
Optimization by Space Transformation and Decomposition
S. Gratton ∗ L. N. Vicente† Z. Zhang ‡

December 30, 2019

Abstract

We introduce a space transformation framework for unconstrained optimization of a func-
tion f that is smooth but not necessarily convex. At each iteration of the framework, the
gradient of f is mapped by a forward transformation to an auxiliary (possibly lifted) space,
in which a model is established based on the transformed gradient and a step is obtained by
minimizing this model. A backward transformation then maps the step back to the original
space, where the iterate is updated accordingly. Using a trust-region globalization scheme,
and by inspection of the consistency between the forward and backward transformations, the
framework is guaranteed to converge globally to first-order criticality with an O(ϵ−2) worst-
case iteration complexity to reach a gradient with norm smaller than ϵ > 0. The complexity
is improved to O(ϵ−1) and O(log(ϵ−1)) when f is convex and strongly convex respectively.

The space transformation framework can be directly specialized to a parallel space de-
composition framework for nonlinear optimization, which can be regarded as an extension
of the parallel Schwarz domain decomposition method for PDEs and linear systems. Such a
decomposition framework is motivated by problems that cannot be directly solved (or even
saved) in the full space and hence divide-and-conquer is needed. As in domain decomposition,
introducing overlaps between subspaces can improve the performance of space decomposition
methods provided that overlaps are handled properly. Our space decomposition framework
covers a wide range of overlap-handling strategies, including Restricted Additive Schwarz,
Weighted Restricted Additive Schwarz, and Additive Schwarz with Harmonic Extension, all
of which have achieved remarkable success in domain decomposition. Similar to the coarse
grid techniques in domain decomposition, we incorporate a coarse space correction into our
framework. An unsophisticated implementation of the framework works quite well in our
numerical experiments. With Restricted Additive Schwarz and coarse space correction, the
algorithm scales nicely when the number of subspaces increases.

At the same time, the space transformation framework can be specialized to analyze trust-
region methods when the gradient of f is evaluated inaccurately. Applying the theory of the
space transformation framework, we provide sharp bounds on the gradient inaccuracy that

∗ENSEEIHT, INPT, 2 rue Charles Camichel, 31071, Toulouse Cedex 7, France (serge.gratton@enseeiht.fr).
Support from the ANR-3IA Artificial and Natural Intelligence Toulouse Institute is gratefully acknowledged.

†Department of Industrial and Systems Engineering, Lehigh University, 200 West Packer Avenue, Bethlehem,
PA 18015-1582, USA and Centre for Mathematics of the University of Coimbra (CMUC) (lnv@lehigh.edu).
Support for this author was partially provided by FCT/Portugal under grants UID/MAT/00324/2019 and P2020
SAICTPAC/0011/2015.

‡Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong,
China (zaikun.zhang@polyu.edu.hk). Research of this author was supported by FCT under grant
PTDC/MAT/116736/2010 (Portugal), by Fondation RTRA STAE under the project FILAOS and IRT
Saint Exupéry (France), and currently by RGC Hong Kong under grants PolyU 253012/17P (ECS) and
F-PolyU502/16 (PROCORE).

1

This is the Preprint Version.

guarantee global convergence of trust-region methods, and prove new global convergence
results while recovering some existing ones. More importantly, we establish a complete
theory of worst-case complexities for trust-region methods based on inaccurate gradients. If
the gradient inaccuracy respects the aforementioned bounds, these complexities are of the
same order as when the gradients are accurate, and the gradient inaccuracy only enlarges the
multiplicative constants in them by a mild magnitude that is entirely decided by trust-region
algorithmic parameters and independent of the optimization problem. On the other hand,
once the gradient inaccuracy exceeds such bounds, the behavior of trust-region methods
deteriorates dramatically, which is demonstrated by our numerical experiment. Our theory
provides theoretical insights into the tight connection between algorithmic parameters and
the amount of relative gradient error that trust-region methods can tolerate. We show
that such a connection is clearly observable in computation. This enables us to propose
parameters that are well adapted to a given accuracy level of the gradient.

Keywords: Space transformation, space decomposition, coarse space, parallel, inaccurate
gradient, trust-region methods, worst-case complexity

Contents
1 Introduction 3

1.1 Optimization by space decomposition . 4
1.2 Optimization based on inaccurate gradients . 6
1.3 Organization of the paper and main results . 7

2 A framework for optimization by space transformation 11

3 A trust-region version of the space transformation framework 12
3.1 Globalizing the space transformation framework by a trust region 12
3.2 Assumptions and their consequences . 13
3.3 Key facts that lead to the convergence properties 22
3.4 Global convergence . 24
3.5 Worst-case complexity . 25
3.6 Comments on the update of trust-region radius 29

4 Coarse space correction 38
4.1 Incorporating coarse spaces into the space transformation framework 38
4.2 Analysis of the space transformation framework with coarse space 39
4.3 Remarks . 43

5 Optimization by space decomposition 43
5.1 Introduction . 43
5.2 Additive Schwarz type methods for linear systems 44
5.3 A space decomposition framework for nonlinear optimization 47
5.4 Space decomposition is a special instance of space transformation 51
5.5 Additive Schwarz type decomposition/synchronization matrices 52
5.6 Globalizing the space decomposition framework by trust regions 55
5.7 Coarse space correction . 58
5.8 Numerical illustrations . 61

2

6 Optimization based on inaccurate gradients 70
6.1 Introduction . 70
6.2 A trust-region framework using inaccurate gradients 71
6.3 Inaccurate gradients with bounded relative error of type I 72
6.4 Inaccurate gradients with bounded relative error of type II 74
6.5 The largest admissible region of inaccurate gradients 76
6.6 Gradient descent with Armijo line search and inaccurate gradients 79
6.7 Numerical experiment . 80
6.8 Remarks . 85

7 Discussions and conclusions 85

Appendix 88

1 Introduction
Consider minimizing a smooth but possibly nonconvex function over a finite-dimensional space

min
x∈Rn

f(x). (1.1)

We propose a space transformation framework (Algorithm 2.1) for solving this problem. The
framework is iterative. At iteration k, instead of seeking an update to the iterate in Rn, the
framework transfers the information about f to an auxiliary space RNk , pursues a step in it,
and then maps the step back to Rn, where the iterate is updated accordingly. In this pro-
cess, information is communicated by transformations between Rn and the auxiliary spaces as
illustrated in Figure 1, where a forward transformation (abbreviated as for. trans.) refers to a
transformation from Rn to an auxiliary space while a backward transformation (abbreviated as
back. trans.) is a transformation in the other direction.

RNk RNk+1

. . . Rn Rn Rn . . .

back. trans.

back. trans.for
. tra

ns
.

for
. tra

ns
.

Figure 1: Information flow of the space transformation framework.

This framework is motivated by the optimization problems with increasingly high dimen-
sionality and complexity that are emerging progressively from various areas including statistics,
data science, and artificial intelligence. As a reaction to such problems, three trends, besides
many others, are observable in the development of optimization algorithms and their theory:
first, divide-and-conquer strategy for problems that are impossible to be solved — or even saved
— on a single computer; second, exploration of inaccurate information when accurate infor-
mation is unavailable or prohibitively expensive; third, investigation of worst-case complexity
for understanding the global performance of algorithms and analyzing how the performance is
affected by problem properties and algorithmic parameters. Our framework provides a unified

3

perspective connecting the first two points, and its theory complies with the third one, as will
be elaborated in the following subsections.

1.1 Optimization by space decomposition
The first motivation of the space transformation framework comes from optimization methods
based on space decomposition. When the direct minimization of f is out of reach, a natural
idea is to split it into subproblems involving subsets of variables, to solve them separately in
parallel,1 and to combine all the subproblem solutions into a solution for the original problem.
Obviously, unless the problem enjoys a form of separability, such a process cannot solve (1.1) in
one step and hence has to be iterated.

The idea of decomposing the variable space is not new and can be traced back to Jacobi’s
method for linear systems (1845) [83]. Even though this paper focuses on deterministic methods,
we shall first mention that the highly successful randomized Block Coordinate Descent (BCD)
type optimization methods (see, for example, [104, 149, 122, 112]) can be regarded as space
decomposition methods, although, thanks to the randomization, the subspaces in each iteration
do not need to constitute a decomposition of the full Rn space. More related to this paper,
many deterministic methods for solving (1.1) by decomposing Rn have been proposed in the
optimization community, examples including Parallel Variable Distribution [49, 131], Parallel
Gradient Distribution [93], Parallel Variable Transformation [52], and Parallel Line Search Sub-
space Correction [42]. All these (deterministic) methods integrate two stages at each iteration:
first, decompose Rn into possibly overlapping subspaces, in each of which a subspace step is
obtained by minimizing the objective function or a model; second, map the subspace steps back
to Rn and update the iterate by a full-space step that is computed based on the subspace steps.2
In these methods, the full-space step generally lies in the linear space spanned by the subspace
steps and possibly the current iterate (see [52, equation (3)]). For instance, one may seek such
a step by minimizing the objective function over the affine hull of the subspace steps [49], or, in
convex cases, taking a convex combination of the subspace steps [93, 134, 135], or simply taking
the subspace step that renders the smallest objective function value. After the full-space step is
obtained, one may further improve it by a line search along its direction [42].

Meanwhile, as a major inspiration for our work, the methodology of space decomposition has
been long explored in numerical methods for partial differential equations (PDEs) and linear
systems, where it is more often known as domain decomposition.3 Located in the center of an
active research area of scientific computing, the paradigm of domain decomposition is vast and
contains, for instance, the Schwarz, Neuman-Neuman, FETI, and optimized Schwarz methods.
The literature is enormous, classical references including [151, 24, 130, 121, 141], and a more
recent one being [41]. Our framework is most related to the parallel Schwarz domain decomposi-
tion method, which was devised by Lions [91] as a parallel variant of the alternating method by
Schwarz [128] (see Gander [53] for historical remarks). The basic idea of parallel Schwarz method
is to divide the global domain of the PDE into subdomains, solve the PDE in the subdomains

1 There do exist sequential approaches but this paper will focus on parallel ones.
2 We will focus on synchronous approaches. Asynchronous ones (e.g., [1]) are discussed in Section 7.
3 In numerical methods for PDEs, decision variables correspond to nodes in the domain where the PDE is

defined and discretized. Decomposing the domain leads to grouping the variables, and hence decomposing the
variable space. We will stick to the term space decomposition in an optimization context, as we do not assume
that the optimization problem discretizes any infinite-dimensional problem over a domain. The word “space
decomposition” is also common in the literature of numerical PDEs, [151] being an example.

4

simultaneously, and construct an approximate global solution by the local ones. The procedure
is iterated after exchanging information between subdomains. When the subdomains exhibit
overlaps, one has to adopt a strategy to assign values to the variables repeated on several subdo-
mains. A naive approach known as the Additive Schwarz is to update the overlapping variables
by summing up the updates suggested by the subdomains that contain these variables (see [53,
equation (3.20)]). Additive Schwarz is mostly used in the design of preconditioners and does not
converge in general as an iterative solver. One can easily observe a serious defect of Additive
Schwarz by considering a decomposition consisting of two overlapping subdomains and a PDE
that is perfectly decoupled with respect to such a decomposition. In this scenario, the update on
the overlap is twice what it should be. A better way is to update the overlapping variables by a
convex combination of the updates suggested by related subdomains, leading to the well-known
(Weighted) Restricted Additive Schwarz approach by Cai and Sarkis [14], which performs much
better than Additive Schwarz. There exist other approaches like (Weighted) Additive Schwarz
with Harmonic Extension [14], which also outperforms Additive Schwarz in practice.

Despite the remarkable success of domain decomposition, its essential techniques are little
explored in optimization algorithms based on space decomposition, unless the optimization prob-
lem is the discretization of a certain infinite-dimensional problem. It is for instance well known
that the good performance of domain decomposition methods crucially relies on overlapping
strategies such as Restricted Additive Schwarz and Additive Schwarz with Harmonic Extension.
It is also commonly noted that coarse grid techniques are indispensable for the optimal conver-
gence of domain decomposition in very large problems, without which the performance of domain
decomposition methods will deteriorate when the number of subdomains increases and hence
loose scalability. The question we raise in this paper is how to incorporate these techniques into
a framework for nonlinear optimization, in such a way that global convergence 4 is guaranteed
and standard worst-case complexities of nonlinear optimization methods are preserved.

