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Abstract

The heterogeneous fleet vehicle routing problem with two-dimensional load-
ing constraints (2L- HFVRP) is a complex variant of the classical vehicle
routing problem. 2L-HFVRP seeks for minimal cost set of routes to serve
a set of customers using a fleet of vehicles of different capacities, fixed and
variable operating costs, different dimensions, and restricted loading con-
straints. To effectively deal with the 2L-HFVRP, we propose a two-stage
method that successively calls the routing stage and the packing stage. For
the routing stage, we propose an adaptive memetic approach that integrates
new multi-parent crossover operators with multi-local search algorithms in an
adaptive manner. A time-varying fitness function is proposed to avoid pre-
maturity and improve search performance. An adaptive quality-and-diversity
selection mechanism is devised to control the application of the memetic op-
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erators and the local search algorithms. In the packing stage, five heuristics
are adopted and hybridised to perform the packing process. Experiments on
a set of 36 2L-HFVRP benchmark instances demonstrate that the proposed
method provides highly competitive results in comparison with state-of-the-
art algorithms. In particular, the proposed method obtains the best results
for several instances.
Keywords: memetic algorithm, adaptive algorithm, vehicle routing,
multi-methods

1. Introduction

The vehicle routing problem (VRP) is one of the fundamental combinato-
rial optimization problems which is notable for its crucial impact on logistics
and freight transportation systems [4], [31]. In a traditional VRP, we are
given a set of customers geographically distributed, each with a given de-
mand, and a set of vehicles. The aim is to generate a set of vehicle routes of
minimum total cost to serve all customer demands. Taking into account the
constraints and requirements of real-world applications, a traditional VRP
has been extended into several variants such as the capacitated VRP [31],
VRP with time windows [2] and the heterogeneous VRP [13]. In the litera-
ture, the traditional VRP and its variants are known as NP-hard problems
[31], so meta-heuristic approaches (local search algorithms and population-
based algorithms (aka evolutionary approaches)) are very useful to address
these problems, as exact methods can only solve small-sized instances [31].
Several survey articles and books have comprehensively reviewed and classi-
fied VRP from different perspectives [31] and [18].

In the aforementioned VRP variants, the demand of each customer is de-
fined as a positive integer number which represents the total volume of all
items. Thus, the developed solution methodology needs to ensure that the
total volume allocated to each vehicle does not exceed its capacity. Hence,
the feasibility of a solution can be easily attained. However, in real-world
logistic and transportation applications, loading customer items into a ve-
hicle presents a great challenge. Several features and constraints need to
be considered when performing the loading process [10]. Consequently, a
variant of VRP that takes into consideration the packing process was intro-
duced, known as the VRP with loading constraints [10]. This VRP variant
integrates routing with packing during the solving process. It aims to feasi-
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bly load customer items into vehicles while attempting to minimise the total
cost. Since both routing and packing are well-known NP-hard problems,
combining them into the so called VRP with loading constraints leads to an
extremely challenging optimisation problem, thus meta-heuristic approaches
are highly advisable to solve this problem [18].

A practical and a very challenging variant of the VRP with loading
constraints that has received a little attention in the literature is the het-
erogeneous VRP with two-dimensional loading constraints (denoted as 2L-
HFVRP). In 2L-HFVRP, the fleet of vehicles is characterised by different
capacities, fixed and variable operating costs, and different dimensions [15].
The demand of each customer is a set of two-dimensional rectangular items
characterised by width, length and weight. 2L-HFVRP has a crucial appli-
cation in transportation and logistics as most of companies are either have
a heterogeneous fleet of vehicles or hire different types of vehicles of various
capacities to serve their customers.

Similar to the VRP with loading constraints, meta-heuristic approaches
are highly appropriate to deal with 2L-HFVRP [15]. However, despite the
enormous practical importance of the 2L-HFVRP, a very little research has
been done on 2L-HFVRP. Leung et al. [15] introduced the benchmark in-
stances for 2L-HFVRP. The authors applied a local search algorithm for
the routing stage and six different heuristics for the packing stage. In [32],
the authors proposed a hybrid swarm algorithm that combines artificial bee
colony algorithm and artificial immune system for 2L-HFVRP. The proposed
hybrid algorithm explores both feasible and infeasible search spaces, and uses
simulated annealing as a refinement procedure. The computational results
show that the hybrid algorithm is better than the two local search algorithms
introduced in [15]. Although the proposed hybrid algorithm is a population-
based algorithm, it heavily relies on local search algorithm or local search
components. The algorithm did not use evolutionary operators (crossover
and mutation) as the main operators to evolve a new population of solu-
tions.

However, despite the good results, it is well-known in the literature that
local search algorithms are often work well only when the search space is
smooth as they are not robust enough to handle difficult problems [16], [26].
This provided the motivation to develop an evolutionary approach that op-
erates on a population of solutions to effectively solve the larger-sized of
2L-HFVRP instances. To the best of our knowledge, no evolutionary ap-
proaches have been developed for 2L-HFVRP, despite of their popularity
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in dealing with various hard computational problems [9], [12], [3], [5], [29].
Thus, the aim of this work is to develop an effective adaptive variant of the
evolutionary approach, named the memetic approach (MA), for 2L-HFVRP.

MA is a branch of evolutionary approaches (EAs) which has already been
proven to be a powerful approach for solving various optimisation problems
[16], [33], [20], [1]. It was introduced to alleviate the slow convergence is-
sue which is a common and a very critical issue in most EA variants. The
convergence issue is often a twofold one that occurs because EAs use a popu-
lation of solutions and there is a lack of exploitation (intensification) practice.
MA mitigates this issue by leveraging the exploitation capability of the local
search (LS) algorithm to compensate for the deficiencies of traditional EAs.
Apparently, LS has a huge impact MA performance. Thus, given the di-
verse characteristics of different optimisation problems, several LSs, featured
with distinctive search mechanisms and/or operators, were proposed in the
literature. However, due to the dynamic changes of the search landscape,
it is very difficult to determine in advance which LS should be used or at
which decision point should be applied [16]. Another important design issue
that must be taken into consideration when developing an MA or any EA is
the configuration (variation or reproduction operators) selection [16]. In the
literature different configurations (crossover and mutation operators) have
been proposed. Yet, in addition to being problem dependent, the selection
of which configuration should be applied is crucial for the MA performance.
Improper selection can lead to the so called convergence and diversity is-
sues, which could also be due to the excessive use of LS without taking into
consideration the diversity of the search. These issues are common to many
other meta-heuristic approaches [16]. This work proposes an adaptive MA
that integrate several distinctive features in an adaptive manner to address
these issues which are often encountered in pure EAs and MAs.

