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Abstract— This paper proposes a vehicle trajectory planning 

method for automated on-ramp merging. Trajectory planning 

tasks of an on-ramp merging vehicle and a mainline facilitating 

vehicle are formulated as two related optimal control problems. 

Rather than specifying the merge point via external 

computational procedures, the location and time that the on-

ramp vehicle merges into the mainline are determined 

endogenously by the optimal control problem of the facilitating 

vehicle. Bounds on vehicle acceleration are explicitly considered. 

The Pontryagin Maximum Principle is applied to find the 

solutions of the optimal control problems. In order to 

accommodate the constantly changing external environment, 

the proposed optimal control method is subsequently 

implemented in a recursive planning framework. Because of the 

nature of the problem, the length of the planning horizon is time-

varying, unlike conventional model predictive control 

applications where the planning horizon is of fixed length. 

Numerical experiments are conducted to study performances of 

the proposed methodology under the influence of different 

leading vehicle trajectories and with different lengths of the 

planning updating interval. In particular, an experiment 

involving a real-world leading vehicle trajectory and 

considering different traffic demand levels are presented. The 

proposed methodology performs well in these experiments and 

has demonstrated a good potential in real-time applications. 

 

Index Terms — trajectory planning, on-ramp merging, 

optimal control, Maximum Principle, automated vehicles 

I. INTRODUCTION 

OTORWAY on-ramp merge sections have become 

stubborn bottlenecks with the expansion of motorcar 

ownerships. Such bottlenecks can contribute to travel delay 

[1], cause capacity drop [2] and be a source of traffic 

instabilities [3] and excessive vehicular emissions [4]. To 

alleviate the negative aspects, there are three main 

methodologies [5]: optimal infrastructure design, active 

traffic management strategies (e.g. ramp metering), and 

automated on-ramp merging strategies. Ramp metering 

methods regulate macroscopic traffic flow state variables (e.g. 

density or flow rate) by controlling on-ramp inflow rates. 

Ramp metering methods are unable to regulate movements of 

individual merging vehicles. More importantly, ramp 

metering strategies cannot regulate the movements of 

mainline vehicles, which are responsible for creating suitable 

gaps in the mainline in order to accommodate the on-ramp 

merging vehicles. With the development of connected and 
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automated vehicle (CAV) technologies, regulation of 

individual vehicles’ trajectories becomes possible; this has 

provided a new perspective for improving driving experience 

and traffic operations at on-ramp merge sections. 
The focus of this paper is to present a method to plan 

vehicle trajectories for automated on-ramp merging and gap 

development under a CAV environment. It is assumed that 

the mainline traffic is in congestion mode, and thus a 

sufficiently large gap to accommodate an on-ramp merging 

vehicle is not readily available. Using the planned trajectories 

of the proposed method, a mainline vehicle will carry out a 

facilitating maneuver to develop a suitable gap and an on-

ramp merging vehicle will maneuver into this gap. Thus, the 

scope of the paper is limited to trajectory planning in 

situations when a mainline facilitating vehicle has been 

selected and the merging process has been initiated (both of 

which may be determined by an existing upper-level control 

scheme). Also, the execution of the reference trajectory by 

lower-level controllers is considered beyond the scope of the 

paper, which is in line with previous studies in vehicle 

trajectory planning (e.g. [6-12]). 

The core of the proposed method are two related optimal 

control problems, one for governing the gap development and 

the other for governing the merging. The Pontryagin 

Maximum Principle (PMP) is applied to solve the optimal 

control problems. While there are many computational 

approaches to solving constrained optimal control problems 

(e.g. Dynamic Programming [13], Nonlinear Programming 

[14]), PMP approaches seek to solve the optimal control 

problem analytically and thus has potential theoretical and 

potential computational advantages. In this paper, the PMP is 

used to develop algebraic conditions for the optimal control 

trajectory that are computationally simple to solve and yield 

insight into the characteristics of the optimal control 

trajectories. The solutions are implemented in a recursive 

planning framework so as to accommodate the constantly 

changing external disturbances. The proposed method is 

tested via numerical experiments, including an experiment 

which uses the trajectory of a real-world, human-driven, 

instrumented vehicle as the leading vehicle trajectory and 

which tests different levels of traffic demand of mainline and 

on-ramp. 

The proposed method requires vehicle-to-vehicle (V2V) 

communications between three vehicles: the on-ramp 
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merging vehicle, the mainline facilitating vehicle, and the 

leading vehicle of the mainline facilitating vehicle. Only the 

merging vehicle and the facilitating vehicle need to be 

automated vehicles. Therefore, the proposed strategy may be 

applied when the penetration rate of automated vehicles is 

low. However, low penetration rate may require an on-ramp 

vehicle to decelerate or even stop before carrying out the 

merging movement. Treatment of such situations is 

considered outside the scope of this paper and will be studied 

in future research. 

Compared with existing studies, the contributions of this 

paper are as follows. First, the optimal control problems in 

this paper are formulated, solved and recursively 

implemented by explicitly considering acceleration bounds. 

Second, the time and location of the merge point are treated 

as decision variables rather than specified parameters, which 

offers more flexibilities when the proposed trajectory 

planning method is integrated with an upper-level traffic 

management program. 

The remainder of this paper is organised as follows. 

Section II reviews and analyses existing studies of automated 

on-ramp merging strategies. Section III describes the overall 

mechanism of the proposed methodology. Section IV 

formulates the maneuvers of the mainline facilitating vehicle 

and the on-ramp merging vehicle as optimal control problems, 

applies the PMP to solve them, and then presents a recursive 

planning framework. Section V conducts numerical 

experiments based on both hypothetical and real-world 

leading vehicle trajectories. Finally, section VI summarises 

this study and lists future research directions. 

II. LITERATURE REVIEW 

A. A Summary of Existing Studies 

Automated on-ramp merging strategies can be broadly 

classified into two categories: feedback control and 

optimization approaches. The core idea of feedback control 

strategies is the introduction of a “virtual vehicle”, first 

proposed by [15]. The “virtual vehicle” method projects the 

image of an on-ramp vehicle onto the mainline so that a 

mainline vehicle will have a virtual leading vehicle to follow, 

and vice versa. By the introduction of “virtual vehicles”, on-

ramp merging tasks are converted to car-following tasks. 

