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Visualisation of trip chaining behaviour and mode choice using 
household travel survey data 
 
 
Abstract 
 
Planning for transport infrastructure requires forecasting of future travel demand. Various factors such as 
future population, employment, and the travel behaviour of the residents drive travel demand. In order 
to better understand human travel behaviour, household travel surveys – which require participants to 
record all their trips made during a single day or over a whole week – are conducted. However, the daily 
travel routines of people can be very complex, including routes with multiple stops and/or different 
purposes and often may involve different modes of transport. Visualisations that are currently employed 
in transport planning are, however, limited for the analysis of complex trip chains and multi-modal travel. 
In this paper, we introduce a unique visualisation approach which simultaneously represents several 
important factors involved in analysing trip chaining: number and type of stops, the quantity of traffic 
between them, and the utilised modes of transport. Moreover, our proposed technique facilitates the 
inspection of the sequential relation between incoming and outgoing traffic at stops. Using data from the 
South-East Queensland Travel Survey 2009, we put our developed algorithm into practice and visualise 
the journey to work travel behaviour of the residents of inner Brisbane, Australia. Our visualisation 
technique can assist transport planners to better understand the characteristics of the trip data and, in 
turn, inform subsequent statistical analysis and the development of travel demand models. 
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1. Introduction 
 

Effective transport planning is crucial for building modern, productive, and environmentally 
sustainable cities and regions. Therefore, understanding the travel activities of the population is 
of particular importance as it helps to guide the planning of transport infrastructure and services 
in order to make our communities better places to live. Visualisation techniques used in the field 
of transportation planning aim to represent the complex nature of human travel activities. They 
are a means to facilitate and clarify the understanding of multifaceted information in relation to 
transportation. Transportation visualisation, according to Manore (2007), can be defined as “any 
progressive visual means of representing static or temporal spatial and geometric information”. 
In the context of transport planning, visualisation techniques are an important aspect not only 
for analysing data (e.g., by means of Geographic Information Systems – GIS) but also for clearly 
conveying the outcomes of transportation planning to policy makers or the general public. Lately, 
visualisations in transportation are also increasingly employed in interactive public transport 
journey planners such as the journey planner of London (Transport for London), the Public 
Transport Victoria journey planner (Public Transport Victoria), the Rail travel planner Europe (Rail 
Europe – Rail travel planner Europe), or the TransLink Journey planner Brisbane (TransLink 
Journey Planner) to name but a few examples. 
 
While individual trips have long served as the basic unit for analysing travel behaviour, there has 
been a shift of focus to journeys – so-called trip chains – as those are deemed to better reflect 
the actual travel demands (Ma et al. 2014). Trip chaining arises for several reasons including the 
desire of people to search for ways to perform multiple activities in a single journey within less 
time and travel distance (Shiftan 1998; Hensher and Reyes 2000). Trip chaining behaviour 
constitutes a complex phenomenon influenced by a variety of variables (McGuckin and 
Murakami 1999; Ma et al. 2014) such as household characteristics. This is further complicated by 
the fact that the individual trips themselves can be complex and often involve different or 
multiple modes of transport. Islam and Habib (2012) state that trip chaining and mode choice are 
two critical factors influencing various patterns of urban travel demand. In many instances 
increasing the complexity of trip chains leads to higher auto dependency (Strathman et al. 1994; 
Wallace et al. 2000; Ye et al. 2007) and to spreading the urban peak periods (Ye et al. 2007; Habib 
et al. 2009). Generally, trip chaining is prevalent among workers in urban areas. Analysis of trip 
chains so far has mainly concentrated on the home-to-work commute (McGuckin and Murakami 
1999; Primerano et al. 2008). The mandatory work journey serves as an important anchor in 
many households around which the daily travel activity is scheduled (Hensher and Reyes 2000; 
Xianyu 2013). Most of the previous Journey to Work (JTW) studies applied statistical analysis to 
understand the proportions and types of trip chains (e.g., McGuckin and Murakami 1999; 
Primerano et al 2008; Islam and Habib 2012) or to estimate the role of various demographic or 
socioeconomic characteristics on the daily travel behaviour (e.g., Strathman et al. 1994; Hensher 
and Reyes 2000; Ma et al. 2014). 
 
Understanding such multi-modal trip chaining through an appropriate visualisation technique has 
become an increasingly important aspect in transport planning to optimise public transport and 
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to contribute to sustainable urban transportation (Fiorenzo-Catalano et al. 2004). However, 
visualisation techniques currently employed in transport planning mostly focus on depicting the 
quantity of trips between zones, for example, by means of choropleth or pie chart maps 
(Corcoran et al. 2009; Xu et al. 2011) or by using desire lines (Xu and Milthorpe 2010). Other 
visualisations, in turn, focus on the travel between different stations but often restrict 
themselves to single modes of transport, such as rail or bus travel (Xu et al. 2011; Nagel et al. 
2014). Thus, these visualisations are limited for analysing series of trips or multi-modal trips.  
 
The visualisation technique introduced in this paper aims to provide an overview of human travel 
behaviour and to facilitate the analysis of such multi-modal travel and trip chaining. Its aim is to 
convey how different activities using different modes of transport are linked together during a 
trip (or trip chain) in order to reach a destination in a single picture. As a use case we visualise 
the JTW travel behaviour of residents of inner Brisbane based on Household Travel Survey (HTS) 
data of South East Queensland (SEQ) from 2009. 
 
The remainder of this paper is structured as follows. After highlighting our research objectives 
and significance, we provide a detailed literature review of existing studies on trip chaining and 
multi-modal human travel behaviour and the employed visualisation approaches. Section 3 gives 
a detailed description of the algorithm and the graphical representation. Section 4 provides a 
brief description of the study area and the employed data. In Section 4 we also apply the 
visualisation approach to data from the SEQ Travel Survey 2009 (SEQTS09) and interpret the 
results. Before the paper is concluded in Section 6, Section 5 discusses implications of the 
developed visualisation approach in theoretical and practical settings as well as the runtime of 
the algorithm. Section 5 also explores avenues for future research.  
 

1.1 Research Objectives 
 
Our literature review presented in Section 2 suggests that there has been little research on a 
systematic way of visualising HTS data to provide an overview of the complexity of trip making 
such as trip chaining and travel mode choice (single or multi-modal). This paper contributes to 
filling this gap by proposing a visualisation technique that can be used to analyse trip chains, 
multi-modal travel, or both in combination. To achieve this goal this paper makes the following 
contributions: 
 

- It provides a review of visualisation techniques currently employed in studies dealing with 
trip chaining and multi-modal travel behaviour. 

 

- It proposes a new visualisation technique for analysing complex human travel behaviour, 
specifically trip chaining and multi-modal travel. For this purpose, the visualisation shows 
several important variables such as frequency of trips, mode choice, as well as the number 
and succession of stops in a single drawing.  
 

