110 ± 23 504 ± 13 6102 ± 104 897 ± 20 3428 ± 81 1604 ± 27

30304 87 ± 5 943 ± 20 224 ± 14 648 ± 25 1100 ± 27 413 ± 15 1540 ± 30 14089 ± 327 7459 ± 126 48582 ± 652 6858 ± 113 7557 ± 139 266 ± 11 30 ± 2 2236 ± 49 689 ± 36 8804 ± 317 1350 ± 32 5789 ± 197 1926 ± 84

30305 70 ± 4 959 ± 22 108 ± 5 250 ± 8 944 ± 23 382 ± 16 653 ± 17 4868 ± 82 3369 ± 66 7016 ± 107 85267 ± 1222 9119 ± 155 624 ± 17 47 ± 3 2583 ± 44 313 ± 11 2973 ± 47 378 ± 10 1993 ± 60 669 ± 14

30306 48 ± 3 649 ± 15 40 ± 3 146 ± 5 545 ± 11 220 ± 10 505 ± 15 1605 ± 27 7911 ± 170 7506 ± 124 9819 ± 155 38694 ± 738 97 ± 5 3 ± 1 402 ± 11 128 ± 5 2290 ± 37 189 ± 6 1397 ± 28 436 ± 10

30401 2 ± 1 56 ± 3 41 ± 4 66 ± 4 154 ± 6 44 ± 3 60 ± 4 449 ± 13 177 ± 8 263 ± 8 616 ± 17 92 ± 5 19813 ± 436 118 ± 6 1438 ± 49 151 ± 6 648 ± 14 60 ± 4 700 ± 18 617 ± 15

30402 1 ± 0 4 ± 1 4 ± 1 5 ± 1 18 ± 2 3 ± 1 9 ± 1 37 ± 3 14 ± 2 33 ± 2 67 ± 4 4 ± 1 158 ± 7 2348 ± 68 241 ± 11 23 ± 2 87 ± 5 7 ± 1 83 ± 4 80 ± 4

30403 59 ± 4 444 ± 15 464 ± 39 833 ± 43 1640 ± 114 508 ± 34 667 ± 18 3457 ± 58 1020 ± 26 1824 ± 39 2520 ± 37 393 ± 12 1308 ± 37 219 ± 11 59181 ± 920 1779 ± 102 6367 ± 174 609 ± 17 7803 ± 426 9465 ± 258

30404 33 ± 3 280 ± 8 1358 ± 55 2651 ± 52 635 ± 17 537 ± 12 261 ± 7 1335 ± 30 435 ± 13 450 ± 14 332 ± 10 143 ± 6 130 ± 6 27 ± 3 1726 ± 100 32377 ± 498 3526 ± 53 262 ± 8 5526 ± 106 5269 ± 75

30501 680 ± 41 3639 ± 255 898 ± 25 3093 ± 66 3525 ± 66 1431 ± 46 5063 ± 104 17349 ± 393 5382 ± 118 5860 ± 128 2998 ± 66 2138 ± 49 641 ± 17 75 ± 4 6310 ± 193 3459 ± 71 196399 ± 3004 5167 ± 88 26803 ± 433 11282 ± 202

30502 295 ± 9 3311 ± 89 98 ± 5 277 ± 8 382 ± 10 173 ± 7 3819 ± 70 4708 ± 62 918 ± 23 1332 ± 27 405 ± 11 217 ± 7 67 ± 4 7 ± 1 677 ± 16 274 ± 8 5756 ± 98 18732 ± 304 2855 ± 50 1209 ± 20

30503 530 ± 15 2769 ± 74 2002 ± 54 9211 ± 152 9770 ± 177 3565 ± 63 2319 ± 53 11194 ± 329 3121 ± 79 4408 ± 105 2134 ± 72 1344 ± 28 654 ± 18 69 ± 4 7939 ± 435 5630 ± 115 28513 ± 381 2967 ± 56 143431 ± 1866 10505 ± 188

30504 148 ± 6 787 ± 18 569 ± 24 1518 ± 36 1560 ± 52 545 ± 16 1168 ± 26 4281 ± 83 1485 ± 32 1228 ± 29 682 ± 14 424 ± 12 642 ± 16 80 ± 5 9518 ± 302 5519 ± 110 11643 ± 185 1139 ± 21 11129 ± 192 59268 ± 1283

Typical Weekday 

OD

East North West InnerSouth

West

Inner

East

North
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4.4 Comparative Analysis 

In the proposed framework we propose to use DBSCAN as a clustering algorithm, for which 

the parameters - epsilon (distance threshold) and MinPts – need to be known a-priori. We have 

explained how these two parameters can be optimally identified for multi-density OD database. 