To answer this question, we propose in Algorithm 5.1 a space decomposition framework for
problem (1.1). Each iteration of this framework decomposes Rn into several subspaces {X i}mi=1,
calculates subspace steps by minimizing subspace models of f , and then updates the iterate in Rn

according to a full-space step formed by linear transformations of the subspace ones. In this
framework, the subspaces {X i}mi=1 are not shown explicitly but represented by spaces {RNi}mi=1.
Such a framework, as we will elaborate in Section 5, extends the parallel Schwarz domain de-
composition method to optimization, accommodating naturally (Weighted) Restricted Additive
Schwarz, (Weighted) Additive Schwarz with Harmonic Extension, and coarse space correction.

It turns out that our space decomposition framework can be interpreted as a special in-
stance of the space transformation framework. The key idea is to introduce a lifted space
RN ≃

⊕m
i=1RNi with N =

∑m
i=1N

i, congregate the subspace models into a model of f in RN ,
and regard the subspace steps as the components of a step in RN , as rigorously formulated in
Subsection 5.4. From this perspective, the decomposition framework indeed models the objec-
tive function in the (lifted) auxiliary space RN , seeks a step in this space, and then updates the
iterate in Rn by a linear transformation of this step, which fits into the space transformation
framework. Figure 2 illustrates a single iteration of the space decomposition framework from
both the decomposition view and the transformation one. Note that the dimension N of the
auxiliary space RN can exceed that of Rn due to overlapping variables, and N can change along

4 The word global has two meanings in this paper. Global convergence for an optimization algorithm means
convergence regardless of the starting point. Global in the context of a PDE refers to the whole of its domain.

5

with iterations if it is desirable to vary the decomposition from one iteration to another.

{RNi}mi=1

Rn Rn

synchronizationde
co

mpo
sit

ion

(a) Decomposition view.

RN

Rn Rn

back. trans.for
. tra

ns
.

(b) Transformation view. (N =
∑m

i=1N
i)

Figure 2: Information flow of the space decomposition framework (a single iteration).

1.2 Optimization based on inaccurate gradients
The second motivation for our space transformation framework comes from the situations
where (1.1) is solved based on inaccurate gradients. A trivial source of gradient inaccuracy
is finite precision arithmetic [59, 78], which happens to virtually all optimization problems, yet
it is mostly neglected with or without a theoretical basis. In the traditional realm dominated by
double-precision or at least single-precision computation, it might have been safe to neglect such
inaccuracy, but now we are forced to include it into the analysis of optimization algorithms due
to the increasing importance of low-precision computation in applications, particularly in ma-
chine learning [73, 85]. Gradient inaccuracy also occurs naturally in methods that approximate
gradients by finite differences [20, 6]. In addition to these trivial cases, there are three more
scenarios that motivate us to investigate optimization methods based on inaccurate gradients.

In the first scenario, gradient calculation involves solving a lower-level problem whose solution
can only be approximated. This occurs, for instance, when gradients are obtained by solving
certain adjoint equations. Such a gradient-evaluation approach is applied in PDE-constrained
optimization [8, 79, 9, 38], multidisciplinary design optimization (MDO) [95], and more recently
in deep learning [25], the adjoint equations being PDEs, linear systems, and ODEs, respectively.
Despite well-developed solvers for these equations, solving them accurately is impossible in
practice except for rather special cases, and hence gradient inaccuracy is inevitable.

It may be intuitive that gradient inaccuracy is undesirable and should be avoided if possible.
To the contrast of such an intuition, in the second scenario, gradients are evaluated inaccurately
in a deliberate way to improve the overall performance of optimization algorithms, reducing
their expenses in terms of time or energy without affecting the accuracy of the final results.
For example, in the adjoint approach mentioned above, lower accuracy of gradient evaluation
may imply a much lower computational cost per gradient, and an overall speedup is possible if
the global convergence and convergence rate of the optimization algorithm is not damaged by
gradient inaccuracy. Indeed, such strategical exploration of inaccurate computation is becoming
a prominent methodology of algorithm design due to the predictable saturation of Moore’s
law and the dramatically increasing dimensionality of modern application problems. We refer
to [2, 110, 87, 89] for discussions of this methodology in scientific computing, to [68] for a recent
investigation in optimization, and to [73] for an application in machine learning.

The third scenario, more counter-intuitive than the second one, is to intentionally introduce
inaccuracy to gradients even if they are readily available with high accuracy. This happens

6

in the quantized gradient method [129, 60], where gradients are quantized to very few bits
(hence inaccurate) in order to be transmitted with low communication latency in distributed
computation. Another example is to impose perturbations to gradients in gradient descent
methods, which can provably help to avoid convergence to saddle points [58, 84].

With these interesting scenarios where gradients are inaccurate, there exists plenty of research
on the behavior of optimization algorithms under gradient inaccuracy, examples including [132,
37, 39], to name but a few. The intriguing analysis of [3, 67, 23, 145] on optimization methods
based on probabilistic models can also be included in this category. In these works, gradient
inaccuracy is regarded as noise, error, or perturbation. We, however, take an entirely different
perspective: inaccurate gradient is a transformation of the accurate one.

For example, consider an iterative algorithm for (1.1). Suppose that, at iteration k, the
algorithm evaluates an inaccurate gradient ĝk, then generates a step dk based on the inaccurate
information, and finally updates xk according to dk. Defining 5

Rk =
ĝk[∇f(xk)]T

∥∇f(xk)∥2
∈ Rn×n,

we can re-interpret the algorithm as follows: it first applies Rk to transform the gradient in-
formation from ∇f(xk) ∈ Rn to ĝk ∈ Rn, then obtains a step dk based on the transformed
information, and finally updates xk according to dk. This fits into our space transformation
framework, with the forward transformation being Rk, the auxiliary space being Rn, and the
backward transformation being the identity matrix.

Therefore, optimization based on inaccurate gradients can be regarded as a special instance of
optimization based on space transformation, falling in the same category as space decomposition
methods. Covering two apparently distinct subjects within one framework, the space transfor-
mation perspective economizes research effort. Moreover, for two seemingly unrelated topics,
our framework enables us to see through superficial distinctions and reveal hidden similarities.

1.3 Organization of the paper and main results
The remaining part of this paper consists of three blocks. The first block (Sections 2–4) presents
our space transformation framework, establishes its global convergence and worst-case complex-
ities based on a trust-region globalization strategy, and discusses how to incorporate coarse
spaces into the framework. The second block (Section 5) introduces the space decomposition
framework and establishes the theory of its trust-region version by casting the results of the
space transformation framework to this case. The third block (Section 6) specializes the theory
of the space transformation framework to optimization based on inaccurate gradients, obtain-
ing global convergence and worst-case complexity theory of a trust-region framework that uses
inaccurate gradients. The second and third blocks are independent of each other.

Section 2 formulates the space transformation framework in its prototypical form as Algo-
rithm 2.1. For such a framework to be practically useful when minimizing possibly nonconvex
functions, Section 3 adopts a trust-region globalization technique, resulting in a trust-region
version of the space transformation framework presented in Algorithm 3.1 of Subsection 3.1.
The key step to analyze this framework is to prove that the reduction radio surpasses a certain
threshold when the trust-region radius becomes small. To this end, Subsection 3.2 establishes a

5 Our analysis focuses on the iterations before xk becomes stationary (if this ever happens), and hence there
is no concern about zero denominator in the definition of Rk.

7

lower bound for the reduction ratio based on the geometrical interplay between the trust-region
strategy and the transformations (Lemma 3.1), which motivates the assumptions on trust-region
steps (Assumption 3.4) and on the transformations (Assumptions 3.5–3.7), in addition to those
inherited from classical trust-region analysis (Assumptions 3.1–3.3). With these assumptions,
Subsection 3.3 establishes two crucial facts (Lemmas 3.2–3.3) that lead to the convergence prop-
erties of the framework. Using such facts, Subsection 3.4 proves the global convergence of the
framework in terms of first-order stationarity (Theorem 3.1), and Subsection 3.5 establishes
worst-case iterations complexities of orders O(ϵ−2), O(ϵ−1), and O(log(ϵ−1)) respectively in the
nonconvex, convex, and strongly convex cases (Theorems 3.2–3.4). Subsection 3.6 is oriented
to connoisseurs and practitioners of trust-region methods, and can be safely skipped in a first
reading. It discusses practical updating schemes for trust-region radius, shows that the theory in
Subsections 3.4–3.5 remains true under very broad updating rules (Theorems 3.5–3.6), and pro-
vides general strategies that guarantee ∥∇f(xk)∥ → 0 without assuming convexity or enforcing
sufficient decease (Theorems 3.7–3.8), while traditional results ensure only lim inf ∥gk∥ = 0.

Motivated by coarse grid techniques in domain decomposition methods, Section 4 discusses
how to incorporate coarse space correction into the space transformation framework. The idea
is to complement the auxiliary space and its model with information that reflects the overall
behavior of the problem, which is particularly important in the case of space decomposition
methods. Subsection 4.1 presents a space transformation framework with coarse space in Al-
gorithm 4.1 along with its trust-region version in Algorithm 4.2. Subsection 4.2 establishes the
global convergence and worst-case complexities of the trust-region framework (Theorem 4.1),
obtaining similar results to what is established in Section 3. The key is again to establish a
lower bound for the reduction ratio, which is done in Lemma 4.1.

Section 5 investigates space decomposition methods as a special instance of the space trans-
formation framework. After an illustrative introduction to the parallel Schwarz domain decom-
position method for linear systems in Subsection 5.2, Subsection 5.3 presents in Algorithm 5.1
our space decomposition framework for solving (1.1), extending the parallel Schwarz method
to nonlinear optimization in a natural way. Subsection 5.4 shows that such a framework
can be regarded as a special instance of the space transformation framework introduced in
Section 2. Subsection 5.5 elaborates how to implement the Additive Schwarz type decomposi-
tion/synchronization strategies within our framework, covering the (Weighted) Restricted Ad-
ditive Schwarz and Additive Schwarz with Harmonic Extension techniques, which have been
proved essential for the success of the parallel Schwarz method. Subsection 5.6 presents a trust-
region version of the space decomposition framework (Algorithm 5.2), and obtains its global
convergence and worst-case complexities (Theorem 5.1) by directly applying the theory that
has been obtained for the space transformation framework in Section 3. Capitalizing on the
work of Section 4, Subsection 5.7 introduces a coarse space correction technique into our space
decomposition framework (Algorithms 5.3 and 5.4) and establishes its convergence theory (The-
orem 5.2). Subsection 5.8 demonstrates numerically the effectiveness and potential of our space
decomposition framework on nonlinear and possibly nonconvex optimization problems, showing
encouraging — sometimes surprisingly good — behavior of Restricted Additive Schwarz and
coarse space correction on problems that do not necessarily have any PDE background.

Section 6 studies optimization based on inaccurate gradient information with a focus on trust-
region methods. As already known, trust-region methods are extremely robust with respect to
gradient inaccuracy [97, 138, 15, 17, 75, 81]. Section 6 further characterizes such robustness by
providing provably tight bounds for the tolerable inaccuracy, establishing worst-case complex-

8

ities, and quantifying the impact of gradient inaccuracy upon these complexities. Within the
bounds that we provide, gradient inaccuracy does not affect the order of the worst-case complex-
ities of trust-region methods but only enlarges the multiplicative constants in them by a quite
benign magnitude that is completely independent of the optimization problem. Subsection 6.2
presents in Algorithm 6.1 a trust-region framework for solving (1.1) based on inaccurate gradi-
ents and interprets it as a particular instance of the trust-region space transformation framework
formulated in Algorithm 3.1. Based on such an interpretation, by a direct application of the the-
ory developed in Section 3, Subsections 6.3–6.4 establish the global convergence and worst-case
complexities for Algorithm 6.1 when the relative gradient error is below certain bounds (Theo-
rems 6.1–6.2). Subsection 6.5 unifies the results of Subsections 6.3–6.4 into Theorem 6.3, which
determines the largest admissible region for inaccurate gradients which can ensure the conver-
gence and worst-case complexities of Algorithm 6.1. Subsection 6.6 contains a brief discussion
on gradient descent with Armijo line search, showing that Theorems 6.1–6.3 are applicable to
such an algorithm by recognizing it as a trust-region method in disguise. Subsection 6.7 observes
the numerical behavior of Algorithm 6.1, demonstrating the sharpness of our theory.