- It demonstrates the applicability of our approach by applying it to real world HTS data 
from Brisbane, Australia from 2009 to highlight how transport planners and agencies can 
benefit from it. 
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1.2 Research Significance 
 
This study aims to make a contribution to the complex task of modelling trip behaviour. Our 
proposed visualisation can help to unlock stories behind the trip data or present information in 
an easy to digest manner and, in turn, can aid transport planners in forming hypothesis for 
subsequent statistical analysis. It can also inform the creation of transport models used in urban 
studies to forecast travel demand and travel behaviour (Bhat and Koppelman 1999). Commonly 
used models like agent-based modelling (Monteiro et al. 2014) or tour-based travel demand 
modelling (Omer et al. 2010) rely on personal trip data. Understanding how trips are performed 
is therefore essential for building such models. 
 

2. Literature Review 
 

This section demonstrates various visualisation methods that were adopted in previous studies 
concerned with trip chaining and/or travel mode choice (single or multi-modal). 
 
Using 2011 census data on modes of travel to work in England and Wales, Leveson (2013) used 
bar charts, stacked bar charts, and pie charts to compare different modes of travel and their 
changing patterns over the years. Adopting a different approach, Xu and Milthorpe (2010) 
analysed JTW travel patterns in Sydney using data from 1981 to 2006. Besides using bar charts 
to compare the share of different modes of travel and line charts to depict the relation between 
trip length and distance between home and workplace, desire lines were used to visualise the 
traffic volumes between origin-destination pairs. Taken together, these desire lines can be 
viewed as a (directed or undirected) weighted graph with the weights representing the traffic 
volume. Xu et al. (2011), in turn, focused specifically on the analysis of travel patterns of rail users 
based on data from the Sydney Household Travel Survey. Again, stacked bar and line charts were 
used for analysing trip lengths. In addition, pie chart maps – pie charts superimposed over a map 
– were created to visualise the modes of transport used to access the stations (e.g., by bus or on 
foot). Using Nationwide Personal Transportation Survey data, McGuckin and Murakami (1999) 
investigated the types of trip chains made by adult men and women. This study made use of bar 
charts to compare the trip chaining behaviour between men and women on their home-to-work 
or work-to-home journey with respect to the number and purpose of stops on their trips. Unlike 
the above studies, which made use of static charts, Nagel et al. (2014) proposed a multi-touch 
tabletop application to analyse specific aspects pertaining to bus travel in Singapore’s bus 
network. For example, a map representation was used to show the number of alighting and 
boarding passengers at the different bus stops by means of two concentric circles. In addition, 
arc diagrams were used to depict the number of passengers travelling between stops to assess 
passenger flow and connectivity of bus stops. Recently, Sun et al. (2016) discussed visualisation 
methods for representing aggregated passenger flow characteristics between stations using the 
Shanghai Metro as a use case. A radial node-link diagram was used to convey the amount of 
passenger flow between stations. However, unlike our visualisation intermediate stops are not 
discernable. In general, the studies mentioned above either focus only on a single mode of travel 
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or on the utilization of different transport modes whereas our concern is to also facilitate the 
analysis of multi-modal travel. It shows how different modes of transport are linked together 
during a trip (or trip chain) to reach a destination. 
 
While above-mentioned studies explored either trip chaining or multi-modal travel behaviour, 
other studies analysed both (McGuckin et al. 2005; Walle and Steenberghen 2006; Golob and 
Hensher 2007; Hensher 2007; Ye et al. 2007; Currie and Delbosc 2011; Islam and Habib 2012; 
Harney and Rajoo 2015). For example, McGuckin et al. (2005) used bar and stacked bar charts to 
examine the percentage of stops during commutes to comprehend trip chaining trends in the 
United States. Harney and Rajoo (2015) analysed how intermediate stops, mode choice, and 
timing of trips differ depending on the tours undertaken in the South East Queensland and Cairns 
regions. 3D surface plots were used to depict the temporal distributions of the tours. Golob and 
Hensher (2007) as well as Hensher (2007) used three-year Sydney travel survey data to 
investigate senior citizens’ trip chaining travel activity (either work or non-work centric trips). 
Line graphs were employed to illustrate the average home-based trip chains based on different 
demographic attributes such as age, gender, living circumstance, trip purpose, complexity of 
trips, and mode. Similarly, Ye et al. (2007) examined the relation between mode choice and trip 
chaining behaviour in the context of multi-stop (complex) vs. single-stop (simple) trips. Their 
results suggest that the complexity of the trip chaining patterns drives mode choice. Table 1 
offers on overview of studies including the various visualisation techniques used to represent 
data. 
 
Table 1 Previous studies related to trip chaining or multi-modal travel behaviour or both 

Author & year Study location Data used Subject Analysis 
method 

Visualisation 
technique(s) 

Leveson (2013) England & Wales Census Data, 
2011 

Method of travel to 
work 

Descriptive 
statistical analysis 

Bar charts, stacked 
bar charts, pie 

charts, choropleth 
maps 

Xu et al. (2011) Sydney, AU Sydney 
Household 

Travel Survey 

Mode share 
(single), access 

mode to rail station, 
trip length 

Descriptive 
statistical analysis 

Bar charts, stacked 
bar charts, line 
graphs, scatter 

plots, tables, pie 
chart maps 

Xu and 
Milthorpe 

(2010) 

Sydney, AU JTW Data  
(1981 - 2006) 

Mode share (single 
or multiple) & trip 

length 

Descriptive 
statistical analysis 

Bar charts, stacked 
bar charts, pie 

charts, line graphs, 
pie chart maps, 

desire lines 
McGuckin et al. 

(2005) 
US Nationwide 

Personal 
Transportation 
Survey 1995 & 
National HTS 

2001 

trip chaining 
patterns & travel 

patterns of 
commuters 

Descriptive 
statistical analysis 

Bar charts, line 
graphs, tables 

Walle and 
Steenberghen 

(2006) 

Belgium Belgian Mobility 
Survey, 1998-

1999 

Trip chaining & 
mode choice 

Regression model Bar charts, 
choropleth maps 
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McGuckin and 
Murakami 

(1999) 

US Nationwide 
Personal 

Transportation 
Survey, 1995 

Trip chaining 
behaviour between 

men & women 

Descriptive 
statistical analysis 

Bar charts 

Currie and 
Delbosc (2011) 

Melbourne, AU Melbourne 
Household 

Travel Survey 
Data, 1994-

1999 

Complexity of trip 
chaining behaviour 

Statistical 
significance 

analysis using t- 
test 

Bar charts 

Harney and 
Rajoo (2015) 

SEQ & Cairns, AU SEQ and Cairns 
Travel Survey 

Mode choice, trip 
timing, length & 
purpose of stops 

Descriptive 
statistical analysis 

Stacked bar charts, 
3D surface plots, 

tables 
Hensher (2007) Sydney, AU 

 
Sydney 

Household 
Travel Survey, 

2002-2004 

Individual trip 
chaining travel 

activity 

Statistical 
analysis, nested 

logit model 

Line graphs 

Golob and 
Hensher (2007) 