1.1. Goals and Contributions
The ultimate goal of this work is to develop an effective method for 2L-

HFVRP. The proposed method involves the following two stages:

1. Stage 1: Routing. We propose an adaptive memetic approach (MA)
for the routing problem. The proposed MA is featured by several key
components. First, new crossover operators are designed for solutions
combination process. The main idea is to guide the search processes
by merging high quality and diverse solutions using multi-parent and
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multi-crossover operators. Secondly, a pool of local search algorithms
is adopted to improve the generated solutions. The key idea is to com-
bine the complementary features of various local search algorithms in
an adaptive manner to effectively navigate the search space around the
generated solutions. Thirdly, to avoid prematurity and improve the
search performance, we propose a time varying fitness function that
allows the search to focus on exploration in the early stages and then
gradually decreases so that the search focuses more on exploitation. Fi-
nally, an adaptive quality-and-diversity selection mechanism is devised
to control the application of memetic operators and the local search
algorithms are able to find the proper balance between the exploration
and exploitation ability of each operator.

2. Stage 2: Packing. In this work, we adopted five different heuristics
to perform the packing process. Since different vehicle routes represent
a sub-packing problem, it is not known in advance which heuristic
should be used first. Calling them one by one would be computationally
expensive and might not lead to a feasible solution. Thus, in this work,
the packing heuristics are randomly hybridised with each other. Our
idea is to combine the complementary strengths of different packing
heuristics in order to effectively handle various packing scenarios.

The main contributions of this paper can be summarised as follows:

• An adaptive memetic approach that uses various evolutionary operators
and multi-local search algorithms is proposed to solve 2L-HFVRP more
effectively.

• New multi-parent crossover operators for solutions combination process
that merge high quality and diverse solutions.

• A time-varying fitness function to void prematurity and improve the
search performance.

• An adaptive quality-and-diversity selection mechanism to control the
application of MA operators and the multi-local search algorithms.

• A set of algorithms have been tested on 2L-HFVRP benchmark in-
stances and compared with state-of-the-art algorithms from the litera-
ture. Good performance has been demonstrated.
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Figure 1: An example of 2L-HFVRP adopted from [15]

1.2. Evaluation
We evaluate the performance of the proposed MA using 36 2L-HFVRP

benchmark instances. The computational results are compared with different
counterparts and the state-of-the-art algorithms.

1.3. Organisation
The rest of the paper is organised as follows. Section 2 presents the for-

mulation of the 2L-HFVRP. In Section 3, we describe the proposed method,
along with main components. Section 4 discusses the experimental step. The
computational results and comparison are provided in Section 5. Finally, we
conclude the paper in Section 6.

2. Problem description

This work focuses on the heterogeneous fleet vehicle routing problems
with two-dimensional loading constraints (2L-HFVRP). In 2L-HFVRP, we
have heterogeneous fleet of vehicles of different types that are initially located
at the depot (central point) and a group of customers with known demands.
The demand of each customer is a set of two-dimensional rectangular items
characterised by width, length and weight [15]. The objective is to design
a least cost set of vehicle routes to serve all customers. An example of 2L-
HFVRP with three customers of different items and one vehicle route is
shown in Figure

The generated solution (the set of vehicle routes) is feasible if the following
routing and packing constraints are satisfied [15]:
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• Items of the same customer must be packed into the same vehicle.

• All items must be loaded with edges parallel to the edge of the vehicle.

• Overlap between items within the same vehicle is not allowed.

• Each customer must be served only once by exactly one vehicle.

• All vehicles must start and terminate their routes at the depot.

• The total demand assigned for each vehicle should not exceed the ve-
hicle capacity, length and width.

Formally, 2L-HFVRP can be modelled as an undirected connected graph,
G(V,E), where V = {v0, v1, . . . , vn} is a set of nodes representing the depot
(v0) and the group of customers (v1, . . . , vn) [15]. E = {(vi, vj) : vi, vj ∈
V, i < j} is an edge set that connects customers with each other and with
the depot. Each edge E is associated with a non-negative value which de-
notes the cost (the travel time or distance) defined by a matrix C = (cij),
where cij represents the cost between customers vi and vj. P is a fleet of
heterogeneous vehicles of different types. Each type t (t = 1, . . . , P ) of the
fleet of vehicles has an unlimited number of vehicles and differentiated by
capacity Qt, variable cost Vt, fixed cost Ft, length Lt and width Wt. The
loading area of each vehicle of each type t is At=Wt × Lt. Given the fact
that a vehicle with a higher weight-loading cost has a higher fixed and vari-
able cost, it is assumed that Q1 ≤ Q2 ≤ · · · ≤ QP , F1 ≤ F2 ≤ · · · ≤ FP ,
and V1 ≤ V2 ≤ · · · ≤ VP . Each customer i (i = 1, . . . , n) is associated with
a non-negative value which represents the requested set of mi rectangular
items denoted as ITi to be delivered. The total weight of ITi is denoted
as Di. The length and width of each item Iir ∈ ITi(r = 1, 2, . . . ,mi) are
denoted as lir and wir. The total area of all items requested by customer i is
ai=

∑mi
r=1wir × lir. The cost of each route (R) of vehicle type t is calculated

is follows [15]:

ΠR = Ft +
i≤|R|∑
i=1

Vt × cR(i),R(i+1) (1)

and the cost for a solution (objective function or fitness function (f)) is
calculated using Equation (2).
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f =
K∑

i=1
ΠRi

(2)

where K is the total number of routes in a given solution.

3. Methodology

Our proposed method for 2L-HFVRP consists of two stages, routing and
packing, as shown in Figure 2. It takes the given 2L-HFVRP instance as an
input and then calls the routing stage (Section 3.1) to generate a 2L-HFVRP
solution that comprises a set of vehicle routes, followed by the packing stage
(Section 3.2) to load customer items into the assigned vehicle. The routing
and packing stages are successively executed until satisfying the pre-defined
termination condition.

We further discuss these two stages along with the proposed key compo-
nents in the following subsections.

Start

2L-HFVRP
instance

Routing stage

Packing stage

Termination
condition
satisfied?