Representative works include [16-20], and most recently, 

[21]. In these works, the feedback controller controls either 

the mainline facilitating vehicle only [18, 20] or both the 

mainline facilitating vehicle and the on-ramp merging vehicle 

[15-17, 19, 21]. 

The other major category of strategies applies optimization. 

In a series of studies, [14, 22-24] formulated an optimal 

control problem governing cooperative driving of all 

mainline vehicles and on-ramp merging vehicles in a merge 

section. Although the authors used model predictive control 

(MPC), they did not really take the advantage of MPC’s 

“closing-the-loop” feature, because all the vehicles are 

controlled by a centralized controller and thus no vehicle is 

an external disturbance and no prediction is really needed. In 

[9], all vehicles that have entered a predefined control zone 

are to be coordinated in a centralized fashion in order to 

achieve a system optimum goal. The cost function minimizes 

the total quadratic of accelerations of all the vehicles, 

conserving energy consumption. Reference [25] formulated a 

centralized nonlinear program to optimize all the vehicles’ 

second-by-second acceleration in a predefined merge section. 

The objective function was to maximize the total speed. 

Reference [8] reported a decentralized optimal control 

strategy for on-ramp merging trajectory planning. They 

formulated the vehicle trajectory planning task as linear-

quadratic optimal control problems of fixed terminal time and 

specified terminal state. Two alternatives of quadratic cost 

functions were applied, one minimizing acceleration and the 

other minimizing jerk. All the vehicles were assumed to be 

connected and automated, and it was assumed that an upper 

level controller is in charge of determining the order by which 

each vehicle arrives at the predefined merge point. The 

strategy was implemented in a recursive planning framework. 

 It is worth noting that optimal control has also been widely 

applied in car-following studies, e.g. [11, 12, 26, 27]. In 

particular, the car-following task in [26] was formulated as a 

LQR of infinite time horizon. Moreover, [26] has considered 

control constraints. Notice that a major difference exists in 

the optimal control formulations for the task of car-following 

and for the task of merging and gap development: The former 

usually contain state variables, e.g. gap or velocity of the 

subject vehicle, in the running cost, e.g. [11, 12, 26, 27], while 

the latter usually do not, e.g. [8, 9]. This is because the 

objectives of the two tasks are different: car-following 

controllers seek to maintain a desired vehicle state (e.g. a 

desired gap or velocity) over the entire process, while the 

objective of a merging and gap development task is to achieve 

a desired terminal state at the time when the process is 

finished, with little regard to intermediate states of the 

process. 

B. Feedback vs. Optimization Approaches 

Both feedback and optimization approaches have their 

advantages and disadvantages. Feedback strategies are easy 

to implement and computationally cheap, but are not optimal 

in any sense. Another main shortcoming of feedback 

strategies is that they cannot compensate for the speed loss of 

the facilitating vehicle in gap development, e.g. [18, 20]. On 

the other hand, usually optimization-based strategies are not 

straightforward in implementation and are computationally 

expensive. But if handled properly, some optimization-based 

strategies can still be computationally cost-effective. For 

example, in [8, 9] closed-form solutions with only unknown 

constants are derived; these unknown constants can be solved 

efficiently, therefore the solutions can be utilized in an online 

fashion such as MPC. The main advantage of optimization-

based strategies is that they can be optimal in a desired sense. 

Another advantage is that they allow respective specification 

of the terminal position and terminal speed, so the initial 

speed loss due to the gap development of a facilitating vehicle 

can be compensated, something not achievable by a feedback 

controller. 

C. Limitations with Existing Optimization Approaches 

Some limitations exist in reported optimization approaches. 

First, in existing optimal control approaches that achieved 

analytical solutions, e.g. [8, 9], acceleration bounds were not 

explicitly taken care of.  Admittedly, under many 

circumstances acceleration bounds can be avoided by delicate 
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pairing up a merging vehicle and a facilitating vehicle; 

however there are still many unfavourable situations under 

which the acceleration bounds can be a realistic restriction, 

such as when the mainline traffic is dense or when there are a 

limited number of automated vehicles in the mainline. 

Second, the merge location was pre-specified and fixed, e.g. 

[8, 9]. However, a flexible merge point design may be 

desirable since it offers more flexibility to a supervisory 

traffic management scheme. 

Third, the capabilities of recursive planning approaches 

(e.g. MPC) to compensate for imperfect estimation of 

trajectories have not been well studied. The approaches such 

as in [14, 22-25] have assumed that all vehicles are CAVs and 

are optimized by a centralized optimization program. A main 

merit of MPC is that it updates the trajectory plan recursively 

so as to compensate for errors associated with imperfect 

prediction of external disturbances. Thanks to this merit, 

application of an MPC framework renders a decentralized 

controller practical which is generally more computationally 

cost-effective than a centralized one and which better suits 

the long transitioning period of mixed conventional and 

connected and automated vehicles. 

Based on these considerations, in this paper, we develop 

decentralized optimal control problems for the mainline 

facilitating vehicle and the on-ramp merging vehicle. Both 

the optimal control problems explicitly consider acceleration 

constraints, and the optimal control problem of the facilitating 

vehicle features free terminal time and terminal state being 

movable on a curve. We develop analytical solutions for the 

proposed optimal control problems. Finally, we apply a 

recursive planning framework to implement the optimal 

solutions and demonstrate effectiveness as well as 

computational efficiency of the recursive framework. Note 

that we chose in this paper not to use the term “MPC” but 

rather to use the term “recursive”, because MPC approaches 

typically refer to fixed-length planning horizons [28, 29], but 

in our method the planning horizon is time-varying, as 

explained in section IV. 

Consideration of control bounds greatly increases the 

complexity of the problem due to the following three factors: 

(1) It increases the number of admissible control sequences 

for each of the two optimal control problems from one to nine 

(section IV); (2) Solution of the only control sequence when 

control bounds are not considered happens to be the simplest 

– only control constants need to be solved, while solutions of 

the other admissible control sequences involve solving for 

both the control constants and the control switching times; (3) 

When control bounds are not considered, the recursive 

implementation of the solution is actually only to re-solve the 

system of algebraic equations with updated initial conditions 

at each recursive step. However, when control bounds are 

considered, at each recursive step, nine different systems of 

algebraic equations have to be considered. 