Having finished all the three blocks, we conclude by Section 7 with some discussions and di-
rections for future investigation. There are several appendices after Section 7. Most propositions
in Sections 5–6 are proved there, as they can be justified by direct applications of the theory in
Section 3. Appendix G discusses some alternatives to the assumptions imposed by Section 3 on
the trust-region step and transformations, sketches how they can render almost the same theory
as in Section 3 (Theorem G.1), and, as an application, establishes a theory for trust-region
methods based on inaccurate gradients with dynamically adapted accuracy (Theorem G.2).

Partially due to the robustness and the ability to achieve second-order optimality (see, e.g.,
[30, Sections 6.6, 8.1, and 9.3] and [32, 22, 64]), trust-region methods are enjoying an increasing
attention in recent applications [127, 150, 74, 152, 153]. Being neither our main objective nor
our contribution, one can specialize the analysis in Section 3 by setting Rk = Tk = I to obtain
the global convergence and worst-case complexities for the classical trust-region methods in the
unconstrained and smooth case. Almost all such results are known [116, 118, 30, 156, 120, 139,
63, 159, 33]. We hope our work could provide a summary of these results as a supplement to
the documentation in [30, 159]. The success of trust-region strategy on our space decomposi-
tion framework serves as another demonstration that, despite its long history, the trust-region
methodology will continuously provide powerful algorithms so long as we continue to explore.

Notation
Due to the abundance of contents, this paper involves a large set of notation. Table 1 lists the
major symbols that we use in this paper. It omits the self-explaining f and n, which are first
used in (1.1), and excludes the notation locally used in a particular context.

Unless otherwise specified, subscripts will signify iteration counters, while indices for sub-
spaces and associated objects will be denoted by superscripts. Power of numbers will be written
as [a]p when the context does not suffice to avoid confusion (for example, ∆i

k means a trust-region
radius corresponding to iteration k and subspace i, while [∆k]

p is the pth power of a trust-region
radius related to iteration k). We adopt the Matlab-style notation [a ; b ; · · · ; c] to denote a
vertical array with a, b,..., c being the entries, while [a , b , · · · , c] means a horizontal one. They
are particularly useful in Section 5 when we discuss the space decomposition framework.

9

Symbol Explanation First appearance
∥ · ∥ 2-norm of vectors or matrices Algorithm 3.1
| · | absolute value of numbers or cardinality of sets Lemma 3.3
k iteration counter Algorithm 2.1
ϵ convergence threshold Subsection 3.5
kgϵ min{k ∈ N : ∥gk∥ ≤ ϵ} Subsection 3.5.1
kfϵ min{k ∈ N : f(xk)− infx∈Rn f(x) ≤ ϵ} (convex case) Subsection 3.5.2
kxϵ min{k ∈ N : ∥xk − argmin f∥ ≤ ϵ} (strongly convex case) Subsection 3.5.3
Nk dimension of auxiliary space Algorithm 2.1

Rk, Tk forward transformation and backward transformation Algorithm 2.1
hk model of f in auxiliary space RNk Algorithm 2.1
dk step in auxiliary space RNk Algorithm 2.1
sk step in original space Rn Algorithm 2.1
∆k trust-region radius in trust-region algorithms Algorithm 3.1
ρk reduction ratio in trust-region algorithms Algorithm 3.1

η0, η1, η2 thresholds for ρk in trust-region algorithms Algorithm 3.1
γ0, γ1, γ2 expansion or contraction factors for trust-region radius Algorithm 3.1

gk gradient of f at iterate xk Subsection 3.2
g̃k the vector with minimal norm among g0, g1, ..., gk Proposition 3.3
ϕk angle between −dk and Rkgk Subsection 3.2.2
ψk angle between TT

k gk and Rkgk Subsection 3.2.3
φk angle between −dk and TT

k gk Subsection 3.2.3
Lf Lipschitz constant for ∇f Assumption 3.1
Lh common Lipschitz constant for {∇hk} Assumption 3.2
α constant in decrease condition for trust-region step Assumption 3.3
β, p constants in angle condition for trust-region step Assumption 3.4
τ upper bound for {∥Tk∥} Assumption 3.5
κ non-degeneracy constant for {Rk} Assumption 3.6
λ consistency constant for {Rk} and {Tk} Assumption 3.7
µ lower bound for {∆k/∥g̃k∥} Proposition 3.3
ς strong convexity constant for f (if f is strongly convex) Subsection 3.5.3
Ck forward transformation for coarse space Algorithm 4.1
Hk model of f in coarse space Algorithm 4.1
LH common Lipschitz constant for {∇Hk} Assumption 4.1
δk coarse space step Algorithm 4.1
ωk convex combination coefficient for dk and δk Algorithm 4.1
ω lower bound for {ωk} Assumption 4.1
ν upper bound for {∥Ck∥} Assumption 4.1
m number of subspaces in space decomposition Algorithm 5.1
N i dimension of subspace i Algorithm 5.1

Ri, T i decomposition/synchronization matrices for subspace i Algorithm 5.1
hik model of f in subspace i Algorithm 5.1
dik subspace step in subspace i Algorithm 5.1
θ multiplicity of space decomposition Definition 5.3

U i, Ũ i, W i Additive Schwarz type matrices Subsection 5.5
ĝk inaccurate gradient of f at xk Subsection 6.1
ζ magnitude of relative error in inaccurate gradients Theorem 6.1

Table 1: Symbols used in this paper.

10

2 A framework for optimization by space transformation
We propose Algorithm 2.1 as a framework for solving (1.1). Instead of tackling the problem
in Rn, at iteration k, we transfer the local information of f to an auxiliary space RNk , where
a step is obtained by minimizing a model hk based on the transferred in information. Then
the step is sent back to Rn in order to update the iterate. Inevitably, this framework relies on
transformations between Rn and the auxiliary spaces, and therefore we call it “optimization by
space transformation”.

Algorithm 2.1 Optimization by Space Transformation (prototype)
Input: x0 ∈ Rn.
For k = 0, 1, 2, . . . , iterate the following steps.
1. Forward Transformation. Define a function hk : RNk → R satisfying

∇hk(0) = Rk∇f(xk)

with a certain positive integer Nk and a certain matrix Rk ∈ RNk×n.
2. Minimization. Calculate dk ≈ argmin

{
hk(d) : d ∈ RNk

}
.

3. Backward Transformation. Define

sk = Tkdk

with a certain matrix Tk ∈ Rn×Nk .
4. Update. Set xk+1 to either xk + sk or xk depending on the quality of sk.

Each iteration of the framework consists of four phases. The Forward Transformation
phase defines a model hk : RNk → Rn linked with f by ∇hk(0) = Rk∇f(xk), where Rk ∈ RNk×n

is a linear transformation mapping the first-order information of f from Rn to RNk . The
Minimization phase seeks a step dk in the auxiliary space RNk by approximately minimiz-
ing hk. The Backward Transformation phase transmits dk back to Rn by a linear transfor-
mation Tk ∈ Rn×Nk , obtaining a step sk = Tkdk ∈ Rn. Finally, the Update phase updates the
iterate xk in Rn according to the quality of sk, the exact sense of which is left vague on purpose.

In the Minimization phase, we use dk ≈ argmin{hk(d) : d ∈ RNk} to signify that dk
minimizes hk to some extent, as will be elaborated later. Since ∇hk(0) = Rk∇f(xk), we can
interpret hk(d) as a first-order model for f(xk+RT

k d), and regard dk as an approximate minimizer
of f(xk +RT

k d). Therefore, when xk+1 = xk + sk, we have

xk+1 ≈ xk + Tk

[
argmin
d∈RNk

f(xk +RT
k d)

]
.

Hence it is tempting to set
Tk = RT

k . (2.1)

However, it will turn out that equality (2.1) does not hold in the situations that interest us in
this paper except for trivial cases. Indeed, in space decomposition methods, we violate equal-
ity (2.1) voluntarily for efficiency considerations (see RAS and ASH in Subsection 5.5), while

11

the equality fails intrinsically when we discuss optimization based on inaccurate gradient infor-
mation (see (6.1) and (6.2)). In both cases, it is exactly the possibility of allowing discrepancy
between Tk and RT

k that makes the framework presented in Algorithm 2.1 nontrivial and useful.
One can extend Algorithm 2.1 by allowing Rk and Tk to be nonlinear transformations, as will

be explained in Section 7. Concentrating on linear transformations between finite-dimensional
spaces with fixed basis, we do not distinguish linear transformations and their matrix represen-
tations, and we will sometimes refer to them as “operators” as well. Since Rk plays the role of
transferring gradients, it is indeed an operator between the dual spaces of Rn and RNk , which
will be important to note if the framework is to be generalized to optimization in Banach spaces.
Since we will focus on convergence to first-order stationarity, Algorithm 2.1 only specifies the
transmission of the first-order information explicitly. Higher-order versions of this framework
will have to include transformations for higher-order information.

Remark 2.1. For simplicity, the Minimization phase of Algorithm 2.1 denotes the variable
of hik by d regardless of k. Writing hk(d), we imply that d ∈ RNk . Therefore, when we see the
symbol d without any subscript or superscript, its dimension depends on whose variable it is
standing for, which will always be clear in context. See also Remark 5.1 in Section 5.

3 A trust-region version of the space transformation framework
3.1 Globalizing the space transformation framework by a trust region
Algorithm 2.1 obvious needs more specifications to be implementable and convergent. In partic-
ular, its Minimization and Update phases are intentionally vague, leaving many possibilities
to develop practical versions of the framework. In this work, we will focus on an implementation
of these two phases based on the trust-region methodology [30]. This leads us to Algorithm 3.1,
a trust-region version of the space transformation framework.

In Algorithm 3.1, the Minimization phase sets dk to be an inexact solution to the trust-
region subproblem min∥d∥≤∆k

hk(d). No matter how inexact dk is, we suppose that the constraint
∥dk∥ ≤ ∆k is respected. Following the terminology of trust-region methods, we will refer to hk as
the trust-region model, ∆k as the trust-region radius, dk as the trust-region step, sk as the trial
step,6 hk(0)− hk(dk) as the predicted reduction, f(xk)− f(xk + sk) as the actual reduction,
and ρk as the reduction radio. If the reduction ratio is big enough, the trial step is accepted
(see (3.2)) and the trust-region radius is possibly increased (see (3.3)). Algorithm 3.1 uses
two separate parameters η0 and η1 for the acceptance of trial steps and update of trust-region
radius, a fashion similar to [118], [138, Algorithm 2], and [108, Algorithm 4.1]. When η0 = 0,
Algorithm 3.1 accepts trial steps with simple decreases (i.e., f(xk + sk) < f(xk)).

The essential distinction between Algorithm 3.1 and classical trust-region methods (see, for
instance, [30, Algorithm 6.1.1]) lies in the transformations Rk and Tk. If both Rk and Tk are
always the identity matrix, then Algorithm 3.1 reduces to a classical trust-region framework.

When Nk ≡ n, one may expect that Algorithm 3.1 converges provided that the transforma-
6 In classical trust-region methods, the trust-region step and the trial step are identical. In Algorithm 3.1,

however, the latter is a linear transformation of the former.

12

Algorithm 3.1 Optimization by Space Transformation (trust-region version)
Input: x0 ∈ Rn, ∆0 > 0; η0 ≥ 0, η1 > 0 with η0 ≤ η1; γ0, γ1, γ2 with 0 < γ0 ≤ γ1 < 1 ≤ γ2.
For k = 0, 1, 2, . . . , iterate the following steps.
1. Forward Transformation. Identical to Algorithm 2.1.
2. Minimization. Calculate

dk ≈ argmin
{
hk(d) : d ∈ RNk , ∥d∥ ≤ ∆k

}
.

