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Abstract 

In public transport, smartcards are primarily used for automatic fare collection purpose, which in 
turn generate massive data. During the last two decades, a tremendous amount of research has 
been done to employ this big data for various transport applications from transit planning to real-
time operation and control. One of the smart card data applications is the estimation of the public 
transit origin-destination matrix (tOD). The primary focus of this article is to critically analyse 
the current literature on essential steps involved in the tOD estimation process. The steps include 
processes of data cleansing, estimation of unknowns, transfer detection, validation of developed 
algorithms, and ultimately estimation of zone level transit OD (ztOD). Estimation of unknowns 
includes boarding and alighting information estimation of passengers. Transfer detection 
algorithms distinguish between a transfer or an activity between two consecutive boarding and 
alighting. The findings reveal many unanswered critical research questions which need to be 
addressed for ztOD estimation using smartcard data. The research questions are primarily related 
to the conversion of stop level OD (stOD) to ztOD, transfer detection, and a few miscellaneous 
problems. 

Keywords: smartcard data; public transit OD estimation; transfer detection; origin 
inference; destination inference; OD scaling 

1 Introduction 

Advancement in technology has advocated the implementation of the intelligent transport system 
in the transit sector. Many transit agencies are using Automatic Data Collection (ADC) system, 
which includes Automatic Fare Collection (AFC) using smartcard, Automatic Vehicle Location 
(AVL), and Automatic Passenger Counts (APC). AFC data are primarily used for fare collection, 
which in turn produces huge data that are readily available to transit agencies and planners. Since 
the last two decades, there is an increasing trend to exploit these big data to generate knowledge 
for transit applications from long-term planning to real-time operations and control. Few such 
transit applications are transit Origin Destination matric (tOD) estimation (Alsger et al., 2016, 
Barry et al., 2002, Munizaga and Palma, 2012, Nassir et al., 2015); travel pattern mining (Cats et 
al., 2015, Han and Sohn, 2016, Kieu et al., 2015a, Kieu et al., 2015c, Ma et al., 2017, Ma et al., 
2013, Morency et al., 2007); trip purpose (Chapleau et al., 2008, Kusakabe and Asakura, 2014, 
Lee and Hickman, 2014); transit disruption planning (Yap and Cats, 2020, Yap et al., 2020); and 
identification of Public Transit (PT) improvement areas (Hussain et al., 2020a, Hussain et al., 
2020c). 
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Traffic OD matrix provides mobility demand over a network, which serves as the vital input for 
large scale transport modelling (Hensher and Button, 2008). When such general OD matrix is 
disaggregated at modal level, e.g., car and transit OD matrix, it provides more flexibility to plan 
mobility requirement for each mode, e.g., private vehicles and transit. Car OD along with tOD 
are the essential input for simulations, the results of which can have a variety of uses such as, 
adequacy of road infrastructure, signal designing (Cipriani and Fusco, 2004, Pell et al., 2016), 
congestion evaluation (Choudhury et al., 2011), congestion pricing (Bracher and Bogenberger, 
2018), etc. ztOD of an urban area helps in PT planning at strategic, tactical, and operational levels. 
The potential applications of tOD include but not limited to transit route and network designing; 
transit resources allocation and distribution across the network (Hussain et al., 2020b); prioritise 
transit-related projects funding; identification of gaps in demand and supply of transit services 
(Hussain et al., 2020a); overcrowding (Wang et al., 2015); planning maintenance; and validating 
large scale assignment models (Tavassoli et al., 2018).   

Traffic OD is estimated by employing a range of traditional to advanced datasets. The traditional 
datasets include sampled household travel surveys (Stopher and Greaves, 2007) and vehicle 
counts from loops or manual (Zhou et al., 2003). Advanced datasets include Bluetooth data 
(Behara et al., 2020), vehicle number plate recognition system (Rao et al., 2018), AVL (Guozhen 
et al., 2011), APC (Cats et al., 2019), mobile phone data (Regt et al., 2017), smartphone location 
data (Nikolic and Bierlaire, 2017), and social media data (Rashidi et al., 2017). Although the 
above-stated systems have a higher initial cost, it has low cost throughout their life.  

The literature on the use of the smartcard to estimate tOD is still emerging. Earlier, Pelletier et al. 
(2011), Li et al. (2018), and Faroqi et al. (2018) have presented the review on the use of smartcard 
data in transportation. Pelletier et al. (2011) provide insights on smartcard technology’s evolution, 
which includes the hardware, data storage and commercialisation. The article also briefly reviews 
the smartcard data applications for strategic, tactical and operational level planning. The details 
for individual applications is outside the scope of the paper. Li et al. (2018)  reviewed the literature 
on destination estimation only from entry-only systems and classified the destination estimation 
models into trip chaining model, probability model, and deep learning model. The study proposed 
a method to weigh the performance of assorted models. However, the review only considers 
studies of destination inference. Also, it lacks an in-depth analysis of the studies and only gives 
details on the models’ use. Moreover, Faroqi et al. (2018) briefly summarise studies primarily 
published after 2010 on smartcard data and group them based on their applications focusing on 
tOD estimation, mining travel patterns, and trip purpose. The article provides an insight into these 
applications and does not provide critical and detailed analysis from tOD estimation point of view. 

Complementary to the above review, this paper aims to critically review and analyse the current 
literature on tOD estimation using smartcard data focusing mainly on the origin information 
estimation, destination inference, transfer detection, zone level tOD estimation, and identify the 
research needs for future development and enhancements.  

To this end, Section 2.1 delineate the AFC data for tOD estimation; Section 2.2 and Section 2.3, 
respectively provide the details related to data cleansing, and estimation of unknowns, i.e., 
boarding location estimation, and alighting location estimation. Section 2.4 provides a description 
and critical assessment of transfer detection rules. Section 2.5 specifies the current literature on 
the aggregation of tOD from smartcard data, and Section 2.6 elucidate various validation 
techniques employed for the tOD estimation problem. Section 3 articulates future research 
directions, and finally, the conclusion is presented in Section 4. 

2 tOD estimation problem framework 

A typical tOD estimation framework is shown in  Figure 1. The framework can be divided into 
the following four parts; the details of which are explained and critically reviewed in this article.  

i. Data cleansing 
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ii. Transfer detection  

iii. Estimation of unknowns, i.e., boarding and alighting location estimation, 

iv. Estimation of the zone to zone transit OD (ztOD) from stop to stop transit OD (stOD), 
and 

v. Validation of proposed methodology  
In addition to the above four steps, the entry-only AFC system requires an additional algorithm 
to infer the alighting stop as it lacks passenger’s alighting information (Figure 1). If the data are 
obtained from an entry-exit system, boarding and/or alighting must only be computed for 
transactions having missing boarding and/or alighting information. The need to estimate boarding 
information generally depends on the fields available in the smartcard data. If the smartcard data 
do not provide boarding location or boarding time or is missing due to system malfunctioning, it 
would be required to estimate the unknown accordingly. 
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(for entry-only system)

Exogenous validation

Boarding 
information 
inference† 

Data Cleansing
Transfer detection 

algorithm
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On-board surveys 
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system it is only applied to find missing 
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* Controlled counts can be from automatic 
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Population Zone 
level tOD

Controlled counts*

 

Figure 1 Typical steps of transit OD estimation problem 

2.1 AFC data available for tOD estimation 

AFC systems can be classified into:  

 Entry-only system: Here, the passengers are required to tap-in the smartcard only when 
boarding a transit service (or entering the station in case of rail). Only Tap-in is generally 
needed in a flat-fare system where the fare is independent of distance travelled. Examples 
of such systems are Jinlingtong card in Nanjing, China, and Bip! card in Santiago, Chile. 

 Entry-exit system: Here, the passenger is required to tap-in the smartcard during boarding 
and tap-out during alighting from the transit vehicle (entering/leaving from the rail station 
where devices are installed at the station). The entry-exit system is generally preferred in 
areas having distance-based fare. Examples of such systems include gocard in Brisbane, 
Australia, and Tmoney in Seoul, Korea. 

In literature, few researchers refer to an entry-only and an exit-entry system as an open system 
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and closed system, respectively (Lu et al., 2020, Mosallanejad et al., 2019, Nassir et al., 2015, 
Tang et al., 2020). In general, the closed system should be the one where passengers can typically 
enter and exit from the gateway, whereas the open system is where passengers have unrestricted 
entry. To avoid confusion, henceforth this paper follows the above-stated definitions. 

Table 1 maps the intermodal datasets used in various studies and provides remark on the usage of 
the input data, the generated output from the methodology and the aspect of the literature related 
to tOD estimation. The intermodal consists of bus/trams, subway/metro/rail and ferry. The typical 
data sets include vehicle ID, boarding stop, alighting stop, boarding time and alighting time.  

Note: in the following sections (section 2.2 to section 2.5) detailed description of those 
methodologies are provided. Further, the feasibility and reliability in the real-world applications 
are discussed in section 2.6. 

Public transportation agencies have a unique system of ADC in terms of data generated by the 
system and the installed AFC system (Table 1). Nevertheless, accuracy issues may exist when 
integrating AFC data with ADC's location data (i.e., AVL data). DoD (2008) has reported 7.8m 
errors (with 90% confidence interval) in the position estimated by the Global Positioning System 
(GPS) installed for AVL. The error is expected to increase further when the transit vehicle is near 
buildings, tunnels, trees, and bridges. Likewise, Kumar et al. (2018) reported 17 m (55 ft) error 
in GPS based co-ordinates. According to TransLink report, every day, about 14000 trip 
adjustments, on average, are made to the actual trips made using gocard (smartcard) (TCSMS, 
2017). Although, there may exist many other reasons for the wrong reading of smartcard data 
including challenges related to the integration of two big datasets (Lahat et al., 2015), inaccuracy 
in GPS is one of the prominent source responsible for such errors (Ellison et al., 2017).  
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Table 1 Available AFC fields for tOD estimation to various researchers 

Study City, Country 

Bus Subway/Metro/Rail Ferry   

ID BS AS BT AT ID BS AS BT AT All 
Remarks Output 

Work on tOD 
estimation related to 

Entry-only system OD inference 
(Barry et al., 2002) New York, US             y   y       Station-to-station OD matrix Trip chaining 

(Hofmann and Mahony, 2005) N/A* y** y   y               *Not available due to security reason 
** Route ID is available instead of Bus ID 

 Transfer detection Rule-base algorithm 

(Cui, 2006) Chicago, US y* y**   y               *Equipment ID of farebox is linked to bus ID. 
**AVL data are integrated to come up with 
boarding stop. 

 Route level population OD matrix 
estimation  

Iterative proportional fitting 
and maximum likelihood 
estimation  

(Trépanier et al., 2007) Gatineau, Quebec, 
Canada 

  y   y                 Destination time and location inference  Trip chaining 

(Zhao et al., 2007) Chicago, US y** y*   y     y   y     * for bus, location in coarsely represented by 
the bus route number, rather than the exact 
bus location or stop ID 
** Bus number and bus route number are 
taken from AVL data 

Rail OD matrix, and transfers within rail 
and rail to bus 

Trip chaining 

(Zhang et al., 2007) Changchun, China y*   y        * Instead of bus ID, the smartcard data 
records the route and driver ID. 
Other data from onboard surveys and surveys 
from drivers are made available.  

Population tOD matrix Trip chaining, and application 
of doubly constrained growth 
factor method to estimate 
population tOD 

(Chu and Chapleau, 2008) Gatineau & Ottawa, 
Canada 

y y   y                 Transfer detection Rule-based 

(Farzin, 2008) Sao-Paulo, Brazil y y*   y               * Boarding location is not directly estimated, 
it is determined by integrating AVL and AFC 
data having Bus ID, and time in common. 
Stops, AVL and APC data sets are used to 
infer OD estimation.  