Stop

yes

Update solution

no

Figure 2: The flowchart of the proposed method
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3.1. Routing stage
The routing stage is responsible for generating a solution for the 2L-

HFVRP instance. The solution involves a set of vehicle routes in which each
route serves one or a group of customers. Success in generating a good so-
lution strongly depends on the solution generation methodology which in
turn relies on its internal components. In this work, we propose an adaptive
memetic approach (MA) to find high quality solutions to 2L-HFVRP. The
proposed MA integrates several distinctive features in an adaptive manner
to address these issues which are often encountered in pure EAs and MAs.
Firstly, we propose new multi-parent crossover operators for solutions com-
bination process to merge high quality and diverse solutions. Secondly, we
utilise a pool of LS algorithms to effectively explore the areas around the
generated solution. Thirdly, we propose a time-varying fitness function to
void prematurity and improve the search performance. Finally, an adaptive
quality-and-diversity selection mechanism is devised to control the applica-
tion of the MA configuration and the LS algorithms.

Figure 3 shows the working procedure of the proposed MA. It follows the
general paradigm of a traditional MA which hybridises an EA variant with a
LS. It uses genetic algorithm (GA) where a LS is performed before it moves on
to the next generation, so that the search space around the current solution is
effectively explored. It first sets the parameters and then creates a population
of solutions. It then assigns a fitness value for each solution in the population
by using the proposed time-varying fitness function described in Section 3.1.4.
Then, it executes the main evolutionary process to improve the population
of solutions for a fixed number of generations. Each generation evolves a new
set of solutions to replace the old ones using the evolutionary operators. MA
first calls the selection mechanism (Section3.1.5) to form the mating pool and
then executes the proposed multi-parent crossover operators (Section 3.1.6)
to generate a new offspring. The offspring is then mutated (Section 3.1.7)
and further improved by the LS algorithm (Section 3.1.8). Finally, it checks
the stopping condition (Section 3.1.9) and calls the population update step
to decide if the improved offspring can be added into the population. In
following subsections, we introduce the key elements of our MA.

3.1.1. Solution representation
In our MA, each solution (chromosome or individual) is a permutation

of a set of customers. The permutation represents the visiting order of each
customer in a given solution and it is represented as a one-dimensional array
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Start

Set parameters

Initial popula-
tion of solutions

Fitness cal-
culation

Selection

Crossover
Apply the

selected operator

Pool of
crossover
operators

Select

Update

Mutation

Local search
Apply the

selected LS

Pool of LS
algorithms

Select

Update

Stopping
condition
satisfied?

Stop

yes

Fitness cal-
culation

Update the
population

no

Figure 3: The flowchart of the proposed MA

without route delimiters, as shown in Figure 4. The size of the array is equal
to the maximum number of customers in a given 2L-HFVRP instance. We
use this representation as it allows various crossover operators to be simply
applied without considering the infeasibility issue [19]. To convert the given
solution into a set of vehicle routes, we use a split procedure to cut the
solution into a set of routes based on vehicle capacity [19].

C2 C1 C4 C3 C6 C8 C5 C9 C7

Figure 4: Solution representation

3.1.2. Set the parameters
The proposed MA has four parameters that need to be set by the user.

These are:

• Maximum number of generation (MaxGen)—represents the maximum
number of generations to be performed by MA.

10



• Population size (PS) —represents the number of solutions to be saved
in the population.

• Crossover rare (CR) —indicates the probability of applying crossover
operator.

• Mutation rate (MR) —indicates the probability of calling mutation
operator.

We conducted a preliminary experiment to set these parameters (see Sec-
tion 4)

3.1.3. Create a population of solutions
The proposed MA uses a randomised method to initialise the population

of solutions. Starting from an empty solution and from the first cell in the
solution, the method iteratively and randomly picks an unallocated customer
and assigns it to the current cell. This process is repeated to initialise PS
solutions. Algorithm 1 shows the pseudocode of the population initialisation
method.

Algorithm 1: Population initialisation method
1 P S /*Population size*/;
2 P OP /*Population of solutions*/;
3 Nc= Total number of customers in a given instance;
4 Setc= {Set of customers in a given instance};
5 for i=1 to PS do
6 S= empty solution;
7 for j=1 to Nc do
8 C= Random ∈ Setc;
9 Si,j=C;

10 Remove C from Setc;
11 end
12 Add S to P OP ;
13 end
14 Output final population, P OP ;

3.1.4. Fitness calculation
Fitness calculation (aka the cost or the quality) uses the so called fitness

function (or the objective function) to assign a value to each solution in the
population. A solution in a given population is characterized by its fitness
value which demonstrates how good this solution is compared to the other
ones. Obviously, the fitness function is largely responsible for guiding the
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optimisation algorithm. In many EAs and other search methods the fitness
functions rely almost exclusively on the fitness value (cost) of the solution.
This kind of fitness function does not take into consideration the diversity
of the search, which has a crucial impact on the search performance. For
instance, in 2L-HFVRP and many other problems (combinatorial or contin-
uous), there could be a situation in which there are two or more solutions
with a different sequence (or value) of decision variables but they return the
same fitness value, i.e., two solutions might have different genotypes but the
same phenotypes. This indicates that the information provided by the fitness
function may not be sufficient to guide the search process as several solutions
from different areas could be discarded because their fitness values are same
as the current ones.

To alleviate this issue, this work proposes a time varying fitness function
that evaluates both the fitness and diversity of each solution in the popula-
tion. It allows the proposed MA to focus on exploration in the early stages
and then gradually decreases so that the search will focus more on exploita-
tion. This will not only help the proposed MA to effectively explore new
areas in the solution search space but it can also help to escape from the
basin of attraction points, thus avoiding stalling at the local optima. Given
a solution S (S ∈ Pop), the proposed fitness function (f) calculates its fitness
value as follows:

minf(S) = Ω1 × Φ(S) +
( 1

Ψ(S)

)
× Ω2 (3)

Equation (3) has two parts: the cost value (Φ) of S which is calculated
using Equation (2) and the diversity value (Ψ) of S. Ω1 is a time varying
variable that will be linearly varying based on the current generation as
follows:

Ω1 =
vt if vt > 0

1 otherwise

and

vt = (maxvt −minvt)×
MaxGen−Gen

MaxGen
+minvt (4)

where minvt and maxvt are constants that represent the minimum and the
maximum time variation. Gen is the current generation of MA and MaxGen
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is the maximum number of generations. Ω1 starts with a large value, and
then decreases as MA progresses. Ω2 forces MA to focus on improving the
cost (Φ) only at the late stages of the search process as follows:

Ω2 =
0 if Ω1 = 1

1 otherwise

The diversity value of S (Ψ(S)) represents the average diversity between
S and all members in the current population as follows:

max Ψ(S) = 1
PS

P S∑
i=1

dis(S, ci),∀c ∈ POP (5)

where dis(S, c) is the dissimilarity between S and the solutions in the
population in terms of how many customers have not been assigned to the
same position in the same route in both solutions. It is calculated as follows
[14]:

dist(s1, s2) = |E(s1)⋃E(s2)| − |E(s1)⋂E(s2)|
|E(s1)⋃E(s2)| (6)

where E represents the number of edges. Two solutions are considered to
be similar if the distance between them is zero.