III. OVERVIEW OF THE METHODOLOGY 

In this paper, only longitudinal movements of vehicles are 

explicitly considered; lateral movements of merging vehicles 

are assumed to have no influence on longitudinal movements 

of mainline traffic and therefore can be treated separately, as 

in Ntousakis, et al. [8]. The on-ramp merging process 

considered here can generally be illustrated by Fig. 1. Fig. 1 

(a) shows the condition at the time when the merging process 

begins. The shaded blue vehicle (with no flag) is the on-ramp 

merging vehicle whose front bumper is currently at the 

predefined call-for-assistance (CFA) point and who sends out 

a request for assistance to mainline vehicles. It is assumed for 

simplicity that communications are instantaneous. The 

flagged vehicle is the mainline vehicle who agrees to 

facilitate and who initiates the process of creating a suitable 

gap between itself and the leading vehicle, i.e. the grey 

shaded vehicle. Fig. 1 (b) is a snapshot at some time in the 

middle of the merging process. Note that the front gap and 

rear gap at this moment are not yet suitable for merging. Fig. 

1 (c) shows the condition when the merging process 

terminates: The front gap and rear gap have satisfied certain 

conditions and the on-ramp vehicle merges into the mainline. 

As soon as the merging vehicle merges into the gap, it 

switches to car-following operation, so does the facilitating 

vehicle. Obviously, the time and location where the merging 

process terminates depends on the trajectory of the leading 

vehicle and the conditions specifying the successful 

development of a suitable gap. This point will be explained 

in more detail in section IV. 

 

 

 
Fig. 1.  The on-ramp merging process: (a) the time when the process is 

initiated; (b) a time in the middle of the process; (c) the time when the process 

is finished. 

The leading vehicle is an external disturbance and its 

trajectory must be predicted. In practice, this prediction 

cannot be perfect. As a result, it is necessary to recursively 

update the prediction and recursively perform the trajectory 

planning task so as to compensate for errors associated with 

the imperfect prediction. In this study, the system dynamics 

are assumed to be perfectly captured by the governing 

kinematic equations. 
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IV. OPTIMAL CONTROL PROBLEM FORMULATION AND 

SOLUTION, AND A RECURSIVE PLANNING FRAMEWORK 

A. Formulation of Optimal Control Problems 

The optimal control problem of the mainline facilitating 

vehicle is given by (1) through (7). 

 

min
𝑢(𝑡)

∫
1

2
[𝑢(𝑡)2 + 𝜆]

𝑡f

0

𝑑𝑡 (1) 

subject to: 

�̇�(𝑡) = [
�̇�(𝑡)

�̇�(𝑡)
] = [

𝑣(𝑡)

𝑢(𝑡)
] (2) 

𝑎min ≤ 𝑢(𝑡) ≤ 𝑎max (3) 

with initial conditions: 

𝑥(0) = 𝑥0
fac (4) 

 𝑣(0) = 𝑣0
fac                                                                                                                                                                                                                                           (5) 

with terminal state conditions: 

𝑥(𝑡f) = 𝑥𝑙(𝑡f) − (𝐿𝑙 + 𝑠0) − (𝐿𝑚𝑒𝑟 + 𝑠0) − 2𝜏𝑣(𝑡f)                                                                                                                                      (6) 

𝑣(𝑡f) = 𝑣𝑙(𝑡f)                                                                                                                                                                                                                                           (7) 

In this formulation, 𝑡f is the (free) terminal time; 𝑥(𝑡) and 

𝑣(𝑡) are state variables, representing the location (measured 

with reference to the front bumper of the subject vehicle) and 

speed of the facilitating vehicle, respectively; 𝑢(𝑡)  is the 

control variable, i.e. the acceleration of the facilitating vehicle; 

𝑎min < 0  and 𝑎max > 0  are specified and represent the 

maximum allowable deceleration and acceleration, 

respectively; 𝜆  is a constant and serves as the weighting 

factor that penalizes the duration of the merging process; 𝜏 is 

the constant time-gap; 𝐿𝑙  and 𝐿𝑚𝑒𝑟  are the lengths of the 

leading vehicle and merging vehicle, respectively; 𝑠0 is the 

standstill clearance;  𝑥𝑙(∙)  and 𝑣𝑙(∙)  are the position and 

speed trajectories of the leading vehicle, respectively, and are 

assumed to be known. 

We see that (1) through (7) formulate a linear-quadratic 

optimal control problem with free terminal time and a 

terminal state which moves along a curve as a known function 

of the final time. Although (2) may not be able to fully capture 

the real vehicle dynamics which can involve higher order 

dynamics, nonlinearity, and delay. However, for trajectory 

planning purposes, use of a simplified model for both 

planning and simulation has been common, e.g. [6-12]. Of 

course, these planned trajectories would then serve as input 

reference signals to a lower-level vehicle controllers which 

would more realistically consider the vehicle dynamics. 

The physical implication of the terminal state conditions (6) 

and (7) is to render zero feedback errors in car-following 

strategy (a constant time-gap cooperative adaptive cruise 

control (CACC) or adaptive cruise control (ACC) strategy) 

when the merging process is completed and the facilitating 

and merging vehicles switch to car-following operations. 

While the length of the acceleration lane can be a constraint, 

we have chosen not to include an additional inequality 

constraint on 𝑥(𝑡f) in order to keep the analytical solution 

simple. Referring to the experiment results reported in section 

V, the length of a merging trajectory usually ranges from 150 

to 300 meters. Most acceleration lanes can accommodate 

such a length. In situations when the acceleration lane is very 

short, the issue can be solved by a number of upper-level 

management strategies such as: 1) initiating the merging 

process earlier (i.e. advancing the call-for-assistance point 

upstream); 2) increase the terminal penalty weight to decrease 

the terminal time; 3) select a new facilitating vehicle that is 

further upstream. 