3. Backward Transformation. Identical to Algorithm 2.1.
4. Update. Calculate

ρk =
f(xk)− f(xk + sk)

hk(0)− hk(dk)
. (3.1)

Then define

xk+1 =

{
xk if ρk ≤ η0,

xk + sk if ρk > η0,
(3.2)

and set ∆k+1 in such a way that

∆k+1 ∈

{
[γ0∆k, γ1∆k] if ρk ≤ η1,

[∆k, γ2∆k] if ρk > η1.
(3.3)

tions Rk and Tk distort Rn to a controllable extent in the sense that, for all v ∈ Rn,{
vTRkv ≥ a∥v∥∥Rkv∥ and b∥v∥ ≤ ∥Rkv∥ ≤ c∥v∥,
vTTkv ≥ a∥v∥∥Tkv∥ and b∥v∥ ≤ ∥Tkv∥ ≤ c∥v∥,

(3.4)
(3.5)

where a, b, and c are positive constants independent of k, meaning that Rk and Tk never change
the direction or the length of any vector dramatically. However, such an expectation is incorrect.
For the reason, see Example 6.1 and the comments afterwards.

Indeed, as we will see in our analysis, the transformations Rk and Tk have to be compatible
with the value of η1 in (3.3), the exact sense being elaborated in Assumption 3.7. If both Rk

and Tk are always the identity matrix, the compatibility requirement will reduce to η1 < 1,
which is entirely conventional in trust-region methods. Among all the algorithmic parameters
in Algorithm 3.1, it turns out the role played by η1 is particularly important, which will become
clear along our analysis. See Subsection 3.6.4, Theorem 5.1, and Subsection 6.5 for instances.

3.2 Assumptions and their consequences
To analyze Algorithm 3.1, we have to postulate a set of assumptions on the objective function f ,
the models {hk}, the trust-region steps {dk}, and the matrices {Rk} and {Tk}. This subsection
presents these assumptions and their consequences that will facilitate our analysis.

We denote henceforth
gk = ∇f(xk).

Consequently, ∇hk(0) = Rkgk. Nevertheless, we will write ∇f(xk) and ∇hk(0) instead of gk
and Rkgk when it is necessary to highlight that they are the gradients of f and hk respectively.

13

3.2.1 Assumptions on the objective function f and the models {hk}

The assumptions on the objective function and the models are conventional.

Assumption 3.1 (Lower boundedness and smoothness of objective function). f is bounded from
below and differentiable in Rn, and ∇f is Lf -Lipschitz continuous in Rn with a constant Lf > 0.

According to this assumption, infx∈Rn f(x) is a finite number and we will denote it by finf .
For simplicity, we assume the global Lipschitz continuity of ∇f . It is analogous to [30, Assump-
tion AF.3], which requires the boundedness of ∇2f over Rn. As in [30, Chapter 6], our analysis
is still applicable after minor modifications if ∇f is only Lipschitz continuous in a neighborhood
of the level set {x ∈ Rn : f(x) ≤ f(x0)} (see [108, Theorem 4.5] for a similar case).

Assumption 3.2 (Smoothness of models). For each k ≥ 0, hk is continuously differentiable
in RNk , and ∇hk is Lh-Lipschitz continuous in RNk with a constant Lh > 0 independent of k.

Note that we assume that all the model gradients {∇hk} share a common Lipschitz constant.
This assumption is not unusual in the analysis of trust-region methods (for example, see [108,
Theorem 4.5]). Using a technique by Powell [118, 120], one can indeed establish the global
convergence of Algorithm 3.1 even if the Lipschitz constants of {∇hk} are unbounded, as long
as they do not grow too fast. It is also adequate to assume that ∇hk(d) is Lipschitz continuous
for ∥d∥ ≤ ∆k (instead of d ∈ RNk) with a common Lipschitz constant Lh for all k ≥ 0.

3.2.2 Assumptions on the trust-region steps {dk} (I)

The following assumption is typical in the analysis of trust-region methods (e.g., [116, 118, 30]).

Assumption 3.3 (Sufficient decrease of trust-region steps). There exists a constant α ∈ (0, 1]
such that

hk(0)− hk(dk) ≥ α

2
∥∇hk(0)∥min

{
∆k,

∥∇hk(0)∥
Lh

}
for each k ≥ 0.

Later we will introduce an assumption that ensures ∇hk(0) ̸= 0 as long as gk ̸= 0 (see
Assumption 3.6 in Subsection 3.2.5). Such an assumption and Assumption 3.3 guarantee that

hk(0)− hk(dk) > 0 and ∥dk∥ > 0

unless gk = 0. In our analysis, we will suppose by convention that gk = 0 never happens within
finite iterations so that Algorithm 3.1 iterates infinitely with ρk well defined for each k ≥ 0.
In computation, if hk(0) − hk(dk) = 0 occurs then one can terminate the algorithm and con-
clude gk = 0 according to Assumptions 3.3 and 3.6.

By Taylor expansion, we have

hk(d) ≤ hk(0) + dT∇hk(0) +
Lh

2
∥d∥2. (3.6)

Consider the point that minimizes the right-hand side of (3.6) on the half line {−t∇hk(0) : t ≥ 0}
under the constraint ∥d∥ ≤ ∆k. Let us denote this point by d̄k. By straightforward calculations,

d̄k = −min

{
∆k

∥∇hk(0)∥
,

1

Lh

}
∇hk(0). (3.7)

14

According to Taylor expansion and the fact that −d̄ T
k ∇hk(0) = ∥∇hk(0)∥∥d̄k∥ ≥ Lh∥d̄k∥2,

hk(0)− hk(d̄k) ≥ − d̄T
k ∇hk(0)−

Lh

2
∥d̄k∥2

≥ 1

2
∥∇hk(0)∥∥d̄k∥

=
1

2
∥∇hk(0)∥min

{
∆k,

∥∇hk(0)∥
Lh

}
.

(3.8)

Therefore, Assumption 3.3 is fulfilled as long as the reduction in hk achieved by dk is at least a
constant fraction of the amount achieved by d̄k.

Recall that the classical Cauchy step dC
k of the trust-region subproblem min∥d∥≤∆k

hk(d) is
defined as a minimizer of hk on the half line {−t∇hk(0) : t ≥ 0} subject to ∥d∥ ≤ ∆k, which is
easily computable when hk is quadratic (see [30, Section 6.3] and [108, Section 4.1]). Obviously,

hk(d
C
k) ≤ hk(d̄k).

Hence d̄k defined in (3.7) is slightly less demanding than the classical Cauchy step as it requires
no more reduction in hk. If we set dk to dC

k or any step that reduces hk even more than dC
k , then

hk(dk) ≤ hk(d̄k)

and consequently guarantee Assumption 3.3. When hk is quadratic, such a step can be Powell’s
dog-leg step [115] if ∇2hk is positive definite, Toint-Steihaug truncated conjugate gradient
step [133, 137] (see also [155]), the two-dimensional subspace minimization step in [12], and
obviously, the exact step [98]. We refer to [30, Section 6.3.3] for a backtracking technique that
yields a step dk satisfying Assumption 3.3 when hk is a nonlinear model.

Let ϕk be the angle between dk and −∇hk(0). Then Assumption 3.3 ensures

0 ≤ ϕk ≤ π

2
when ∆k ≤ α∥∇hk(0)∥

Lh
, (3.9)

In fact, by Assumption 3.3 and Taylor expansion, when ∆k ≤ α∥∇hk(0)∥/Lh,

α

2
∥∇hk(0)∥∆k ≤ hk(0)− hk(dk) ≤ −dTk∇hk(0) +

Lh

2
[∆k]

2,

which implies that

− dTk∇hk(0) ≥ α

2
∥∇hk(0)∥∆k −

Lh

2
[∆k]

2 =
Lh

2
∆k

(
α∥∇hk(0)∥

Lh
−∆k

)
≥ 0. (3.10)

As in classical trust-region analysis, the key to establishing the convergence of Algorithm 3.1
is to prove that ρk will become sufficiently large when ∆k is sufficiently small, as will be detailed
in Proposition 3.2. To this end, we need an instrumental estimation for ρk. Assumptions 3.1–3.3
can already render such an estimation. We present it in Lemma 3.1 before postulating more
assumptions. This lemma will clarify how the quality of dk and the geometrical properties of Rk

and Tk influence the value of ρk, and it will play a central role in our analysis.

15

3.2.3 The critical lemma: A lower bound for the reduction ratio ρk

Our estimation for ρk is inspired by geometrical observations, the following angles being crucial:{
ϕk = the angle between − dk and Rkgk,

ψk = the angle between TT
k gk and Rkgk.

(3.11)
(3.12)

Since ∇hk(0) = Rkgk, ϕk is indeed the angle between dk and −∇hk(0) as mentioned before.
Analytically, ϕk = arccos[−dTk (Rkgk)/(∥dk∥∥Rkgk∥)], and ψk can be defined in a similar way.
By convention, the angle between a zero vector and any other vector is defined to be π/2 so that
we do not need to be concerned about zero denominators. These angles will turn out to be key
factors that affect the value of ρk.

To see how ϕk and ψk come into play, let us make a quick estimation for ρk by geometry
without analytical details. Being adequate for our later usage, we only consider the case where

ϕk + ψk <
π

2
. (3.13)

Taking the first-order approximations of the numerator and denominator in

ρk =
f(xk)− f(xk + sk)

hk(0)− hk(dk)

while noting that sk = Tkdk and ∇hk(0) = Rkgk, we have

ρk ≈ −(Tkdk)
Tgk

−dTk (Rkgk)
=

dTk (T
T
k gk)

dTk (Rkgk)
. (3.14)

We will estimate the right-hand side of (3.14) in a geometrical fashion. For convenience, denote

rk = Rkgk, tk = TT
k gk. (3.15)

Then
dTk (T

T
k gk)

dTk (Rkgk)
=

dTk tk

dTk rk
=

tTk rk
∥rk∥2

−dTk tk
∥dk∥∥tk∥

∥dk∥∥rk∥
−dTk rk

∥tk∥∥rk∥
tTk rk

=
tTk rk
∥rk∥2

cosφk

cosϕk cosψk
, (3.16)

where φk is the angle between −dk and tk. Now note a simple geometrical fact that

φk ≤ ϕk + ψk, (3.17)

which is illustrated in Figure 3. Since we assume ϕk + ψk < π/2, the above inequality implies

cosφk ≥ cos(ϕk + ψk) = cosϕk cosψk − sinϕk sinψk. (3.18)

As cosϕk and cosψk are both positive by (3.13), we obtain from (3.15), (3.16), and (3.18) that

dTk (T
T
k gk)

dTk (Rkgk)
≥

gTk TkRkgk
∥Rkgk∥2

(1− tanϕk tanψk) . (3.19)

Estimations (3.14) and (3.19) lead us to

ρk ⪆ gTk TkRkgk
∥Rkgk∥2

(1− tanϕk tanψk) , (3.20)

where we use “⪆ ” to signify the inexactness introduced by the first-order approximation (3.14).
Lemma 3.1 will take this inexactness into account and formulates (3.20) precisely.

16

−dk
rk

tk

ψkϕk

The angle between −dk and tk cannot exceed ϕk + ψk.

Figure 3: Illustration of (3.17).

Lemma 3.1 (Lower bound for reduction ratio). Under Assumptions 3.1–3.3, if ϕk + ψk < π/2
and ∆k ≤ α∥Rkgk∥/Lh, then it holds for Algorithm 3.1 that

ρk ≥
gTk TkRkgk
∥Rkgk∥2

(
1− tanϕk tanψk −

Lh∆k

α∥Rkgk∥

)
−
Lf∥Tk∥2∆k

α∥Rkgk∥
, (3.21)

where ϕk and ψk are the angles defined in (3.11) and (3.12).
Proof. To estimate ρk rigorously, we only need to prove (3.18) and bound the inexactness in
the first-order approximation (3.14). We will leave the former to Appendix A and focus on the
latter. For convenience, denote

ρ̄k =
dTk (T

T
k gk)

dTk (Rkgk)
.