Sydney, AU 
 

Sydney 
Household 

Travel Survey, 
2002-2004 

Trip chaining travel 
activity 

Multiple 
correspondence 

analysis 

Line graphs 

Alsnih and 
Hensher (2005) 

Sydney, AU 
 

Sydney 
Household 

Travel Survey, 
2002 

Mode of travel, trip 
chaining patterns of 

aging people 

Descriptive 
statistical analysis 

Tables 

Islam and 
Habib (2012) 

Switzerland Six-Week Travel 
Diary Data, 

2003 

Hierarchical trip 
chaining & mode 

choice 

Structural 
equation 

modelling (SEM) 

Tables 

Primerano et 
al. (2008) 

Adelaide, AU Household 
Travel Surveys 
Metropolitan 

Adelaide, 1999 

Trip chaining 
behaviour of 
households 

Descriptive 
statistical analysis 

Tables 

Xianyu (2013) Beijing, CN Household 
Travel Surveys, 

2005 

Trip chaining & 
mode choice of the 
home-based work 

tour 

Co-evolutionary 
approach 

combining two 
multinominal logit 

models 

Tables  

Strathman et 
al. (1994) 

Portland, OR, US Household 
Travel Survey, 

1985 

Trip chaining Logit model Tables  

Ye et al. (2007) Switzerland Swiss 
Microcensus 

Travel Survey, 
2000 

Mode choice & 
complexity of trip 
chaining patterns 

Tour-based & 
activity based 
travel demand 

modelling 
systems 

Tables 

Philip et al. 
(2013) 

Kerala, IN Interviews 
based on 

questionnaire 

Mode choice 
behaviour 

Multinominal 
logit model 

Pie charts  

Ma et al. (2014) Beijing, CN Beijing Activity 
Diary Survey 
2007 & Land 

Use Data 

Trip chaining Multinominal 
logit models 

Scatter plots, spider 
graphs, choropleth 

maps, tables 
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As Table 1 shows, most of the studies used either descriptive statistics or advanced statistical 
techniques to perform their analysis. However, mainly bar charts, pie charts, scatter plots, line 
graphs, or simple tables were used to visualise data such as the percentage of used travel modes 
and the stops/number of legs per trip chain, sometimes in combination with the activities at each 
stop. It also shows that it is uncommon to find visualisation techniques specifically intended for 
visualising trip-chains (single or complex), activities, and/or mode choice (single or multi) in 
transportation research. Furthermore, it is rare to find studies that focus on trip chaining and 
multi-modal travel behaviour simultaneously. Hence, our goal is to facilitate the analysis of multi-
modal travel, that is, how different modes of transport are linked together during a trip (or trip 
chain) in order to reach a destination by means of a visualisation technique specifically designed 
for this purpose.  
 
Apart from the scientific literature reviewed above there are also several tools for visualizing 
trips. For example, TransCAD (Caliper Corporation) is a transportation planning software, which 
provides different visualisation methods (e.g., pie chart maps or weighted node-link diagrams 
superimposed over maps). These can be used to analyse, for instance, trip generation and 
distribution. The JTW Visualiser (Bureau of Transport Statistics, New South Wales) is an 
interactive tool for visualising trip flows. In contrast to TransCAD it does not use map-based 
representations but makes use of a radial graph layout to show the outgoing or incoming traffic 
between a certain region of interest and other suburbs. When selecting an edge, the utilized 
modes of travel are depicted next to the graph using bar charts. However, as the bar charts are 
only displayed for the current selection it is not easy to compare the modes of travel for different 
origin-destination pairs. While the JTW Visualiser shares the abstract representation of trips with 
our approach, its focus on binary links between suburbs makes it not well suited for analysing 
trip chains. Another publicly available interactive data visualisation facility is offered by the 
Victorian Integrated Survey of Travel & Activity (Department of Economic Development, Jobs, 
Transport and Resources 2016) which allows users to explore Melbourne’s JTW information by 
region (inner, middle, and outer) and mode of transport. JTW data is represented by interactive 
bar and pie charts. While this visualisation method allows users to compare mode choice for JTW 
by region it only shows summary statistics. It does not provide information on the complexity of 
trip chains and about which modes are used for which legs of the JTW. Both aspects are 
addressed by our proposed visualisation. 
 
From a more general perspective, this work shares certain similarities with flow maps. These flow 
maps have long been used in cartography to represent movements of objects from one location 
to another. A well-known example of such a flow map was drawn in 1861 by Charles Joseph 
Minard to visualise Napoleon’s Russian campaign of 1812 (Tufte 2001). In recent years, different 
flow map layout approaches (Phan et al. 2005; Verbeek et al. 2011) have been developed. 
However, flow maps show the flow between a single source and several destinations and 
consequently resemble a tree structure, where flow can split into distinct branches but not rejoin. 
As such flow maps are limited for the purpose of analysing trip chaining as passengers can arrive 
at a certain location from different points of origins. Alternatively, Sankey diagrams (Riehmann 
et al. 2005) are another way to visualise quantities of flow. Sankey diagrams have traditionally 
been used to visualise energy, gas, heat, or water distribution and flow or cost transfers between 
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processes. Recently they have also been adopted to other domains and applications (Rosvall and 
Bergstrom 2010; Wongsuphasawat and Gotz 2012; Perer and Wang 2014). In contrast to flow 
maps, Sankey diagrams not only visualise the splitting but also the merging of flows and thus can 
be used to represent directed weighted graphs. Thus they would be more appropriate for our 
purposes. However, like flow maps, Sankey diagrams do not represent the relation between 
incoming and outgoing flow at a single node, an issue we address with our proposed visualisation.   
Table 2 Comparison between commonly used representations for depicting information about trips or mode choice 

Visualisation technique Description Used by, e.g., 

Tables   

Chain type frequency % 
Home-Work 2,120 22 
Home-School 1,590 19 
Home-School-Work 378 3.7 
Home-Park-Work 201 2 
Home-Shop-Work 1,189 12 

 

 

Tabular representations to, 
e.g., list frequencies of 
different trip chains. 

Strathman et al. (1994) and Primerano 
et al. (2008) to depict the frequency of 

various trips chains. 

Choropleth maps   

 

Choropleth maps shade areas 
in proportion to a certain 

variable, e.g., public transport 
use. 

Leveson (2013) to visualise census data 
of England and Wales from 2011. 

Desire lines   

 

Desire lines indicate the 
magnitude of traffic between 
regions, superimposed over a 

map. 

Xu and Milthorpe (2010) to represent 
journey to work data from Sydney, AU 

from 1981 to 2006. 