3.1.5. Selection
The proposed MA uses a selection mechanism to choose solutions from

the current population to be added into the mating pool. We use the binary
tournament selection mechanism to form the mating pool. It works as fol-
lows: select two solutions randomly from the population and insert the best
solution into the mating pool. Repeat this process N (e.g., N= P S

2 ) times.

3.1.6. Crossover
In EAs or MAs, the crossover operator is the most salient operator whose

main goal is to guide the search process towards a new promising regions in
the search space. It takes more than one parent solutions and then mixes
their genetic material to produce an offspring solution, looking for a better so-
lution. According to the literature, a crossover operator may be particularly
suited to a given problem instance or may only work well during a certain
states of the search process [11] [17]. Consequently, a number of different
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crossover operators have been proposed. Of these, multi-parent operators
have been shown to produce better results than traditional crossover opera-
tors for various optimisation problems [7]. It combines the genetic material
of more than two parents to generate a new offspring. However, in spite
of this success, a very few papers are available on multi-parent operators
for combinatorial optimisation problems, especially, routing and scheduling
problems [17]. In addition, most of existing multi-parent operators do not
use any kind of knowledge to guide the selection process where all parent
solutions are selected via the traditional mechanism [17].

In this work, we propose four different multi-parent crossover operators
for MA. The proposed operators exploit knowledge obtained in previous gen-
erations to guide the search to produce a high quality and diverse offspring
for the next generation. Each operator uses three parent solutions of dif-
ferent characteristics. The first and second parent represent the diversity
element and selected via the selection mechanism described in Section 3.1.5.
The third parent solution constitutes the quality element and is generated
by extracting knowledge from all solutions of the current population. The
rationale behind this is that the extracted knowledge can be very useful for
guiding MA towards promising areas in the search landscape. One of the
issues encountered when using MA is the inability to know a priori which
operator performs best for a given problem. Selecting a crossover operator
that yield good performance has been an active research area in the literature
[11]. We therefore use an on-line selection mechanism to determine which
operator should be used at each decision point. By using multi-crossover op-
erators, the proposed MA can effectively deal with various problem instances
and cope with the search landscape changes. Our ultimate aim is to combine
the complementary strengths of various crossover operators within MA. The
working steps of the proposed multi-parent crossover operators are:

- Step 1: Call the selection mechanism (Section 3.1.5) to select the first
and second parent solutions, P1, P2.

- Step 2: Use the frequency matrix to generate the third parent solution,
P3.

- Step 3: Call the selection mechanism to select a crossover operator
from the pool of operators.

- Step 4: Apply the selected crossover operator on P1, P2 and P3.
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- Step 5: Update the frequency matrix and the impact of the selected
operator.

Each of these components of the proposed crossover are described in more
detail below.

• Frequency matrix. The frequency matrix saves the frequency of
assigning a customer to the same location across all solutions in the
current population. That is, it stores how many times a customer has
been assigned to the same location or position. The stored values are
extracted from the current population of solutions, which are updated
every generation. Initially, all values of the matrix are zero. Figure
5 displays an example of a frequency matrix. In the figure, columns
represent the location index, while rows represent the customer index.
In this example, the matrix involves five customers and five locations.
The matrix can be read as follows: customer 1 has been assigned to
location 1 four times, to location 2 two times, to location 3 six times, to
location 4 three times and to location 5 once; and so on for the other
customers. We then transform the extracted frequencies (extracted
knowledge) of each customer into a selection probability and use the
roulette wheel (RW ) selection mechanism to generate a new solution.
In RW , the probability (P ) of ith customer to be copied into the jth

position of the new solution is proportional to its total frequency value
(f) at all jth positions in current population, which is calculated as
follows:

P (i) = f(i)∑P S
j=1 f(j)

, i 6= j (7)

where PS is the population size.

• Pool of crossover operators. The proposed multi-parent crossover
operators (CXs) use three parents (P1, P2 and P3) to generate an
offspring solution. Our proposed operators mix various complementary
characteristics of different operators in effective ways to preserve quality
and diversity. P1 and P2 are selected from the current population by
the selection mechanism (see Section 3.1.5), while P3 is generated via
the frequency matrix (knowledge extraction) process. We propose four
different operators (denoted as CX1 to CX4):
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location index
1 2 3 4 5

1 4 2 6 3 1
2 1 1 3 5 5
3 3 4 2 1 2
4 4 5 4 2 4
5 3 6 1 4 3

Figure 5: Frequency matrix

1. CX1: Randomly select a segment of consecutive positions from
Parent 3 (P3) and move them following their index into the off-
spring. The remaining positions are randomly selected from either
P1 or P2; the probability of selection is 0.5 for both.

2. CX2: Randomly select a segment of consecutive positions from the
middle of P3 and move them into the offspring. The remaining
positions on the left side are selected from P1 and the right side
are selected from P2.

3. CX3: The positions of an offspring are selected from P3, P1 and P2
with the probabilities Pp1=0.2, Pp2=0.2 and Pp3=0.6, respectively.

4. CX4: The positions of an offspring are selected from P3 and their
adjacent from P1 and P2 as follows: select the first position from
P3 and then fills in the second position using the adjacent of the
first position in P1 and the third position using the adjacent of the
first position in P2. The process is repeated for all other positions
in the offspring.

It should be noted that the above crossover operators always generate
a feasible offspring as they discard duplicated positions and select only
missed ones.

• Operator selection. The operator selection strategy chooses one
crossover operator from the given set based on their previous impact
values. In this work, the impact value of each operator represents
the summation of the diversity and quality, described in the following
subsection. We use the multi-armed bandit mechanism (MAB) as the
selection strategy [8]. Formally, let pi represents the impact value of
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ith operator, ni is the number of times that the ith operator has been
used so far, MAB selects the operator that maximises Equation (8) [8].

maxi=1...Nop

pi(t) + c

√√√√2log∑Nop

j=1 nj(t)

ni(t)

 , (8)

where t is the current generation, Nop is the number of operators and
c is the scaling factor.