Since ϕk + ψk < π/2, we have gTk TkRkgk > 0 and tanϕk tanψk < tanϕk tan(π/2 − ϕk) = 1.
Hence (3.19) guarantees that ρ̄k > 0. Recalling that ∇hk(0) = Rkgk and sk = Tkdk, we obtain
by Taylor expansion that

ρ̄k[hk(0)− hk(dk)]−[f(xk)− f(xk + sk)]

≤ ρ̄k

[
−dTk (Rkgk) +

Lh

2
∥dk∥2

]
−
[
−(Tkdk)

Tgk −
Lf

2
∥Tkdk∥2

]
≤ 1

2
(ρ̄kLh + Lf∥Tk∥2)∥dk∥2.

Recalling Assumption 3.3 while noting that ∇hk(0) = Rkgk and ∆k ≤ ∥Rkgk∥/Lh, we have

hk(0)− hk(dk) ≥ α

2
∥Rkgk∥∆k

Therefore,

ρ̄k − ρk =
ρ̄k[hk(0)− hk(dk)]− [f(xk)− f(xk + sk)]

hk(0)− hk(dk)

≤
(ρ̄kLh + Lf∥Tk∥2)∥dk∥2

α∥Rkgk∥∆k

≤
ρ̄kLh∆k

α∥Rkgk∥
+
Lf∥Tk∥2∆k

α∥Rkgk∥
,

17

Hence
ρk ≥ ρ̄k

(
1− Lh∆k

α∥Rkgk∥

)
−
Lf∥Tk∥2∆k

α∥Rkgk∥
.

It remains to bound the right-hand side of the above inequality from below by invoking (3.19),
whose left-hand side is ρ̄k. Since 1− (Lh∆k)/(α∥Rkgk∥) ≥ 0, we obtain from (3.19) that

ρ̄k

(
1− Lh∆k

α∥Rkgk∥

)
≥
gTk TkRkgk
∥Rkgk∥2

(1− tanϕk tanψk)

(
1− Lh∆k

α∥Rkgk∥

)
=
gTk TkRkgk
∥Rkgk∥2

(
1− tanϕk tanψk −

Lh∆k

α∥Rkgk∥
+ tanϕk tanψk

Lh∆k

α∥Rkgk∥

)
≥
gTk TkRkgk
∥Rkgk∥2

(
1− tanϕk tanψk −

Lh∆k

α∥Rkgk∥

)
,

where the last line removes a non-negative term (tanϕk tanψk)(Lh∆k)/(α∥Rkgk∥) from the one
above it, leading to a lower bound. This completes the proof.

It is worth noting that (3.19) is tight. To see this, consider a problem with dimension n = 2.
Then (3.19) will become an equality when Rkgk lies between −dk and TT

k gk (see Figure 3,
where rk = Rkgk and tk = TT

k gk), which cannot be excluded without enforcing particular
assumptions on matrices Rk, Tk and trust-region step dk. Due to the tightness of (3.19), in-
equality (3.21) is asymptotically tight when ∆k/∥Rkgk∥ (that is, ∆k/∥∇hk(0)∥) becomes small.

3.2.4 Assumptions on the trust-region steps {dk} (II)

In addition to Assumption 3.3, we assume that dk is approximately in the direction of −∇hk(0)
when ∆k becomes small compared with ∥∇hk(0)∥, as is specified in Assumption 3.4.

Assumption 3.4 (Angle assumption on trust-region steps). There exist constants β ≥ 0
and p > 0 such that

sinϕk ≤ β

[
∆k

∥∇hk(0)∥

]p
for each k ≥ 0, (3.22)

where ϕk is the angle between dk and −∇hk(0) as defined in (3.11).

The motivation to impose Assumption 3.4 is the tanϕk tanψk term in Lemma 3.1. Under
this assumption, such a term is negligible when ∆k/∥∇hk(0)∥ is sufficiently small, as long as ψk

(the angle between Rkgk and TT
k gk) is uniformly bounded away from π/2.

We note that a similar assumption is postulated in [15, Theorem 3.2] for establishing the
global convergence of trust-region methods using inaccurate gradient information, where it is
assumed that the trust-region step will be approximately in the direction of the negative model
gradient when the trust-region radius becomes small. The reason for [15, Theorem 3.2] to en-
force such an assumption is the gradient inaccuracy. Similarly, the reason for us to postulate
Assumption 3.4 is to accommodate the possible mismatch between Rkgk and TT

k gk. If Rkgk
and TT

k gk are always in the same direction, then tanϕk tanψk ≡ 0 and Assumption 3.4 can be
waived, which is the case when the transformations Rk and Tk are the transposes of each other.
See Additive Schwarz in Subsection 5.5.2 for such an example. In the general case of Algo-
rithm 3.1, Rk and Tk are not necessarily the transposes of each other and hence Assumption 3.4
is indispensable. As we will show in Section 6, our analysis can cover trust-region methods using

18

inaccurate gradient information, where the inaccurate gradient is regarded as a transformation
of the accurate one. This gives an example for Tk ̸= RT

k (Tk is identity while Rk is not; see
Section 6 for details) and explains the similarity between Assumption 3.4 and the one in [15,
Theorem 3.2]. See Appendix G for more discussions on how the behavior of Rk and Tk influences
the necessity of Assumption 3.4.

In fact, to align better with [15, Theorem 3.2], we should change (3.22) to

ϕk → 0 when ∆k → 0.

The motivation for us to assume the rate sinϕk = O([∆k/∥∇hk(0)∥]p) is the following obser-
vation, whose proof will be given in Appendix B. It tells us that Assumption 3.4 will hold
automatically if dk reduces hk as much as d̄k does. As remarked on page 15, it suffices to set dk
to the classical Cauchy step or any step that reduces hk even further.

Proposition 3.1. Under Assumption 3.2, if

hk(dk) ≤ hk(d̄k)

with the d̄k defined in (3.7), then Assumption 3.4 holds with β =
√
2Lh and p = 1/2.

3.2.5 Assumptions on the transformations {Rk} and {Tk}

It is not stringent to require that the transformations {Tk} in Algorithm 3.1 remain bounded.

Assumption 3.5 (Boundedness of {Tk}). There exists a constant τ > 0 such that ∥Tk∥ ≤ τ for
each k ≥ 0.

We require Rk to be uniformly non-degenerate in the direction of gk in the following sense.

Assumption 3.6 (Non-degeneracy of {Rk}). There exists a constant κ > 0 such that

∥Rkgk∥ ≥ κ∥gk∥ for each k ≥ 0.

Since ∇hk(0) = Rkgk, Assumption 3.6 can be equivalently stated as

∥∇hk(0)∥ ≥ κ∥gk∥ for each k ≥ 0,

meaning that the norm of model gradient at 0 should be at least a multiple of ∥∇f(xk)∥.
Although Algorithm 3.1 does not require Rk and Tk to be the transposes of each other,

we do need them to have certain “consistency” along the direction of gk. We can see this
from Lemma 3.1 (note the (gTk TkRkgk)/∥Rkgk∥2 term). Recall that the key to establishing the
convergence of Algorithm 3.1 is to ensure that the trial step sk can achieve ρk > η1 when ∆k is
small enough. Since the estimation for ρk given in Lemma 3.1 is essentially tight, it is sensible
to impose the following assumption.

Assumption 3.7 (Consistency between {Rk} and {Tk}). There exists a constant λ > 0 such that

gTk TkRkgk
∥Rkgk∥2

≥ λ > η1 for each k ≥ 0.

19

Assumption 3.7 is indeed not new. It reduces to the conventional requirement that η1 < 1
when Rk and Tk are always the transposes of each other like in classical trust-region methods.
In [15], which investigates the global convergence of trust-region methods using inaccurate gra-
dient information, it is assumed that the relative error in the inaccurate gradient is bounded
by a constant ζ < 1 − η1 (see [15, inequality (7)]). Assumption 3.7 can be interpreted as an
generalization of this assumption. Actually, if we regard the inaccurate gradient as a linear
transformation of the accurate one, which we will do in Section 6, then the aforesaid bound on
the relative error will guarantee Assumption 3.7 with λ = 1− ζ > η1 (see Theorem 6.2).

As remarked after the proof of Lemma 3.1, the (gTk TkRkgk)/∥Rkgk∥2 term is tight in the
bound (3.21).Thus Assumption 3.7 is generally indispensable for the convergence of Algo-
rithm 3.1, as will be demonstrated by Example 6.1 (see the comments succeeding the example).

Although Assumptions 3.5–3.7 involve gk, they may be verified without knowing gk. This
is the case for the instances of Algorithm 3.1 in Sections 5 and 6. To fulfill Assumption 3.7, we
have to obtain the value of λ for given matrices {Rk} and {Tk}, or to choose {Rk} and {Tk} for
a given λ. For the aforementioned instances, this is not a problem either.

It is worth noting that, under Assumptions 3.5–3.7, the angle ψk between Rkgk and TT
k gk

is always acute and is uniformly bounded away from π/2, because

cosψk =
gTk TkRkgk

∥TT
k gk∥∥Rkgk∥

=
gTk TkRkgk
∥Rkgk∥2

∥Rkgk∥
∥TT

k gk∥
≥ κλ

τ
. (3.23)

Inequality (3.23) tells us that the constants τ , κ, and λ satisfy

κλ ≤ τ. (3.24)

Assumptions 3.5–3.7 also imply ∥TT
k gk∥ ≥ κλ∥gk∥ and ∥Rkgk∥ ≤ λ−1τ∥gk∥ for each k ≥ 0.

Hence, along the direction of gk, TT
k is uniformly non-degenerate and Rk is uniformly bounded.

3.2.6 A lower bound for the trust-region radius ∆k

We have stated all the assumptions needed for the analysis of Algorithm 3.1, namely As-
sumptions 3.1–3.7. Such assumptions ensure ρk > η1 when ∆k is small enough compared
with ∥∇hk(0)∥ (see Proposition 3.2). Consequently, the updating rule (3.3) for ∆k renders a
lower bound for ∆k in terms of the length of model gradients (see Proposition 3.3).

Proposition 3.2. Under Assumptions 3.1–3.7, we have ρk > η1 in Algorithm 3.1 when

∆k

∥∇hk(0)∥
≤ min

{[
κ(λ− η1)√

5τβ

] 1
p

,
α(λ− η1)

2(λLh + τ2Lf)

}
. (3.25)

Since ∇hk(0) = Rkgk, the left-hand side of (3.25) can also be written as ∆k/∥Rkgk∥. We
display it as ∆k/∥∇hk(0)∥ to stress the fact that such a value is the ratio between the trust-region
radius and the length of the model gradient.

Proof. We claim that (3.25) guarantees

tanϕk tanψk <
λ− η1
2λ

. (3.26)

20

Before proving this claim, let us show how (3.25) and (3.26) lead us to ρk > η1.
The second term in (3.25) implies that ∆k ≤ α∥∇hk(0)∥/Lh, ensuring 0 ≤ ϕk ≤ π/2 accord-

ing to (3.9). At the same time, (3.23) guarantees 0 ≤ ψk ≤ π/2. In addition, inequality (3.26)
entails trivially that tanϕk tanψk < 1. Therefore,

ϕk + ψk <
π

2
.

Hence, recalling that ∆k ≤ α∥∇hk(0)∥/Lh, we can invoke the bound in Lemma 3.1, namely

ρk ≥
gTk TkRkgk
∥Rkgk∥2

(
1− tanϕk tanψk −

Lh∆k

α∥Rkgk∥

)
−
Lf∥Tk∥2∆k

α∥Rkgk∥
. (3.27)

Meanwhile, by (3.26) and the second term in (3.25), and noting that ∇hk(0) = Rkgk, we have

1− tanϕk tanψk −
Lh∆k

α∥Rkgk∥
> 1− λ− η1

2λ
− Lh

α
· α(λ− η1)

2(λLh + τ2Lf)
> 1− 1

2
− 1

2
= 0,

which allows us to push the estimation in (3.27) forward by replacing gTk TkRkgk/∥Rkgk∥2 with
its lower bound λ in Assumption 3.7, and, trivially, replacing ∥Tk∥ with its upper bound τ in
Assumption 3.5, leading to

ρk ≥ λ

(
1−tanϕk tanψk −

Lh∆k

α∥Rkgk∥

)
−
τ2Lf∆k

α∥Rkgk∥
= λ− λ tanϕk tanψk −

(λLh + τ2Lf)∆k

α∥Rkgk∥
.