Radial graph layout   

 

Radial graph layout showing 
the outgoing or incoming traffic 

between a certain region of 
interest and other regions. 

the JTW Visualiser of the Bureau of 
Transport Statistics of New South 

Wales from 2011 to show JTW flows 
between districts (accessible online: 

Bureau of Transport Statistics) and Sun 
et al. (2016) to visualise passenger flow 

between subway stations. 
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Charts and diagrams   

 

Various kinds of charts to show 
frequencies, percentage 

distributions, etc. 

the Victorian Integrated Survey of 
Travel & Activity to represent weekday 

JTW data from 2012 and 2013 in 
Melbourne, AU in an interactive 

fashion (accessible online: Department 
of Economic Development, Jobs, 

Transport and Resources). 
 

Droplet maps   

 

Droplet maps show the 
ordering relations between 

different places. 
 

Andrienko et al. (2013) to analyse 
personal driving data collected through 

GPS. 

 
Perhaps the approach most similar to ours is the use of droplet maps as discussed in Andrienko 
et al. (2013). Droplet maps show the different locations along parallel vertical axes connected by 
lines that convey the magnitude of flow between the places. These maps allow the analysis of 
drivers’ trips in order to see temporal or ordering relations between different places (e.g., home, 
work, or shopping places). However, it does not distinguish between different modes of travel 
and similar to Sankey diagrams the relation between incoming and outgoing flow is not 
deducible.  
 
Table 2 visually compares commonly used representation techniques in the context of trip 
chaining and multi-modal travel analysis. In summary, we can say that many of these 
visualisations focus on representing summary statistics or concentrate on depicting the overall 
traffic between areas. In general, these visualisation techniques are thus not well suited for 
representing trip chaining and travel mode choice simultaneously.   
 
In contrast to existing techniques, this paper presents a visualisation technique aimed at 
analysing trip chaining data and which overcomes shortcomings of existing approaches when it 
comes to displaying complex multi-modal trips (or trip chains). It makes use of node-link diagrams 
to graphically show how stops within a trip are connected and which modes of transport are used 
for the various legs of a journey. Such graphs can, for example, be of use for city planners as they 
show detailed information about travel data in a single drawing.  
 

3. Visualisation Approach 
 

Our visualisation technique provides an aggregated view of the trip scheduling behaviour of 
people by constructing a directed weighted graph from HTS data and then visualising this graph 
using node-link diagrams to show how people concatenate various activities (or modes of 
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transport) on their journey toward a destination (e.g., journey to work). Each node corresponds 
to a stop that people make, either to change the mode of transport or to engage in an activity 
(e.g., shopping). It is important to note that nodes do not correspond to geographical locations 
or physical facilities. In this paper the term 'node' refers particularly to the types of facilities 
provided. For example, all different shops visited during the first stop on a trip will be represented 
by the same node, although in reality they might be different shops at different locations. Nodes 
with multiple incoming and outgoing edges are split into sub-nodes to convey the sequential 
relation between the arriving and departing traffic flows. Edges show the means of transport 
people use to travel from one stop to another. The volume of traffic (weights) is conveyed 
through the width of the edge and the size of the nodes.  
 
3.1 Algorithm 
 
Figure 1 provides an overview of the principal steps involved in creating an aggregated trip-
scheduling graph. In brief, HTS data is first filtered according to user-definable criteria (e.g., 
weekday, origin) and converted into a graph structure which is then laid out in a left-to-right 
fashion. Subsequently, nodes with more than one incoming and more than one outgoing edge 
are split and edges are merged to reduce visual clutter later on. In the last step, the graph is 
visualised. In the following the different stages are discussed in detail.  
 
For the purpose of exposition we focus on the JTW. As mentioned earlier, however, the algorithm 
can be applied to other types of journeys such as journey to school or journey to home as well. 
In the following, we assume that we have an input database (e.g., HTS dataset) that contains a 
record for each trip taken by a person in a household, where a trip can contain multiple stops. In 
this discussion a stop is defined as a change in mode or purpose. 
 

 
Fig 1 Overview of the principal steps of visualisation algorithm  
 
 
Step 1: The process starts by extracting all stops from the input database which belong to a trip 
(or trip chain) originating at the respondent’s home and ending at the respondent’s workplace 
and which match certain criteria (e.g., only trips conducted on a weekday or only trips originating 
in a certain neighbourhood). For each trip segment, the type of the origin (e.g., accommodation, 
transport place), the type of the destination, the stop number, the mode of travel (e.g., walking, 
public bus), and the ID of the trip the segment belongs to are retrieved from the database. For 
all except the last trip segment of a trip, the destination of one trip segment is the origin of the 
next segment. 
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Fig 2 Splitting of nodes to convey the sequential relation of incoming and outgoing traffic flow. a) initial graph derived 
by extracting trip segments from a household travel survey, b) reduced graph obtained by replacing parallel edges 
with a single weighted edge, c) and d) graph and reduced graph after node-splitting to counteract ambiguities which 
arise due to ’junction nodes’, e) and f) graph and reduced graph after merging edges that lead to the same node. 
 
Step 2: The information gathered during Step 1 is used to derive a directed acyclic multigraph, 
formally G = (N, E) where N is a set of weighted nodes and E is a multiset of directed edges, i.e., 
multiple edges between the same two nodes are permitted. Nodes represent the various types 
of places visited during a trip. To be more precise, N is partitioned into n+1 subsets 
  

,  (1) 

 
with n being equal to the number of trip segments of the longest trip. The nodes in each subset 
Ni, except N0, represent the types of the destination places of the i-th trip segment. Note, that 
N0 as well as Nn contain only a single node, as all trips have the same origin and destination type 
in common, i.e., the respondents home and workplace. A specific type of place can only appear 
at most once in each Ni. The weight of a node is given by the number of people who visited the 
associated type of stop at some point during a trip. For example, if three people stopped at a bus 
station after the second trip segment, then the node "bus station" in N2 has a weight of three. 
Edges  
 

 (2) 

 
depict the trip segments, pointing from the origin u to the destination v of the trip segment. Each 
edge is further associated with the trip ID the segment belongs to, the stop number, and the 
travel mode. Figure 2a shows an example how a graph may look like after this step. 

 
Step 3: In this step, a reduced graph G' = (N, E') is derived from G by replacing parallel edges 
(i.e., edges between the same two nodes) with a single weighted edge, with the edge’s weight 
being equal to the number of parallel edges (Figure 2b). Each weighted edge e in E' also maintains 
a list of the individual edges which are aggregated by e. This information will be used for colouring 
the edges later in the process (see Section 3.2). G' will be used for visualisation purposes, 
whereas calculations on the graph structure itself are performed on the more detailed graph G. 

nNNNN ÈÈÈ !10= jiNN ji ¹ÆÇ ,=

{ }1=,,|),(= +ÎÎ´® ijNvNuvuNNE ji

(a) (c) (e) 

(f) (d) (b) 

G 

G’ 
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Step 4: Once G' has been derived we obtain a two-dimensional embedding of G' by using the 
layout algorithm of Sugiyama (Sugiyama et al. 1981) – a graph drawing algorithm which is well 
suited for directed acyclic graphs, as it is the case in our setting. Moreover, Sugiyama’s heuristic 
addresses several aesthetic criteria for drawing graphs, among others, minimization of edge 
crossings, uniform distribution of nodes, and uniform direction of edges (Healy 2013) and thus 
produces graph layouts which enhance readability. The Sugiyama heuristic arranges nodes in 
layers, generally along horizontal lines, with edges going from top to bottom but for our purposes 
we arrange nodes in columns with edges proceeding from left to right. Secondly, as nodes 
represent the stops made during a trip we want to ensure that all stops at a particular stage of a 
trip are not scattered over different layers but are instead located in the same layer to increase 
the clarity of the graph. Therefore, nodes are preassigned to layers, that is, all nodes of a subset 
Ni are confined to the i-th layer. 
 