• Operator impact update. The operator impact maintains a value
for each operator that represents the performance of this operator.
The values of all operators are used by the operator selection strategy
to decide which one should be used. In this work, we use a reward-
punishment scheme to assess the impact of the applied operator. An
operator is rewarded if it improves the solution; otherwise it is pun-
ished. Let r(t) be the impact value of ith operator at iteration t. The
reward-punishment scheme works as follows:

ri(t) = ri(t) + (4+D) (9)

and

rj(t) = rj(t) − (4/(Nop − 1)),∀j ∈ {1, 2, ..., Nop} and i 6= j, (10)

where
4 = f1 − f2

f1 + f2
(11)

Otherwise (if ith operator cannot improves the solution):

ri(t) = ri(t) − |(4 ∗ It)| (12)

and

rj(t) = rj(t) + (| 4 | ∗ It/(Nop − 1)),∀j ∈ {1, 2, ..., Nop} and i 6= j, (13)

17



where It = current generation/ total generations and Nop represents
the number of operators. f1 is the fitness of the best among the selected
parent calculated using Equation (2). f2 is the fitness of the solution
generated by the applied operator calculated using Equation (2). D is
the diversity value which represents the average differences between the
generated solution and the selected parent calculated using Equation
(5). The probabilities of all operators initialised to 1/Nop.

3.1.7. Mutation
The mutation operator induces a diversity into the search in order to help

MA to escape from the basin of attraction points. A solution will be mutated
if the generated random number is less than the mutation rate (MR). We
use the swap mutation operator to exchange the positions of two randomly
selected customers.

3.1.8. Local search
The local search (LS) algorithm is a key element in MA which focuses on

accelerating the convergence of the search process. Generally, two important
considerations should be taken into account when using LS within MA [16],
[23], [27], [21]. First, applying LS at every generation could be computation-
ally expensive and might increase the risk of being too exploitive [22], [24].
Second, given the diverse characteristics of different problem instances, no
single LS performs consistently across all instances [25], [28]. Therefore, to
mitigate these issues, we control the LS application frequency and utilise a
pool of LS algorithms. That is, we only apply an LS if the current solution
cannot be added into the population and if so, we use a selection strategy to
choose one LS from the given pool to improve the current solution. In what
follows, we discuss the pool of LSs and LS selection strategy.

• Pool of LSs. Our pool of LSs contains three LSs (denoted as LS1,
LS2 and LS3). Each one uses different acceptance rules to navigate the
search space. All LSs start with an initial solution and then successively
call the following two components: a move operator to generate a new
solution and the acceptance rule to decide whether to accept or reject
the generated solution. The utilised move operator randomly shifts
one customer from its current location to another one. The acceptance
rules of the utilised LSs are [30]:
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1. LS1: Steepest descent. The new solution S1 will be accepted if it
has a better quality than the initial solution S0. LS1 will be halted
after 10 non-improving iterations (fixed based on a preliminary
test).

2. LS2: Great deluge. The generated solution S1 will be accepted if
it has a better quality than the initial solution S0 or lower than
the acceptance level (level). The initial value of the level is equal
to the quality of the initial solution S0. After each iteration of
LS2, the level will be decreased as follows: level=level-ε, where
ε= (f(S1)-f(bestsol))/It. It is the maximum number of iterations
which is fixed into 1000 (determined based on a preliminary test).
LS2 will be terminated if the level value is lower than the best
solution found so far.

3. LS3: Simulated annealing. The generated solution S1 will only
be accepted if it has better quality than the initial solution S0
or it satisfies the acceptance probability (P ), R <P where R is
random number between [0,1] and P is calculated as follows: P=
exp(−δ/t), δ is the difference between quality of S1 and S0, t is
the temperature initially set into 50% of the quality value of S0
and decreased after each LS3 iteration by α (α=0.85). LS3 will
stop when t=0.

• LS selection strategy. The selection strategy uses the historical im-
provement of all LSs to decide which one should be used. It successively
invokes the following process:

– LS selection. In this work, we use the MAB as our LS selection
mechanism, see Equation (8). MAB uses the information provided
by the LS impact evaluation to select one LS from the pool.

– LS Impact evaluation. The impact evaluation saves and updates
the information related to each LS performance. It has two coun-
ters: LSapp is the number of times each LS has been used and LSper

is the accumulated percentage improvement of each LS. LSper=
(S1−S0

S0
) *100.

3.1.9. Stopping condition
The stopping condition is responsible for terminating the search process

of MA. It checks whether the maximum number of generations has been
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reached. If yes, it terminates MA and returns the best found solution. Oth-
erwise, it calls the following:

1. Fitness calculation: calculate the fitness values of new solutions.

2. Update the population: replace new solutions with old ones if they
have better fitness values.

3.2. Packing stage
In this work, the packing stage is executed for each solution generated by

the routing stage to load all items into the vehicle. It should be noted that the
routing stage ensures that the total weight of items requested by customers of
each route does not exceed vehicle capacity. Our packing stage involves two
processes: arrangement and selection. The arrangement process uses one or
two criteria to sort all items. In this work, items are sorted either randomly
or by the decreasing surface area. The selection process takes the sorted
items and then loads them one by one into the vehicle. In the literature,
various heuristics were used for the loading process. Five well-known loading
heuristics are:

• H1:Bottom-left fill heuristic —selects the position with minimum W -
axis coordinates.

• H2: Bottom-left fill heuristic —selects the position with minimum L-
axis coordinates.

• H3: Maximum touching perimeter heuristic —selects the positions that
have maximum value of the summation for all common edges between
the current item, the loaded items in the vehicle, and the loading surface
of the vehicle.

• H4: Maximum touching perimeter no walls heuristic —selects the posi-
tions that have maximum value of the summation for all common edges
between the current item and the loaded items in the vehicle.

• H5: Min area heuristic —selects the positions that have the minimum
rectangular surface.
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In the literature, these heuristics are applied in a sequential manner. How-
ever, different vehicle route often represents a different sub-packing problem
which might need a different heuristic or a combination of heuristics. To this
end, the five heuristics are randomly hybridised with each other. Our idea
is to combine the complementary strengths of different packing heuristics to
effectively handle various packing scenarios. We first randomly pick up two
or three heuristics and then, for each heuristic, randomly assign a loading
proportion. For instance, if we chose two heuristics (H1 and H2), then the
proportion of H1 is randomly assigned a value between 5% to 90%, and the
reset will be for H2. If H1 is allocated to 60% and H2 to 40%, then this indi-
cates that the loading process will use H1 to load 60% of the items and H2 for
the reset (40% of the items). The selection of heuristics and the proportion
assignments are invoked every generation.

4. Experimental setup

This section consists of two subsections. The first subsection discusses the
2L-HFVRP benchmark instances, while the second one reports the parameter
settings of the proposed MA.