Invoking again (3.26) and the second term in (3.25), we arrive at

ρk > λ− λ · λ− η1
2λ

−
λLh + τ2Lf

α
· α(λ− η1)

2(λLh + τ2Lf)
= η1.

It remains to verify (3.26). By Assumption 3.4 and (3.25), we have

sinϕk ≤ β

[
∆k

∥∇hk(0)∥

]p
≤ β · κ(λ− η1)√

5τβ
=

κ(λ− η1)√
5τ

. (3.28)

Since κλ ≤ τ (see (3.24)), inequality (3.28) implies sinϕk < 1/
√
5. Recalling that 0 ≤ ϕk ≤ π/2,

we have cosϕk > 2/
√
5, and consequently

0 ≤ tanϕk <
κ(λ− η1)√

5τ
·
√
5

2
=

κ(λ− η1)

2τ
.

Meanwhile, (3.23) implies that tanψk ≤ τ/(κλ). Thus (3.26) holds, completing the proof.

To establish the desired lower bound for ∆k, we let g̃k be a vector in {g0, g1, . . . , gk} with

∥g̃k∥ = min
0≤ℓ≤k

∥gℓ∥.

Proposition 3.3. Under Assumptions 3.1–3.7, it holds for Algorithm 3.1 that

∆k ≥ µ∥g̃k∥ for each k ≥ 0, (3.29)

where

µ = min

{
∆0

∥g0∥
, γ0κ

[
κ(λ− η1)√

5τβ

] 1
p

,
αγ0κ(λ− η1)

2(λLh + τ2Lf)

}
. (3.30)

21

Proof. We prove by contradiction. Assume that the conclusion does not hold. Let k̄ be the
first integer such that ∆k̄ < µ∥g̃k̄∥. Then

∆k̄ <
∆0

∥g0∥
∥g̃k̄∥ ≤ ∆0

∥g0∥
∥g0∥ = ∆0,

implying that k̄ ≥ 1. By the updating rule (3.3), we have

∆k̄−1 ≤ γ−1
0 ∆k̄ < γ−1

0 µ∥g̃k̄∥ ≤ γ−1
0 µ∥gk̄−1∥, (3.31)

where the last inequality holds because ∥g̃k̄∥ ≤ ∥gk̄−1∥. Invoking Assumption 3.6, we obtain

∆k̄−1 < γ−1
0 κ−1µ∥Rk̄−1gk̄−1∥ = γ−1

0 κ−1µ∥∇hk̄−1(0)∥.

According to the definition (3.30) of µ, we can check that the scenario of Proposition 3.2 happens
at iteration k̄ − 1. Thus ρ

k̄−1
> η1. Hence (3.3) and the definition of k̄ gives us

∆k̄ ≥ ∆k̄−1 ≥ µ∥g̃k̄−1∥ ≥ µ∥g̃k̄∥,

contradicting the definition of k̄.

3.3 Key facts that lead to the convergence properties
In this subsection, we present two key lemmas that will lead us to the global convergence and
worst-case complexity theory in Subsections 3.4 and 3.5.

The first lemma states that the predicted reduction of iteration k is at least a constant
multiple of ∥g̃k∥2.
Lemma 3.2 (Sufficient predicted reduction). Under Assumptions 3.1–3.7, Algorithm 3.1 fulfills

hk(0)− hk(dk) ≥ 1

2
ακµ∥g̃k∥2 for each k ≥ 0.

Proof. According to Assumption 3.6 Proposition 3.3,

∥∇hk(0)∥∆k = ∥Rkgk∥∆k ≥ κµ∥g̃k∥2.

Meanwhile, due to the third term in the definition (3.30) of µ, we have µ < κ/Lh, and hence

∥∇hk(0)∥2

Lh
=

∥Rkgk∥2

Lh
≥ κ2

Lh
∥gk∥2 ≥ κµ∥g̃k∥2.

Thus Assumption 3.3 implies the desired reduction in hk.

The second lemma presented below reveals that, among the first K iterations (K ≥ 1), a
significant proportion of them can achieve ρk > η1. Similar results have been used in the study
of adaptive regularization methods (see [19, Theorem 2.1] and [7, Lemma 2.4] for instances).
Lemma 3.3 (Significant proportion of iterations with ρk > η1). Let K be a positive integer and

SK = {k ∈ N : 0 ≤ k ≤ K − 1 and ρk > η1} , (3.32)

ρk being the reduction ratio (3.1). Under Assumptions 3.1–3.7, it holds for Algorithm 3.1 that

K ≤ log(γ−1
2 γ1)

log γ1
|SK |+

log(γ1∆
−1
0 µ∥g̃K−1∥)
log γ1

, (3.33)

where µ is the positive constant defined in (3.30) and |SK | denotes the cardinality of SK.

22

Before the proof, we observe that SK only contains integers up to K − 1, and the right-hand
side of (3.33) involves ∥g̃K−1∥ rather than ∥g̃K∥ in its second term. Such facts will be instrumental
when we invoke Lemma 3.3 (see the proof of Theorem 3.2 for instance). In addition, it will be
important to recall that 0 < γ1 < 1 and hence log γ1 < 0 when proving and applying this lemma.

Proof. Noting that µ∥g̃K−1∥ ≤ µ∥g0∥ ≤ ∥∆0∥ by (3.30), and that log γ1 < 0, we have

log(γ1∆
−1
0 µ∥g̃K−1∥)
log γ1

≥ log(γ1∆
−1
0 ∆0)

log γ1
= 1. (3.34)

Thus we can assume K ≥ 2 when proving (3.33). Setting K ′ = K − 1, it suffices to prove that 7

K ′ ≤ log(γ−1
2 γ1)

log γ1
|SK′ |+ log(∆−1

0 µ∥g̃K′∥)
log γ1

, (3.35)

which will lead to (3.33) by adding 1 on both sides and noting that |SK′ | ≤ |SK |.
According to (3.3), it holds that

∆k+1 ≤

{
γ1∆k if k /∈ SK′ ,

γ2∆k if k ∈ SK′ .
(3.36)

Hence, with S denoting |SK′ |, we have

∆K′ ≤ γK′−S

1 γS
2∆0 = γK′

1 (γ−1
1 γ2)

S∆0.

Dividing both ends of the above inequality by ∆0 and then taking logarithm, we have

log(∆−1
0 ∆K′) ≤ K ′ log γ1 + S log(γ−1

1 γ2).

Dividing this inequality by log γ1 < 0 and then rearranging the terms, we arrive at

K ′ ≤ log(γ−1
2 γ1)

log γ1
S +

log(∆−1
0 ∆K′)

log γ1
. (3.37)

Recalling that ∆K′ ≥ µ∥g̃K′∥ according to Proposition 3.3, and that log γ1 < 0, we have

log(∆−1
0 ∆K′)

log γ1
≤ log(∆−1

0 µ∥g̃K′∥)
log γ1

.

Hence inequality (3.35) is true, which completes the proof.

Note that Lemma 3.3 holds true even if SK is empty, as we can see from the proof.
Apart from the lower bound (3.29), the proof of Lemma 3.2 relies only on Assumptions 3.3

and 3.6, while that of Lemma 3.3 only on the updating rule (3.3). The proofs do not refer
to Assumptions 3.1, 3.2, 3.4, 3.5, or 3.7, yet Lemmas 3.2 and 3.3 inherit dependence on these
assumptions from Proposition 3.3. This map of logic reliance will guide us to derive analogues of
Lemmas 3.2 and 3.3 under other settings and hence establish global convergence and worst-case
complexity theory when context changes. See Theorems 3.5, 3.6, 3.8, 4.1, and G.1 for examples.

7 When K = 1 and K′ = 0, the set SK′ is undefined, which is why we need to assume K ≥ 2 for (3.35).

23

3.4 Global convergence
Based on Lemmas 3.2–3.3, we establish the following global convergence results for Algo-
rithm 3.1. For the lim inf-type convergence (3.38) and the lim-type convergence (3.39) with
a positive η0, the proofs will only be briefly sketched because they are essentially the same
as the known arguments for classical trust-region methods. In addition, the proof techniques
for (3.39) will be fully illustrated in Subsection 3.6.3, where we prove a lim-type convergence
result without requiring η0 > 0 (Theorem 3.7).

Theorem 3.1. Under Assumptions 3.1–3.7, it holds for Algorithm 3.1 that

lim inf
k→∞

∥gk∥ = 0. (3.38)

Moreover, the lim-type convergence can be guaranteed in each of the following two cases.
1. If η0 > 0, then

lim
k→∞

∥gk∥ = 0. (3.39)

2. If f is convex and level-bounded,8 then

lim
k→∞

f(xk) = finf and lim
k→∞

∥gk∥ = 0. (3.40)

Proof. Similar to the proof of [30, Theorem 6.4.5], we can prove (3.38) by examining the reduc-
tion of f over the iterations with ρk > η1. Assume by contradiction that lim infk→∞ ∥gk∥ > 0.
Then Lemma 3.2 ensures that each iteration with ρk > η1 reduces f by an amount uniformly
bounded from zero, and Lemma 3.3 implies that there exist infinitely many such iterations.
Thus we have a contraction because f is bounded from below.

When η0 > 0, one can follow the proof of [30, Theorem 6.4.6] to demonstrate (3.39) by the
Thomas argument [136], a minor difference being that ∥xk − xk+1∥ is bounded by τ∆k instead
of ∆k due to the transformation Tk. See the proof of Theorem 3.7 for details of the argument.

We now prove (3.40) when f is convex and level-bounded. Consider the level set

L(x0) = {x : f(x) ≤ f(x0)},

which is compact. According to the continuity of f , there exists a point x∗ ∈ L(x0) such
that f(x∗) = finf . The monotonicity of {f(xk)} guarantees that {xk} ⊂ L(x0). Therefore, by
the convexity of f , it holds for each k ≥ 0 that

f(xk)− finf = f(xk)− f(x∗) ≤ gTk (xk − x∗) ≤ ∥gk∥D, (3.41)

where D is the diameter of L(x0). Hence (3.38) ensures lim infk→∞ f(xk) = finf , which implies
f(xk) → finf due to the monotonicity of {f(xk)}. We then obtain ∥gk∥ → 0 from the fact that

f(xk)− finf ≥ 1

2Lf
∥gk∥2 for each k ≥ 0, (3.42)

which is a consequence of Assumption 3.1 (independent of the convexity of f).9

8 An extended real-valued function f is level-bounded if for each y ∈ R the level set levy ≡ {x : f(x) ≤ y} is
bounded (possibly empty) [125, Definition 1.8]. If f is convex, then it is level-bounded if and only if levα is
bounded for a certain y larger than the infimum of f [124, Corollary 8.7.1].

9 f(xk)− finf ≥ f(xk)− f(xk − gk/Lf) ≥ −(−gk/Lf)
Tgk − Lf∥ − gk/Lf∥2/2 = ∥gk∥2/(2Lf).

24

As we can see from the proof, given the convexity and lower-boundedness of f as well as
Assumption 3.1, (3.40) is a consequence of lim infk→∞ ∥gk∥ = 0 and the monotonicity of {f(xk)}
without further dependence on Algorithm 3.1.

According to the example by Yuan [154], the lim-type convergence (3.39) can fail for Al-
gorithm 3.1 if the objective function is nonconvex and η0 = 0, meaning that the algorithm
accepts trial steps with simple decreases. Note that lim-type convergence can be achieved in
the nonconvex and simple-decrease case for other variants of trust-region methods, an example
being [32, Theorem 5.9], where the trust-region radius is updated in accordance with a station
arty measure. We will establish such kind of results for Algorithm 3.1 in Subsection 3.6.3.

3.5 Worst-case complexity
3.5.1 Nonconvex case

For any positive constant ϵ < ∥g0∥, define

kgϵ = min{k ∈ N : ∥gk∥ ≤ ϵ}.