Inference of OD matrix Trip chaining and use of GPS 
location to infer origin 

(Barry et al., 2009) New York, US       y†     y   y     † the time is rounded to one decimal point of 
an hour (i.e. 6 minutes) 

Multi-modal Zonal OD matrix inference 
(subway, and bus) 

Trip chaining 

(Seaborn et al., 2009) London, UK       y     y y y y   AVL and stops data are integrated with AFC 
data.  

Multi-modal OD matrix, transfers 
across modes 

Trip chaining 

(Nassir et al., 2011) Minneapolis-Saint Pauls, 
US 

y y   y                 Detection of passenger alighting station 
and transfer detection 

Trip chaining 

(Li et al., 2011) Jinan city, China y y   y                 Inference of alighting stop, zone-to-
zone OD 

Trip chaining 

(Wang et al., 2011) London, UK   y*   y     y y y y   * Only route number is recorded in AFC data. 
iBus (AVL) data are employed to estimate the 
bus stop location. 

Origin and destination inference and its 
validation 

Trip chaining 

(Munizaga and Palma, 2012) Santiago, Chile y y†   y   y y   y     † Boarding stop for bus is divided into two 
parts, 1. transactions made on devices 
installed in the bus, 2. Transaction made on 
devices installed at bus station. The latter can 
give location directly. 

Multi-modal large-scale public transport 
OD matrix 

 Trip chaining & rule-based 
transfer detection  

(Ma et al., 2012) Beijing, China y*    y       * Route number of the bus is reported. Origin stop location inference Markov Chain based Bayesian 
decision tree algorithm 
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Study City, Country 

Bus Subway/Metro/Rail Ferry   

ID BS AS BT AT ID BS AS BT AT All 
Remarks Output 

Work on tOD 
estimation related to 

(Gordon et al., 2013) London, UK   y*   y     y y y y   * Only route number is recorded in AFC data. 
iBus (AVL) data are used to estimate the bus 
stop. 

Intermodal journeys inference. Trip chaining and rule-based 
transfer inference 

(Jun and Dongyuan, 2013) Nanning city, China y y   y                 OD inference from smartcard The pattern of transit 
commuter in morning and 
evening peak 

(Munizaga et al., 2014) Santiago, Chile y y†   y   y y   y     † Boarding stop for bus is divided into two 
parts, 1. transactions made on the devices 
installed in the bus, 2. Transaction made on 
the devices installed in bus station. The later 
can give location directly. 

Validation of the algorithm developed in 
Munizaga and Palma (2012) is 
performed. 

Trip chaining 

(Nunes et al., 2016) Porto, Portugal y y   y     y   y     AVL data are integrated with AFC data.  Calculation of OD matrix in the entry-
only system and distance-based fare 

Trip chaining 

(Kumar et al., 2018) Minneapolis-Saint Pauls, 
US 

y y* y* y* y* y y* y* y* y*   * Dataset either contains boarding or alighting 
information. Also, AVL data are used to find 
the exact stop of the service taken.  

Calculation of OD matrix based on 
either boarding or alighting  

 Trip chaining 

(Chen and Fan, 2018) Guangzhou, China y     y                 Boarding stop estimation  Rule-based boarding stop and 
bus direction detection 

(Yan et al., 2019) Shenzhen, China y*   y        * Bus ID and route of the bus is recorded. 
GPS (AVL) data are integrated to get the 
boarding stop location. 

Alighting stop estimation 2-step algorithm comprised of 
trip chaining and machine 
learning (Markov chain model) 

(Zhao et al., 2019) Nanjing y   y  y  y  y   Metro to bus transfer inference Association rule learning and 
k-means clustering 

(Huang et al., 2020) Suzhou, China y y**   y               ** Boarding stop is estimated using GPS data Estimation of OD matrices Trip chaining and use of GPS 
location to infer origin 

Entry-exit system OD inference 
(Assemi et al., 2020, Alsger et 
al., 2016, Nassir et al., 2015, 
He et al., 2015, Alsger et al., 
2015) 

South East Queensland, 
Australia 

y y y y y   y y y y y   1-2. Alighting stops inference, 3. stop-
to-stop OD matrix and short activity 
detection, 4. and 5. Validation of trip 
chaining assumptions and sensitivity of 
parameters used in transfer detection 

1. Neural network application 
(2, 4, and 5) Trip chaining,  
3. short activity detection 

(Cheng et al., 2020) Guangzhou, China             y y y y     Alighting stop inferenc Latent dirichlet allocation 
(Jung and Sohn, 2017) Seol, Korea y y y y y  y y y y  Only bus mode is used in the analysis Alighting stop inference Deep learning architecture 
ID=Vehicle ID, BS=Boarding Stop location, AS=Alighting Stop location, BT=Boarding Time, AT=Alighting Time, All=Variables including all fields (i.e., ID, BS, AS, BT, AT) 
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2.2 Data cleansing 

Data cleansing requires information about the sources and type of errors to refine the data. 
Equipment failure and human error are two reported sources of errors. Equipment failure can be 
due to smartcard reader, desynchronised time clocks of the data collecting devices, installed GPS, 
and or the overall system. Human errors may include but not limited to forget to tap-off the card, 
tapping a wrong card, etc. Such inconsistent transactions may contribute to as many as two 
percent of the total transactions (Translink, 2016). Overall, above failures introduce the following 
errors in smartcard data; no record for boarding/alighting time and/or location, the recorded 
boarding time and/or location is equal to the alighting time and/or location (in an entry-exit system 
only), alighting time is earlier than boarding time for the same trip (in an entry-exit system), 
missing smartcard ID, duplication of an event, transactions on an untraceable stop (i.e., stop 
location cannot be traced), etc. In the later stage of analysis, trips can be found with higher or 
lower than typical travel time, for instance, a trip of several hours in a medium-sized city (Luo et 
al., 2017). This error may arise due to faulty recording of boarding and or alighting time as 
discussed previously.  

Besides, the data description in Assemi et al. (2020) shows a minimum travel time and distance 
of 0.18 minutes and 0.03 km, respectively, which may suggest boarding on the wrong bus and 
alighting upon realisation without riding, fare evasion, or other human error (e.g., tapping a card 
multiple time where passenger thinks that tap-in went wrong). It is required to create an upper 
and a lower limit of travel time and travel distance of a trip-legs to be considered for analysis. 
Egu and Bonnel (2020) considered a lower limit of 10 minutes between the boarding (or tap-in at 
a station) and alighting (or tap-out at the same station) from the same vehicle, while Luo et al. 
(2017) chose the lower limit for the same duration as 1 minute. The former can potentially possess 
problem since a shorter trip can be less than 10 minutes in an urban area. The authors suggest 
using the network analyst experience to decide the threshold value because it may be site-specific, 
and different values may be suitable for different areas. 

The type of error and its correct interpretation is very critical in tOD estimation. The wrong 
interpretation of an error may lead to inaccurate tOD. It is possible that various researchers use a 
contrasting approach to interpret the same ambiguity in the data. For example; Nunes et al. (2016) 
consider that second consecutive transaction down the line on the same route represents 
duplication. Therefore, the subsequent transaction is excluded from analysis while other 
researchers assume the subsequent event as a separate trip. In another study, smartcards with a 
high number of trips are deleted, arguing that it may represent the transit agency employees (Yan 
et al., 2019). Consequently, the data must be checked for all possible inconsistencies that must be 
removed before and during analysis, if found. 

Once the smartcard data are refined and error-free, it can be used for stOD estimation.  

2.3 Estimation of unknowns 

As summarised in Table 1 and discussed earlier, the number of unknowns depend on the type of 
data and attributes recorded corresponding to a transaction made on PT. Most of the studies have 
focused on the destination location inference. However, some of the systems also lack the 
boarding location information. The challenges corresponding to the estimation of unknowns and 
approaches to handle such problems by various researchers are discussed in the following sub-
sections. 

2.3.1 Boarding location estimation 

For tOD estimation, quality of data plays a vital role. Table 1 summarises the variables available 
to the researchers in smartcard data. In literature, most of the studies are performed on the entry-
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only system, while studies conducted on the entry-exit system merely validate the models 
developed for the entry-only system. Moreover, rail/metro passengers are required to tap-in at a 
subway or rail station entrance. If more than one train serves that station, the train boarded, and 
travel direction cannot be directly inferred since passengers are served by one entrance for both 
the directions and requires appropriate assumptions. 

Based on the available fields in the recorded data of an entry-only system, the boarding stop 
estimation can be divided into three categories, shown in Table 2. The first category is when both 
boarding stop and time are recorded in the data; therefore, it can be directly used for the 
application. The second category is when boarding time is recorded, but boarding stop 
information is missing. In this case, the required field can be inferred by fusing smartcard data 
with other data sources (such as AVL data, schedule data, etc.), if available. Usually, it is 
uncommon to come across the third category of smartcard system, where neither boarding time 
nor place is recorded. However, one of the studies (Lahat et al., 2015) is conducted on a similar 
system. The study fused AFC, APC and GTFS (Google Transit Feed Specification) data and 
reported 92% of success rate for boarding location inference. Boarding stop estimation is 
generally not a research problem because almost all the agencies record the boarding stop/station 
(Alsger et al., 2016, Alsger et al., 2015, Chu and Chapleau, 2008, Hofmann and Mahony, 2005, 
Jun and Dongyuan, 2013, Li et al., 2011, Nassir et al., 2015, Nassir et al., 2011, Nunes et al., 
2016, Trépanier et al., 2007).  

The AFC data employed in the study Kumar et al. (2018) has two types of trips data, i.e., one set 
of data include boarding information with no alighting information, and the other dataset have 
alighting information with missing boarding information. For the latter case, to determine 
boarding information, the same logic discussed below can be applied, if found missing. Also, in 
the case of the entry-exit system, if either boarding or alighting information is missing, it can be 
found by methods discussed in this section and section 2.3.2, respectively. 

Table 2 Categories of boarding stop estimation problem based on available features in the 
smartcard data 

Boarding time Boarding stop Remarks 

✓ ✓ 
No calculation required to estimate the boarding 
location 

✓ ✕ 
Boarding location can be calculated by integrating 
smartcard data with another dataset, such as AVL, 
scheduled data, etc., if available 

✕ ✕ 
Boarding location can be inferred with the 
availability of GTFS, APC, and AFC data   

Suppose AFC data do not provide the location of the boarding transaction directly (second 
category). In that case, AVL and AFC data sets are integrated based on the timestamp and route 
number (Farzin, 2008, Gordon et al., 2013, Sánchez-Martínez, 2017, Wang et al., 2011). 
Alternatively, instead of route number, vehicle ID can also serve the purpose (Tu et al., 2018). 
AVL data usually contain the location of the transit vehicle with the timestamp. Due to the 
location data errors (mostly due to GPS errors), it is hard to infer 100% of transactions. Zhao et 
al. (2007) reported that 5.4% of the total inference failure is due to AVL and GPS. 

In the study of Cui (2006), the equipment ID of farebox installed in a bus is linked to bus ID. 
Afterwards, AVL and AFC data are integrated to estimate the boarding stop. In Munizaga and 
Palma (2012) study, the origin is directly available using metro and bus station (stationary points) 
database, except for fare boxes that are installed on the bus (dynamic points), AVL data are used 
to infer the origin. While integrating AFC and AVL datasets, transactions made within a radius 
of 110 m are assumed to have the same origin stop (i.e., all the stops within 110m are believed to 
be same) (Cui, 2006, Farzin, 2008). This assumption is justifiable for big bus stops where the 
number of stopping bays exceeds five (assuming 20 m bay; for six bays, length of a single stop 
would be 120m). Kumar et al. (2018) utilised AFC, AVL and GTFS data to find the closest stop 
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of the transit route for each trip leg. The study reports a mean error of 17 m (52 ft) in the GPS 
locations recorded in AFC data. Furthermore, in a recent study, Huang et al. (2020) employed the 
DBSCAN algorithm for spatial clustering and matching of AVL data and transit stops. 

