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ABSTRACT 
Material removal rate (MRR) plays a critical role in the 

operation of chemical mechanical planarization (CMP) process 
in the semiconductor industry. To date, many physics-based and 
data-driven approaches have been proposed to predict the MRR. 
Nevertheless, most of the existing methodologies neglect the 
potential source of its well-organized and underlying equipment 
structure containing interaction mechanisms among different 
components. To address its limitation, this paper proposes a 
novel hypergraph neural network-based approach for predicting 
the MRR in CMP. Two main scientific contributions are 
presented in this work: 1) establishing a generic modeling 
technique to construct the complex equipment knowledge graph 
with a hypergraph form base on the comprehensive 
understanding and analysis of equipment structure and 
mechanism, and 2) proposing a novel prediction method by 
combining the Recurrent Neural Network based model and the 
Hypergraph Neural Network to learn the complex data 
correlation and high-order representation base on the Spatio-
temporal equipment hypergraph. To validate the proposed 
approach, a case study is conducted based on an open-source 
dataset. The experimental results prove that the proposed model 
can capture the hidden data correlation effectively. It is also 
envisioned that the proposed approach has great potentials to be 
applied in other similar smart manufacturing scenarios. 

Keywords: material removal rate, graph neural network, 
recurrent neural network, hypergraph, chemical mechanical 
planarization 

1. INTRODUCTION
Chemical mechanical planarization (CMP) is widely used in

semiconductor manufacturing to planarize globally. A classical 
CMP system includes a rotating table used to hold a polishing 

pad as well as a replaceable polishing pad stuck to the rotating 
table. Above that, a rotating wafer carrier is used to push a wafer 
from up to down and the wafer is also held by the polishing pad 
on the other side. Additionally, a slurry dispenser and a rotating 
dresser involve in the polishing process on the polishing pad. 
During the process of CMP, the wafer is pushed against the 
polishing pad and the wafer carrier above and a polishing pad 
below the wafer are spinning in the same direction. Such 
operation removes the film on the exterior of the wafer which is 
created by the chemical reaction initially[1]. 

Material removal rate (MRR) is one of the essential metrics to 
measure the quality of CMP since defect and depression 
generated on wafers material will increase the fault rate of 
CMP[2].  Traditionally, research focuses on the study of the 
effect of components[3] and manufacturing environment[4] in 
CMP and how they affect the MRR. Moreover,  mathematical 
approaches try to fit a curve to predict the MRR[5] or establish a 
mathematics model to simulate the manufacturing process[6]. 
Nevertheless, with an increasing number of devices to collect 
multi-modal data in manufacturing and more computation 
power, machine learning and deep learning approaches are 
increasingly implemented to predict the MRR.  

The structural information contained in the equipment will 
benefit the MRR prediction model. Most equipment including 
CMP owns a pre-defined and clear mechanism which indicates 
its corresponding connections among the inner components. On 
the one hand, to our best knowledge, previous approaches fail to 
utilize the structure of the equipment in their data-driven 
prediction model. On the other hand, though there are many 
knowledge graphs-based or ontology-based applications in 
industrial scenarios before, these graphs contain different kinds 
of nodes and corresponding edges. For example, the edge 
attribute typically includes ‘is part of’, ‘lead to’, ’has a function’, 
and so on. These edges and the corresponding graph serve as 
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other purposes, like Q&A system and the smart product-service 
system, rather than modeling the impact among components in 
the graph form. 

Though few industrial knowledge graphs have been developed 
to present the impact among components of equipment so far, 
many research works have proposed enterprise knowledge 
graphs and reasoning in other domains. Establishing enterprise 
knowledge graphs usually requires domain-specific knowledge 
and expertise. However, the reasoning methods are similar: 
rules-based, structure-based, and deep learning methods, among 
which deep learning methods are most popular. GNNs, deep 
learning approaches that specialize in network structure, have 
been introduced to tackle the problem with graph form[7].  The 
more advanced models derived from GNN, such as GCN and 
Graph-SAGE, have been implemented in many other scenarios. 
For example, it can be used for text classification, relation 
extraction, reasoning, as well as object detection, and semantic 
segmentation in the computer vision domain[8]. It is noted that 
the industrial knowledge graph is extremely different from the 
other knowledge graphs and therefore should be specialized. 