Step 5: After the layout of G' has been determined some ambiguities need to be resolved which 
arise due to people arriving at a stop from different locations and leaving for different places. 
Consider, for example, the case depicted in Figure 2a. People are arriving at the train station (at 
the centre of the graph) either by train from another train station or by walking from a car park 
and then travel onwards with another train or on foot. From this representation, however, it is 
not clear how the individual stages are chained together as it is not possible to discern how the 
incoming and outgoing edges are related to each other. For example, one could get the 
impression that somebody was walking to the train station and then continued walking although 
this was not really the case. To prevent such misinterpretations, nodes with more than one 
incoming and more than one outgoing edge in G' (called junction nodes henceforth) are split into 
several nodes and incident edges are rerouted as follows. Let be a junction node and let m 
be the number of incoming edges of n in G' then n is split into m sub-nodes ns&, ns', …, nsm. Let 
I(n) further be the set of incoming edges connecting nodes ni&, ni', …, nim with n in G and O(n) 
be the set of outgoing edges of n in G. At this point it should be emphasized that the splitting 
itself is performed in the underlying graph G as the rerouting of an outgoing edge requires 
knowledge of its preceding edge leading to n. An incoming edge e=(nik, n)  I(n),  is 
then rerouted to (nik, nsk) and an outgoing edge	e=(n, no) O(n) with preceding edge f = (nik, n), 
that is fstopNr = estopNr - 1 and ftripID = etripID, is rerouted to (nsk, no). The weights of the newly created 
sub-nodes are set to the number of incoming edges after rerouting. The resulting graph is 
depicted in Figure 2c. Note that the splitting is performed after layouting to ensure that the sub-
nodes of a junction node are placed close to each other (the Sugiyama heuristic, however, 
attempts to distribute nodes uniformly and may even place associated sub-nodes apart from 
each other). Hence, sub-nodes are vertically centred around the position of their respective 
junction node in G' with the vertical order of the sub-nodes chosen in such a way to minimise 
edge crossings of incident edges (Figure 2d). 

 
Step 6: In this step, rerouted outgoing edges starting at different sub-nodes but leading to the 
same end node are bundled at a merge node as shown in Figure 2e. This is done to avoid 
cluttering the resulting visualisation with multiple edges running alongside each other, especially 
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if the end node is located far away (cf. Pupyrev et al. 2011). More precisely, let be the set of 
outgoing edges which connect different sub-nodes ns of a junction node with a specific adjacent 
node no then each  is rerouted to (nsk, nM), where nM is the new 

merge node. Furthermore, a new edge between nM and no inheriting all attributes of (e.g., 
mode of transport) is created. Finally, edges in G' are updated accordingly to reflect the changes 
made to G (Figure 2f).  
 
Step 7: The graph resulting from Step 6 is visualised as described in the next section. 
 
3.2 Visual Representation 
 
Figure 3 shows how the developed visualisation technique represents multi-modal travel 
behaviour. The figure is based on 478 trips. The resulting graphs are to be read from left to right 
with the node in the first column representing the origin of the trip (or trip chain), the nodes in 
the second column representing all different types of stops people encountered at their first stop 
toward their destination, the nodes in the third column showing all different types of places when 
stopping for a second time and so forth. 
 

 
Fig 3 Graphical elements of the visualisation. The size and thickness of nodes and edges reflect the number of people. 
A) a junction node split into several sub-nodes to visualise how the previous stop affects the onward journey, B) 
edges originating at the same ’junction node’ and sharing the same destination are merged to reduce edge clutter, 
C) the colouring of edges reflects the percentage share of different modes of transport, D) edges whose size have 
been limited are visually differentiated with a stripe pattern. The label of the edge provides an indicator of the actual 
width. 
 
Each node has a label which shows the type of the place and the number of people who stopped 
there. The size and thickness of nodes and edges correspond to the number of people. Sub-nodes 
due to the splitting of a junction node are surrounded by a grey border to visually indicate their 
grouping (see Figure 3, Label A). Edges originating at the same ‘junction node’ and sharing the 
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same destination are merged to reduce edge clutter (Figure 3, Label B). Merge nodes are 
rendered using a black vertical line to highlight that edges are merged at that point into a single 
edge and are not running alongside each other.  

 
The algorithm can be easily adapted to handle different shapes for nodes such as circles or 
rectangles. However, depending on the shape the edge routing may need to be slightly adjusted 
to reduce overlappings in the proximity of a node. In this paper, we will restrict the discussion to 
rectangles. The height of the rectangle is proportional to the weight of the node (i.e., number of 
people passing through a place). Edges are drawn using piecewise cubic Bezier curves (edges 
returned by the Sugiyama heuristic can consist of multiple segments to prevent edge-node 
overlaps) with the width of the curve being linearly proportional to the edge weight. In case of 
rectangular nodes, the control points of a curve are set in such a way that the curve is entering 
and leaving a node horizontally. The vertical order of the outgoing edges corresponds to the 
vertical order of the positions of their respective end nodes to circumvent edge crossings. 
Incoming edges at the target are ordered in similar fashion as are edges converging at a merge 
node. As the outgoing flow matches the incoming flow at each node (the exception being the 
start and target location) the edges sum to the same height.  
 
As all edges are pointing from the left to the right, we follow the recommendation of Holten and 
van Wijk (2009b) and omit arrowheads as an indicator of direction. Their user study has shown 
that arrowheads should be avoided whenever possible as user performance is quite low with 
them, probably due to occlusion and visual clutter caused by the arrowheads. Edges are rendered 
in order of decreasing width, i.e., thinner edges are rendered on top of thicker edges such that 
they lie over the thicker edges where they cross. This way occlusions of thinner edges by thicker 
edges are reduced. We also make use of alpha blending as suggested by Holten and van Wijk 
(2009a) to emphasise individual edges in areas with a high density of edges. In addition, edges 
are colour-coded to reflect the travel mode. For that purpose, we used an established colour 
scheme for qualitative data from ColorBrewer (Harrower and Brewer 2003). If different modes 
of transport have been used to reach a destination from the same origin, the curve is divided into 
sections with each section representing one mode of transport. The width of a section is 
proportional to the percentage share of the transport mode. For example, the stretch labelled C 
in Figure 3 has been covered in approximately equal shares by driving, as passenger in another 
vehicle, or by walking. 