In a dense Beijing network, Ma et al. (2012) proposed a method to find the boarding location of 
flat fare buses where available fields are only route number and driver ID. The study develops a 
methodology to infer the boarding stop information without using dataset other than smartcard. 
The smartcard transactions are first grouped by vehicle ID and boarding time. The boarding stop 
is inferred by comparing the observed travel time of grouped transactions and calculated travel 
time between stops. The study created a Markov Chain based Bayesian decision tree algorithm to 
estimate the probability of a set of transactions belongs to a stop. The study reported accuracy of 
approximately 70% when applied on two routes. Later, Chen and Fan (2018) proposed an 
improvement in transit direction detection. However, the proposed methodology has great 
potential for improvement, specifically if applied with scheduled data. Nevertheless, the current 
method’s accuracy is also unknown, as the study does not provide any validation (Chen and Fan, 
2018). 

There are instances when boarding transaction time is logged instead of the boarding time. For 
example, in a gated entrance (usually in a metro station), it is required to find the passenger train 
boarding time (also known as passenger-to-train assignment), while the recorded time 
corresponds to the transaction time. This problem is similar to case three in Table 2, where the 
smartcard data can be integrated with AVL or scheduled data to find the actual boarding time 
(Zhang et al., 2016). 

Integration of AFC and AVL (GPS) datasets seem to be a practical solution to estimate the 
boarding location, hence used by researchers subjected to its availability. Scheduled data can also 
be utilised for the same purpose if AVL data are not available. Though, it will exclude more 
transactions from the analysis due to discrepancies in the scheduled and operational headway. 
The authors believe that before using scheduled data for inference of boarding location, the 
overall headway adherence (or other time performance indicator) of the transit system could be 
calculated to increase the confidence on estimated boarding location.  

2.3.2 Alighting location estimation (Destination inference) 

This section first provides general details on the alighting location estimation methodology, which 
will develop a basic understanding regarding the problem in hand. Afterwards, the details on how 
various researchers have estimated alighted location are provided. In general, alighting location 
is determined using the trip-chaining method, described below.  

2.3.2.1 General description of the trip-chaining method 

In trip chaining method, where only the boarding locations are known, the alighting locations are 
inferred from the boarding location of the successive trip. Here, if we chain the entire day’s 
boardings of the user in a cycle manner, then the alighting location of a trip should be spatially 
constrained to the boarding location of the successive trip. Mathematically it can be expressed as: 
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jA is alighting point of jth trip-leg, 1jB  is the boarding point of jth +1 trip-leg, n is the total 

number of trip legs of a passenger in a day, r
jS  is the set of stops downstream to the boarding stop 

of jth trip-leg ( )jB  for the route r, ( , )d a b is (Euclidean or walking) distance between point a and 

b, and maxd is the maximum threshold walking distance. k is the candidate stops within the set of 

stops r
jS  having distance lower than dmax from Bj+1 (or B1 in case of j=n). 

Figure 2 illustrates typical scenarios in trip chaining method in which a transit user makes various 
trips in a day. Let’s say, a transit user first travels from his home on route R1 from boarding stop 
B1 to office. Later, the user takes R2 from stop B2 and reach a mall for shopping or any other 
activity. From here, the user takes route R3 from stop B3 and arrives home.  

As per Equation (1), alighting stop A1 must lie within distance maxd from stop B2, i.e., d ≤ dmax. 
Further, the equaiton determines the closest stop to B2 out of list of candidate stops k. Similarly, 
to infer alighting stop for trip 2 (A2), the boarding stop of trip 3 (B3) can be utilised. Furthermore, 
to determine the alighting location of last trip (A3), boarding location of days’ first trip (i.e., B1) 
can be employed (Figure 2).  

An is the alighting stop of last trip of the day, B1 is boarding the day’s first trip, and 
r
nS  is the set 

of downstream stops of last boarding stop Bn of route r. Usually, the threshold distance for 
intermediate and last trips is considered dissimilar, mainly due to the nature of the connected 
activity. In literature, various researchers have opted for different values for the two distances; 
the divergence, rationale, and suitability of which is discussed in the next sub-section.  

 

Figure 2 Graphical representation of the simplest scenarios of trip chaining method to infer the 
alighting location 

2.3.2.2 Research related to alighting location estimation  

Most of the researchers have used trip chaining method to estimate alighting location and or time 
of a trip made in an entry-only system, as discussed above. Here, the discussion is extended on 
the adoption of various rules and values for trip chaining. Trip chaining is first proposed by Barry 
et al. (2002) by recommending two assumptions to link trips made by a passenger using a 
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particular card. The assumptions are: 

(1) A high percentage of passengers begins their next trip close to the finishing point of the 
last trip; and  

(2) Day’s first trip starting station and day’s last trip ending station is the same. 

The first assumption (Equation (1)) is also known as the continuity assumption. It implies that a 
passenger would not opt for another mode during his/her all-day journeys, i.e., non-usage or non-
utility of modes other than PT (Trip 1 and Trip 2 in Figure 2). In other words, for a passenger, the 
destination stop of the previous trip can be found within walking distance of the next boarding 
stop. Threshold walking distance values used by different researchers are summarised in Table 3. 
The continuity assumption narrows down the number of candidate-stops for estimation of the 
previous alighting stop. The number of candidate stops is further filtered by selecting only those 
stops which serve the last boarded route. Therefore, easing the process of identifying previous 
alighting stop.  

The second assumption (Equation (1)) is also known as the day’s symmetry trip assumption. It 
can be understood by the fact that a passenger first trip boarding stop and last trip alighting stop 
of a day generally is close to his/her resident (Trip 3 in Figure 2). As the study carried by Barry 
et al. (2002) is for subway tOD matrix estimation only, this assumption remained true for as many 
as 90% of the cases when validated through the New York Metropolitan Transportation Council 
(NYMTC). In the later studies, this assumption is relaxed by stating that “Day’s first trip starting 
stop and day’s last trip ending stop are close to each other (i.e., within some radius of threshold 
value)” to estimate the tOD for buses. This concept was introduced by Trépanier et al. (2007) and 
later used by many other researchers who worked on the tOD estimation problem primarily 
involving bus mode. 

The main shortcoming of trip chaining method is that destination of all transactions with exactly 
one trip in a day cannot be inferred using one-day smartcard data. Trépanier et al. (2007) utilised 
longitudinal smartcard data (one-month data) to minimise the impact of this shortcoming. They 
searched a single entry card number on the analysis day in other days of the month. The 
destination was inferable if a card has a similar transaction (records with the same route, and a 
minimum boarding time difference) within a whole month. Trépanier et al. (2007) claimed 
successful destination inference of an extra 13% of the smartcard holders having a single 
transaction in a day. Another study quoted successful destination inference of 80% of non-inferred 
transactions due to single entry in a day by considering the next day first trip location as the 
destination (Kumar et al., 2018). Besides, building on the previous work, He and Trépanier (2019) 
further improved the alighting location algorithm by proposing Kernel density-based estimation 
of candidate locations' spatial and temporal probability. The study claims to have soundly inferred 
the alighting location of 91% of total trips. 

Similarly, Jun and Dongyuan (2013) addressed the error source by considering transactions from 
5 working days to estimate tOD. The authors claim that with these values, the accuracy of the 
adopted model is 83%. The shortcoming of this study is that it only calculates the tOD for trips 
made in morning and evening peaks leaving all the transactions which are made in non-peak time. 
Therefore, the total number of cards analysed in this study is 40-52%. All those transactions 
having 2tK  , 1tM  , and 1tN   in five working days are considered for analysis. Where Kt is 
the total number of records of a smartcard in the morning and the evening peak period; Mt and Nt 
are respectively, the number of records in the morning peak and evening peak.  

In addition, to decrease the number of single transaction cards, Barry et al. (2009) observed that 
at midnight (12 am) there is still some activity going on and touches its minimum value around 3 
am. Therefore, for analysis, Barry et al. (2009) recommended and used a virtual day starting from 
3 am of one day to the same time of the next day. Following this, Munizaga et al. (2014) 
considered 4 am and Nunes et al. (2016) 5 am as the start of the day. Adaptation of virtual day 
has enabled researchers to decrease the number of entries with a single transaction. This idea may 
not be suitable for small to medium-sized cities where there is least (or no) PT activity at midnight. 
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Still, it can be more suitable for metropolitan cities where nightlife exists. 

As stated earlier, a threshold walking distance value is set to estimate the previous trip alighting 
point from next trip boarding point. Cui (2006) set the threshold to ≈ 1100 m (0.01° latitude) and 
estimated OD matrix for the rail system only. To determine the alighting station, Munizaga and 
Palma (2012) introduced generalised time Tg, which includes the walking distance and is 
represented by equation (2).  

 
. i post

i i w
w

d
Tg t f

s
   

(2) 

Where ti is the initial time, 
ws is average walking speed, wf refers to penalisation factor or disutility 

of walking time, and i postd  is the distance between point ‘i’ and next boarding. The optimisation 

problem is to minimise iTg , which is generalised cost while keeping 1000i postd md   . The 

generalised cost was introduced to handle the problem that arose from two-way routes. In 
Munizaga and Palma (2012) study, the origin of bus trips is not available directly from the data. 
Therefore, if a passenger taps the card in the bus station, it is required to infer bus and its routes 

as well. In another study, Munizaga et al. (2014) used the threshold walking distance  maxd of 

1000 m. Also, for London, Wang et al. (2011) and Gordon et al. (2013) used the maxd of 1000 m 
(12-minute walk, assuming walking speed as 5 km/h). In a recent study, Nunes et al. (2016) 
considered a cut-off distance of 640 m. While, using an entry-exit system data from South-East 
Queensland (SEQ), Australia, Alsger et al. (2015) performed a sensitivity analysis of the distance 
travelled between boarding stop and previous alighting stop. The study showed that 82% of the 
consecutive transactions are made within 400 m. It also showed that the number of successive 
transactions does not improve if the maxd exceeds 800 m. Further, Alsger et al. (2016) proposed 
an improved algorithm and used maxd of 530 m claiming that this improves OD matching from 

66% to 72%. 