The proposed optimal control problem that governs the on-

ramp merging vehicle’s maneuver is given as (8) through (14). 

min
𝑢(𝑡)

∫
1

2
𝑢(𝑡)2

𝑡f

0

𝑑𝑡 +
1

2
𝜆1[𝑥(𝑡f) − 𝑥𝑀]2

+
1

2
𝜆2[𝑣(𝑡f) − 𝑣𝑡f

mer]
2

 
(8) 

subject to: 

�̇�(𝑡) = [
�̇�(𝑡)

�̇�(𝑡)
] = [

𝑣(𝑡)

𝑢(𝑡)
] (9) 

𝑎min ≤ 𝑢(𝑡) ≤ 𝑎max (10) 

with initial conditions: 

𝑥(0) = 𝑥0
mer (11) 

𝑣(0) = 𝑣0
mer (12) 

The desired terminal state is defined by: 

𝑥𝑀 = 𝑥𝑙(𝑡f) − (𝐿𝑙 + 𝑠0) − 𝜏𝑣𝑡f

mer (13) 

𝑣𝑡f

mer = 𝑣𝑙(𝑡f) (14) 

In this formulation, 𝑥(𝑡) , 𝑣(𝑡) , 𝑢(𝑡)  are the state and 

control variables, respectively; 𝑥(𝑡f)  and 𝑣(𝑡f)  are the 

terminal states of the merging vehicle; 𝜆1  and 𝜆2  are two 

constant weighting factors that penalize deviations of the 

terminal state from the desired values, i.e.  𝑥𝑀  and 𝑣𝑡f

mer , 

which are defined by (13) and (14), respectively. The physical 

implication of (13) and (14) are the same of (6) and (7). Note 

that in (8), 𝑡f  is specified, as determined by the optimal 

control problem of the facilitating vehicle. 

B. Solution Using the Pontryagin Maximum Principle 

The proposed optimal control problems can be solved 

analytically by applying the PMP. While solutions for linear-

quadratic optimal control problems without control bounds 

and of fixed terminal times are well established [30, 31], the 

proposed problems of this paper contain control bounds and 

is of free terminal time, and therefore must be specifically 

derived. 

Consider the optimal control problem of the facilitating 

vehicle as defined by (1) to (7). To apply the PMP, first covert 

(1) to be maximization of the cost function. 

max
𝑢(𝑡)

∫ −
1

2
[𝑢(𝑡)2 + 𝜆]

𝑡f

0

𝑑𝑡 (15) 

Then form the Hamiltonian: 

ℋ = −
1

2
𝑢(𝑡)2 −

1

2
𝜆 + 𝑝1(𝑡)𝑣(𝑡) + 𝑝2(𝑡)𝑢(𝑡) (16) 

In (16), 𝑝1(𝑡)  and 𝑝2(𝑡)  are the co-state variables 

associated with the state variables 𝑥(𝑡)  and 𝑣(𝑡) , 

respectively. To maximize the Hamiltonian, an optimal 
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control must satisfy, ∀𝑡 ∈ [0, 𝑡f]: 

𝑢∗(𝑡) = {
 𝑝2

∗(𝑡),
𝑎max,
𝑎min,

               for 𝑎min < 𝑝2
∗(𝑡) < 𝑎max

for 𝑝2
∗(𝑡) ≥ 𝑎max

for 𝑝2
∗(𝑡) ≤ 𝑎min

 (17) 

The state equations are: 

�̇�∗(𝑡) = 𝑣∗(𝑡)  (18) 

�̇�∗(𝑡) = 𝑢∗(𝑡) (19) 

The co-state equations are: 

�̇�1
∗(𝑡) = −

𝜕ℋ∗

𝜕𝑥
= 0 (20) 

�̇�2
∗(𝑡) = −

𝜕ℋ∗

𝜕𝑣
= −𝑝1

∗(𝑡) (21) 

Note that in (20) and (21), ℋ∗ is a shorthand for ℋ evaluated 

along the extremal trajectory, i.e.  

ℋ∗ = −
1

2
𝑢∗(𝑡)2 −

1

2
𝜆 + 𝑝1

∗(𝑡)𝑣∗(𝑡)

+ 𝑝2
∗(𝑡)𝑢∗(𝑡) 

(22) 

The boundary conditions are: 

𝑥∗(0) = 𝑥0
fac (23) 

𝑣∗(0) = 𝑣0
fac (24) 

𝑥∗(𝑡f) = 𝑥𝑙(𝑡f) − 2(𝐿 + 𝑠0) − 2𝜏𝑣(𝑡f) (25) 

𝑣∗(𝑡f) = 𝑣𝑙(𝑡f)  (26) 

Plugging (26) into (25) yields 

𝑥∗(𝑡f) = 𝑥𝑙(𝑡f) − (𝐿𝑙 + 𝑠0) − (𝐿𝑚𝑒𝑟 + 𝑠0)
− 2𝜏𝑣𝑙(𝑡f) (27) 

Combining (26) and (27) in the vector form gives 

𝛉(𝑡)

∶= [
𝑥𝑙(𝑡) − (𝐿𝑙 + 𝑠0) − (𝐿𝑚𝑒𝑟 + 𝑠0) − 2𝜏𝑣𝑙(𝑡f)

𝑣𝑙(𝑡)
] (28) 

Then one more boundary condition is 

ℋ∗ − 𝐩∗(𝑡f)
𝑇

𝑑𝛉

𝑑𝑡
(𝑡f) = 0 (29) 

which yields 

−
1

2
𝑢∗(𝑡f)

2 −
1

2
𝜆 + 𝑝1

∗(𝑡f)𝑣∗(𝑡f) + 𝑝2
∗(𝑡f)𝑢∗(𝑡f)

= 𝑝1
∗(𝑡f)[𝑣𝑙(𝑡f) − 2𝜏�̇�𝑙(𝑡f)] + 𝑝2

∗(𝑡f)�̇�𝑙(𝑡f) 
(30) 

Thus we have obtained a two-point boundary value 

problem (TBVP) defined by (18) to (21) with boundary 

conditions (23) to (26) and (30).  

Next, we solve the TBVP. From (20), 

𝑝1
∗(𝑡) ≡ 𝑐1 (31) 

From (31) and (21), 

𝑝2
∗(𝑡) = −𝑐1𝑡 + 𝑐2 (32) 

In (31) and (32), 𝑐1  and 𝑐2  are unknown constants. Note 

that (32) indicates that 𝑝2
∗(𝑡) is monotonic. Combining (32) 

and (17), it is clear that admissible extremal control 

sequences can be only {𝑝2
∗(𝑡)} , {𝑎min, 𝑝2

∗(𝑡)} , 

{𝑎min, 𝑝2
∗(𝑡), 𝑎max} , {𝑝2

∗(𝑡), 𝑎max} , {𝑎max , 𝑝2
∗(𝑡), 𝑎min} , 

{𝑎max, 𝑝2
∗(𝑡)}, {𝑝2

∗(𝑡), 𝑎min}, {𝑎min}, and {𝑎max}. 