 
As nodes and edges are scaled in relation to the number of people, popular routes are visually 
accentuated. Nevertheless, the scaling of edges and nodes can be challenging due to possible 
large variations in traffic volumes, for example, when a few trips (or parts thereof) are being 
taken by a disproportionately large number of people (such as the direct home-to-work trip). 
Using linear scaling with a scaling factor that scales down the width of such dominant edges to a 
reasonable size would cause the other less popular edges to be too thin to remain readable. Using 
a larger scaling factor, on the other hand, would lead to some very thick edges which would 
occlude large parts of the graph. On this account, we have chosen to impose an upper limit on 
the edge widths. Edges that are affected by this limit are visually distinguished with a stripe 
pattern as illustrated in Figure 3 (Label D). The multiplier on the edge is displayed to provide an 
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indicator of the actual width. Logarithmic scaling would have been another alternative to 
compress the large range of values. However, it may make it more difficult to visually assess the 
differences in traffic volume. Moreover, if logarithmic scaling is used, the sum of the edge widths 
of the incoming edges will, in general, not be equal to the sum of the edge widths of the outgoing 
edges at a node. This can give the observer the false impression that the number of people 
changes at a node or merge node.  
 

4. Case Study Brisbane 
 
The city of Brisbane, Queensland’s capital, serves as a case study to illustrate our approach. 
Brisbane is located within the SEQ region of the state. Brisbane, comprising 189 suburbs, has a 
population of about 1.1 million as of 2009 (Queensland Government, 2010). The TransLink 
Division of Queensland Department of Transport and Main Roads delivers transit throughout 
SEQ, including Brisbane City, via operator contracts. The SEQ region includes 23 transit zones of 
which the City of Brisbane encompasses the five innermost zones (Figure 4). This study focuses 
on the travel behaviour of residents living in inner Brisbane, which comprises TransLink’s travel 
zones 1 to 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 4 Left: TransLink's 23 travel zones of the SEQ area. Right: Inner areas of Brisbane City (zones 1 to 3). Source: 
https://translink.com.au 
 

4.1 Study Area and Data  
 
The SEQTS09 data (Department of Transport and Main Roads, 2009) are utilised to demonstrate 
the applicability of our approach for trip chain and multi-modal travel analysis. The SEQTS09 
database contains information about the day-to-day travel behaviour of persons living in 
approximately 10,000 randomly sampled private residential households within the Brisbane 
Statistical Division, the Gold Coast City Council, and the Sunshine Coast Regional Council area. 
The data were collected during a ten-week period from late April to late June in 2009 using self-
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completion questionnaires. Each household was assigned a specific day for which to fill out the 
questionnaire. 
 
Table 3 Excerpt from the trip table of the SEQTS09 database for two persons. ORIGPLACE2 and DESTPLACE2 
represent the type of place of the origin and destination. TIMEMODE indicates the mode with the longest travel time 
for a trip. Places as well as transport modes are number coded in the database. 

PERSID TRIPID TRIPNR TRIPSTAGES ORIGPLACE2 DESTPLACE2 TIMEMODE ... 
Y09H040119P01 Y09H040119P01T01 1 1 201 504 1 ... 
Y09H040119P01 Y09H040119P01T02 2 1 504 508 1 ... 
Y09H040119P01 Y09H040119P01T03 3 1 508 301 1 ... 
Y09H040119P01 Y09H040119P01T04 4 1 301 201 1 ... 
Y09H020138P02 Y09H020138P02T01 1 3 201 301 7 ... 
Y09H020138P02 Y09H020138P02T02 2 3 301 201 7 ... 
Y09H020138P02 Y09H020138P02T03 3 1 201 103 1 ... 
Y09H020138P02 Y09H020138P02T04 4 1 103 201 1 ... 

... ... ... ... ... ... ... ... 
 
Table 4 Excerpt from the stops table of the SEQTS09 database showing the stages for the two 3-stage trips from 
Table 3. MAINMODE indicates the mode of transport. 

TRIPID STOPID STOPNR ORIGPLACE2 DESTPLACE2 MAINMODE ... 
Y09H020138P02T01 Y09H020138P02S01 1 201 103 1 ... 
Y09H020138P02T01 Y09H020138P02S02 2 103 103 7 ... 
Y09H020138P02T01 Y09H020138P02S03 3 103 301 4 ... 
Y09H020138P02T02 Y09H020138P02S04 4 301 103 4 ... 
Y09H020138P02T02 Y09H020138P02S05 5 103 103 7 ... 
Y09H020138P02T02 Y09H020138P02S06 6 103 201 1 ... 
... ... ... ... ... ... ... 

 
The dataset contains detailed information for each trip taken by one person of a household. A 
trip, as stored in the database, represents a one-way travel from an origin to a destination for a 
single purpose but may involve several modes of transport (stages). For each stage, several 
features such as start-time, type of the origin and destination, and mode of transport are 
recorded. All trips conducted by a single person over a day are numbered in chronological order. 
Table 3 and Table 4 show small excerpts from the dataset for two people. For example, the 
person with the ID Y09H040119P01 undertakes 4 trips with a car (TIMEMODE=1) on a single day 
with each trip consisting only of one stage (no change of transport). However, the person makes 
two stops at educational institutions (504 and 508) on the way from home (201) to work (301). 
In this case, the JTW thus consists of three trips. In contrast, person Y09H020138P02 does not 
stop on its way to work to pursue some other purpose but needs to make use of three modes of 
transport (TRIPSTAGES = 3). First, the person drives (MAINMODE = 1) to a train station (103) then 
takes the train to another train station before walking (MAINMODE = 4) the rest of the way to 
the workplace. After work, the person returns back home using the same way. 
 
Based on household trip data we derived trip chains from home to work. In addition, we assigned 
each household its related public transport zone (1 to 3) based on its geographic area, indicated 
by Statistical Area Level 1 (SA1) codes, stored in the SEQTS09 database. Some SA1 zones are, 
however, relatively large and may intersect more than one public transport zone. In that case, 
the public transport zone covering most of the area of that SA1 zone was used as the public 
transport zone for the entire SA1 area. 
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4.2 Results 
 

Fig 5 JTW trip chains undertaken by residents in inner Brisbane (zones 1 to 3, based on 978 journeys) 
 
The results presented in this section make use of the SEQTS09 dataset. To begin with, Figure 5 
provides an overall view of trip chains from residents living in inner Brisbane (zones 1 to 3) during 
weekdays on their JTW. Each intermediate node reflects a category of location (indicated by the 
label below each node) at which people stopped during their work commute. In this example we 
used the course classification provided by the SEQTS09 dataset which distinguishes between ten 
different types of locations (e.g., educational institution, shop, accommodation). The numbers in 
brackets indicate how many people make the stop. Please note that each trip (= edge between 
two stops) represented in this graph may itself consist of multiple stages travelled by different 
modes of transport, i.e. be a multi-modal trip (see also Figure 6 and 7). For that reason, we 
adopted the longest time-mode. This means that the mode used for the longest time of the trip 
contributes to the colouring of the aggregated edges. 
 