Table 3 portrays the crucial studies which have used distinct maxd for tOD estimation. In all studies 

mentioned in Table 3, maxd is the Euclidean (aerial) distance except Nassir et al. (2011), where 

the study calculated walking distance by multiplying a factor of √2 with Euclidean distance to 
accommodate for actual walking distance. Euclidean distance may not represent the exact 
distance walked by a passenger since the neighbourhood’s street connectivity can affect the 
distance travel by passenger to access public transport. Use of Euclidean distance can sometimes 
cause underestimation of the distance intended to consider, and therefore can lead to the false 
estimation of alighting stop.  

maxd can depend on many other variables, for instances, mode of PT involved in analysis, the 
architecture of the city in analysis, demographics, terrain, whether a geographic barrier in 
commuting is present or not, etc. As recommended by TCQSM (2013), riders are willing to walk 
more distance (800 m) to access rail or subway station as compared to the bus (400 m). Also, the 
pattern of a city (grid or radial) can have a strong influence on the walking distance travelled by 
the passenger. In the grid-patterned city, one-way streets can cause the passenger to travel more 
than usual. A highly walkable neighbourhood is defined by a variety of land use, high residential 
density, and street connectivity. Ghani et al. (2016) concluded that walking pattern is not the same 
for all the neighbourhoods to access transport. Moreover, Ghani et al. (2018) consider age as a 
critical factor in walking for transport. The terrain is also a key factor which can cause the 
difference in walking behaviour of a city. For example, passengers are willing to walk more on 
flat terrain as compared to rolling and mountainous terrain (Ceder et al., 2015). Another study 
supplemented these results reported that elevated stations cause a reduction in ridership (Zhao et 
al., 2013). 
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Table 3 Walking distance used for destination inference in various studies 

Distance 
(m) 

Studies City PT 
mode 

City 
type 

Geographic 
barrier within 
the city 

Terrain 

530 (Alsger et al., 
2016)† 

SEQ, 
Australia 

Bus, rail, 
ferry 

Radial Yes, river Rolling  

640 (Nunes et al., 
2016) 

Porto, 
Portugal 

Bus Radial-
Grid 

Yes, river 
 

Rolling 

800ϯ (Alsger et al., 
2015, Nassir et 
al., 2011) 

SEQ, 
Australia 

Bus, rail, 
ferry 

Radial Yes, river Rolling  

750 (Gordon et al., 
2013) 

London, 
UK 

Bus & 
subway 

Radial Yes, river Rolling 

1000 (Gordon et al., 
2013, Munizaga 
et al., 2014, 
Munizaga and 
Palma, 2012, 
Wang et al., 2011, 
Yan et al., 2019) 

Shenzhen, 
China 

5‡: Bus  
 

Grid/Mix 
 

No 
 

Rolling  
 

Santiago, 
Chile 

2 & 3: 
Bus  
 

Radial 
 

No 
 

Mountainous 
 

London, 
UK, 
 

1: Bus & 
subway  
4: Bus 

Radial 
 

Yes, river 
 

Rolling 
 

1110 (Cui, 2006) Chicago, 
US 

Bus Grid  No Flat terrain 

ϯ This is the recommended value of walking distance apart from other values used for analysis in Alsger 
et al. (2015). ‡ 1 (one) corresponds to study appears first in the list, while 5 is the last study, i.e., (Yan et 
al., 2019) 

Besides, the increased usage of other transport modes (e.g., ride-hailing services, bicycle, e-
scooters, etc.) for short trips in an urban area may affect the continuity assumption. For instance, 
Lime (2018) reported 27% of all trips made are to access or egress PT. It suggests that users can 
avail modes other than walking for intermediate trips by which they can cover more distances. 

Instead of using walking distance as an indicator for alight stop inference, Sánchez-Martínez 
(2017) used the disutility for different stages in a PT trip, i.e., walking time (at entry and exit of 
the station), in-vehicle time, transfer time, and walking time from the station/stop to the final 
destination, and minimises the cost function. Equation (3) is employed to calculate relative cost 
at different paths of PT trip. 

  e e w w v v t t t t a aV t t t n t t             (3) 

Where tn and t is the number of transfer and disutility of each transfer. te, tw, tv, tt, and ta is 
walking time at entry or exit, waiting time, in-vehicle time, transfer time, and walking time to the 
final destination in minutes, respectively. θe=1, θw=2, θv=1, θt=10, and θa=5 is disutility of 
associated PT trip stage, respectively (Sánchez-Martínez, 2017). Although the author claims a 
total destination inference of 73% (including paper ticket user and transactions with one entry) is 
achieved, the study does not count for the waiting time due to in-vehicle congestion (denied 
boarding). The numerical values assigned to the disutility of PT trip stages and validation of the 
proposed method are yet to perform. 

The second trip chaining assumption defined earlier is used in two different forms in literature. 
Some studies (Barry et al., 2009, Barry et al., 2002, Cui, 2006, Farzin, 2008, Li et al., 2011, Nassir 
et al., 2011) assume that last stop/station of a passenger is the same as day’s first stop/station. 

 

† Studies are performed on entry-exit system. 
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However, other studies considered that the last stop/station is within walking distance radius from 
the day’s first stop/station. The latter proposition seems more realistic in the case of bus OD 
estimation, primarily because of having different stop number/location in a different direction 
(inbound/outbound). Studies such as Cui (2006), and Farzin (2008) assumed all the stops within 
a certain radius to be a single stop. These studies took the tolerance as 111 m (3.5” or 0.001° of 
latitude). The use of a cluster of stops as a single stop also copes with the lack of GPS precision. 
Further, this assumption is correct when there exist longer stops (more than 100 m) in a transit 
network (Farzin, 2008).  

The threshold value for the second assumption was set by Trépanier et al. (2007) as 2000 m. 
Using entry-exit system data, Alsger et al. (2015) reported that 88% of the passengers return to 
within 800 m of origin of the day. The study concluded that the average distance between the 
day’s first and last stop is more than 5 km, showing that the remaining 12% of the passengers 
have very high distance between days’ first and last stop (up to 36 km). Another study reported 
that 72.6% of the total erroneously estimated tOD trips are because of high distance values (more 
than 800 m) between boarding stop of days’ first trips and last stop of the days’ last trip (Alsger 
et al., 2016).  

In a subway or rail, the day’s symmetry assumption may be valid for many passengers because 
rail passengers tend to engage in long-distance trips. In contrast, bus passengers have relatively 
shorter distance trips due to its comparatively local function (Kieu et al., 2015b). More often, bus 
users may like to go for shopping, buy grocery, or see a friend on the way from work to home and 
return home using another mode of transport (for instance, walking, car-sharing, para-transit, 
etc.).  

Besides rule-based algorithms, recently, the probabilistic or machine learning models are adopted 
for alighting inference. The main objective is to relax the trip chaining assumptions due to transit 
passenger behaviour's complex nature. Cheng et al. (2020) utilised Latent Dirichlet Allocation, a 
probabilistic model to estimate the alighting stop. The model is trained to predict the destination 
stop based on the time and stop of origin by employing 3-month smartcard data. The study claims 
a 2% improvement in the result based individual passenger analysis. Jung and Sohn (2017) used 
supervised machine learning by employing rectified linear unit with two hidden layers to estimate 
alighting location. This study used 27 variables related to the smartcard transaction and land use 
(Table 4). Yan et al. (2019) proposed a two-step algorithm for destination inference – trip 
chaining, and machine learning. The transactions with non-inferred alighting information from 
trip-chaining are estimated using diverse machine learning techniques. Following, Assemi et al. 
(2020) proposed a methodology involving neural network for the same purpose. Usually, the 
motivation to use different methods for the same approach is to increase the algorithm’s accuracy. 
For instance, Assemi et al. (2020) reported an accuracy of 79.5% of the neural network model 
compared to a contemporary rule-based model with 72.2% accuracy. More details regarding the 
validation are given in Table 7.  
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Table 4 Studies based on machine learning along with the variables used 

Study Method Variables used 
(Jung and 
Sohn, 2017) 

Supervised machine learning  Transaction related variables: current and next boarding time, 
number of transfers, network and Euclidean distance to all candidate 
stops, inter-transaction time, bus stop densities at upstream and 
downstream, generalised travel time, and average travel speed 

Land use variables: residential, commercial, cultural, and office 
floor area in the 500m radius of origin stop; residential, commercial, 
cultural, and office floor area in the 500m radius of next trip origin 
stop; residential, commercial, cultural, and office floor area in the 
500m radius of candidate alighting stop 

(Yan et al., 
2019) 

Naïve Bayesian, support vector 
machine, decision tree, random 
forest, and k-nearest neighbour 
algorithm 

Boarding location and time, number of point of interest and their 
distribution, and transit route number 

(Assemi et 
al., 2020) 

Neural network Boarding location and time, number of stops (and distance) between 
the boarding and potential alighting stops, if a transaction is last trip 
of the day, and estimated trip duration (and distance) between the 
boarding and alighting at a stop. 

The usage of machine learning approaches and probabilistic models is increasing for smartcard 
data application such as alighting stop estimation, pattern mining, short and long term ridership 
prediction, etc., for their enhanced predictive capabilities. The machine learning approaches are 
generally data-hungry, and computationally expansive; however, they do not impact the above 
smartcard applications since the real-time application is not involved here except for short term 
ridership prediction (Toqué et al., 2017, Yang et al., 2021). 

2.4 Transfer detection  

 Generally, a card needs to be tapped every time a passenger boards a bus, generating a transaction 
in the system. In most of the rail or subway PT, the card needs to be tapped while entering the 
station only and not while changing the train or at the transfer point. Therefore, a single 
transaction from bus denotes a trip (single boarding and alighting from PT), while that from 
rail/subway represents a possible journey which can include single or multiple trips. 

2.4.1 Description of typical Rules for transfer inference 

Researchers have devised guidelines to separate a transfer from activity, of which most widely 
used are outlined with the help of a figure. Figure 3 depict five scenarios needed to distinguish 
between the transfer and activity. The bifurcation between transfer and activity is done by 
applying spatiotemporal and the last transit route constraints. The temporal constraint is known 
as the maximum transfer time (MTT), and the spatial constraint is termed as maximum transfer 
distance (MTD). MTT is defined as the time difference between two consecutive alightings and 
boarding of a smartcard user within a day. MTD is the maximum walking distance between two 
consecutive alightings and boarding during which a passenger is assumed to have taken transfer 
from one transit service to another.  

If the time duration (t) is greater than MTT or distance between stops (alighting and next boarding 
stop) (d) is greater than MTD, it will be labelled as an activity. The last transit route constraint is 
applied by matching the transit route taken on previous and current trip-leg. If the transit route is 
the same for successive trip-legs, it is considered as an activity without concerning its direction, 
MTT and MTD. Nevertheless, this rule may not be suitable for ring routes, alternate short and 
full service, skip-stopping (or limit stop) operation, and during disruptions where users have to 
change the vehicle without being involved in an activity. 
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(4) 

Here, iR  is the transit route taken for trip-leg ‘i’. The scenarios portrayed in Figure 3 can be 

matched with Equation (4) to decide between activity and transfer. Whereas, out of the five 
scenarios depicted in Figure 3, the first four cases show activity (no-transfer) and the last case 
represents the transfer.  

 

Figure 3 Illustration of various scenarios for an activity or transfer detection employed in 
literature 

Various definitions and values used in literature for MTT and MTD are explained in the following 
sub-sections. 

2.4.2 Maximum transfer time (MTT) 

In some studies, MTD is also referred to as Inter-Transaction Time (ITT) because distance can be 
converted to time by assuming a suitable walking speed value. As shown in Table 5, MTT ranges 
from 18 minutes to 90 minutes.  Huang et al. (2020) adopted the MTT as time less than the transit 
frequency. Nassir et al. (2011) proposed MTT as a minimum of 90 minutes or time required for 
walking from alighted station to boarding station plus time needed for a minor activity. If the time 
between successive alighting and boarding is less than minor activity time (30 minutes), it is 
labelled as transfer without applying any other rule. The same principle is also employed by 
Kumar et al. (2018). 

Instead of using a single value of MTT, Chu and Chapleau (2008) converted the Euclidean 
distance between stops to time by dividing the distance with walking speed (taken as 4.3 km/hr). 
In continuation of this work, Gordon et al. (2013) used MTT corresponding to maximum 
Euclidean distance of 750 m (assuming the walking speed of approx. 3 km/hr) plus an allowance 
of 3 minutes. Maximum waiting time for the bus is taken as 45 minutes. Gordon et al. (2013) 

Boarding stop

Alighting stop

= Time duration
= Distance

= Maximum Transfer Time

= Maximum Transfer Distance
= Transit route



 
 

17 
 

further considered if a passenger has not taken the first available transit service; it is labelled as 
an activity. Later, Yan et al. (2019) and Yap et al. (2017) also utilised the same rule. This 
assumption is valid in most cases; however, this assumption may lead to underestimating transfers 
in the case of denied boarding (in-vehicle congestion) and transit disruption. The denied boarding 
can often occur in peak hours on busy routes and during disruption (Durand et al., 2018). Thereby,  
Yap et al. (2017) integrated the AFC and AVL to get each trip's occupancy of all transit services. 
Afterwards, the spare capacity of the first available transit service is calculated. If it does not have 
enough spare capacity, it is marked as denied boarding, and the event will not be marked as an 
activity. Since various transit operators tackle disruptions in different ways, therefore, it is 
required to come up with a more robust methodology to infer transfer in disruption scenario (Sun 
et al., 2016).  