From the past research (Behara et al., 2020a) we have proposed GSSI as an indicator to 

compare OD matrices. In the proposed framework, we further advocate using GSSI as the 

indicator for the distance measure in the clustering algorithm. To further support our 

methodology, we first highlighted the importance of GSSI over RMSN in Section 4.4.1; and 

thereafter compared our approach with other clustering algorithms in Section 4.4.2.   

4.4.1 Structural versus Traditional Proximity Measures 

We compare the clusters resulted from two-level DBSCAN using GSSI and RMSN as 

proximity measures. The formulation of RMSN is same as the one used by Antoniou et al. 

(2004) and is expressed as shown in Equation (8)  

RMSN (𝐗, 𝐘) = 
√N ∑ (Xn−Yn)2

N

∑ XnN
 

 (8)  

 

where, Xn and Yn are the OD flows of nth OD pair, and N represents number of OD pairs in 

both X and Y. 

To maintain a fair comparison with dGSSI and constrain the distance values close to one 

decimal place, Equation (8) was multiplied with 1000 as shown in Equation (9). 

dRMSN  = 1000 ∗ RMSN (𝐗, 𝐘)  (9)  

The clusters for subspace-1 and subspace-2 resulted from RMSN-based DBSCAN are as 

follows: 

Travel patterns from subspace-1: Only one major cluster was formed as shown in Figure 17. 

It included all Saturdays, Sundays, Public Holidays of 2015 and 2016 except Saturdays of 

spring and summer, 2016 that was considered noise, and the percentage of noise was 9%. 

 

Figure 17: Number of clusters vs MinPts for subspace-1, RMSN-based experiment 

Travel patterns from subspace-2: The graph presented in Figure 18 indicates the number of 

clusters formed for different MinPts. The number of final clusters is 4 (as represented in the 
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pie-chart) and is least sensitive to MinPts = 4 to MinPts = 13 (refer to the longest plateau region 

in Figure 18). The percentage of noise was nearly 9% for subspace-2. 

• Cluster-1 (C1) included WDR of 2016 except summer, and constituted 37% of subspace-

2 

• Cluster-2 (C2) included WDR, 2015, and constituted 22% of subspace-2 

• Cluster-3 (C3) included WDSH, 2015 and 2016, and constituted 21% of subspace-2 

• Cluster-4 (C4) included WDR of November 2016, and constituted 11% of subspace-2 

  

Figure 18: Number of clusters vs MinPts for subspace-2, RMSN-based experiment 

Since the ground truth is unknown, one way to compare results from GSSI- and RMSN-

based DBSCAN is to see how good they can reproduce pre-classified day-types described in 

Figure 2. The comparison in Figure 19 shows that PH (Public holidays), LW (Long weekends), 

and School holidays during Saturdays and Sundays could not form standalone clusters. 

Nonetheless, GSSI (9 clusters) could better represent the pre-classification than RMSN (5 

clusters). The values in the orange-coloured boxes refer to the number of OD matrices from a 

particular day type that were part of a specific cluster.  

4.4.2 Two-level DBSCAN versus other Clustering Methods 

Table 2 compares clusters from the proposed two-level DBSCAN against spectral, k-medoids, 

and hierarchical clustering techniques. Note that to maintain consistency same proximity 

measure (GSSI) was employed across all methods. Key findings from this comparison are as 

follows: 

1. Compared to others DBSCAN is the only algorithm that can identify noise. 

2. K-medoids clusters in Subspace-1(weekends, school holidays, and public holidays) are 

very close to DBSCAN. However, the clusters from Spectral and Hierarchical are 

different; and could not differentiate between Saturday and Sunday travel patterns. 

3. K-medoids and hierarchical algorithms failed to identify better clusters in Subspace-2 

(weekdays and weekday school holidays). On the contrary, spectral and DBCAN could 

identify prominent clusters in this subspace. 