Aiming to fill this research gap, this paper proposes an 
industrial graph to represent the structural knowledge, and a 
time-domain hypergraph model for prediction. The rest of this 
paper is organized as follows. Section 2 reviews the related 
works on industrial knowledge graph categories and the 
approaches of the MRR prediction model. Section 3 illustrates 
the pre-requisite information of the GCN model and hypergraph. 
Section 4 presents a case study and discusses the experimental 
results. Section 5 provides the conclusions and future work. 

2. Related Works
The previous MRR prediction approaches can be divided into

physics-based and data-driven.  One of the most popular 
physics-based approaches is the Preston equation[1] which 
indicates 𝑀𝑅𝑅 = 𝐾 𝑃 𝑉  , where P represents the downward 
pressure push to a wafer, V represents the rotating speed, 𝐾 is 
the Preston coefficient. The majority of physics-based methods 
are proposed based on the Preston equation. For example, adding 
contact stress, relative velocity, and chemical reaction rate into 
the Preston coefficient[6]. Other research takes the size, 
concentration, distribution of particles, slurry flow rate, 
polishing pad surface topography into consideration[9]. The 
limitation of physics-based approaches is that it requires prior 
assumptions. Another mainstream approach is data-driven based, 
among which machine learning and statistics method is a 
common way. Previous researchers implement the nonlinear 
Bayesian model[10] and the decision tree-based model[11]. 
Recently, with the rapid development of deep learning, 
increasing research apply deep learning methods to predict the 
MRR. Base on the fundamental structure of a deep neural 
network, a deep belief network is proposed to predict the 
MRR[12]. Furthermore, an adaptive method[13] or an adaptive 
neuro-fuzzy inference[14] is combined with a classical neural 
network to improve the performance. While the above 
approaches neglect the structural information of equipment, this 

paper should focus on how to establish an industrial knowledge 
graph. 

For the industrial knowledge graph, especially in the 
equipment domain, recent works have established industrial 
knowledge graph in different understand and perspectives. Some 
recent works digitize part or all of the equipment information or 
digitalize the system working process, and even the entire 
production process, and link the data in different vertical fields 
to construct the corresponding knowledge graph. This method 
can help operators to find potential key components and overall 
modification plans. A very straightforward way is transforming 
the working process into a knowledge graph[15] or 
disassembling the components as nodes in the knowledge 
graph[16]. More advanced, some work builds several knowledge 
graphs to satisfy their requirement[17]. Moreover, an event 
graph is generated to simulate and understand the manufacturing 
process and represent the event logic with a clear description in 
graph form[18].  

While the above methods cannot fully reflect the operation of 
the equipment and the interaction between components 
especially for CMP. Therefore, this paper introduces a 
hypergraph to establish the graph. The hypergraph has been first 
introduced as a propagation process on the hypergraph structure 
in 2008[19]. Later it had been implemented in other domains, 
such as video[20] and image[21]. To increase the effectiveness 
of the hypergraph structure, other works focus on the weight of 
hyperedge. By improving the algorithm, l  has been used in the 
model to learn optimal hyperedge weight[22]. Or assuming that 
highly correlated hyperedges should have similar weight[23]. 
Recently, a hypergraph has been implemented with a neural 
network that combines the hypergraph with a graph 
convolutional network to consider the complex data 
correlation[24]. 

Because many unstructured data can only be represented in 
the graph form, research work has paid more attention to 
applying neural networks to the graph structure. For example, 
tackling Spatio-temporal graphs is applying RNN into graph 
networks [25]. Another popular method is GCN, which 
implements a convolutional layer into a graph network[8].  

In the industrial scenario, when facing the prediction 
problem(e.g. RUL estimation), there are already mature 
solutions based on deep learning and machine learning[26]. 
While recent research work focuses on incorporating the 
semantics of the problem into the structure of deep learning 
models by using ontologies. For example, building the deep 
learning network by the ontology design and stacking the LSTM 
module to learn temporal dependencies[27]. Another example is 
to simulate equipment as a graph and its nodes represent the 
sense data, it constructs the graph by fully connected between 
every two nodes(sense data), and the edge reflects the 
dependencies of these two connected sense data[28]. The above 
research work attempts to solve different tasks base on the 
equipment graph, while they fail to model the interaction 
between different components and their corresponding feature 
explicitly. 
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Overall, the above research mainly focuses on predicting the 
MRR with physics-based and data-driven approaches without 
using equipment structure and industrial knowledge graph for 
other tasks, while few work, components, or modules are treated 
as nodes has attempted to implement a knowledge graph with 
equipment structure for MRR prediction. To address this 
research gap, a novel hypergraph neural network-based approach 
is proposed. 