It is evident from Figure 5 that most of the people (~82%) did not make any additional stop on 
their way to work. About 50% of the people who went directly to work used their own vehicle 
for their journey, followed by about 25% of the people who used public transport (train and bus 
combined). Other transport modes such as walking or bicycle are used far less often to go directly 
to work. If people decide to make additional stops on their way to work then they mostly used 
their own vehicle. The convenience of a private vehicle possibly accounts for the relatively low 
use of public transport. This finding also aligns with previous studies (Strathman et al. 1994; Bhat 
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1997; Hensher and Reyes 2000; Ye et al. 2007). However, none of the trip chains contains more 
than three intermediate stops. The second most frequent class of trip chain is that with a single 
intermediate stop. Of these, the most common trip chain is Home—Educational Institution—
Workplace with people stopping at an educational institution, for instance, to drop off their 
children at school. The second most frequent trip chain with a single stop, Home—Shop—
Workplace, includes a visit to some sort of shop, for example, to buy something to eat before 
going to work. This is followed by trip chains where people make a stop at some accommodation 
or transport feature (e.g., to pick-up a co-worker) or to visit a social place. Interestingly, in the 
latter case (Home—Social Place—Home), walking is a popular alternative to the private vehicle. 
Trip chains with two intermediate stops are few in number with people stopping at two 
educational institutions constituting the majority of cases. Trip chains with three stops are very 
uncommon.  

Fig 6 Multi-modal journeys of people going directly from their homes to work (zones 1 to 3) 
 
As mentioned earlier, Figure 5 only visualises the trip chains without showing details of the 
intermediate stages of the trips. Figure 6 illustrates to what degree residents of inner Brisbane 
engage in multi-modal travel while commuting to work. It provides a detailed breakdown of 
multi-modal direct Home—Workplace trips (the most common trip chain according to Figure 5). 
Intermediate nodes in Figure 6 depict transfer locations. Labels again show the type of location 
but this time the more detailed classification provided by the SEQTS09 dataset was adopted to 
distinguish between different types of transport features (e.g., bus stop, train station). According 
to Figure 6, most of the surveyed households which do not pursue any activities during their JTW 
do not engage in multi-modal travel at all. They normally use a single mode of transport to go to 
work. Again, in this case residents prefer their own vehicle but cycling, walking, or travelling as 
vehicle passenger are also used, although to a much lesser extent. If public transport is part of 
the work commute then mostly only a single public transport service is used. Typically mainly 
either a bus or a train with ferries only playing a marginal role. When the main leg is made of a 
single bus or train ride, people usually walk to and from the stops. It will be noted that the 
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proportion of commuters who use their own vehicles to go to a railway station is greater than 
that for those who go to bus stations. This may be due to the fact that train stations are located 
farther apart from each other than bus stations. A large proportion of people takes a single train 
to the destination station, while others take up two trains. Everyone completes the last leg of the 
journey from the station to the workplace on foot. If people go to a train station with a public 
bus then they do so to catch a train for their next part of the journey before walking the rest of 
the way.  
 
While Figure 6 focuses on multi-modal direct home-to-work trips, Figure 7 offers an integrated 
view of both trip chaining behaviour and mode choice. People are making at most six 
intermediate stops although work commutes with more than three intermediate stops are 
exceptional. Two intermediate stops, on the other hand, are quite common. These trip chains 
mainly arise from people who rely on public transport and who walk from and to the bus and 
train stations. In terms of modes of transport, mainly car followed by bus and train are the 
preferred modes. Public ferries, for instance, only play a very minor role for the daily work 
commute.   
 

5. Discussion 
 
Our proposed visualisation method simultaneously represents several variables (e.g., number 
and types of stops) which contribute to the complexity of trip chains as well as the frequency of 
occurrence of trip chains, the concatenation of stops made during a trip chain, and peoples 
preferred modes of travel. Its purpose is making the interrelations between mode choice and trip 
chaining behaviour more tangible. It may help transport planners to better appreciate and 
identify travel demands, for example, to ensure that public transport meets the demands of the 
residents. Moreover, our visualisation method can clearly indicate the number of people visiting 
specific locations on their way to work (or between any other two locations). The complexity of 
trip chaining often leads to higher car dependency. Our proposed visualisation technique can, for 
example, assist town planners or the city council authority in planning land-use around 
transportation hubs. For instance, mixed-use land development and multi-purpose activity 
centres allow people to fulfil a variety of activities at a single location. This may encourage 
travellers to fulfil their desire of activities at a single location and discourage them to undertake 
additional trips. This, in turn, can contribute to reducing car dependency and traffic congestions. 
The versatility of our approach also allows for easy inclusion of additional data such as SA1 level 
codes. Hence, it equips researchers with the ability to zoom into the travel specifics of a certain 
area or to easily identify travel mode choice of a subset of the population and the dynamics 
behind the mode choice. Consequently, transport planners can use this information to evaluate 
the availability of public transport of an area along with land-use development to encourage 
people to reduce car travel and instead rely on other sustainable means of transportation. 
Besides being useful for analysing trip chaining and mode choice we can also see potential of our 
approach for communicating the data to policy-makers. At this point it is worth noting that 
although we used HTS data as input, other data sources can be used as well as long as they can 
be mapped to the graph structure described in Section 3.1.  
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Fig 7 Integrated view of all multi-modal JTW trip chains conducted by residents of inner Brisbane on weekdays. 
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For example, smart card data or data collected by electronic fare payment systems could be used 
to visualise passenger flow in public transportation systems. 
 
In terms of runtime, the proposed algorithm is mainly dominated by the complexity of the 
Sugiyama layout algorithm when the time taken to import the data (e.g., from a database or file) 
is excluded. The runtime of the Sugiyama layout itself depends on the running times of the 
algorithms used for its individual phases. Assuming that the fastest available algorithms for each 
phase are used, the algorithm has a time complexity of 𝑂(|𝑁||𝐸’|𝑙𝑜𝑔|𝐸’|) (see Eiglsperger et al. 
2005 for an in-depth discussion). However, as the layouting is performed on the reduced graph 
𝐺’ which has considerable fewer edges than 𝐺  and because the number of nodes of 𝐺’ is 
typically small this should not be problematic. Nevertheless, if necessary, more efficient 
implementations such as the one proposed by Eiglsperger et al. (2005) are available and could 
be used instead as well. 
 