Having identified all the admissible extremal control 

sequences, the next step is to construct system of algebraic 

equations for each of them, from which the control constants 

and control switching times (if any) can be solved. The 

development of these algebraic equations for the most 

complex case, {𝑎min, 𝑝2
∗(𝑡), 𝑎max} , can be found in the 

Appendix, and the procedure for the other extremal sequences 

proceeds in a similar manner. 

After these constants are determined from these conditions, 

they need to be checked for feasibility. For example, for the 

extremal control sequence {𝑎min, 𝑝2
∗(𝑡), 𝑎max}, the following 

conditions must be satisfied to be optimal: 

0 < 𝑡1 < 𝑡2 < 𝑡f (33) 

𝑐2 < 𝑎min (34) 

−𝑐1𝑡f + 𝑐2 > 𝑎max (35) 

−𝑐1 > 0 (36) 

In our problem, the Hessian of the Hamiltonian is negative-

definite. Specifically, it can be calculated that  
𝜕2ℋ

𝜕𝑢2 = −1. 

Moreover, the control constraints are linear. Thus, as long as 

a feasible solution is found, it is optimal. Note that we have 

verified the above analytical solution method by discretizing 

the optimal control problem and then solving using numerical 

method (the “fmincon” function of the MATLAB). 

Analytical solutions to the optimal control problem of the 

merging vehicle are similar and straightforward, and thus are 

not presented in this paper. 

C. A Recursive Planning Framework 

In practice, the leading vehicle’s trajectories, i.e. 𝑥𝑙(∙) and 

𝑣𝑙(∙), cannot be perfectly predicted. Therefore, to compensate 

for the errors it is necessary to recursively update the 

prediction of 𝑥𝑙(∙) and 𝑣𝑙(∙) and resolve the optimal control 

problems. In this paper, the future speed of the leading 

vehicle is assumed to be the same as the instant when the 

planning is updated, as in line with previous studies [8, 12]. 

At a given time 𝑡0 , the optimal control problems for the 

facilitating and merging vehicle are solved, respectively, 

yielding the optimal control histories 𝑢fac∗
(𝑡)  and 𝑢mer∗

(𝑡) 

for 𝑡0 ≤ 𝑡 ≤ 𝑡f and the first portion of the controls are applied 

over a pre-specified updating interval Δ𝑡up, e.g. 0.1 sec, 0.5 

sec, etc. The process is repeated until the termination 

condition 𝑡f < 𝑡f̅ is met, after which the entire optimal control 

histories are applied. Note that 𝑡f̅  is needed because here the 

length of planning horizon is shrinking with the increase of 

the recursive step index. In this paper, the control 

implementation interval is 0.1 seconds, i.e. ∆𝑡im = 0.1 sec. 

Numerical simulation studies revealed that 𝑡f̅ = 8∆𝑡im  is 

sufficient to generate a well-behaved solution. 

To prevent a merging vehicle (or a facilitating vehicle) 

from dangerously approaching the preceding merging vehicle 

(or the leading vehicle), at each step, the more restrictive 

acceleration between the optimal control output and the 

output of a constant time-gap (CTG) car-following law which 

takes into account avoiding dangerous approaching, is 

implemented. Such a treatment was proposed by [8]. This 
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paper adopts the CTG car-following law proposed by [32, 33] 

which can prevent the following car from dangerously 

approaching its predecessor. 

V. NUMERICAL EXPERIMENTS 

A. Effects of Leading Vehicle Trajectories and Planning 

Updating Interval 

In this section we study the effects of leading vehicle 

trajectories and the lengths of the pre-specified updating 

interval ( ∆𝑡up ) on the performance of the proposed 

methodology. To evaluate the effects, we present the 

resulting acceleration trajectories, as well as a series of 

quantitative performance measures, as summarized in Table 

I.  

Two hypothetical sinusoidal speed trajectories, i.e. profile 

1 and profile 2, are assumed for the leading vehicle, defined 

by (37) and (38), respectively, and are illustrated by Fig. 2. 

𝑣𝑙(𝑡) = 𝑣0
lead [1 −

1

6
sin (

𝜋

15
𝑡)] (37) 

𝑣𝑙(𝑡) = 𝑣0
lead [1 −

1

6
sin (

𝜋

10
𝑡)] (38) 

 

We test three different lengths of ∆𝑡up, i.e. 1 sec, 0.5 sec, 

and 0.1 sec. Although it is intuitive to only use ∆𝑡up = 0.1 

sec, which is consistent with the sampling time interval length, 

however, in practice, computational time can be a restraint 

that must be considered, thus, we think it is desirable to test 

the performance of the proposed method with longer updating 

intervals as well, i.e. ∆𝑡up = 0.5  sec and ∆𝑡up = 1  sec. In 

MPC studies, it is not uncommon to have longer updating 

interval than sampling interval, e.g. [10, 34, 35]. 

 
Fig. 2.  Two sinusoidal speed profiles of the leading vehicle 

Set the coordinate of the CFA point as 0 m. Suppose that 

the initial states of the leading vehicle, facilitating vehicle, 

and the merging vehicle are as follows: 𝑣0
lead = 23 

m/sec, 𝑥0
lead= -10 m;𝑣0

fac=25 m/sec, 𝑥0
fac = −53 m; 𝑣0

mer = 

10 m/sec, 𝑥0
mer = 0 m. Set 𝜆 = 10, 𝜆1 = 25, 𝜆2 = 25. It is 

assumed that all the vehicles are of the same length and 

employ the same CTG car-following policy. 

Fig. 3 illustrates the resulting acceleration trajectories of 

the facilitating and merging vehicles with the three different 

∆𝑡up, when the leading vehicle follows speed profile 1. Table 

II summaries the performance measures. Fig. 4 illustrates the 

resulting acceleration trajectories of the facilitating and 

merging vehicles with the three different ∆𝑡up , when the 

leading vehicle follows speed profile 2. Table III summaries 

the performance measures. 

From these results, we see that for any of the two leading 

vehicle trajectories, and for any of the different lengths of 

∆𝑡up, a suitable gap can be developed between the facilitating 

vehicle and the leading vehicle, and the merging vehicle can 

maneuver to the gap accordingly, with acceptable terminal 

errors. When ∆𝑡up = 1 sec and ∆𝑡up = 0.5 sec, the planned 

acceleration profiles are chattering, especially when the 

leading vehicle is of speed profile 2. Such planned 

accelerations, if were to be directly applied to the vehicles, 

would cause discomfort of the passengers because of jerks. 