4. In short, some methods performed better for subspace-1 and other for subspace-2; and 

DBSCAN is the only method that performed better for both subspaces. 
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Figure 19: Comparison of clusters resulted from the experiments based on both GSSI and RMSN (excluding noise)

2015 2016 2015 2016 2015,16 2015,16 2015 2016 2015 2016 2015 2016 2015 2016

1 Weekends, PH and LW, Jan-Jun 2016 2 3 8 16 8 17

2 Sundays of 2016 1 2 5 8

3 Saturdays of 2016 5 9

4 Sundays of 2015 1 3 10

5 Saturdays of 2015 3 10

6 WDR,  2016 except summer 119

7 WDR, 2015 63 1

8 WDSH, 2015 and 2016 3 22 40

9 WDR, November 2016 23

2015 2016 2015 2016 2015,16 2015,16 2015 2016 2015 2016 2015 2016 2015 2016

Subspace-1 1 Weekends, PH and LW, 2015 and 2016 5 11 6 10 11 18 6 10 11 29

2 WDR, 2015 61 1

3 WDSH, 2015 and 2016 1 22 39

4 WDR, November 2016 24

5 WDR,  2016 except summer 109

GSSI-based experiment

Subspace-1

Subspace-2

RMSN-based experiment

Subspace-2

Weekdays Public Holidays Weekends

Regular 

Weekdays 

School Holidays 

during weekdays 

Normal Public 

Holidays (PH)

Long 

Weekends 
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During School Regular During School Regular (SUNR) 
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Table 2: Comparison of different clustering techniques 

 

 

DBSCAN Spectral K-medoids Hierarchical 

C. No Subspace-1 ODs C. No Subspace-1 ODs C. No Subspace-1 ODs C. No Subspace-1 ODs 

1 
Sundays, Saturdays, 

and Public Holidays 
53 1 

Sundays, Saturdays, 

and Public Holidays 
32 1 

Sundays and Saturdays 

2015 and 2016 
36 1 Sundays of 2015 and 2016 54 

2 Sundays of 2016 17 2 

Sunday, and Saturday 

School Holidays of 

2016 

28 2 Sundays of 2016 18 2 Saturdays of 2016 26 

3 Saturdays of 2016 14 3 Saturdays of 2016 21 3 Saturdays of 2016 14 3 Saturdays of 2015 and 2016 27 

4 Sundays of 2015 14 4 
Saturdays and 

Sundays of 2016 
9 4 Sundays of 2015 24 4 

Christmas 2015 and 2016; and 

1st Jan 2016  
3 

5 Saturdays of 2015 13 5 

Sunday, and Saturday 

School Holidays of 

2015 

28 5 

Sunday, and Saturday 

School Holidays of 

2016 

26 5 
Long Weekends & Weekend 

School Holidays 
6 

 Noise 18 6 Public Holidays 11 6 Public Holidays 11 6 Public Holidays 13 

Total OD matrices 129 Total OD matrices 129 Total OD matrices 129 Total OD matrices 129 
            

C. No Subspace-2 ODs C. No Subspace-2 ODs C. No Subspace-2 ODs C. No Subspace-2 ODs 

6 
WDR of 2016 

except summer 
121 7 

WDR of 2016 except 

summer 
107 7 

WDR of 2016 except 

summer; and  WDR, 

2015 

198 7 

WDR of 2016 except summer;  

WDR, 2015; and  WDSH, 2015 

and 2016 

265 

7 WDR, 2015 64 8 WDR, 2015 64 8 WDSH, 2015 and 2016 80 8 WDR of Nov 2016 13 

8 
WDSH, 2015 and 

2016 
64 9 

WDSH, 2015 and 

2016 
65 9 

Three days from Feb 

and Dec 2016 each 
6 9 

3 WDR of Feb 2016 and 3 

WDSH of Dec  
6 

9 
WDR of November 

2016 
23 10 

WDR of Nov 2016 + 

WDR of 2016 except 

summer 

35 10 1 WDSH of Jan 2016 1 10 1 WDR of Nov 1 

 Noise 15 11 

WDR of Feb and Dec 

2016; WDSH of Dec 

2016  

15 11 1 WDR of Nov 2016 1 11 1 WDSH of Jan 2016 1 

Total OD matrices 286 Total OD matrices 286 Total OD matrices 286 Total OD matrices 286 
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 Discussion 

This section is divided into three sub-sections. The first sub-section provided insights into 

typical travel patterns for the BCC region. The second sub-section summarises the comparative 

analysis presented in the previous section. The third sub-section discusses the practical 

application of typical travel patterns in transport planning.    

5.1 Insights into BCC Travel Patterns 

Some inferences from the analysis presented in the previous section are as follows: 

• Public holidays (2015 and 2016), weekdays during November (2016), and weekday 

school holidays (2015 and 2016) were other travel patterns besides regular weekdays and 

weekends. 