4.1. Benchmark instances
We use the 2L-HFVRP benchmark instances introduced in [15] to assess

the performance of our MA. The benchmark involves 36 instances of diverse
characteristics and each one has five classes; making 180 instances in total.
The main characteristics of all instances are tabulated in Table 1. In the
table, mi is a uniformly distributed within the specified ranges. V ertical,
Homogeneous and Horizontal represent the item shapes. Each item is as-
signed to one shape with equal probability and the corresponding item sizes
are randomly generated within the given ranges. The number of customers
ranges from 15 to 255 whereas the number of items ranges from 15 to 786.
More details on 2L-HFVRP benchmark instances can be found in [15].

Table 1: The characteristics of 2L-HFVRP benchmark instances

Class mi
Vertical Homogeneous Horizontal

Length Width Length Width Length Width
1 [1,2] [0.4L,0.9L] [0.1W,0.2W] [0.2L,0.5L] [0.2W,0.5W] [0.1L,0.2L] [0.4W,0.9W]
2 [1,3] [0.3L,0.8L] [0.1W,0.2W] [0.2L,0.4L] [0.2W,0.4W] [0.1L,0.2L] [0.3W,0.8W]
3 [1,4] [0.2L,0.7L] [0.1W,0.2W] [0.1L,0.4L] [0.1W,0.4W] [0.1L,0.2L] [0.2W,0.7W]
4 [1,5] [0.1L,0.6L] [0.1W,0.2W] [0.1L,0.3L] [0.1W,0.3W] [0.1L,0.2L] [0.1W,0.6W]
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4.2. Parameter settings
The proposed MA has a few tunable parameters that need to be set by

the user. The parameter settings of MA were fine-tuned by conducting ex-
periments on a set of instances for different sets of parameter values. To this
end, we did a preliminary investigation to set these parameters. Ten different
instances were used to test various parameter values by running the proposed
MA 31 times using different combinations of parameter values. Taking into
consideration the trade-off between computational time and solution quality,
the parameter values that lead to the best cost values were chosen. The
tuning process has revealed that population size is the most sensitive pa-
rameter concerning computational time. Using a big population size slightly
improves the best cost value but dramatically increases the computational
time. The configurations of search operators and parameters have shown
to be not very sensitive. This is because the proposed approach adaptively
changes the configurations and the parameters settings if the current one did
not perform well in the past generation. The suggested values, along with
the tested ranges, are reported in Table 2.

Table 2: The parameter settings of MA

Parameter Tested range Suggested value
Maximum number of generations 5-300 150

Population size, PS 5-40 20
Crossover rate, CR 0.1-0.9 0.8
Mutation rate, MR 0.1-0.9 0.03

Maximum number of non-improving iterations for local search 5-50 10
The scaling factor, c 2-20 8

5. Results and comparison

This section reports the computational results obtained by the proposed
MA. Our aims are to:

1. Examine the benefits of the proposed key elements on the search per-
formance.

2. Compare the results of the proposed MA with the state-of-the-art al-
gorithms.
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5.1. Effectiveness evaluation
This section examines the benefit of the proposed elements on the search

performance. Thus, to assess the impact of each of the integrated element,
ten different algorithms are implemented and tested. We first test the tra-
ditional genetic algorithm (GA) that uses the one-point crossover operator,
the swaps-based mutation operator and the tournament selection mechanism.
We then add the proposed elements one by one into GA to evaluate their
impact on the search performance. The resultant ten different variants are:

• MA: the new algorithm being proposed;

• GA: the foundation of MA — the traditional genetic algorithm;

• GAF T : a traditional GA that uses the proposed fitness function only;

• GACX1 : a traditional GA that uses the first crossover operator only;

• GACX2 : a traditional GA that uses the second crossover operator only;

• GACX3 : a traditional GA that uses the third crossover operator only;

• GACX4 : a traditional GA that uses the fourth crossover operator only;

• GALS1 : a traditional GA that uses the first local search only;

• GALS2 : a traditional GA that uses the second local search only; and

• GALS3 : a traditional GA that uses the third local search only.

To ensure a fair comparison, all algorithms are tested using the same
computational resources, seed number, parameter values and initial solu-
tions. All algorithms (MA, GA, GAF T , GACX1 , GACX2 , GACX3 , GACX4 ,
GALS1 , GALS2 and GALS3) are executed 31 independent runs. As the total
number of instances for the 2L-HFVRP is large, the results are presented
in an aggregated form as in the literature. The results obtained from all
algorithms are presented and compared in Table 3. In the table, we indicate
in boldfont the best obtained results. As can be seen from the table, MA
obtained the best results across all tested instances. This clearly justifies the
benefit of the proposed elements on the search performance of a traditional
GA. To further verify the effectiveness of MA, we have conducted a pairwise
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comparison between MA and other algorithms using the Wilcoxon statisti-
cal test with a significance level of 0.05. The p-values are shown in Table
4 where the sign + indicates MA is statistically better than the compared
variant. As can be seen from the table, MA is statistically better than the
other algorithms (MA p-values is less than 0.05). This positive result again
shows that MA is an effective methodology for 2L-HFVRP.

We now turn our attention to an evaluation of the each of the proposed
elements. We first calculate the improvement percentage (%4) between
the results of each of the tested algorithm (MA, GAF T , GACX1 , GACX2 ,
GACX3 , GACX4 , GALS1 , GALS2 and GALS3) and the GA results as follows:
%4=((A1-A2)/A1)*100, where A1 is the best results obtained by GA and
A2 is the best results returned by the compared algorithm. The %4 of all
tested algorithms over GA results are plotted in Figure 6, Figure 7 and Figure
8. A point on the figure indicates the percentage gap between the best result
obtained by GA and the best value achieved by the compared algorithm for
each instance. The higher the point, the bigger the percentage gap is. The
bigger percentage gap indicates that the result of the compared algorithm is
better than GA. Observing all figures, we can see that all variants are better
than the traditional GA.