However, in line with previous studies, e.g. [36, 37], planned 

trajectories often serve as input references to a lower level 

vehicle controller, and it is the task of the lower-level 

controller to generate smooth control commands. When ∆𝑡up 

= 0.1 sec, the planned accelerations are largely smooth, 

TABLE II 
PERFORMANCE MEASURES OF DIFFERENT RECURSIVE PLANNING 

UPDATING INTERVALS UNDER LEADING TRAJECTORY PROFILE 1 

 𝟏 𝐬𝐞𝐜 𝟎. 𝟓 𝐬𝐞𝐜 𝟎. 𝟏 𝐬𝐞𝐜 

T(sec) 9.7 9.6 9.4 

XM(m) 149.70 147.79 143.98 

Dev_ST
mer 7% 5.7% 4.1% 

Dev_VT
mer -14.5% -13.9% -13.6% 

Dev_ST
fac 0 0.8% -0.1% 

Dev_VT
fac 0.2% -0.7% 0.5% 

CPU_Tmer(sec) 5.2 5.2 10.6 

CPU_Tfac(sec) 16.9 22.5 92.8 

 

 TABLE III 
PERFORMANCE MEASURES OF DIFFERENT RECURSIVE PLANNING 

UPDATING INTERVALS UNDER LEADING TRAJECTORY PROFILE 2 

 𝟏 𝐬𝐞𝐜 𝟎. 𝟓 𝐬𝐞𝐜 𝟎. 𝟏 𝐬𝐞𝐜 

T(sec) 15.6 15.4 15.2 

XM(m) 290.46 285.10 279.75 

Dev_ST
mer -0.2% 0.1% 0.3% 

Dev_VT
mer 0 0 -0.4% 

Dev_ST
fac 1.3% 1.1% 1.4% 

Dev_VT
fac -0.9% -0.8% -0.1% 

CPU_Tmer(sec) 7.3 8.2 17.1 

CPU_Tfac(sec) 22.2 36 147.3 

 

 

TABLE I 

PERFORMANCE MEASURES OF DIFFERENT MPC UPDATING INTERVALS 

Name of the Performance 

Measure 
Symbol 

Time duration of the merging 
process 

T 

Merge location XM 

Deviation of the merging vehicle’s 

actual terminal spacing from the 

desired terminal spacing 

Dev_ST
mer 

Deviation of the merging vehicle’s 

actual terminal speed from the 

desired terminal speed 

Dev_VT
mer 

Deviation of the facilitating 
vehicle’s actual terminal spacing 

from the desired terminal spacing 
Dev_ST

fac 

Deviation of the facilitating 
vehicle’s actual terminal speed from 

the desired terminal speed 
Dev_VT

fac 

CPU time of the merging vehicle CPU_Tmer 

CPU time of the facilitating vehicle CPU_Tfac 
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except for the ending portions when the merging processes 

transition to car-following. 

The discontinuities at the ending portions is due to the 

characteristics of the analytical solutions of the optimal 

control problems, which often end with 𝑎max  for the 

facilitating vehicle when a large time penalty 𝜆 is imposed. 

We have purposely chosen a large time penalty to test 

performances of the proposed method under very unfavorable 

situations (e.g. when there are few CAVs in the mainline and 

meanwhile the on-ramp vehicles are given high priorities). 

When the value of 𝜆 is small, the ending portion discontinuity 

issue is minor, as will be shown in section V.B. Even so, the 

magnitudes of these discontinuities and/or chattering in our 

experiments are comparable to those in previous studies of 

MPC-based automated trajectory planning, e.g. [9-12, 27, 38]. 

One possible approach to mitigate the discontinuity issue in 

ending portions is to include additional terminal conditions to 

constrain the terminal accelerations. However, this will add 

extra complexity to the solutions of the optimal control 

problems, and thus we leave it to future work. 

 

 

 
Fig. 3.  Planned accelerations of the facilitating and merging vehicles under 

the influnece of the leading trajectory profile 1: (a) ∆𝑡up = 1 sec; (b) ∆𝑡up =

0.5 sec; (c) ∆𝑡up = 0.1 sec. 

Note that there will always be sufficiently high variation in 

the leading vehicle trajectory that will lead to non-

convergence of the recursive planning scheme, but such 

trajectories are rare in practice (they require high 

accelerations from the leading vehicle) and can be mitigated 

with either a fallback control strategy (e.g. specifying 

conditions for human intervention), or directly by including 

prediction uncertainties in the optimization formulation (i.e. 

robust control). These important considerations are left to 

future work. 

 

 

 
Fig. 4.  Planned accelerations of the facilitating and merging vehicles under 

the influnece of the leading trajectory profile 2: (a) ∆𝑡up = 1 sec; (b) ∆𝑡up =

0.5 sec; (c) ∆𝑡up = 0.1 sec. 

With regard to computational efficiency, the reported CPU 

times were all obtained using a personal computer with an 

Intel® CORE™ i5-7300HQ CPU @ 2.5 GHz. Considering 

that the programs were implemented in MATLAB m-file, the 

proposed methodology has demonstrated a good potential in 

real-time applications considering the rapid progress of 

computational technology. 

B. Tests Using a Real-World Vehicle Trajectory as The 

Leading Vehicle Trajectory 

1) Description of the instrumented vehicle trajectory 

To evaluate the proposed methodology’s performance 

under the influence of a real-world leading vehicle, real 

vehicle trajectory data were collected by an instrumented 

vehicle operated by the Institute of Industrial Science, 

University of Tokyo, on March 31 2017. The instrumented 
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vehicle was driven by a human driver. Note that the 

instrumented vehicle’s trajectory only serves as a leading 

vehicle trajectory in this experiment. A most representative 

segment of the journey was identified when the instrumented 

vehicle drove northbound through the Asada on-ramp merge 

section on the Kanagawa Route No. 1, Yokohane Line, a 

major urban expressway in Tokyo-Yokohama Metropolitan 

Area. When the instrumented vehicle approached the on-

ramp merge area, it briefly slowed down slightly and then 

soon recovered its speed, following which an on-ramp 

merging vehicle was present and the instrumented car again 

decelerated to yield for the merging vehicle, and after the 

merge, the instrumented car sped up and left the merge 

section. The speed profile (sampled at 10 HZ) of the above 

process as recorded by the instrumented vehicle is shown in 

Fig. 5. In the following, we will use the speed trajectory as 

the leading vehicle speed profile and conduct numerical 

experiment. 