Seaborn et al. (2009) considered a range of transfer time for transfer within several PT modes. 
The study used MTT of 15-25 minutes, 30-50 minutes, and 40-60 minutes for underground-to-
bus, bus-to-underground, and bus-to-bus transfer, respectively. The transfer within the 
underground can not be inferred as passenger taps-on only when they enter a station and tap-off 
while they leave the station, i.e., no transaction is recorded when a passenger changes train.  

Table 5 Maximum Transfer Time used by various researchers 

Time (minutes) Studies 
18 (Barry et al., 2009) 
30 (Ali et al., 2016, Bagchi and White, 2005, Liu et al., 2019, 

Munizaga et al., 2014, Munizaga and Palma, 2012) 
60 (Alsger et al., 2016, Alsger et al., 2015, Mosallanejad et 

al., 2019, Nassir et al., 2015, Yan et al., 2019) 
90 (Hofmann and Mahony, 2005, Kumar et al., 2018, Nassir 

et al., 2011) 
Variable (Chu and Chapleau, 2008, Gordon et al., 2013, Seaborn et 

al., 2009, Yap et al., 2017) 
< transit frequency (Huang et al., 2020) 

It is worth noting that MTT depends on the maximum time headway of route under consideration, 
and the distance between stops. For example, if a next bus route has a headway of 60 minutes, 
using 30-minute MTT value would exaggerate the number of transfers. Also, special 
consideration can be given to routes that only operate in morning and evening peaks because 
passengers may like to wait more to get a particular route bus. Hence, the authors suggest that a 
reasonable value of MTT must include the headway of transit service taken and the time taken to 
walk from alighted stop to the next boarding stop.  

2.4.3 Maximum transfer distance (MTD) 

 Li et al. (2011) defined  MTD as the standard maximum transfer distance and asserted that it is 
dependent on the economic status of the city, PT coverage, etc. Various values for MTD used by 
researchers are summarised in Table 6.  

Alsger et al. (2016) used an entry-exit system data from SEQ, Australia. The study estimated the 
number of trips by taking a transfer distance of 400, 800, 1000, and 1100 m by utilising tap-on 
data only. The number of trips estimated is compared with the actual number of trips from entry-
exit system data. The authors reported that by using an ITT of 60 minutes, the percentage of tOD 
matching is 72% for 530 m and 86% for 800 m of maximum transfer distance (Alsger et al., 
2016). The study also identified two sources of error in the estimation of tOD using an entry-only 
system that is lack of at least two trips in a day by a passenger, and the distance between alighting 
and next boarding stop has a considerable effect on the tOD estimation.  
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Table 6 Maximum transfer distance values adopted in literature 

Distance (m) Studies 
400 (Liu and Zhou, 2019, Liu et al., 2019, Mosallanejad et al., 

2019, Nassir et al., 2015, Yap et al., 2017, Zhao et al., 2007) 
530 (Alsger et al., 2016) 
750 (Gordon et al., 2013) 
800 (Alsger et al., 2015) 

1000 (Munizaga et al., 2014, Yan et al., 2019) 
1500 (Huang et al., 2020) 

Table 6 reveals that MTD has a minimum of 400 m and a maximum of 1000 m value in literature. 
As discussed for alighting stop inference (section 2.3.2.2), the maximum transfer distance would 
depend on many variables like the city’s architecture, terrain, demographics, etc. The transfer 
distance would also depend on PT mode in question (based on transfer between bus-bus, bus-rail, 
and rail-rail in line with the TCQSM (2013) recommendations). Seaborn et al. (2009) and Gordon 
et al. (2013) have used variable transfer time for transfer within different modes. However, none 
of the studies so far used variable transfer distance for transfer between modes. The analysis from 
Munizaga et al. (2014) shows that the walking distance is dependent on the land use surrounding 
of stop/station. It would be worth estimating tOD using different transfer distance for transfer 
within PT modes and validate the methodology by endogenous or exogenous technique to 
quantify its impact on the tOD estimation. Validation of all the studies quoted in Table 6 is 
presented in section 2.6 (Table 7). 

In addition to abovementioned three rules for activity detection Figure 3, more rules are found in 
the literature. Details of those rules and guidelines to use them are presented below.  

2.4.4 Additional rules for transfer detection 

Some studies used the assumptions set by the respective PT agency to infer transfer primarily for 
fare deduction. For example, in the case of Cui (2006), while transferring, transit passenger used 
two distinct cards, a standard AFC card, and a transfer card. When a transfer card is tapped, it 
generated a different type of transaction for a maximum of three legs; hence the study employed 
the same data. Alsger et al. (2015) used different walking distance and ITT to observe their effect 
on the tOD matrix. Here, the referenced number of transfer and subsequent tOD is determined by 
applying the definition for transfer detection set by TransLink (PT agency of Brisbane, Australia). 
TransLink assumes a transfer if the ITT is less than 60-minutes, and a maximum of three 
consecutive transfers can be taken. Similarly, Munizaga and Palma (2012) study for Santiago, 
Chile, reported that the PT agency allows three transfers in 2-hour span. Since the riders know 
the transfer fare rule in advance, adoption of the same rules for transfer detection can lead to 
underestimating the actual number of transfers. Application of contrasting rules for transfer 
inference will lead to different tOD. Thereby, it is crucial to develop, test, and employ a robust 
and realistic set of transfer detection assumptions. 

Gordon et al. (2013) proposed three tests for transfer detection: binary test, temporal test and 
spatial distance based on simple logic, and temporal and spatial constraints. Binary test separates 
the transactions which are a final transaction of the day, transactions with no subsequent inferred 
origin, or no inferred destination because the activity cannot be detected in all such cases. 
Temporal constraints include the maximum interchange time, which is reliant on the Euclidean 
distance between two stops and maximum waiting time or the maximum headway. The spatial 
limit tests consist of the maximum transfer/interchange distance, circuity (the ratio of distance 
travelled in PT and the Euclidean distance between the start and end for multiple stage journey), 
and the cumulative angular difference over two or more trips are less than a specific value. Once 
all three tests are passed, the transaction is considered as a separate journey (activity). Otherwise, 
it is linked to the same card’s previous transaction (i.e., inferred as a transfer). This method's 
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application gave a transfer ratio of 22% over buses without considering transfers in the subway. 
The study reported that the percentage of passengers having two transfers in a day is much lower 
than the estimated when compared with the local travel demand survey. Seaborn et al. (2009) also 
concluded similar results, where different transfer times, e.g., 15-25 minutes, 30-50 minutes and 
40-60 minutes were used for the underground-to-bus transfer, bus-to-underground transfer, and 
bus-to-bus transfer, respectively.  

In the continuation of Gordon et al. (2013) study, Nassir et al. (2015) presented the two-stage 
transfer detection algorithm. In the first stage, relatively relaxed general constraints are applied, 
namely, the route taken (for two consecutive trips), temporal filter (60-minute of ITT), and the 
spatial filter (400 m of maximum transfer distance). The second stage algorithm is based on the 
following five spatial and temporal criteria, which is claimed to be capable of determining short 
activity:  

 gap (S1), defined as the time gap between alighting and next boarding (less than or equal 
to 20 minutes); 

 gap ratio (S2), the ratio of time gap to total travel time (less than or equal to 0.4);  
 off-optimality (S3), travel time difference between the observed trajectory and the fastest 

path (less than or equal to 20 minutes);  
 off-optimality ratio (S4), the ratio of off-optimality to total travel time (less than or equal 

to 0.5); and  
 circuity (S5), the ratio of the sum of the Euclidean distances of each trip leg in the journey 

to the Euclidean distance between the origin and the destination (less than or equal to 
1.7).  

The value assigned to each criterion is calibrated using a set of smartcard data of South-East 
Queensland (SEQ), Australia. A transaction is considered as transfer by calculating: 

   4 1 2 3 5\fT S S S S S     (5) 

The fifth criteria (S5) is previously used by Munizaga et al. (2014) by considering a cut-off value 

of 2 for on-route distance covered  on routef  , and Euclidean distance  Euclideanf  ratio. Nassir et al. 

(2015) used smartcard data from SEQ, Australia, which is an entry-exit system and validated the 
proposed algorithm using the Household Travel Survey (HTS) data from 2009. The HTS data 
contain 290 cases with one or more transfer in a day out of 983 cases of the interchange. The 
authors claimed an overall transfer detection accuracy of stage 1 and 2 as 99.8%. The study 
claimed to give better results as compared to other studies; however, the generalisation of the 
study’s results is yet to be done. The tOD estimation model, in general, is area-specific and needs 
recalibration if intended to be used for another area. Besides, the criterion S3, S4, and S5 can give 
misleading results in case of transit disruption events such as railway track closure, broken 
vehicle, etc. (Durand et al., 2018, Yap et al., 2017). Hence care must be exercised when applying 
these constraints for transfer detection. 

In addition to above rule-based transfer detection studies, Liu et al. (2019) employed integer 
programming and convex quadratic programming optimisation technique to estimate transfer in 
an entry-only system by utilising tap-only smartcard data and GTFS data. The study compared 
the results with output from trip chaining method. The results showed r-squared of 0.92 among 
the stOD matrices estimated by employed integer programming and trip chaining method. 
Association rule learning and k-mean clustering are also employed for transfer inference (Zhao 
et al., 2019), where the only variables used in the analysis is ITT. The study reported a median 
transfer time of fewer than 20 minutes. However, no information is stated on the upper level of 
ITT. While optimisation and machine learning techniques are not widely used to find transfers, 
the method is yet to be rigorously validated by an exogeneous dataset. 
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The literature on smartcard data is still evolving. It is evident from the above discussion that the 
evaluation of many factors that are vital for transfer or short activity detection is still missing. For 
example, due to crowding and bus bunching the user behaviour towards route choice may change 
(Arriagada et al., 2019, Fourie et al., 2016, Yap et al., 2020), as a transit user may opt for next 
less crowded service, instead of first crowded transit service. Likewise, the effect of transit service 
travel time reliability on transfer detection is unexplored. Though research is available on the 
estimation of travel time reliability from smartcard data (Dixit et al., 2019, Lee et al., 2014, Liu 
et al., 2020), its effect on transfer detection (more specifically, MTT and MTD) is yet to be 
quantified. On the same line, more comprehensive studies are required to fully identify the effects 
of various type of disruptions, ring-lines, stop-skipping operations, and alternate short and full 
line service on the transfers inference rules. Therefore, it is concluded that there is room for 
improvement in the simple to complex algorithms proposed by researchers. 

2.5 Zone to zone OD (ztOD) estimation 

First, to continue with this section, stOD, ztOD, and population or scaled tOD are defined. A stop-
level OD refers to an OD matrix having stop-to-stop transit trips information on a transit network, 
while a ztOD have zone-to-zone transit trips information. A population tOD refers to an OD 
matrix having 100 percent trips made, i.e., there is no missing trip.  

AFC data provide information regarding origin stop (in case of the entry-only system), or origin-
destination stops (in case of the entry-exit system) of the rider. In both the systems, the AFC 
transactions record stop-to-stop trip/journey for buses and station-to-station for rail or subway. 
More specifically, the smartcard data lack the knowledge about how riders access the stop (or 
station), and how riders reach their destination (absence of first and last mile information). 

A few studies in the literature have worked on the inclusion of first and last mile in tOD estimation 
from smartcard data. Studies (Alsger et al., 2016, Alsger et al., 2015, Assemi et al., 2020, Barry 
et al., 2009, Farzin, 2008, Li et al., 2011, Munizaga and Palma, 2012, Zhou et al., 2019) have 
applied basic heuristics to convert stOD matrix to ztOD matrix which may be suitable in the case 
where walking is done to access/egress a stop. 