We now analyse the results of each sub-figure. From Figure 6, we can
see that GAF T improves the GA results on all tested instances. In Figure
7 we compares four GA variants (GACX1 , GACX2 , GACX3 , GACX4) that
use the proposed crossover operators. It can be seen that the results of
GACX1 , GACX2 , GACX3 and GACX4 are better than GA on all instances. A
comparison of the GA variants that employ local search algorithms GALS1 ,
GALS2 and GALS3 is shown in Figure (8). The figure demonstrates that all
local search algorithms have an impact on the search performance of GA
as all of them improved the results across all instances compared to GA.
From the figures (Figures 6, 7 and 8), we can see that no one variant can
be considered to be the best across all instances. This is also verified by
the statistical comparison. Indeed, each one excels on certain instances or at
certain stages of the solving process. This result is also consistence with the
No Free Lunch theorem, as can be seen in Figures 9 and 10. The findings
from the results analysis of the tested GA variants clearly shows the benefit
of combining several elements in an adaptive manner with MA so they can
complement each other and excel on all the tested instances.
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Table 3: The computational results of the compared variants

Inst MA GA GAF T GACX1 GACX2 GACX3 GACX4 GALS1 GALS2 GALS3

1 587.2 724.3 683.4 612.2 597.4 594.1 596.7 590.1 589.7 591.4
2 676.4 811.2 747.3 714.4 722.7 731.6 718.4 686.5 693.3 692.7
3 758.5 904.5 844.7 800.3 811.5 821.5 842.7 780.2 786.5 794.3
4 677.7 801.7 790.2 768.1 771.3 744.3 756.2 681.4 694.3 697.5
5 783.4 993.2 811.4 806.5 801.2 820.1 811 788.3 795.7 788.8
6 826.2 1001.6 927.3 909.8 894.2 881.6 864.2 837.8 844.6 851.5
7 5323.04 6910 6608 6121 6110 6181 6111 6017 5891 5901
8 5364.01 7694 7510 7343 7356 7311 7313 5780 5644 5687
9 1032 1438 1386 1273 1287 1271 1275 1120 1122 1160
10 6891.14 8816 8811 8635 8621 8545 8627 7857 7868 7892
11 7784 9615 9107 9104 9119 9083 9115 8744 8625 8711
12 1666.86 1982 1816 1797 1811 1774 1782 1701 1691 1698
13 25257.08 31467 30291 29863 29712 29675 29754 28437 27445 26341
14 10668 12011 11557 11274 11006 11173 11284 10986 10984 10957
15 11083.63 12624 12342 12165 12282 12026 12044 11875 11732 11567
16 1280.22 1642 1575 1482 1475 1498 1477 1387 1364 1366
17 1754.84 2072 1980 1926 1875 1812 1797 1790 1780 1785
18 5400 7318 7295 7011 7121 7167 7001 6820 6624 6631
19 4124.01 5984 5721 5583 5607 5594 5568 4937 4755 4642
20 5651.8 7142 7018 6911 6901 6886 6893 6764 6734 6458
21 7891.56 9351 9274 9031 9022 9146 9048 8801 8739 8672
22 8172.09 9724 9328 9134 9271 9210 9161 9075 9013 8866
23 8133 10131 9749 9536 9561 9537 9548 8973 8827 8713
24 4426.97 5635 5272 5013 5047 5003 5043 4822 4780 4700
25 10456 13561 12732 12418 12502 12428 12521 11927 11801 11681
26 10661 14126 13254 13170 13211 13129 13146 12473 12276 12111
27 5440 7248 6773 6527 6504 6511 6516 6014 5789 5794
28 19506 26457 24115 23874 23689 23762 23706 22976 22955 22921
29 21019 24161 23572 22745 22512 22501 22629 22352 22147 22012
30 14527 17286 17128 16610 16268 16212 16324 16137 16019 15987
31 19009 24107 23741 23167 23214 23152 23160 22761 22518 22104
32 18203.11 26537 25743 24247 24342 24267 24212 21322 20790 20687
33 19006.76 27111 25732 23854 23381 23639 23417 22180 22015 21813
34 12896.01 18376 17527 16632 16511 16438 16421 15133 14708 14662
35 8800.52 11614 11626 10767 10704 10738 10701 9372 9169 9014
36 4365.94 6738 6172 5860 5217 5229 5247 4934 4551 4571
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Table 4: The p-values of Wilcoxon statistical test for MA versus GA, GAF T , GACX1 ,
GACX2 , GACX3 , GACX4 , GALS1 , GALS2 and GALS3

MA versus
GA GAF T GACX1 GACX2 GACX3 GACX4 GALS1 GALS2 GALS3Inst

1 + + + + + + + + +
2 + + + + + + + + +
3 + + + + + + + + +
4 + + + + + + + + +
5 + + + + + + + + +
6 + + + + + + + + +
7 + + + + + + + + +
8 + + + + + + + + +
9 + + + + + + + + +
10 + + + + + + + + +
11 + + + + + + + + +
12 + + + + + + + + +
13 + + + + + + + + +
14 + + + + + + + + +
15 + + + + + + + + +
16 + + + + + + + + +
17 + + + + + + + + +
18 + + + + + + + + +
19 + + + + + + + + +
20 + + + + + + + + +
21 + + + + + + + + +
22 + + + + + + + + +
23 + + + + + + + + +
24 + + + + + + + + +
25 + + + + + + + + +
26 + + + + + + + + +
27 + + + + + + + + +
28 + + + + + + + + +
29 + + + + + + + + +
30 + + + + + + + + +
31 + + + + + + + + +
32 + + + + + + + + +
33 + + + + + + + + +
34 + + + + + + + + +
35 + + + + + + + + +
36 + + + + + + + + +
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Figure 9: The number of best solutions obtained by GACX1 , GACX2 , GACX3 and GACX4
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Figure 10: The number of best solutions obtained by GALS1 , GALS2 and GALS3

5.2. Comparison with state-of-the-art algorithms
This section is dedicated to an evaluation of MA results against those

obtained by the state-of-the-art algorithms. Only three algorithms have been
tested in the literature:

• SA HLS: simulated annealing with heuristic local search [15].

• SA: simulated annealing algorithm [15].

• HSA: a hybrid of artificial bee colony and artificial immune system
algorithm [32].

Table 5 presents the comparative results of MA and the three reference
algorithms (SA HLS, SA, HSA) In the table, we report the best obtained
results for each class and the computational time. The best results achieved
by the compared algorithms are highlighted in boldfont. From Table 5, it
can be observed that the proposed MA achieves the best results for 32 out
of the 36 tested instances.

Table 5 also discloses that MA is worse than HSA on four instance. Nev-
ertheless, the percentage deviation for the other instances is relatively small
indicating that the results of MA are very close to HSA. More importantly,
the computational times of MA across all instances are smaller than SA,
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HSA and SA HLS. These outcomes provide evidence of the effectiveness of
the proposed MA in dealing with 2L-HFVRP.