 
Fig. 5.  Speed profile of the human-driven instrumented vehicle through an 

on-ramp merge area 

2) Tests with multiple on-ramp merging vehicles 

We study the proposed method’s performances under 

multiple on-ramp merging vehicles. We assume all the 

vehicles are CAVs and adopt the same CTG car-following 

law. Situations with different penetration rates of CAVs in 

mixed CAV and conventional vehicle environment will be 

studied in future research. Since the proposed method is 

needed when the mainline traffic is congested, thus for 

simplicity but without loss of generality, it is assumed that the 

mainline traffic is consistently under car-following regime 

with the constant time-gap 𝜏 = 1.5 sec. For on-ramp traffic, 

two scenarios will be tested: First, the on-ramp traffic demand 

is low, with the headway between arrivals of on-ramp 

vehicles ℎ = 20 sec; second, the on-ramp traffic demand is 

high, with the headway between arrivals of on-ramp vehicles 

ℎ = 5 sec.  

As before, the coordinate of the CFA point is set to be 0. 

For simplicity but without loss of generality, it is assumed 

that the speeds of the on-ramp vehicles when they arrive at 

the CFA point are all 5 m/sec. Note that the arrival speeds of 

on-ramp vehicles can be conveniently specified because they 

are CAVs. It is also assumed that prior to first merging 

process, the mainline traffic is under steady car-following 

state, led by the instrumented leading vehicle. The initial state 

of the mainline leading vehicle (i.e. the Tokyo instrumented 

vehicle) is: 𝑥0
lead = −10.96 m, 𝑣0

lead = 15.89 m/s. 

The optimal control parameters are set to 𝜆 = 1, 𝜆1 = 25, 

𝜆2 = 25. The value of 𝜆 is set low to reflect the desire of not 

to generate high decelerations and accelerations. The values 

of  𝜆1  and 𝜆2  are set high in order to have small terminal 

errors.  The tuning of these control parameters could be part 

of an upper-level program, e.g. as in [8]. We will briefly 

introduce the content of the upper-level program in section 

VI. In this experiment, we set the updating time interval 

length to be 0.1 sec, i.e. ∆𝑡up = 0.1 sec. 

Applying the recursive planning scheme with ∆𝑡up = 0.1 

sec, the resulting trajectories under the low and high on-ramp 

traffic demand scenarios are illustrated by Fig. 6 and Fig. 7, 

respectively. 

 

 

 
Fig. 6.  Planned trajectories of the merging and facilitating vehicles for the 

low on-ramp demand scenario: (a) accelerations; (b) speeds; (c) positions. 
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Fig. 7.  Planned trajectories of the merging and facilitating vehicles for the 

high on-ramp demand scenario: (a) accelerations; (b) speeds; (c) positions. 

3) Analysis of results 

These results show that all the three facilitating vehicles 

are able to develop a suitable gap under the influence of their 

respective leading vehicles whose speeds are constantly 

changing, and all the three merging vehicles can maneuver to 

desired merge locations with desired merge-in speeds. It can 

be seen, for both traffic scenarios, the acceleration trajectories 

of the 2nd and 3rd pairs of facilitating and merging vehicles are 

largely smooth, while the 1st pair has demonstrated some 

chattering, but at a fairly low level. Note that the acceleration 

chattering associated with the 1st pair is due to the noisy speed 

data of the leading vehicle, rather than the recursive 

implementation, which is obvious from referring to the speed 

trajectory of the first leading vehicle as shown in Fig. 5. 

From Fig. 7 (c), we see that the speed reduction of a 

facilitating vehicle due to the facilitating maneuver grows 

with the increase of the vehicle index. Similar phenomena can 

be observed from experiments in [9, 25]. This is as expected, 

because in this test, the headway between the arrivals of the 

on-ramp merging vehicles are as short as five seconds. 

Actually, as Fig. 7 (c) shows, when the third pair of merging 

and facilitating vehicles have started their merging process, 

the merging process of the first pair has not yet finished. Thus, 

the speed drop of the first facilitating vehicle is partly 

assimilated by the second facilitating vehicle, and the speed 

drop of the second facilitating vehicle is passed on to the third. 

In short, the speed reduction can accumulate. For the low on-

ramp traffic demand scenario, the issue of speed reduction 

accumulation is minor, as shown by Fig. 6 (c). Obviously, 

when the on-ramp traffic demand is sufficiently low, this 

issue will become negligible. Comparison of the two tests has 

justified the necessity of a pre-merging on-ramp traffic 

management scheme when the on-ramp traffic demand is 

heavy in order to interfere with the on-ramp traffic. Actually, 

the first test (i.e. ℎ = 20 sec) can be viewed as the second test 

(i.e. ℎ = 5 sec) with an interrupted on-ramp traffic. 

A simple on-ramp traffic management scheme for handling 

high on-ramp traffic demand can be as follows: Set a waiting 

zone at a proper location upstream of the CFA point at the on-

ramp. An on-ramp vehicle will be held briefly at the waiting 

zone if the mainline speed has not yet recovered back to some 

threshold value. This method can be used alone or jointly 

applied with a changing 𝜆 value as in the facilitating vehicle’s 

optimal control problem, to achieve a best overall 

performance. The development of such a scheme is part of 

the upper-level control program and will be studied in future. 

VI. CONCLUSION AND PROSPECTS ON FUTURE RESEARCH 

This paper presents a recursive optimal vehicle trajectory 

planning method for motorway on-ramp merging. The 

trajectory planning problem of the facilitating vehicle is 

formulated as a linear-quadratic optimal control problem with 

free terminal time and with terminal state moving on a given 

function of time. The trajectory planning problem of the 

merging vehicle is formulated as a linear-quadratic optimal 

control problem with fixed terminal time and with terminal 

state being penalized for deviating from the specified desired 

terminal state. In both problem, the control variable, i.e. 

acceleration, is constrained. The Pontryagin Maximum 

Principle is applied to solve the optimal control problems. 

Due to the existence of the control constraints, the PMP 

solution procedure is much more complicated than the 

unconstrained case. The solution procedure for a most 

representative and also most complicated case, which 

contains two control switching times, is presented. Solutions 

of the optimal control problems are implemented in a 

recursive planning framework in order to cope with 

uncertainties in prediction of the behavior of the leading 

vehicle. 