3. Methodology
In this section, the knowledge graph data model of the

industrial domain is illustrated firstly. It provides a 
comprehensive framework that stores and manages the various 
manufacturing data systematically and graphically. Based on the 
semantic understanding of specific equipment cooperate with 
this knowledge graph model, one can summarize the type of 
module, its corresponding specific node, and describe the 
affiliation between them. Subsequently, the technology of 
hypergraph construction will be introduced which tackles the 
multi-impact problem. By using this technique to determine the 
relationship between nodes and edges, the model becomes more 
explanatory and exploratory. 
3.1 Knowledge Graph data model 

Different from the traditional knowledge graph, components 
or modules are treated as nodes in the equipment knowledge 
graph model, and the interaction between them serves as links. 
The nodes in the graph which correspond to the components or 
modules assemble the physical equipment system and each of 
them will contain one or many sensor data. The related 
information of the equipment component is well organized in 
ontology or tree diagram. Besides, by analyzing the equipment 
operation mode and internal interaction, the links between 
different modules can be determined.   

The first step is building a graph to illustrate the affiliation of 
data and modules. Each component or module will contain 
relevant data such as sensor data and manufacturing logs. Those 
data serve as a sub-node under the up-level node (its 
corresponding module or component) and those sub-nodes will 
store their data as their node’s features. An initial graph structure 
is shown in Fig 1. 

Fig 1. The example of a module and its corresponding attributes 
Take part of the equipment as an example, as shown in the 

upper of Fig 1, Pad and Table are adjacent components 

connected physically and there is a push force from table module 
to pad module, so they will link to each other. On the other hand, 
three features (Vibration data, rotation rate, acoustics data) are 
collected from Pad, and two features (shock data and pressure 
data) are collected from Table. Therefore, those data link to their 
up-level nodes respectively. 

The second step is to generate the module by the relevant 
nodes. As shown in the lower part of Fig 1, the blue background 
point represents one single module, setting them as one node 
which contains the information of its relevant feature. In the 
mechanism of CMP, a push force is acting on the pad module 
from the table module, therefore, there is a directed link from the 
table module to the pad module. 
3.2 Hypergraph construction 

Setting the module as a node, the connection among nodes can 
be established by analyzing the assembly or CAD. While in most 
scenarios, the interaction always occurs among more than two 
modules. Under this circumstance, it is hard to determine what 
is the exact mathematical expression or weight among different 
edges in the same interaction due to the limitation of data and 
prior knowledge available. For example, on the left side of Fig 
2, an upward force pushes the bottom of the Pad, and the Pad 
holds a dresser and a wafer. In this scenario, there will be 
interaction force among dresser, pad, and wafer. But it is very 
difficult to clarify the difference between the dresser and pad and 
the one between wafer and pad because the sense data is the 
result of their interaction of these three modules. Under this 
circumstance, hyperedge can be implemented to tackle this 
problem. By utilizing hyperedge, the edge between pad and 
wafer and the edge between pad and dresser merge as one 
hyperedge.  As shown on the right side of Fig 2, these two 
edges merge as one hyperedge, linking from the pad module to 
the wafer module and dresser module. The directed hyperedge 
comes from the mechanism that an upward force pushes the pad, 
thereby a force will interact from pad to dresser and wafer as 
shown in Fig 2. 

Fig 2. Convert equipment structure into a hypergraph 
Under this hyperedge schema, it is not necessary to define the 

exact relationship or edge between two nodes, which is the 
ambiguous and difficult part in the knowledge graph 
construction due to the limited data or prior knowledge. For 
example, for the module of the pad, wafer, and dresser, each of 
them will have the corresponding sense-data, such as Vibration 
data, Acoustics data. However, it is difficult to ignore the 
influence of the associated modules and obtain the interaction 
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relationship between two modules through the sensor data. 
Taking the above example, there is an estimated error if 
calculating the interaction between the wafer module and pad 
module by their belonging sense data but without the dresser one. 
Therefore, all the relevant nodes share same hyperedge which 
represents the interaction among them. 

3.3 Prediction Algorithm 
The prediction algorithm aims to consider the time-domain 

feature and the graph structure by adopting convolution in the 
hypergraph and RNN-based model in the time domain feature.  