Assemi et al. (2020), Ali et al. (2016), Munizaga and Palma (2012), Li et al. (2011), and Farzin 
(2008) assigned a TAZ zone to a stop based on its physical existence, i.e., if a stop lies in the 
boundary of a zone, it is presumed that all the trips started and ended here belong to the same 
zone. This assumption works reasonably well for most of the stops in a city, except those stops 
that lie exactly on the zones’ boundary. In most cases, main roads serve as a boundary line for 
zoning purpose, including TAZ. For example, Figure 4(a) shows a portion of bus stops and rail 
stations and Brisbane Strategic Transport Model (BSTM) zones. From the figure, it is apparent 
that most of the stops lie exactly on the dividing line of BSTM zones, which can lead to the false 
estimation of the ztOD matrix. Figure 4(b) further strengthens this point where it can be seen that 
buffer area (400 m radius) of most of the stops lies in more than one BSTM zone. Alsger et al. 
(2016) and Alsger et al. (2015) used the BSTM zone of Brisbane, Australia to convert stOD matrix 
to ztOD matrix, but the studies lack the details on the method adopted for aggregation.  

In addition to the above studies, Amaya et al. (2018) estimated the origin zone of frequent users 
by calculating the centroid of all the stops where the first transaction of day is made during one 
week. The results showed over 70% accuracy when validated against an exogenous dataset.  
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Figure 4 Sample of BSTM zones and TranLink stop of Brisbane (a) Geographical location of 
stops and BSTM zone boundaries, and (b) buffer of 400 m around stops 

Furthermore, few other researchers have provided rationales to group the transit stops. For 
instance; McCord et al. (2012) proposed an algorithm to aggregate/disaggregate a transit route 
stop-level OD matrix based on the flow probability. The objective of the study is to reduce tOD 
matrix size by preserving the OD flow pattern. These methods are devised to combine stops of a 
single route; their application at a system or network level is not easy. To overcome this problem, 
Lee et al. (2012) aggregated bus stops from GTFS by incorporating distance between stops, text-
similarity in stop names, and land use in the catchment of a stop. The study aims to combine stops 
at a micro-level and do not aggregate stops at zone-level.  

Other studies used more advanced clustering techniques, such as DB-SCAN, k-means clustering, 
etc., to aggregate the stops at a coarser level. Luo et al. (2017) grouped the transit stops by 
applying k-means clustering technique. The study minimises the distance between stops within a 
group and maximises intra-groups flow. By this method, stops can be aggregated efficiently; 
however, it does not solve the primary task of assigning trip proportion from a stop to all the near 
zones.  

The main focus of the formulation adopted in the above-cited articles is to find ways to group or 
cluster the transit stops. Notwithstanding, the studies mentioned above provide a heuristic to 
reduce the tOD matrix dimension for helpful visualisation and other possible applications, like 
transit route designing, identification of low and high PT usage areas, etc. The proposed 
methodologies are not able to infer the fraction of trips from the smartcard to predefined origin 
and or destination zones (such as TAZ) when a stop lies at the border of two or more zones. It is 
essential to recognise the trips origin-destination on predefined zones to be able to integrate the 
tOD with other pre-existing strategic and operational models. 

Till date,  Barry et al. (2009) considered variable other than spatial relation of stop and zone. The 
authors assigned zones to trip by logit allocation technique and used variables such as walking 
distance, population or employment and time of the day. But the detail on the methodology of 
logit allocation technique is not presented in the article. Moreover, Tamblay et al. (2016) 
presented a zonal inference model which considers distinct variables for trip generation and 
attraction in a zone. The variables considered are land use (commercial, educational, residential, 
industrial, offices, and health) and a cost function to access or egress from a stop. Building on 
previous work, Tamblay et al. (2018) proposed the use of calibrated constants for the 
aforementioned cost function with the addition of route choice model by employing the 
demographic variables and trip patterns. Computed ztOD is compared with OD surveys, which 
shows absolute percentage error of a zone for origin inference range 45-62% while for the 
destination it ranges 56-60%. 

It is apparent that attempts are made to aggregate stOD to ztOD. However, there is a need to 
develop more robust methodologies incorporating first and last mile problem collectively. The 

(a) (b) 
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first and last mile may include but not limited to the effect of park & ride facilities, kiss & ride, 
free on-street parking, use of any other non-integrated public transport mode on aggregated ztOD. 

Once the ztOD is developed, the last step in estimating the final tOD is to compute population 
tOD. The tOD from smartcard data, usually, does not represent the population tOD. There are 
various reasons due to which the penetration rate of smartcard is not 100%. For instance: errors 
in the smartcard data discussed in section 2.1; passengers who do not tap their card while boarding 
(and alighting) a transit service, e.g., those having a monthly pass, and fare evasion; and those 
who use a medium other than smartcard for fare payment (e.g., paper tickets). Research studies 
can be found in the literature, which addresses the scaling problem of tOD matrices estimated 
from smartcard data. The research is primarily built on the iterative proportional fitting (IPF) 
method (Ben-Akiva et al., 1985) and doubly-constrained growth factor method.  

To determine population tOD, IPF requires a base OD matrix and passenger-counts for each 
origin and destination. The tOD from smartcard data serves as base OD matrix, and passenger 
counts are obtained from either on-board surveys, APC, or passenger count surveys at entry and 
exit of transit facilities (bus stops and train stations). Ji et al. (2015a), Ji et al. (2015b), and 
Mishalani et al. (2011) presented the application of IPF method by employing the boardings and 
alightings at transit (bus) stops (APC data) along with other proposed method to find the 
population flows. The study estimated transit ridership at the transit-route level. Scaled trips are 
then aggregated for all transit routes operating between two OD pairs (stops). The main 
disadvantage of the study is that this method does not incorporate transfers. Thereby, the tOD is 
based on passenger-trips instead of passenger-journeys. To overcome this shortcoming, Gordon 
et al. (2018) modified IPF method to develop a journey-based tOD matrix. The stOD matrix is 
scaled using the count data from bus farebox, and station gates.  

Recently, Egu and Bonnel (2020) applied a list of rules to produce population ztOD matrix. Trips 
related to transactions – where the origin is known, but the destination is unknown – are distributed 
among the destinations with the same proportion as inferred journeys. Further, all flows in the ztOD 
matrix are enhanced by a factor observed in a local fare evasion survey to incorporate the journeys not 
recorded by smartcard (for reasons given above). Afterwards, the IPF method is applied on the ztOD 
where counts are taken from APC data for selected bus and tram stops, and train stations to get the 
population ztOD.  

In addition, the distribution of trips from paper ticket or freedom passes over OD pairs requires further 
investigation. Currently, they are distributed equally among all the OD pairs (Egu and Bonnel, 2020). 
However, the literature suggests that the origin/destination of the non-smartcard user may be different 
than smartcard users (Graham and Mulley, 2012, Tran, 2012).  

2.6 Validation of proposed algorithms  

One of the most challenging tasks in computing reliable tOD matrix from smartcard data is the 
validation of the proposed algorithm for tOD estimation. Table 7 summarises how researchers 
have worked the validation problem so far, where all the related studies are grouped based on the 
type of validation performed. The alighting only validation type group represent the studies where 
validation is shown on the alighting location inference only, and so on.  

The tOD estimation and validation accuracy are dependent on the input data type (an entry only 
or an entry-exit system data), and fields available in the smartcard data. As grouped in Table 7, 
various studies have employed validation on different phases of the tOD estimation process. The 
data cleansing is part of all the phases. In a study where only transfer detection algorithm is 
proposed and validated, the error would be the cumulation of error in the data cleansing and the 
transfer/activity inference phases. For studies where the alighting stop is inferred along with 
transfer detection, the total error would be the sum of error in data cleansing, transfer/activity 
detection, and alighting stop inferencing. As a consequence, the combined transfer and alighting 
stop inference may have low accuracy.  
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Furthermore, it is essential to understand the omitted data not included in the accuracy 
measurement. For instance, while working on destination stop inference, it is vital to know if the 
accuracy measurement includes all the transactions or excludes passengers with only one 
transaction (trip-leg) per day. The former case may have low accuracy; however, it may be of 
more interest due to the inclusion of more data in the analysis.  

tOD matrix estimation algorithms are validated using endogenous and exogenous validation. 
Endogenous validation is defined as the validation based on the same (or part of the same) dataset 
used for algorithm development. Exogenous validation is based on the dataset from an external 
source, i.e., dataset other than used for algorithm development. The proposed algorithm can be 
validated by both the methods in an entry-only system. Nonetheless, only the endogenous method 
is applied in the entry-exit system due to the nature of data involved in the process. It can be noted 
from Table 7 that most of the studies (Barry et al., 2009, Barry et al., 2002, Farzin, 2008, Gordon 
et al., 2013, Munizaga et al., 2014, Nassir et al., 2015, Seaborn et al., 2009, Wang et al., 2011, 
Zhao et al., 2007) used exogenous validation. The endogenous validation is first used by 
Devillaine et al. (2013) portraying that validation can be done by exploring the derived variables 
like speed, distances, travel times, and trip stage time from smartcard followed by other studies 
(Alsger et al., 2016, Alsger et al., 2015, He et al., 2015, Munizaga et al., 2014).  
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Table 7 Validation methods adopted for various steps of tOD estimation algorithm 

Type of 
validation 

Study Details of validation Dataset used for 
validation 

Sample size Results of validation 

Alighting only 
 

(Barry et al., 2002) Trip chaining assumption Travel dairy of NYMTCI 250 rider’s data Assumptions are valid for 90% of the subway users. 
(He et al., 2015) Alighting location 

estimation 
Smartcard data (SCD) 
(entry-exit system) 

One-month SCD from 
Brisbane 

79% accuracy for alighting location estimation 

(Jung and Sohn, 2017) Alighting location 
estimation 

SCD (entry-exit system) 20% of one-day 
transaction (≈165,000) 

Testing phase accuracy is 60% (87.5 % with 1-stop tolerance)  

(Yan et al., 2019) Alighting location 
estimation 

SCD (entry-exit system) Two-weeks Beijing, 
China bus SCD 

74.4% accuracy for regular users 
70.2% accuracy for irregular users 

(Assemi et al., 2020) Alighting location 
estimation 

SCD (entry-exit system) Same day SCD from 
Brisbane 

79.5% accuracy for all transactions 
95.8% accuracy with an accepted error of one-stop 

Transfers only 
 

(Seaborn et al., 2009) Multi-modal OD inference 
model 

 LTDSII 12000 individuals A minimum variance of +3% and the maximum variance of -20% 
is found between the number of transfers in LTDS data and 
estimated data. 

(Gordon et al., 2013) Inference of OD matrix for 
intermodal journeys 

LTDS NA Reported to be same as that for (Seaborn et al., 2009) 

(Nassir et al., 2015) Transfer detection  HTSIII 1693 journeys 99% accuracy for transfer detection 
(Alsger et al., 2016) Transfer walking and time SCD (entry-exit system) One day SCD 

0.18 million 
transactions 

86% accuracy using 800m of MTD and 60 MTT 

(Liu et al., 2019) Transfer detection using 
optimization techniques 

SCD (trip-chaining) One-month weekday 
SC transactions 
≈76500 

0.92 r-squared between modelled and smartcard OD 

Transfers and 
alighting only 
 

(Farzin, 2008) Zone-to-zone bus OD 
matrix 

OD Household Survey N/A Significant differences between destinations and trip pattern. 
Passengers with transfers are 50% as compared to the system 
average of 34%. 

(Alsger et al., 2015) Transfer walking and time, 
and days’ symmetry 
assumption 

SCD (entry-exit system) One day SCD 
(0.5 million 
transactions) 

88% of transfers are detected using 60-min MTT, 800m MTD. 
88% riders return to within 800-m radius from the origin. 

Boarding and 
alighting only 

(Wang et al., 2011) Inference of bus OD matrix 
(route-wise) 

BODSIV Route 185  
≈14000 boardings 
recorded 

66% and 65% of BODS surveyed destinations are inferred for each 
direction.  