Then kgϵ is a positive integer, and

∥gk∥ > ϵ for each k ∈ {0, 1, . . . , kgϵ − 1}. (3.43)

Using Lemma 3.33, we can derive the following bound for kgϵ .

Theorem 3.2. Under Assumptions 3.1–3.7, it holds for Algorithm 3.1 that

kgϵ ≤ 2 log(γ−1
2 γ1)

ακµη1 log γ1
(f0 − finf)ϵ

−2+
log(γ1∆

−1
0 µϵ)

log γ1
, (3.44)

where f0 = f(x0), finf = infx∈Rn f(x), and µ is the positive constant defined in (3.30).

Proof. Denote K = kgϵ and define SK by (3.32) as in Lemma 3.3. According to (3.32) and the
iterate updating scheme (3.2), for any k ∈ SK ,

f(xk)− f(xk+1) = f(xk)− f(xk + sk) ≥ η1[hk(0)− hk(dk)] ≥ 1

2
ακµη1ϵ

2,

where the last inequality is because of Lemma 3.2. Since {f(xk)} is non-increasing, we have 10

∑
k∈SK

[f(xk)− f(xk+1)] ≤
∞∑
k=0

[f(xk)− f(xk+1)] ≤ f0 − finf .

These two inequalities imply that

|SK | ≤ 2

ακµη1
(f0 − finf)ϵ

−2. (3.45)

Combining (3.45) with Lemma 3.3, we obtain

K ≤ log(γ−1
2 γ1)

log γ1
· 2

ακµη1
(f0 − finf)ϵ

−2 +
log(γ1∆

−1
0 µ∥g̃K−1∥)
log γ1

.

10 If SK = ∅, we follow the convention that a sum over an empty set equals zero.

25

Therefore, we arrive at (3.44) by noting that

log(γ1∆
−1
0 µ∥g̃K−1∥)
log γ1

≤ log(γ1∆
−1
0 µϵ)

log γ1
, (3.46)

which is true because log γ1 < 0 and ∥g̃K−1∥ > ϵ according to (3.43).

3.5.2 Convex case

When f is convex, it is of interest to find an upper bound for the positive integer

kfϵ = min{k ∈ N : f(xk)− finf ≤ ϵ}, (3.47)

where ϵ < f(x0)− finf is a positive constant. For kgϵ and kfϵ , we have the following results.

Theorem 3.3. If f is convex and level-bounded, then under Assumptions 3.1–3.7, it holds for
Algorithm 3.1 that

kgϵ ≤ 4D log(γ−1
2 γ1)

ακµη1 log γ1
ϵ−1+

log(γ1∆
−1
0 µϵ)

log γ1
, (3.48)

kfϵ ≤ 4D2 log(γ−1
2 γ1)

ακµη1 log γ1
ϵ−1+

log(γ1D
−1∆−1

0 µϵ)

log γ1
, (3.49)

where D is the diameter of the initial level set L(x0) = {x : f(x) ≤ f(x0)}, and µ is the positive
constant defined in (3.30).

Before proving the theorem, we note that inequality (3.41) can be strengthened to

f(xk)− finf ≤ D∥g̃k∥. (3.50)

Indeed, setting k̃ to be an integer in {0, 1, 2, . . . , k} such that ∥gk̃∥ = min1≤i≤k ∥gk∥, we have

f(xk)− finf ≤ f(xk̃)− finf ≤ gT
k̃
(xk̃ − x∗) ≤ D∥gk̃∥ = D∥g̃k∥.

Proof. We first derive (3.48) for kgϵ . Denote K = kgϵ , and define SK by (3.32) as in Lemma 3.3.
We claim that

|SK | ≤ 4D

ακµη1ϵ
. (3.51)

Once (3.51) is justified, we can obtain (3.48) by plugging (3.51) into Lemma 3.3 and then
noting (3.46), the arguments being similar to the proof of Theorem 3.2,

To prove (3.51), we assume that SK ̸= ∅. Let S = |SK |, enumerate SK in ascending order as

SK = {k1, k2, . . . , kS} ,

and define kS+1 = kS +1. For each i ∈ {1, 2, . . . , S}, by (3.50) and the monotonicity of {f(xk)},

∥g̃ki∥ ≥ D−1[f(xki)− finf] ≥ D−1
S∑
j=i

[f(xkj)− f(xkj+1)] ≥ D−1
S∑
j=i

η1[hkj (0)− hkj (dkj)].

26

According to Lemma 3.2, the above inequality implies that

∥g̃ki∥ ≥ ακµη1
2D

S∑
j=i

∥g̃kj∥
2.

Therefore, by (3.43) and Lemma D.1,

ϵ < min
1≤i≤S

∥g̃ki∥ ≤ 4D

ακµη1S
,

which implies (3.51) since S = |SK |. Thus we have proved (3.48).
Inequality (3.48) implies (3.49). Indeed, according to (3.41), f(xk) − finf ≤ ϵ is fulfilled as

long as ∥gk∥ ≤ D−1ϵ is achieved, which implies that kfϵ ≤ kg
D−1ϵ

.

3.5.3 Strongly convex case

Now we consider the case that f is ς-strongly convex for a positive constant ς, namely

f(y) ≥ f(x) + (y − x)T∇f(x) + ς

2
∥y − x∥2

for all x and y in Rn. In this case, we know that there exists a unique point x∗ ∈ Rn where f
attains its infimum finf , and that

f(x)− finf ≤ 1

2ς
∥∇f(x)∥2, (3.52)

f(x)− finf ≥ ς

2
∥x− x∗∥2 (3.53)

for all x ∈ Rn. Obviously, it holds that ς ≤ Lf .
In this part, besides kfϵ and kgϵ , we will also present the worst-case complexity in terms of

kxϵ = min{k ∈ N : ∥xk − x∗∥ ≤ ϵ},

where ϵ < ∥x0 − x∗∥ is a positive constant. We have the following bounds.

Theorem 3.4. If f is ς-strongly convex, then under Assumptions 3.1–3.7, it holds for Algo-
rithm 3.1 that

kfϵ ≤ log(γ−1
2 γ1)

ακµη1ς log γ1
log[(f0 − finf)ϵ

−1] +
log(γ−1

2 γ21∆
−1
0 µ

√
2ςϵ)

log γ1
, (3.54)

kgϵ ≤ 2 log(γ−1
2 γ1)

ακµη1ς log γ1
log

[√
2Lf (f0 − finf)ϵ

−1

]
+

log(γ−1
2 γ21∆

−1
0 µ

√
ς/Lf ϵ)

log γ1
, (3.55)

kxϵ ≤ 2 log(γ−1
2 γ1)

ακµη1ς log γ1
log
[√

2ς−1(f0 − finf)ϵ
−1
]
+

log(γ−1
2 γ21∆

−1
0 µςϵ)

log γ1
, (3.56)

where f0 = f(x0), finf = infx∈Rn f(x), and µ is the positive constant defined in (3.30).

27

Proof. We first prove (3.54) for kfϵ . Denote K = kfϵ , and define SK by (3.32) as in Lemma 3.3.
To invoke Lemma 3.3 later, we note that

∥g̃K−1∥ >
√
2ςϵ, (3.57)

which holds since ∥g̃K−1∥ = min0≤k≤K−1 ∥gk∥ and, by (3.52) and the definition (3.47) of kfϵ ≡ K,

∥gk∥ ≥
√
2ς[f(xk)− finf] >

√
2ςϵ for each k ∈ {0, 1, . . . ,K − 1}.

With (3.57), we can demonstrate (3.54) by showing that∣∣SK

∣∣ ≤ log[(f0 − finf)ϵ
−1]

ακµη1ς
+ 1. (3.58)

Indeed, if (3.58) holds, plugging (3.57)–(3.58) into Lemma 3.3, we will obtain (3.54) as follows:

kfϵ = K ≤ log(γ−1
2 γ1)

log γ1

[
log[(f0 − finf)ϵ

−1]

ακµη1ς
+ 1

]
+

log(γ1∆
−1
0 µ

√
2ςϵ)

log γ1

=
log(γ−1

2 γ1)

ακµη1ς log γ1
log[(f0 − finf)ϵ

−1] +
log(γ−1

2 γ21∆
−1
0 µ

√
2ςϵ)

log γ1
.

To prove (3.58), we assume that SK ̸= ∅. Let S = |SK |, enumerate SK in ascending order as

SK = {k1, k2, . . . , kS} ,

and define kS+1 = kS + 1. For each i ∈ {1, 2, . . . , S}, we will show that

f(xki+1
)− finf ≤ (1− ακµη1ς)[f(xki)− finf]. (3.59)

To this end, we note that f(xki+1
) ≤ f(xki+1) and exploit Lemma 3.2, obtaining

f(xki)− f(xki+1
) ≥ f(xki)− f(xki+1) ≥ η1[hki(0)− hki(dki)] ≥ 1

2
ακµη1∥g̃ki∥

2. (3.60)

According to the definition of g̃ki , there exists a k̃ ∈ {0, 1, . . . , ki} such that ∥gk̃∥ = ∥g̃ki∥.
Inequality (3.52) and the monotonicity of {f(xk)} then lead us to

∥g̃ki∥
2 = ∥gk̃∥

2 ≥ 2ς[f(xk̃)− finf] ≥ 2ς[f(xki)− finf]. (3.61)

Combining (3.60) and (3.61), we have

f(xki)− f(xki+1
) ≥ ακµη1ς[f(xki)− finf],

which implies (3.59) because f(xki+1
)− finf = [f(xki)− finf]− [f(xki)− f(xki+1

)]. With inequal-
ity (3.59) justified, we have 11

log

[
f(xki+1

)− finf

f(xki)− finf

]
≤ log(1− ακµη1ς) ≤ −ακµη1ς for each i ∈ {1, 2, . . . , S}. (3.62)

11 We note that inequality (3.59) itself implies that ακµη1ς < 1, because both f(xki+1)− finf and f(xki)− finf
are positive numbers (recall our convention that gk can never become zero within finite iterations). Hence it is
legitimate to use log(1 − ακµη1ς) in (3.62). One can also verify ακµη1ς < 1 directly. Indeed, substituting the
definition (3.30) of µ into ακµη1ς, we have ακµη1ς ≤ ακη1ς · γ0ακ(λ− η1)/[2(λLh + τ2Lf)]. Since α ≤ 1, γ0 < 1,
η1 < λ, and ς ≤ Lf , it holds that ακµη1ς < κ2λ2/τ2 ≤ 1, where the last inequality is due to (3.24).

28

Note that ϵ < f(xkS)− finf by the fact that kS ≤ K − 1 and definition (3.47) of kfϵ ≡ K. Thus

log[(f0 − finf)
−1ϵ] < log

[
f(xkS)− finf
f(xk1)− finf

]
=

S−1∑
i=1

log

[
f(xki+1

)− finf

f(xki)− finf

]
≤ −ακµη1ς (S − 1).

Hence,

S ≤ log[(f0 − finf)ϵ
−1]

ακµη1ς
+ 1,

which is identical to (3.58) since S = |SK |. Thus we have proved (3.54).
By (3.42), we know that ∥gk∥ ≤ ϵ if f(xk)− finf ≤ ϵ2/(2Lf). Therefore, kgϵ ≤ kf

ϵ2/(2Lf)
, and

hence (3.54) implies (3.55). Similarly, (3.53) shows that ∥x−x∗∥ ≤ ϵ when f(xk)− finf ≤ ςϵ2/2.
Thus kxϵ ≤ kf

(ςϵ2)/2
, and hence (3.54) implies (3.56).

3.6 Comments on the update of trust-region radius
This subsection can be skimmed over during a first reading. For experts in trust-region methods
and those who are concerned with implementations, we discuss more details on the updating
scheme (3.3) for trust-region radius. We introduce frequently used implementations of the
scheme, and show that (3.3) can be further generalized to encompass more possibilities without
jeopardizing the theory in Subsections 3.4–3.5. In addition, Subsection 3.6.3 provides trust-
region radius updating strategies that ensure ∥gk∥ → 0 without demanding convexity of f or
sufficient decrease in trial step acceptance, while traditional results ensure only lim inf ∥gk∥ = 0.