Setting a hypergraph 𝐺 = (𝑉, 𝜀, Δ)  where V represents n 
nodes and 𝜀 represents k edges.  Δ is a Laplacian n*n positive 
semi-definite matrix, with the mathematics eigendecomposition 
Δ = ΦΛΦ  to obtain the orthonormal eigenvectors Φ  and 
corresponding diagonal matrix Λ  which contains the non-
negative eigenvalues. Consequently, applying the Fourier 
transform to the spectral convolution of signal x and filter g can 
be denoted as  

g ⋆ x = Φ (Φ g) ⊙ (Φ x) = Φg(Λ)Φ x, 1.  
where ⊙ is the element-wise Hadamard product and 𝑔(Λ) is 

the function of Fourier coefficients. While the forward 
computation is large and the inverse Fourier transfer also takes 
Ο(n )  time complexity. This paper utilizes the Chebyshev 
expansion as the polynomial to get the approximate result. 

𝑔 ⋆ 𝑥 ≈ 𝜃 𝑇 Δ 𝑥 , 2.  

where 𝑇 (Δ) is the Chebyshev polynomial of order K.  Since 
the Laplacian in hypergraph can fully represent the features’ high 
order interaction, it sets the K=1 to constrict the order of 
convolutional procession. With the recommended Λ[31], the 
convolutional operation equation as be simply written as  

𝑔 ⋆ 𝑥 ≈ 𝜃 𝑥 − 𝜃 𝐷 𝐻𝑊𝐷 𝐻 𝐷 𝑥, 3. , 

where 𝜃  and 𝜃  are the weights of the filter, 𝐷  is the 
vertex degree matrix and 𝐷  is the hyperedge degree, H is the 
hypergraph adjacent matrix. Here this paper simplifies the 
parameter 𝜃  from two unknown parameters to one unknown 
parameter by the following setting 

θ =-
1

2
θ

θ =
1

2
θD

- /
HD- H D

- /

Putting the transformation into (3): 
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1

2
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-
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-

x 
where I is the identity matrix, so W+I approximately equals to 
W, and 1/2 can also around 1. 
Since this transfer calculates in the spectral domain, it needs to 
apply the convolution filter Θ to inverse transform to the spatial 
domain. 

𝑌 = 𝐷 𝐻𝑊𝐷 𝐻 𝐷 𝑋Θ, 5.  

where W=diag(w ,w ,…,w ), Θϵℝ ∗ , 𝐶  and 𝐶  are the 
feature dimension before and after convolution. 

Besides, establishing a LSTM model for each time series 
feature 𝑋 = {𝑥 , … , 𝑥 }. The mathematical algorithm of the 
LSTM model is briefly recalled here because this model is one 
of the backbones of the whole algorithm.  
In the first step, the forget gate function 𝑓  need to be calculated 
which determine how much information should be saved from 
the last cell into the next cell: 

𝑓 = 𝜎 𝑊 ∙ [ℎ , 𝑥 ] + 𝑏 , 6.  
where 𝑊  is the weight matrix of forgetting gate function, 𝑏  

is the bias value and ℎ  is the hidden state in time t. 
Opposite to forget gate 𝑓  , an input gate 𝑖  determine how 
much information need to be updated and 𝑉  is a state to be 
updated: 

𝑖 = 𝜎(𝑊 ∙ [ℎ , 𝑥 ] + 𝑏 ), 7.  

𝑉 = 𝑡𝑎𝑛ℎ(𝑊 ∙ [ℎ , 𝑥 ] + 𝑏 ), 8.

combining the gates and state obtained above, a new state value 
can be calculated as followed: 

𝑉 = 𝑓 ∗ 𝐶 + 𝑖 ∗ 𝑉 . 9.  
After the calculation of the new state 𝐶 , the hidden state ℎ  
also need to update for the next iteration: the 𝑜  represents 
updated information and the final result ℎ  in equation (11): 

𝑜 = 𝜎(𝑊 [ℎ , 𝑥 ] + 𝑏 ), 10.  

ℎ = 𝑜 ∗ tanh(𝑉 ) , 11.  
with the equation above, we can get the output state value h  of 
timestamp t from the input value 𝑥 . 