• The GSSI-based structural proximity measure was able to differentiate weekday and 

weekend patterns. However, there was no typical weekend travel pattern because travel 

patterns during Saturday and Sunday differed from each other. This finding is in line with 

another study by Naveh and Kim (2018) for Brisbane, Australia, O'Fallon and Sullivan 

(2003) in New Zealand, and Lockwood et al. (2005) in California, United States. There 

are multiple underlying reasons for the differences in activity-travel patterns during these 

two days including: 

o The average number of trips made by a person during Sundays are less than those 

observed on Saturdays (O'Fallon and Sullivan, 2003)). 

o The average duration of physically active social and/or recreation activities 

undertaken on Saturdays are much greater than the duration of similar activities 

undertaken during weekdays and Sundays. This is because time-constraints during 

weekdays prevent individuals from undertaking long physically active recreational 

activities and Sundays are regarded as “days of rest” or “relaxation days” 

(Lockwood et al., 2005).  

o The frequency and duration of physically inactive social/recreational, meals, non-

maintenance shopping, and participation in community/religious activities are 

greater during Sundays than Saturdays (Lockwood et al., 2005).   

• Some regular and school holiday weekends were assigned to the cluster of public 

holidays, namely Easter holidays, Labour Day and Australia Day. This showed that some 

weekends were similar to public holidays in their travel patterns. However, long weekends 

and regular weekends had different patterns. This is mainly because trips during long 

weekends are usually longer than usual. Some studies found different social behaviour and 

poor driving patterns during long weekends often resulting in traffic congestions 

(Government of South Australia, 2006). 

• We observed temporal trends in travel patterns. For instance, Saturdays in 2015 were 

found to have different travel patterns as compared to the Saturdays in 2016. A similar 

observation was noted for Sundays. The travel patterns of weekdays in 2015 and 2016 

were also different. This is primarily because we have noticed that (car) travel demand 

during the year 2015 was higher than in 2016. This finding is in line with the car travel 

demands estimated for 2015 and 2016 by BITRE (2016). 

• The travel patterns during weekday school holidays were the same during both 2015 

and 2016 and were different from those of regular working weekdays. The difference was 
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mainly because most school trips were local and the intrazonal trips during weekday school 

holidays were less by approximately 80%. 

• The regular weekday travel patterns during November 2016 differed from that of other 

regular working weekdays. This difference in travel patterns could be attributed to major 

events held in that month. The annual report published by Royal National Agricultural and 

Industrial Association of Queensland (RNA, 2016) estimated that, in 2016, Brisbane 

Showgrounds attracted almost a million people by hosting more than 250 events, with an 

increase of 20% as compared to 2015. The month of November was the busiest month of 

2016 due to hosting a total of 35 events. 

5.2 Summary of Comparative Analysis 

The clusters produced from RMSN-based experiment demonstrated temporal trends in 

subspace-2 travel patterns. However, it resulted Saturdays, Sundays, and Public Holidays into 

one major cluster, and thus failed to distinguish the differences among daily travel patterns 

during those days. This was mainly because RMSN is based on deviations of individual OD 

flows and could not account for the subtle structural differences within the respective B-OD 

matrices. 

Different clustering techniques can lead to similar results, if their hyperparameters are 

properly calibrated. For the current application, DBSCAN has identified most of the long 

weekends as noise, and holidays are part of Cluster-1 which includes Public Holidays, 

Saturdays, and Sundays. Whereas hierarchical clustering with 6 number of pre-specified 

clusters have grouped long weekends and weekend school holidays together. Should the long 

weekends have a distinct cluster is hard to know. It is worth mentioning that the results of 

hierarchical clustering (and k-medoids and spectral) will be sensitive to the number of clusters 

considered. However, DBSCAN has benefit over this as it does not need pre-specified number 

of clusters and is robust to the noise. Therefore, we propose to use DBSCAN over other 

clustering algorithm and in absence of any further information we are more confident with 

clusters from DBSCAN than other algorithms. 

5.3 Practical Application 

The knowledge of travel patterns and typical ODs identified from this approach has the 

following practical applications: 

• Although the study demonstrated the application using static B-OD matrices, the 

methodology is generic and is applicable for OD matrices developed from other data 

sources, and for any spatiotemporal context. The proposed methodology can also be used 

to compare multi-modal travel patterns; for instance, comparing clusters of smartcard and 

Bluetooth OD matrices can help in identifying the differences in travel patterns between 

transit and car users, respectively.  