(Huang et al., 2020) Inference of bus OD matrix 
(route-wise) 

Ticket recycling survey 100% data for 72 round 
trips 

72-85% for boarding inference, 70-86% for alighting inference 

OD based (Zhao et al., 2007)ϯ ϯ tOD matrix  CTAV Customer OD 
survey 

N/A with a 95% confidence interval, the estimated tOD values are not 
different than 10%. 

(Barry et al., 2009) Multi-modal OD inference 
model 

Entrance and exit counts 
in the subway, ride check 
data for bus 

100% on station 
entrance & exit, a 
couple of routes for bus 

No quantitative analysis is done. 

(Kumar et al., 2018) OD estimation On-board surveys NA Graphical results are presented for boarding and alighting 
comparison. 
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Type of 
validation 

Study Details of validation Dataset used for 
validation 

Sample size Results of validation 

(Egu and Bonnel, 
2020) 

OD estimation, transfer 
algorithm, and OD scaling 

HTS and onboard OD 
surveys (ODS) 

HTS includes 164000 
households,  
ODS ≈ 30% 

The error in mean trip-legs per journey of AFC—HTS, and AFC—
ODS is 2.1% and 8.4%, respectively. 
The error in total trips is correspondingly 27% and -5.5%. 
The percentage difference for AFC—HTS in 1-leg journeys, 2-leg 
journeys, 2+ leg journeys is respectively -1%, -1, and +2%, and that 
for AFC—ODS is respectively, -8%, +5%, and +3%.  
The RMSE‡ between AFC—HTS and AFC—ODS scaled tOD is 
correspondingly, 39% and 21%. 

Boarding, 
transfers, and 
alighting 

(Munizaga et al., 2014) OD estimation and transfer 
algorithm 

OD metro surveys 601 individuals Correct estimation of boarding stop is 99%, alighting stop is 84% 
and 67% for route choice of only metro users. 

Volunteers 586 trips Transfer inference is 90% correct  
SCD One-week SCD (35 

million transactions) 
Suggestions are made based on sensitivity analysis of SCD 

ϯ ϯ Partial validation performed, I New York Metropolitan Transportation Council, II London Travel Demand Surveys, III Household Travel Survey, IV Bus passenger Origin-Destination surveys, V Chicago 
Transit Authority, ‡Root Mean Square Error 
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The assumptions proposed by Barry et al. (2002), discussed in alighting location estimation 
section, are validated by using the information from the travel diary of NYMTC. Two hundred 
and fifty riders having a total of 595 trips are selected for validation in which 100 riders have 
exactly two trips per day, and 150 riders have more than two trips. The results showed matching 
of 90% between the proposed assumptions for trip chaining and trip information from travel dairy 
of NYMTC. The final OD is also compared with tally data (from gates at the station entrance) 
with a maximum of 4% difference with the estimated passengers. The validation showed 
promising results, though, the study’s limitations include the non-availability of a large dataset 
for validation from travel dairy data and inherent problems in the tally data. Also, this study is 
conducted only for subway riders.  

Zhao et al. (2007) partially validated the proposed methodology by using extensive Chicago 
Transit Authority (CTA) customer OD survey. With a confidence interval of 95%, the difference 
between the estimated passenger mile travelled and calculated from the CTA OD survey is less 
than 10%.  

Farzin (2008) used HTS data from 1997 for validating the proposed procedure. Validation is done 
based on destination distribution of riders, trip patterns and the total number of transfers. Although 
conformity between two OD matrices (using HTS survey data and estimated tOD) is not 
convincing, it is an early attempt to validate the proposed methodology. According to study, the 
possible reasons for differences are (a) due to the time lag between survey data and current data 
(estimated OD is for the year 2006, while OD from household survey is for 1997), significant 
changes may have occurred to the network, (b) the results are for fare card users only, and (c) 
predefined fare rules for transfer. Apart from reasons given in the study, trips are not separated 
from journeys based on the time and space definition discussed in transfer/activity detection 
section; instead, the transactions are directly used which could have led to an overestimation of 
transfers (Farzin, 2008). 

Barry et al. (2009) validated the algorithm using the entrance and exit counts in subway stations 
and ride check data for bus system. The article does not provide a further discussion on validation. 
Seaborn et al. (2009) employed LTDS 2006 data for validation by comparing the total number of 
journeys made in a day and the number of transfers per card per day. The difference in the number 
of total journeys per weekday is within 5%. PT journeys per passenger per day is 2.05 from survey 
while that from the proposed algorithm using various MTT values, it is between 2.23 to 2.33. It 
portrays that the proposed algorithm is overestimating the number of journeys. Also, the 
difference of the number of transfers per card per day between smartcard data and survey data are 
found to be +6%, -20%, +7%, +3% for 1, 2, 3, and 4 transfers, respectively. This non-linear trend 
of difference (positive difference for one, negative for two, and again positive for three and four 
transfers) between smartcard data and survey data is not explained in the study (Seaborn et al., 
2009).  

Nonetheless, the same problem is later faced by Gordon et al. (2013) where the results are 
compared with LTDS and found that transactions with two transfers are overestimated from the 
adopted method (Gordon et al., 2013). From the non-linear trend of error in transfers, it is 
concluded that transfer detection is not only dependent on time spent between consecutive 
alighting and boarding. Instead, investigation of dependency of other variables like the distance 
between stops, land use, etc. on transfer is inevitable. 

Wang et al. (2011) used the Bus passenger Origin-Destination Surveys (BODS) data to validate 
the tOD estimation algorithm. Out of 5 routes studied, one transit route is validated against BODS 
data. Difference between the number of boarding in BODS and smartcard data is found between 
7-8%.  Percentage distribution of alighting pattern from inferred alighting is matched with BODS 
data, and the results are within a range of ±2% except for one stop which is shopping centre 
(Wang et al., 2011). Such a finding reflects that land use significantly affects the riders' boarding 
and alighting distribution. 
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Munizaga et al. (2014) validated the OD inference algorithm developed in a previous study by 
Munizaga and Palma (2012). As shown in Table 7, three types of validations are performed, two 
are exogenous, and one is endogenous. For exogenous validation, the datasets used are from OD 
metro survey and a group of volunteers. Endogenous validation presents the sensitivity of 
parameters/assumptions used in the alighting stop inference and transfer detection, i.e., walking 
distance, the first transaction of the day, single transaction in a day, MTD, and use of a virtual 
day. Munizaga et al. (2014) proposed using unlike distance values based on land use near a stop 
to infer alighting stop. Table 7 outlines the findings for the exogenous validation done on OD 
metro survey data and data based on volunteers. OD metro survey data results may be biased 
because the survey is conducted in metro stations only, therefore neglecting bus-bus transfer. In 
volunteers’ data, the significant proportion is of students, which can also possibly introduce biases 
in the results.  

Alsger et al. (2015) validated the tOD estimation algorithm developed for in an entry-only system 
by employing data from an entry-exit system of SEQ, Australia. The study provides a detailed 
sensitivity analysis of various assumptions, which were proposed for an entry-only system. Three 
assumptions are tested namely MTT, MTD, and days symmetry assumption. The study revealed 
that 88% transfers occur using 60 minutes MTT, and 800 m MTD and the value does not improve 
beyond 800 m MTD. The study further reported that 82% of riders return to their first point of the 
day, while 88% of riders return to within 800 m of origin (Alsger et al., 2015). Almost, the same 
results are presented in another study by Alsger et al. (2016). For comparison, the total number 
of transfers are assumed to be same as recorded by the fare system (considering MTT of 60 
minutes), which may not indicate the actual number of transfers. This problem always occurs 
when performing endogenous validation for transfer detection; therefore, the results cannot be 
generalized.  

Nassir et al. (2015) validated the proposed algorithm using HTS. The proposed two stages 
algorithm performs reasonably well to detect transfer, as the overall claimed accuracy is above 
99%. Transferability of the proposed algorithm is yet to perform because there are five filters in 
the second stage of the algorithm (discussed in detailed in section 2.4), which need calibration 
using the smartcard data. Also, the major problem with the validation is the small sample size. 
Out of 1693 journeys, only 290 data points, which are actual transfers, are used for validation. 

Huang et al. (2020) adopted ticket recycling method to validate the OD inference methodology. 
The study reported a 100% sample size for four routes with 72 round trips consisting of 10,551 
trip-legs. The study claims an accuracy of 71.7% to 85.4% for boarding stop inference while for 
alighting stop the accurateness is 70% to 86.7% calculated. Though the ticket recycling method 
is an effective way of estimating stop-to-stop OD matrix, it has some inherent problems, such as 
the transfer detection method, which cannot be tested due to the nature of collected data. It is 
costly and increases the boarding and alighting time of passengers. Egu and Bonnel (2020) 
compared their results with HTS and ODS data. As presented in Table 7, the higher trip-legs per 
journey from AFC data as compared to HTS and ODS methods portray that the current rule-based 
approach still lacks in detecting the smaller activities.  

From the above discussion, it is evident that numerous researchers have used different datasets 
for validation of their proposed algorithm. HTS or local travel demand surveys are frequently 
used for this purpose. Due to the high cost of such surveys, the number of available data points 
for validation is limited. It is required to develop a validation strategy independent of costly data 
sources to standardized and evaluate the proposed algorithm for tOD estimation.  

One of the potential data sources with low cost and high sample size could be the registered users’ 
riders database. Many agencies do register their smartcards; hence at least origin can be robustly 
estimated with high accuracy. Such data can be used in all origin estimation studies, including the 
first-mile problem, and destination estimation for the last trip of the day in an entry-only system. 
Registered users, when combined with users whose smartcard is linked with their credit card, can 
result in very high sample size. Additionally, some transit agencies do allow credit cards to be 
directly used in public transit for fare collection purposes. However, it is challenging to get that 
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data due to apparent security and privacy reasons. 

Other heterogeneous big data such as Global System for Mobile Communications (GSM) data 
(White and Wells, 2002), high-frequency mobile phone location data (Calabrese et al., 2011), and 
social media data, e.g., Twitter data (Lee et al., 2015) are rarely explored for the validation 
purpose of tOD estimation (Liu and Zhou, 2019). There are studies which have loosely coupled 
smartcard and mobile phone data for the tOD analysis, such as Holleczek et al. (2014), and Regt 
et al. (2017) but their work doesn’t directly build on the tOD estimation or validation problem. 
Studies such as Gu et al. (2017), where smartphone data is used to detect short activities, can be 
potentially used to validate the transfer inference algorithm. Also, latterly, smartphone location 
is used to create travel diary, which can be possibly used to validate the transfer inference 
algorithm, and boarding and alighting information inference algorithms (Imani et al., 2020). 
However, such data have an inherent problem of low sample size. Nonetheless, these datasets are 
widely used for various application in transportation; their potential to validate the tOD from 
smartcard data is yet not extensively reconnoitred. 

Moreover, except Liu et al. (2019) and Egu and Bonnel (2020), all studies mentioned in Table 7 
performed micro-level validation, i.e., validation is performed on individual data points. 
Nonetheless, a macro-level validation may provide more robust validation results that can be used 
to compare the accuracy of various approaches. Besides, it is understandable that macro-level 
validation requires a large dataset, which may not be available to the researchers in most cases.  

3 Future research needs 

Currently, the tOD from smartcard data is used by many PT agencies worldwide for planning 
purpose. However, it is not 100% correct at this point in time (Egu and Bonnel, 2020, Spurr et 
al., 2018); therefore its usage as an alternative or integration to a more traditional type of 
modelling, such as steps in four-step modelling needs to be investigated (Harrison et al., 2020).  

The proposed future extension works are categorised as the problems with conversion of stop 
level OD to zonal level, issues with transfer detection algorithm, and some assorted research 
problems. 

3.1 Conversion of stOD to ztOD 

To improve the quality of ztOD estimation by aggregating stODs, following research questions 
need to be addressed: 

(1) How to quantify and evaluate the impact of park & ride, kiss & ride, and free on-street 
parking on the ztOD? 