Fig 3. The algorithm structure of hypergraph neural network for prediction 

The output state value h   also represents the node-level 
feature in the hypergraph. A hypergraph G can be presented in 
matrix form H by |𝑉| × |𝜀| with the following definition: 

ℎ(𝑣, 𝑒) =
1, 𝑖𝑓 𝑣 𝜖 𝑒
0, 𝑖𝑓 𝑣 ∉ 𝑒

Hence, the iteration equation can be rewritten from (5) to 

𝑋 = 𝜎 𝐷 𝐻𝑊𝐷 𝐻 𝐷  𝑋 Θ , 12.  

where   𝑋 = 𝑋  and 𝜎  denotes the sigmoid function. This 
hypergraph iteration equation utilizes the core idea of spectral 
convolution on the graph structure. As shown in Fig 4, the 
hypergraph neural network achieves node-edge-node 
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transformation so that it can extract the high order of the features. 
Initially, X multiply by 𝐻  can transform the node level feature 
into a hyperedge feature representing gathering accorded to the 
hyperedge. Subsequently, by multiplying matrix H, the final 
output refines node feature is generated which means aggregated 
their related hyperedge feature. In (12), 𝐷  and 𝐷  have a 
normalization function. Therefore, by utilizing the node-
hyperedge-node mechanism, the hypergraph neural network 
extracts the high-order feature efficiently. 

Fig 4. The Schematic diagram of how node embedding generates 

The refine output from the hypergraph neural network 𝑉 =
{𝑣 , … , 𝑣 } reads out as a graph level output by concatenating 
them. With this concatenation, the graph level output represents 
as 𝑉 = [𝑣 , … , 𝑣 ]. The final estimated value can be calculated 
through a fully connected layer as follow: 

𝑣 = 𝑔(𝑊 ∗ 𝑣 + 𝑏 ) (13) 
𝑣 = 𝑔(𝑊 ∗ 𝑣 + 𝑏 ) (14) 

Where g is the non-linear active function. 

𝐿 =
1

𝑛
𝑦 − 𝑦 (15) 

4. Case Study
To empirically demonstrate the proposed approach, an

illustrative example of a wafer chemical-mechanical 
planarization is adopted. CMP implements to remove the surface 
material of the wafer. Combing with the corrosive chemical 
slurry, polishing pad, and retaining ring to polish the residue of 
the wafer in the CMP. 

As shown in Fig 5. The wafer is installed in the carrier on a 
polishing pad backing film and the retaining ring on the wafer 
carrier maintains the wafer in a correct horizontal position. Both 
the wafer carrier and the polishing pad are rotating during the 
polishing process and a downward force is acting on the carrier 
to push the wafer against the polishing pad. Meanwhile, the 
slurry outflow from the slurry dispenser includes chemical 
components and abrasive particles. This CMP data is collected 
from the open data source from the competition of PHMS 2016. 
This data aims to predict the material removal rate of each 
processing. 
4.1 Data Description 

The dataset contains multiple sensory signals collected from a 
CMP tool that removes the material from wafers. This dataset 

contains 14 features and their corresponding wafer id and MRR. 
The 14 features mainly include the usage of the polish-pad 
backing film, dresser, polishing table, dresser table, wafer carrier 
sheet, the flow rate of slurry, and the pressure of different 
components. The number of the total dataset is 376859 and 
corresponding to 1166 wafers records (a distinct wafer has many 
timestamp records and one single MRR) and this experiment 
split 75% of dataset as training dataset and the rest as testing 
dataset. The predictive model was trained on the training dataset 
and then validated on the test datasets. The test datasets provide 
an unbiased evaluation of the model fit on the training dataset. 

Fig 5. The Schematic diagram of CMP 

4.2 Hypergraph construction 
The specific CMP equipment, as shown in Fig 6, can be 

divided into five modules base on its structure and interaction.  

Fig 6. The hypergraph of the CMP structure of five modules 

First of all, according to the mechanism of CMP, a downward 
force is applied to the wafer carrier to push the wafer toward the 
pad. Therefore, a directed edge links from the wafer carrier 
module to the wafer module. Besides, the wafer materials were 
passivated and etched by the slurry chemicals, which represents 
the slurry module has an initial impact on the wafer module. 
Meanwhile, the sense data of the wafer module is influenced by 
both the wafer carrier module and slurry, it is difficult to estimate 
how each of them affects the wafer module separately. 
Therefore, setting them as a hyperedge to represent the 
collaborative influence relationship. Similarly, the wafer pushes 
against the pad, which reflects the directed edge from the wafer 
module to the pad module. Besides, the dresser used to roughen 
the pad surface which also represents a directed edge from the 
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dresser to pad. Both the wafer and the dresser connect vertically 
with the pad have different initiative forces so a hyperedge is 
used to represent this multi-edge relationship in equipment.  
After analyzing the relationship between different modules, a 
hypergraph is generated. Each of the modules contains one or 
more features. 
  