• Right selection of typical prior OD minimises the search space of an OD estimation 

problem (Mo et al., 2020). Choosing a typical seed OD, traffic counts, and any other traffic 

information such as sub-path/partial-path flows for the same typical travel pattern reduces 

the scope of optimisation algorithm and improves the quality of final OD estimate.  

• Understanding typical travel patterns of any city can assist in effective and rational 

policy developments. From our findings, we observed that some of the public holidays on 

Mondays (Labour Day and Easter Monday) had travel patterns similar to that of weekends 

(in cluster C1). Shifting public holidays towards weekends has many practical benefits 
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because they can form a greater number of long weekends, and this encourages public to 

spend more via excursions, short-stay holiday trips etc., boosting the nation’s economy. A 

similar strategic move was implemented in Japan to improve nation’s ailing economy 

(Chung, 2003). 

• The knowledge of travel patterns can help transport planners to appropriately conduct 

travel surveys across the study network within a year. For instance, the Household Travel 

Survey (HTS) for South East Queensland (SEQTS, 2010) was conducted for over 10 

weeks from mid-April through late-June and in July in 2009. The survey period avoided 

the days during school/university holidays. However, our study added value to those days 

by recognising unique travel patterns during weekday school holidays irrespective of the 

years. This could enable better capture of travel patterns for any large-scale study region.  

 Conclusion  

Limited studies are available in the literature on OD related travel patterns. This is primarily 

due to lack of a rich database of OD matrices from the same geographical region for several 

time periods. The analysis also needs, a suitable method to structurally compare high 

dimensional OD matrices; and an appropriate method to cluster multi-density matrices and 

estimate typical OD matrices. To this end, the paper develops a systematic methodological 

framework to explore typical travel patterns from multi-density high dimensional OD matrix 

database and estimate typical OD matrices for large-scale networks. The practicality of the 

proposed framework was demonstrated with a proof-of-concept application using a proxy 

demand from 415 Bluetooth OD matrices from BCC region for the years 2015 and 2016. For 

the proposed framework: GSSI is deployed as an appropriate structural proximity measure to 

cluster high-dimensional OD matrices; individual subspaces are identified before clustering to 

address the issue of multi-density OD matrices; a simple two-level approach is developed to 

identify optimum DBSCAN parameters for OD matrix clustering; and estimate typical OD 

matrices from the resulting clusters. A comparative analysis has revealed that proposed 

methodology can produce meaningful clusters which a traditional measure and other clustering 

methods have failed to achieve. 

We would like to acknowledge that different clustering algorithms if properly calibrated 

should provide reasonable results. The analyst must make appropriate selection of the 

algorithm based on its requirement. We recommend DBSCAN because it does not require prior 

specification of clusters, and is robust with the noise in the dataset. 

The proof-of-concept application identified nine typical patterns for the BCC region. The 

travel patterns and typical OD matrices for Saturdays (2015), Saturdays (2016), Sundays 

(2015), Sundays (2016), public holidays (2015 and 2016), regular weekdays (2015), regular 

weekdays (2016), weekdays during November (2016), and weekday school holidays (2015 and 

2016) were different.  

The study can be further extended in the following ways:  

• For the current proof-of-concept, static Bluetooth-based OD (B-OD) at statistical area-

3 (SA3) level for the entire day was used. This is primarily because the sample size of 

daily B-OD is higher than the hourly-based one. Exploring more detailed OD in both 

temporal and spatial context will help better understand the patterns where temporal 
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context is for different time periods of the day (morning peak, business hours, evening 

peak, and off peak), and spatial is for different statistical area levels. 

• Bluetooth based OD matrix from a network, highly equipped with Bluetooth sensors, 

such as Brisbane has the potential to provide a proxy OD matrix for longitudinal travel 

pattern analysis. However, if the analysis period is for larger time such as over different 

years, it is recommended to analyse the penetration rate of the Bluetooth over different 

OD pairs. Significant changes in the penetration rate over different OD pairs can 

significantly impact the travel pattern analysis. 

• The findings of the analysis presented in the paper are limited to the availability of the 

datasets for 415 days (from June-Aug 2015, Dec 2015 and all months of 2016 except 

April 2016). To study the seasonality and weather impacts, it is suggested to apply the 

proposed methodology on a larger period.  

• OD matrices from multiple modes can be investigated to obtain a holistic picture of 

network wide travel patterns. For instance, transit OD from smart card (Hussain et al., 

2021b) can be compared with Bluetooth OD patterns identified in this study.  
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