Park & ride play a vital role in the PT operations. There are 18 park & ride sites in Chicago alone, 
which accommodates more than 6000 spaces. In London and New York there are more than 50 
and 20 park & ride sites operating, respectively. The inclusion of park & ride component is crutial 
for accurate tOD estimation. A park & ride facility can be accessed through motorised modes 
from a long distance. A trip actual origin/destination zone may be different than the one recorded 
in smart card data for stations with Park & Ride and similar facilities (provision of free on-street 
parking in zones (near CBD), Kiss and Ride.  

The existing literature on the first and last mile problem should be explored to look at ways to 
solve the above issue. Furthermore, different data sources to estimate the true origin/destination 
of such facility users should be explored. For instance, smartcard transaction data generally has 
the information on the registered users addressed, though such information is not shared due to 
privacy concerns. Nevertheless, the information at the residential zone of the user can be shared. 
Alternatively, other datasets such as dedicated surveys and number plate matching in these 
facilities can be conducted to understand their origin/destination choice, trip-purpose, and reasons 
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for selecting a facility.  

(2) How to quantify and incorporate the induced transit demand into tOD from smartcard 
data? 

The tOD estimated from smartcard data is highly biased towards the transit supply, i.e., there may 
exist higher PT demand in a zone where the observed trips may be limited to the non-availability 
of transit service (Lu et al., 2020). Thereby, the tOD from smartcard data gives the served demand. 
Total transit demand is the sum of served demand (tOD from smartcard) and induced (potential) 
demand in a zone (Hussain et al., 2020a), where the later is generally unknown. 

One potential solution to identify induced demand is to divide the whole study area zones into 
two: high demand zones and low demand zones. A model for high demand zones can be 
developed by employing socio-economic and demographic characteristics. The calibrated model 
can then be utilised to predict all low demand zones' induced demand by assuming that high 
demand zones have no potential demand. 

3.2 Transfer detection and trip chaining assumptions 

To distinguish between transfer and activity following research questions are identified. It also 
includes future research questions related to trip chaining.  

(1) Can variable transfer time and variable transfer distance instead of static MTT and MTD, 
respectively, enhance the performance of transfer detection heuristic?  

Most of the studies have employed static MTT to detect transfer except Seaborn et al. (2009) and 
Gordon et al. (2013). Some studies modelled variability in MTT by considering transfer type 
(train to bus, bus to train, or bus to bus), and headway of the transit service. Further research is 
needed to define variable MTT based on other factors such as terrain (flat, mountainous, 
undulating), type of stop/station (at grade, underground, elevated), headway of buses (preferably 
the actual arrival time of transit service), actual distance between stops, land use (e.g. residential, 
commercial, educational, recreational), type of city planning (grid, radial, mixed), trips with a 
tentative purpose (as dissimilar purpose have different activity time)., along with transfer type, 
and transit service headway. Application of dynamic MTT in tOD estimation becomes inevitable 
specifically in cases, where the transfer stations in the multi-modal network are not linked. For 
instance, Fairfield station, Brisbane, Australia has a minimum distance of 450 m to the nearest 
bus stop. While Roma Street station, Brisbane, Australia has integrated stops and can be accessed 
by changing the platform only. Hence, both the station may define separate criteria for MTT 
values. Likewise, similar heuristics can be delineated for MTD. 

(2) What is the effect of considering a subset of total available PT modes or agencies 
(penetration rate and spatial availability of transactions, respectively) on the first 
assumption of trip chaining, and transfer detection (i.e., MTT and MTD)? 

Studies on a multi-modal network where analysis is carried for any one mode (or does not 
consider one or more transit modes for analysis) defies first assumptions of trip chaining, which 
states that travellers do not use another mode of transport. Violation of trip chaining assumption 
may lead to a wrong inference of the results. The same logic can be applied on transfer detection 
algorithm for a person who can travel more distance in lesser time by using non-integrated transit 
services, without being involved in an activity. Hence, in future, it is worth exploring the effect 
of one modal (or one agency) on the maximum distance assumed for the first assumption of trip 
chaining, and MTT and MTD of transfer detection. Also, free transit services, for instance, free 
loop (route 30, 40, and 50 in Brisbane, Australia) can lead the false transit OD within its 
operational radius, because the passengers using these services cannot be tracked in smartcard 
data. Alsger et al. (2017) calculated tOD at various penetration rate and spatial distribution of the 
transactions. The study concluded that while penetration rate is significant for tOD calculation; it 
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becomes less vital when increased more than 60%. On the other hand, there is a considerable 
effect of spatial uniformity of smartcard transactions on tOD estimation. However, the sensitivity 
of using fewer modes or agency data on an individual component of tOD is yet to be investigated.  

(3) How to quantify the impact of ridesourcing services usage on the MTT and MTD in 
transfer detection, and on the maximum distance between the alighting stop of the 
previous trip and next boarding stop for alighting stop inference in trip chaining method? 

In last five years or so, globally, there is an exponential growth in the demand for ridesourcing 
services, such as Uber, DiDi, etc., and e-scooter companies, such as Lime, Lyft, etc. The increased 
usage of such services can pose questions on the assumptions made about the maximum walking 
distance in trip chaining and transfer detection.  For instance, in the case of Lime e-scooter, the 
average trip-length is reported as 1.66 km (1.06 mile) where 27% of total 6 million trips are made 
globally to access or egress public transport (Lime, 2018). Likewise, independent transit services, 
such as Airlift, which is not integrated into the transit smartcard also lie in the same category. 
With the increased use of such services, the adopted values of MTD for transfer detection in 
section 2.4.3 may not give accurate results. Since users can travel a longer distance in less time, 
hence wrongly inferring an activity. Besides, these services also impact the assumption related to 
the disutility of non-public transit modes in trip chaining (the first assumption in section 2.3.2). 
Therefore, to estimate true tOD from smartcard data, it is imperative to find ways to quantify its 
effect on MTT and maximum distance between alighting and next boarding stop. 

For this purpose, it may be effective to know the public transit passenger behaviour towards the 
utility of ridesourcing services in a local condition enabling the researcher to modify the current 
rules (or threshold values of currently implemented rules). It can be done by conducting 
longitudinal surveys to track users for a longer duration. Alternatively, other big data sources such 
as GSM data and/or smartphone-based data can be integrated with smartcard data, giving 
individual trip-leg mode (Huang et al., 2019, Nikolic and Bierlaire, 2017). 

(4) How to quantify and validate the effect of planned and unplanned disruptions, road 
congestion, and in-vehicle congestion on transfer detection algorithm? 

The existing literature on the tOD estimation from smartcard data ignores the increased waiting 
time in peak hour due to congestion, and limited capacity or denied boarding. This high waiting 
time can increase passenger transfer time without being involved in any activity. There exists a 
study which takes into account the transit disruption in the transfer detection algorithm (Yap et 
al., 2017); however, various type of disruptions can have a distinct impact on transit users. Also, 
various transit operators deal differently with a separate type of disruptions. For example, in case 
of signal failure on rail routes, Yap et al. (2017) reported that users take an alternate route to reach 
their destination, while if that happens in Brisbane, Australia, buses (called train buses) are 
deployed between the specified stations (Deng et al., 2018, Translink, 2020). Therefore, it is vital 
to develop and validate more robust transfer detection algorithm that can be equally applied in all 
(or most of the) planned and unplanned transit disruptions events.  

To solve the above issue, it may be helpful to integrate the smartcard data with another dataset 
such as AVL data, archived GTFS-live data, or any other dataset providing information regarding 
disruptions and congestions. At the time and place where disruption/congestion is identified, a 
relaxed or modified criterion for transfer detection must be introduced. 

3.3 Miscellaneous research problems 

Potential miscellaneous research problems that may need further exploration are as follows: 

(1) What is the effect of paper ticket user or token users on the overall tOD matrix? 

In tOD estimation, paper ticket user or token user’s travel pattern is considered as same as that of 
card users. This assumption needs more evaluation as travel behaviour of paper ticket users may 
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significantly be different than those using smartcard as evident from literature (Graham and 
Mulley, 2012, Tran, 2012).  

For this purpose, the destinations highly likely visited by paper ticket users such as tourist hotspots 
can be assessed and compared with other destinations (e.g., shopping centres) to quantify 
differences in the paper ticket and smartcard users’ travel pattern. 

(2) Can the inclusion of land use of the study area enhance the algorithm prediction rate for 
alighting stop estimation?  

Until recent, land use is not considered to estimate alighting stop as highlighted by Li et al. (2018), 
Faroqi et al. (2018) and Munizaga and Palma (2012), which can potentially decrease the error in 
tOD estimation. 

(3) How to quantify the effect of assumption of single card association with one user on tOD 
matrix estimation from smartcard data? 

Condition of using the same smartcard by a single person throughout the day, which is a hidden 
assumption, is not tested except by Chu and Chapleau (2008). The study reported that the 
smartcard includes the cardholder’s photo, which means that a single user uses a particular card. 
In Brisbane's, Australia case, only cards with concessions can be checked to validate the 
identification and entitlement to use the card. Hence, it is worth quantifying the error introduced 
in tOD due to the aforementioned assumption. 

(4) Can fusing various big datasets, such as GSM data, smartphone-based high location 
data, loop detector data, etc. with smartcard data help in providing better tOD estimation 
and validation? 

Recently, researchers are moving from trip-chaining method to supervised machine learning 
techniques to infer alighting location mainly because of high predictability of machine learning 
methods and to relax the assumptions of trip chaining. It is expected that attributes from smartcard 
data when combined with the features of other big datasets, such as smartphone location data, 
will provide more accurate results. For instance, Wu et al. (2018) proposed a method to estimate 
travel demand using data from various sources (smartphone type devices, HTS, GPS, and 
sensors). Likewise, Harrison et al. (2020) also provide guidelines to improve the transportation 
system a whole by integrating various datasets. Apart from tOD estimation, the same datasets can 
also be explored for validation of tOD algorithm. This area of research is yet to explored and is 
anticipated to improve the existing tOD estimation and validation algorithms. 

4 Conclusion 

This paper outlines the current knowledge and research gaps in the literature on the use of 
smartcard data to estimate ztOD. While most of the ztOD estimation process may be considered 
as well accepted among the researchers throughout the world, there is a need to present the process 
framework in a more robust and understandable way to be used by practitioners. The main topics 
covered are data cleansing; estimation of unknowns (i.e., boarding/alighting location estimation, 
and transfer detection); validation of proposed algorithms, and conversion of stOD to ztOD. 
Following are the significant findings and conclusions of the article. 

 It is essential to clean the big data for inconsistencies due to equipment and human errors 
as inconsistent data may contribute up to two percent.  

 To estimate alighting location in an entry-only system, selection of threshold distances for 
underlying assumptions of trip chaining model, i.e., the disutility of non-PT modes and 
days’ symmetry assumption, need verification for local conditions. In literature, these 
values range between 530 – 1100 m and 0 – 2000 m, respectively.  
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 For transfer detection, threshold values of MTD and MTT used by various researchers vary 
and range between 400 – 1500 m and 18 – 90 minutes, respectively. Therefore, calibration 
of these values will better represent the actual condition, hence producing more realistic 
tOD. 

 There is a need to formulate and test a more robust and cost-efficient method for validating 
overall proposed tOD estimation algorithms. 

 The current method of ztOD estimation from stOD is not satisfactory and may cause a 
considerable error. Therefore, further research is needed to refine the aggregation process.  

 The broad issues that are recommended for further investigation include i) conversion of 
stOD to ztOD, ii) transfer detection, iii) assumption about paper ticket user and single-
person use of a smartcard, iv) inclusion of land use for destination inference, v) the effect 
of ridesourcing and e-scooter utility on assumptions of trip chaining and transfer detection, 
vi) integration of other big datasets for tOD estimation, and vii) the effect of planned and 
unplanned disruptions on tOD estimation.  
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