TABLE I 
FEATURES MAPPING CATEGORY EXAMPLE 

Feature Category 

A usage measure of the polish-pad 
backing film 

Pad module 

A usage measure of the dresser Dresser module 
Pressure related to wafer 
placement 

Wafer module 

The flow rate of slurry Slurry module 
A usage measure of wafer carrier 
flexible sheet 

 
Wafer carrier module 

… … 

 
4.3 Average removal rate prediction 

Transferring the specific CMP hypergraph structure as a hyper 
matrix H. 

 
Fig 7. The hyper matrix of the CMP hypergraph structure 

By analyzing the mechanism between edges and nodes, 
writing a matrix represent the specific adjacent matrix in 
hypergraph as shown in Fig 7. Each module contains its 
corresponding features and transfers them to fixed 5-dimensions 
through a LSTM model as a pre-procession step. Therefore, each 
module will represent a 5-dimensions embedding vector equally 
which guarantees each module (node) has the same express 
space. After generating the initial representation of each module 
(node), those module representation vectors go through a k layer 
of graph convolutional process. The forward propagation is 
updating by the following algorithm: 

𝑋 = 𝜎 𝐷 𝐻𝑊𝐷 𝐻 𝐷  𝑋 Θ , (16) 

where 𝑋 = [𝑣 , , 𝑣 , 𝑣 , 𝑣 , 𝑣 ] , which represents the 
feature of 5 modules and following with the equation of (6)-(11) 
which generates the predicted embedding vector. In the 
experiment, m represents each sample in the dataset, so in the 
equation of (6) to (11), the trainable parameters like W and bias 
item b will be accumulated and updated by new input. 

In 𝑋 , the upper l represents the l-th feature of the dataset and 
the lower m represents the iteration step. The equation denotes 
the propagation from l to l+1 as simplify. The expected 

prediction represents the embedding vector of corresponding 
modules. This predictive average removal rate is a single value, 
so these 5 modules vector (5*5 matrix) need to concatenate into 
one single dimension (25*1) as a readout process. The graph 
representation V (25*1) can be aggregated to calculate a graph-
level output (average removal rate). This paper utilizes fully 
connected layers with non-linear active functions (such as ReLu, 
Sigmoid) to predict the average removal rate. By defining the 
Mean square error as the loss function and the Adam algorithm 
as the weight optimization method and setting 75% of the dataset 
as the training dataset and the rest 25% as the testing dataset, this 
experiment shows that the MSE of the training dataset is 0.0037 
and the MSE of testing dataset is 0.0044. Besides, experiment 
the different number of GCN layer to verify the validity of the 
proposed model structure. 

TABLE II 
THE MSE WITH DIFFERENT GCN LAYER NUMBER 

GCN layer number 
Training 
Dataset 
MSE 

Testing 
Dataset 
MSE 

1 0.0037 0.0044 

2 0.0031 0.0031 
3 0.002 0.0064 

4 0.0044 0.0005 
5 0.0041 4.5491*10  

  As shown in the table II, both the decrease of MSE in 
training dataset and testing dataset accompany with the 
increasing GCN layer number, therefore the GCN layer can 
efficiently extract the high order interaction feature from the 
hypergraph neural network. 
 
5. CONCLUSION 

This paper proposes a framework to organize the modularized 
structural information of complex equipment as a hypergraph 
structure. A novel model of a hypergraph network that combines 
the hypergraph structure and graph convolutional layer is 
proposed. This model is designed to capture the time-domain 
feature in the hypergraph for prediction. It utilizes the 
convolutional process to the hypergraph for extracting high order 
feature which includes the interaction among components. Based 
on the proposed industrial hypergraph and the model, an 
experiment is conducted by using the CMP equipment as an 
example to predict the MRR. The results proved that the 
proposed approach has an expected result, and the efficiency of 
algorithm structure is proved by changing the depth of the model 
as shown in Table II. Hence, this hypergraph neural network 
takes complex modules correlation into representation learning, 
bridging the gap between single features and equipment 
modules.  

The key contributions of this work are summarized as follows: 
1) Provided a novel framework and methodology to modeling 

the equipment as the representative hypergraph. This directed 
hypergraph reflects the interaction between modules. 

2) Proposed a hypergraph model. This model modularizes 
processes of the multi-time series data by grouping them into the 
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corresponding modules. It formulates complex and high order 
data correlation through its hypergraph structure. 

3)  Conducted an experiment with the hypergraph model in 
the CMP dataset to predict the MRR. Comparing with the 
different layer number in the model, it demonstrates the 
effectiveness of our proposed model. 

Future research can focus on implementing this approach to 
other complex processes and problems.  
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