Numerical experiments are conducted to test the effects of 

oscillation frequency of the leading vehicle’s speed trajectory 

and the length of the planning updating interval. It is found 

that the recursive planning scheme can handle situations 

when the leading vehicle’s speed oscillates. When the 

planning updating interval is consistent with the sampling 

interval length, i.e. 0.1 sec, the resulting planned acceleration 

trajectories are largely smooth; when the planning updating 

interval is longer, the planned acceleration profiles can be 

chattering. 

A numerical experiment using a real-world, human-driven, 

instrumented vehicle’s trajectory as the leading vehicle 

trajectory is also conducted. With such a leading vehicle, the 

proposed trajectory planning method is tested for two 

scenarios of on-ramp traffic demand, with the headways 

between consecutive merging vehicles being 5 sec and 20 sec, 

respectively. It is found that under both scenarios, the 

proposed method performs well in generating consistent 

acceleration trajectories, moving the merging and facilitating 

vehicles to desired positions and transitioning to car-

following operations. It is also found that, as expected, for the 

scenario of short headway merging vehicles, speed reduction 

in facilitating vehicles can accumulate quickly if nothing 

would be done to manage the arrival rate of the on-ramp 
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vehicles. An on-ramp traffic management measure is briefly 

introduced that can handle this issue. 

Several prospects of future study have been planned. First, 

an upper-level controller will be developed which is 

responsible for handling pre-merging movements of on-ramp 

vehicles, selection of mainline facilitating vehicles, and 

determination of the weighting factors in the objective 

functions considering macroscopic traffic flow efficiency. 

Second, it may be desirable to filter noisy leading vehicle 

trajectories such as shown in Fig. 5 and investigate if this can 

result in planned trajectories of higher quality. Third, the 

proposed optimal control problems will be modified to 

include speed constraints, to mitigate the issue of speed 

reduction accumulation, among other measures. Fourth, it 

could be interesting to explore the effects of imperfect 

trajectory following using a more realistic vehicle model, and 

design a lower-level vehicle controller to execute planned 

reference trajectories. Fifth, it can be interesting to extend the 

method of this study to cover situation when the mainline 

traffic is uninterrupted. 

APPENDIX 

In this appendix, we construct the system of algebraic 

equations that define the control constants and control 

switching times for the most complicated candidate extremal 

control sequence, {𝑎min, 𝑝2
∗(𝑡), 𝑎max}. If the optimal control 

sequence is {𝑎min, 𝑝2
∗(𝑡), 𝑎max}, this implies that there exists 

two times 𝑡1 and 𝑡2, 0 < 𝑡1 < 𝑡2 < 𝑡f, such that 

𝑢∗(𝑡) = {

𝑎min,

  𝑝2
∗(𝑡),

𝑎max,

         for 𝑡 ∈  [0, 𝑡1)

          for 𝑡 ∈  [𝑡1, 𝑡2)

          for 𝑡 ∈  [𝑡2, 𝑡f]
 (A1) 

For 𝑡 ∈ [0, 𝑡1), 

𝑢∗(𝑡) = 𝑎min (A2) 

𝑣∗(𝑡) = 𝑣0
fac + 𝑎min𝑡 (A3) 

𝑥∗(𝑡) = 𝑥0
fac + 𝑣0

fac𝑡 +
1

2
𝑎min𝑡2 (A4) 

For 𝑡 ∈ [𝑡1, 𝑡2), 

𝑢∗(𝑡) = −𝑐1𝑡 + 𝑐2 (A5) 

𝑣∗(𝑡) = −
1

2
𝑐1𝑡2 + 𝑐2𝑡 + 𝑐3 (A6) 

𝑥∗(𝑡) = −
1

6
𝑐1𝑡3 +

1

2
𝑐2𝑡2 + 𝑐3𝑡 + 𝑐4 (A7) 

For 𝑡 ∈ [𝑡2, 𝑡f], 

𝑢∗(𝑡) = 𝑎max (A8) 

𝑣∗(𝑡) = 𝑎max𝑡 + 𝑐5 (A9) 

𝑥∗(𝑡) =
1

2
𝑎max𝑡2 + 𝑐5𝑡 + 𝑐6 (A10) 

Therefore, at 𝑡 = 𝑡1 we have: 

𝑎min = −𝑐1𝑡1 + 𝑐2 (A11) 

𝑣0
fac + 𝑎min𝑡1 = −

1

2
𝑐1𝑡1

2 + 𝑐2𝑡1 + 𝑐3 (A12) 

𝑥0
fac + 𝑣0

fac𝑡1 +
1

2
𝑎min𝑡1

2 = −
1

6
𝑐1𝑡1

3

+
1

2
𝑐2𝑡1

2 + 𝑐3𝑡1 + 𝑐4 
(A13) 

 At 𝑡 = 𝑡2 we have: 

−𝑐1𝑡2 + 𝑐2 = 𝑎max (A14) 

−
1

2
𝑐1𝑡2

2 + 𝑐2𝑡2 + 𝑐3 = 𝑎max𝑡2 + 𝑐5 (A15) 

−
1

6
𝑐1𝑡2

3 +
1

2
𝑐2𝑡2

2 + 𝑐3𝑡2 + 𝑐4

=
1

2
𝑎max𝑡2

2 + 𝑐5𝑡2 + 𝑐6 
(A16) 

At 𝑡 = 𝑡f we have: 

𝑎max𝑡f + 𝑐5 = 𝑣𝑙(𝑡f) (A17) 

1

2
𝑎max𝑡f

2 + 𝑐5𝑡f + 𝑐6 = 𝑥𝑙(𝑡f) − 2(𝐿 + 𝑠0)

− 2𝜏𝑣𝑙(𝑡f) 
(A18) 

−
1

2
𝑎max

2 −
1

2
𝜆 + (−𝑐1𝑡f + 𝑐2)𝑎max

= (𝑐2 − 2𝜏𝑐1 − 𝑐1𝑡f)�̇�𝑙(𝑡f) 
(A19) 

Note that (A19) is obtained from (30). Therefore, we have 

nine unknowns, 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6, 𝑡1, 𝑡2, and 𝑡f, and nine 

nonlinear algebraic equations (A11) through (A19), which we 

solve using MATLAB’s “vpasolve” function. 
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