The second major factor influencing the overall runtime of our approach is the time complexity 
of the crossing reduction step which takes place after the splitting of junction nodes. This 
reduction is currently performed using the greedy-switch heuristic proposed by Eades and Kelly 
(1986), which has a time complexity which is quadratic in the number of nodes to be switched 
(Bastert and Matuszewski 2001). Besides, as the reduction is carried out for the sub-nodes 𝑛! 
of each junction node separately, with |𝑛!| usually being small this should not be a seriously 
limiting factor. Moreover, if runtime is a concern then other heuristics with near-linear time 
complexity can be considered (see Bastert and Matuszewski (2001) for a discussion of different 
heuristics and their runtime and quality trade-offs). All other steps can be implemented in linear 
time. As such the algorithm is applicable to larger datasets such as the one used in this paper as 
well, especially because the runtime is not directly dependent on the number of individual trips 
to be processed but rather on the number of edges in the reduced graph, whereby usually 
|𝐸’| << |𝐸|.  
 
To give some understanding of the actual timings achieved with our prototype implementation:  
The graph shown in Figure 5 ( |𝑁| = 21, |𝐸| = 1195, |𝐸’| = 45 ) 1  took about 344.38 ms to 
calculate of which 270.21 ms are spend on the Sugiyama layout and 4.55 ms on the node-splitting 
including crossing reduction. The remaining time is spread across the other stages and for setting 
up the necessary data structures for rendering. The timings for the graph in Figure 6	(|𝑁| =
18, |𝐸| = 1381, |𝐸’| = 33)1 are quite similar, with 336.32 ms in total of which the Sugiyama 
layout consumes 279.70 ms and the node-splitting 4.43 ms. For comparison, a larger graph with 
|N|=77, |E|=9405, and |E’|=273 takes about 944.74 ms to calculate with 488.78 ms and 117.33 
ms for layouting and node splitting, respectively. All given values are averaged over 10 runs of 
the algorithm and were measured on an Intel Core i5-6400 2.7GHz Quad-Core CPU with 8GB RAM 
and are exclusive the time for data import. 

 
1At the time of layouting. The final number of nodes and edges is slightly higher due to the introduction of sub-nodes 
during the node-splitting stage and of merge nodes and additional edges during the merge edges stage of the 
algorithm. 
 



22 
 

In terms of space requirements, we maintain two graphs – 𝐺 and 𝐺’ – in parallel, requiring 
𝑂(|𝑁| + |𝐸|) + 𝑂(|𝑁| + |𝐸’|) space. Please note that the number of nodes and thus the visual 
complexity of the resulting graph is partly influenced by the number of types of places which are 
distinguished. In Figure 5, as pointed out above, we directly used the course classification of the 
SEQTS09 dataset which differentiates between ten types of places. Some of these places are, 
however, rarely visited during the work commute (e.g., recreational place or natural feature). If 
desired by the analyst such seldom visited places may be merged together. By doing so, edges 
connecting these types of places also become thicker which might make it also easier to see the 
modal differentiation. 
 
One challenge in visualizing HTS data is the complexity of factors influencing the travel choices of 
people. A multitude of variables has been recognized to influence the travel behaviour, including 
individual or household characteristics (e.g., age, gender, marital status, presence of children, or 
number of vehicles per household) and geographical area (Hensher and Reyes 2000; Ma et al. 
2014; McGuckin and Murakami 1999). While we focused on analysing JTW patterns of residents 
living within certain public transport zones in the above case study, these other characteristics 
can be used as well to generate individual graphs for certain segments of the public. For example, 
separate JTW graphs for males and females or individual graphs for each district in a city. For 
comparison purposes, these graphs could then be visualised side-by-side by using small 
multiples. 
 
Similarly, there exist a number of attributes which can be used for describing and understanding 
trip chains and multimodal travel. Our visualisation currently represents an important subset of 
these attributes, such as frequency of trips, mode choice, and number of stops. However, there 
exist other attributes (e.g., purpose, travel time, or distance travelled) which should also be 
considered for inclusion. Small multiples could, for example, also be used to generate graphs 
based on travel time or distance. Currently it is also not apparent from the visualisation which 
activities people pursue at the different locations. Activities, however, play an important role in 
activity-based approaches to travel behaviour analysis (Xianyu 2013). For example, a commuter 
may not necessarily stop at a train station to catch a train but to withdraw money from an ATM. 
One possibility to show such information could be by colouring the nodes in proportion to the 
purpose of the stop. However, we refrained from doing so mainly for two reasons. 1) As we are 
concerned with nominal data it is important that the colours are reliably distinguishable be the 
human observer (cf. Silva et al. 2011). Research suggests that humans can rapidly perceive about 
five to ten different colours (see Ware 2004). The SEQTS09 dataset we used, however, 
differentiates between at least 10 purposes which would have approximately doubled the 
amount of colours or one and the same colour would have to be used for different categories. 2) 
As the nodes can be rather small the percentage share of the different activities may be hard to 
assess visually. Such information could, for instance, be displayed by tooltips. Tooltips may also 
be used to display more detailed information on demand (e.g., exact percentage shares for the 
different modes of transport). As part of future work we are thus considering to develop the 
visualisation into an interactive system which allows users to access detailed information on 
demand and offers them the possibility to compare multiple trip scheduling graphs using small 
multiples. We are also considering ways to incorporate temporal attributes into the visualisation. 
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This would offer new opportunities for analysis such as investigating trip chains or mode choice 
with respect to commute time.  
 

6. Conclusions 
 

Research on the complex phenomena of trip chaining and travel mode choice can benefit from 
visualisations which complement existing tabular and statistical methods. However, our review 
of literature has shown that visualisations currently used for analysing trip chaining and multi-
modal travel are limited in the amount of simultaneously displayed variables. Most visualisations 
focus on representing aggregated statistics and the amount of traffic or passenger flow between 
pairs of regions or stations (i.e. single trips without intermediate stops). In contrast, the 
visualisation introduced in this paper provides an aggregated view of trips chains and mode 
choice at the same time by means of node-link diagrams. Several variables, including the number 
and type of stops (e.g., bus station, shopping mall) within trip chains, the quantity of traffic at 
and between stops, as well as the different modes of transport used to reach a 
location/destination are displayed. Moreover, our proposed technique allows to inspect the 
sequential relation between incoming and outgoing traffic at stops. We achieve this by splitting 
nodes where people arrive from more than one location and continue to different destinations 
into sub-nodes. This way we can resolve ambiguities which would arise in related approaches like 
flow maps (Phan et al. 2005) or Sankey diagrams (Riehmann et al. 2005) (see Section 2 for details), 
where it is not clear which part of the incoming flow continues to which subsequent node. Using 
data from the South East Queensland 2009 household travel survey we demonstrated how the 
visualisation can be used to reveal patterns in the travel behaviour of residents. While we focused 
on the JTW in this paper we would like to reemphasize that the algorithm is general enough to 
be applied to other types of journeys as well. Future work will focus on the inclusion of further 
variables (e.g., activities performed at stops) and on integrating the visualisation into an 
interactive system which allows users to compare different graphs and to access detailed 
information on demand.  
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