To verify the above positive result, we have applied the multiple sta-
tistical comparisons procedure described in [6] to compare the results of
our approach against other algorithms. We first conducted Friedman and
Iman–Davemport statistical tests (with a significance level of 0.05) to prop-
erly control the FWER and to detect if there is a significant differences
between the compared algorithms. The obtained p-values (p-value=0.000)
are below than 0.05 indicating that there is a significant difference between
the compared algorithms (MA, SA HLS, SA and HSA). As a result, we ap-
plied the Friedman test to calculate the average ranking of each algorithm as
shown in Table 6. As can be seen from Table in 6, MA is ranked first with
HSA, SA HLS and SA following, in the order given. Consequently, MA is
the best performing algorithm and it will be used as the control algorithm for
the a post-hoc statistical tests (Holm and Hochberg statistical tests). The
adjusted p-values of the post-hoc statistical tests for MA versus SA HLS,
SA and HSA are presented in Table 7 demonstrate that MA outperforms
all other algorithms (SA HLS, SA and HSA) with a critical level of 0.05 (all
adjusted p-values are less than 0.05).

The numerical results presented throughout this work reveal that the
proposed MA produced favourable results compared to other algorithms in
the literature. Statistical tests also support these results. The good results,
we believe, can be attributed to the following factors:

• The ability of the proposed MA in selecting, for each instance, differ-
ent evolutionary operators and local search algorithms. By selecting,
for each instance, different sequence of operators and local search al-
gorithms, the proposed MA can deal with changes that might occur
during the search, escaping from the local optima and exploring differ-
ent areas in the problem-solution search space.

• The ability of the proposed multi-parent crossover operators in handling
the diversity and quality of the search space as well as exploiting the
knowledge obtained in previous generations to guide the search process.
By utilising previous experience, MA can produce high quality and
diverse offspring for the next generation.

• The ability of the proposed time-varying fitness function in guiding the
evolutionary process to explore quality and diversity areas. By using

30



Table 5: The results of MA compared to the state of the art algorithms

Inst MA SA HLS SA HSA
Best Time Best Time Best Time Best Time

1 587.2 13.1 600.8 29.9 668.4 26.48 598.02 15.26
2 676.4 11.01 699.2 32.9 755.4 27.56 694.64 11.78
3 758.5 16.23 770.1 33.8 856.7 49.55 764.12 21.19
4 677.7 17.22 698.2 30 765.8 54.02 696.82 18.92
5 783.4 18.07 786.8 27.7 902.1 68.51 765.67 75.87
6 826.2 33.2 831.3 42.8 905.3 59.54 825.68 35.19
7 5323.04 18.6 5630 31.1 6780 132.14 5344.54 63.46
8 5364.01 21.2 5603 30.2 7037 114.14 5398.68 45.72
9 1032 31.11 1036 58.8 1184 64.45 1035.62 34.45
10 6891.14 29.1 7625 43.3 8398 264.91 6920.34 107.84
11 7784 38.22 8330 52.6 9179 277.96 7792.35 127.35
12 1666.86 10.36 1681 167 1709 37.74 1681.07 12.26
13 25257.08 66.01 25979 70 31078 403.16 25252.24 145.3
14 10668 61.44 10869 78.1 11864 138.8 10639.67 159.55
15 11083.63 73.14 11490 91.5 12355 230.36 11091.77 162.63
16 1280.22 19.04 1292 111 1433 59.66 1289.57 19.89
17 1754.84 14.7 1777 191 1985 57.94 1773.58 16.7
18 5400 77.34 5676 88.8 7127 674.9 5410.67 288.27
19 4124.01 112.11 4242 180 5823 937.74 4124.33 175.53
20 5651.8 146.26 6153 175 8736 1722.4 5654.04 697.14
21 7891.56 200.03 8221 292 13922 2005.2 7904.08 265.8
22 8172.09 310.76 8574 317 14508 1972.6 8176.26 432.11
23 8133 297.41 8317 358 14579 1884.2 8147.26 661.39
24 4426.97 283.03 4548 289 6399 1156.4 4430.17 641.61
25 10456 379.8 11368 474 20788 3324.2 10480.26 425.09
26 10661 294.58 11782 363 19654 2679.5 10662.11 777.78
27 5440 277.08 5695 282 9010 2622.4 5463.73 650.28
28 19506 501 22611 614 39332 4547.4 19559.36 816.64
29 21019 434.26 21876 495 34554 6134.2 21037.22 1523.89
30 14527 781.07 15793 812 34011 6133.4 14612.82 1226.48
31 19009 992.73 21126 1115 47085 10052 19083.75 1522.45
32 18203.11 887.05 20111 969 47403 11131 18204.17 2006.68
33 19006.76 760.14 21420 858 50534 12506 19010.64 1427.65
34 12896.01 1127.32 14485 1596 24772 12471 12960.8 2232.99
35 8800.52 1119.05 8962 1214 12053 15793 8802.64 3109.13
36 4365.94 985.25 4386 1120 6120 15381 4383.01 2909.05
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Table 6: Average Rankings of the algorithms (Friedman test)

Algorithm Ranking
MA 1.1111

SA HLS 2.9722
SA 4

HSA 1.9167

Table 7: Adjusted p-values obtained through the application of the post hoc methods:
Holm and Hochberg statistical tests

i algorithm unadjusted p pHolm pHochberg

1 SA HLS 0.000 0.000 0.000
2 SA 0.000 0.000 0.000
3 HSA 0.008113 0.008113 0.008113

the time-varying fitness and diversity calculation, the proposed MA
focuses on exploration in the early stages and then gradually decreases
so it can effectively explore new areas in the solution search space and
escape from the basin of attraction points..

• Since most of the state-of-the-art algorithms heavily rely on a local
search algorithm, the proposed MA adaptively combines the strengths
of several local search algorithms in a unified framework..

6. Conclusion

This work proposed a two-stage method to solve the heterogeneous fleet
vehicle routing problem with the two-dimensional loading constraints prob-
lems. In the first stage, we have proposed an adaptive memetic approach
to handle the routing process. The proposed memetic approach integrates
various effective and complimentary elements to generate high quality solu-
tions. Four different multi-parent crossover operators that use diversity and
quality were proposed to evolve a new population of solutions. To acceler-
ate the search process, three different local search algorithms are adaptively
applied to further improve the evolved solutions. We propose a time varying
fitness function to avoid prematurity. We proposed an adaptive quality-and-
diversity mechanism to control the application of memetic operators and local
search algorithms. In the second stage, five different heuristics were adopted
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and hybridised to perform the packing process. The experimental results
using the existing benchmark instances demonstrate that the proposed algo-
rithm can obtain very good results, if not better on many instances, when
compared to the state-of-the-art algorithms.

References

[1] Azad, A. S., Islam, M. M., and Chakraborty, S. (2017). A heuristic
initialized stochastic memetic algorithm for mdpvrp with interdependent
depot operations. IEEE Transactions on Cybernetics, PP(99):1–14.
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