3.6.1 Flexibility in the updating scheme and typical implementations

The updating scheme (3.3) leaves considerable flexibility in practice. We stress that it is not
necessary to set always ∆k+1 = γ2∆k when ρk > η1. Practical implementations of Algorithm 3.1
may introduce two more parameters η2 ∈ [η1,∞] and ∆max ∈ [∆0,∞] and then set

∆k+1 =

γ1∆k if ρk ≤ η1,

∆k if η1 < ρk ≤ η2,

min{∆max, γ2∆k} if ρk > η2,

(3.63)

which is a special instance of (3.3). On top of ρk > η2, we can enforce further conditions for
invoking ∆k+1 = min{∆max, γ2∆k}, for instance ∥dk∥ = ∆k as in [108, Algorithm 4.1], meaning
that we expand the trust-region radius only if dk actually reaches the boundary of the trust
region. When both Rk and Tk are always the identity matrix (i.e., classical trust-region meth-
ods), η1 = 1/4 and η2 = 3/4 are implemented in LANCELOT (see [29, Sections 3.2.4 and 3.3.4]).
Typical values of γ1 include 1/4 and 1/2, and setting γ2 to its reciprocal is not uncommon.

For classical trust-region methods, [30, Page 782] points out that “a number of practical
implementations” manage the trust region by

∆k+1 =

γ1∥dk∥ if ρk ≤ η1,

∆k if η1 < ρk ≤ η2,

max{∆k, γ2∥dk∥} if ρk > η2,

(3.64)

29

instead of (3.63). For this scheme, [30, Section 17.1] suggests η1 = 0.05 and η2 = 0.9, while
[61, Section 4.4] recommends 12 η1 = 0.0001 and η2 = 0.99. Scheme (3.64) is not a special case
of (3.3). To cover (3.64), we consider

∆k+1 ∈

{
[γ0∥dk∥, γ1∆k] if ρk ≤ η1,

[∆k, γ2∆k] if ρk > η1,
(3.65)

which is used by Yuan in [154, Algorithm 1.1] and [156, Algorithm 2.1]. Scheme (3.65) encom-
passes both (3.64) and (3.3) as well as the update rule in [108, Algorithm 4.1] as particular
instances. We will show that, even if Algorithm 3.1 adopts the more general rule (3.65), the
convergence and complexity theory in Subsections 3.4–3.5 still holds after a minor modification
on the definition of the constant µ.

Theorem 3.5. Let Algorithm 3.1 update the trust-region radius ∆k according to (3.65) instead
of (3.3). Then Theorem 3.1 remains true, while Theorems 3.2–3.4 are still valid as long as we
shift the definition of µ from (3.30) to

µ = min

{
∆0

∥g0∥
,
αγ0κ

3

[
κ(λ− η1)√

5τβ

] 1
p

,
α2γ0κ(λ− η1)

6(λLh + τ2Lf)

}
. (3.66)

Comparing (3.66) with (3.30), we see they differ only by a factor of α/3 in the last two terms.
This factor comes from the following proposition, which by itself is an interesting observation
on trust-region methods. It reveals that a trust-region step achieving sufficient model decrease
cannot be much shorter than min{∆k, ∥∇hk(0)∥/Lh}. We prove it in Appendix C.

Proposition 3.4. Assumptions 3.2 and 3.3 ensure

∥dk∥ ≥ α

3
min

{
∆k,

∥∇hk(0)∥
Lh

}
for each k ≥ 0.

Now we can prove Theorem 3.5.

Proof of Theorem 3.5. We only need to justify Lemmas 3.2 and 3.3 with µ taking the new def-
inition (3.66). This is because the proofs of Theorems 3.1–3.4 depend only on these two lemmas
without explicitly referring to the updating rule for ∆k, as we can check in Subsections 3.4–3.5.

Bearing in mind the new rule (3.65) for updating ∆k and the new definition of µ, we will now
follow the road map set up in Subsections 3.2 and 3.3 to verify the propositions and arguments
that lead to Lemmas 3.2 and 3.3.

Lemma 3.1 and Proposition 3.2 still hold because they concern only a single step of Algo-
rithm 3.1 and hence do not depend on the update of ∆k.

Proposition 3.3 is where Proposition 3.4 and the new scheme (3.65) for ∆k come into play,
and also where the new µ come into being. We assume that the conclusion does not hold, and
let k̄ be the first integer such that ∆k̄ < µ∥g̃k̄∥. Then we can replicate the original proof of
Proposition 3.3 until (3.31), which should now be replaced with

∥dk̄−1∥ ≤ γ−1
0 ∆k̄ < γ−1

0 µ∥g̃k̄∥ ≤ γ−1
0 µ∥gk̄−1∥

12 Note that both [30, Algorithm 6.1.1] and [61, Algorithm 1] use ρk > η1 as the criterion for the acceptance of
trial steps. This partially explains why such small values of η1 are needed.

30

according to the new updating rule (3.65). Combining this with Proposition 3.4, we have

min

{
∆k̄−1,

∥∇hk̄−1(0)∥
Lh

}
<

3

α
γ−1
0 µ∥gk̄−1∥.

In other words,

either ∆k̄−1 <
3

α
γ−1
0 µ∥gk̄−1∥ or

∥∇hk̄−1(0)∥
Lh

<
3

α
γ−1
0 µ∥gk̄−1∥. (3.67)

However, the second inequality above is false, since the last term in (3.66) tells us that

3

α
γ−1
0 µ∥gk̄−1∥ ≤ α(λ− η1)

2(λLh + τ2Lf)
κ∥gk̄−1∥ ≤ α(λ− η1)

2(λLh + τ2Lf)
∥∇hk̄−1(0)∥ <

∥∇hk̄−1(0)∥
Lh

.

Thus we obtain from the first inequality in (3.67) and the definition (3.66) of µ that

∆k̄−1 <
3

α
γ−1
0 µ∥gk̄−1∥ ≤ min

{
κ

[
κ(λ− η1)√

5τβ

] 1
p

,
ακ(λ− η1)

2(λLh + τ2Lf)

}
∥gk̄−1∥.

By Assumption 3.6, ∥gk̄−1∥ ≤ κ−1∥Rk̄−1gk̄−1∥ = ∥∇hk̄−1(0)∥. Therefore,

∆k̄−1 < min

{[
κ(λ− η1)√

5τβ

] 1
p

,
α(λ− η1)

2(λLh + τ2Lf)

}
∥∇hk̄−1(0)∥,

which ensures ρ
k̄−1

> η1 by Proposition 3.2. Hence (3.65) and the definition of k̄ gives us

∆k̄ ≥ ∆k̄−1 ≥ µ∥g̃k̄−1∥ ≥ µ∥g̃k̄∥,

a contradiction to the definition of k̄. Proposition 3.3 is hence justified.
Given Proposition 3.3, the proof of Lemma 3.2 is still valid. That of Lemma 3.3 is also

applicable, as (3.36) remains true under the new rule (3.65). The proof is complete.

3.6.2 Setting trust-region radius to a multiple of model gradient size

For trust-region methods without space transformation, Fan and Yuan [48] proposed to define

∆k = Υk∥∇hk(0)∥ (3.68)

and update ∆k indirectly by adjusting Υk according to ρk in a fashion similar to (3.3), that is

Υk+1 ∈

{
[γ0Υk, γ1Υk] if ρk ≤ η1,

[Υk, γ2Υk] if ρk > η1,
(3.69)

where the initial value Υ0 is an algorithmic parameter selected beforehand. See [48, Section 2]
for their motivations from Levenberg-Marquardt method and [159, equations (2.11)–(2.12)] for
the motivation from local convergence rate analysis. This method is further studied in [47], and
is included as a special case in the investigations on nonlinear step size control [139, 63, 64].
In [33], worst-case complexity is established for a trust-region algorithm based on an updating

31

scheme of this type. In [65], a similar rule is followed in a trust-region method with decoupled
first/second-order steps technique that guarantees convergence towards second-order stationarity
with improved complexity. Similar ideas are also reflected in the so-called criticality step (see [32,
Algorithm 4.2] and [3, Algorithm 3.1]) proposed by [31] before [48].

Even if Algorithm 3.1 manages the trust region by (3.68)–(3.69) instead of (3.3), the con-
vergence and complexity theory in Subsections 3.4–3.5 still holds without any modification.

Theorem 3.6. Let Algorithm 3.1 define the trust-region radius ∆k by (3.68) and update it
according to (3.69). Then Theorems 3.1–3.4 remain true.

Proof. The global convergence results in Theorem 3.1 can be proved by classical arguments
that will be completely included in the proof of Theorem 3.8 (see footnote 16). To establish the
complexity bounds in Theorems 3.2–3.4, similar to Theorem 3.5, it suffices to justify Lemmas 3.2
and 3.3 based on the new rules (3.68)–(3.69). We will follow again the road map set up in
Subsections 3.2 and 3.3 and verify the propositions and arguments that lead to the two lemmas.

Lemma 3.1 and Proposition 3.2 still hold because they concern only a single step of Algo-
rithm 3.1 and are independent of the update of ∆k.

For Proposition 3.3, we first note that Proposition 3.2 renders a lower bound for {Υk}k≥1.
Indeed, since ∆k = Υk∥∇hk(0)∥, Proposition 3.2 tells us that ρk > η1 whenever

Υk ≤ min

{[
κ(λ− η1)√

5τβ

] 1
p

,
α(λ− η1)

2(λLh + τ2Lf)

}
.

A similar argument as in the proof of Proposition 3.3 will lead us to

Υk ≥ min

{
γ0

[
κ(λ− η1)√

5τβ

] 1
p

,
γ0α(λ− η1)

2(λLh + τ2Lf)

}
when k ≥ 1.

This inequality above implies

Υk ≥ κ−1min

{
γ0κ

[
κ(λ− η1)√

5τβ

] 1
p

,
γ0κα(λ− η1)

2(λLh + τ2Lf)

}
≥ κ−1µ when k ≥ 1, (3.70)

the last inequality being due to the definition (3.30) of µ. Since ∆k = Υk∥∇hk(0)∥ = Υk∥Rkgk∥,
recalling ∥Rkgk∥ ≥ κ∥gk∥ according to Assumption 3.6, we have

∆k = Υk∥Rkgk∥ ≥ κ−1µ · κ∥gk∥ = µ∥gk∥ when k ≥ 1. (3.71)

This is adequate for justifying (3.29), as ∆0 ≥ µ∥g0∥ trivially due to the definition (3.30) of µ.
Indeed, we have proved that ∆k ≥ µ∥gk∥ for each k ≥ 0, which is stronger than (3.29).

Given Proposition 3.3, the proof of Lemma 3.2 is still valid.
Now let us check Lemma 3.3. Recall that Lemma 3.3 defines SK as

SK = {k ∈ N : 0 ≤ k ≤ K − 1 and ρk > η1} .

Similar to (3.34), inequality (3.33) can be justified easily when K = 1 by noting that µ∥g0∥ ≤ ∆0.
Focusing on K ≥ 2 and denoting K ′ = K− 1, it suffices again to prove (3.35). As a counterpart
to (3.36), we obtain from (3.69) that

Υk+1 ≤

{
γ1Υk if k /∈ SK′ ,

γ2Υk if k ∈ SK′ .
(3.72)

32

With S denoting |SK′ |, inequalities (3.70) and (3.72) lead to

κ−1µ ≤ ΥK′ ≤ γK′−S

1 γS
2Υ0 = γK′

1 (γ−1
1 γ2)

SΥ0.

Similar to (3.37), we divide both ends of this inequality by Υ0, take logarithm, and then divide
the resultant inequality by log γ1 < 0, arriving at

K ′ ≤ log(γ−1
2 γ1)

log γ1
S +

log(Υ−1
0 κ−1µ)

log γ1
. (3.73)

Since log γ1 < 0, and

Υ−1
0 κ−1µ =

∥R0g0∥
∆0

κ−1µ ≥ κ∥g0∥
∆0

κ−1µ = ∆−1
0 µ∥g0∥ ≥ ∆−1

0 µ∥g̃K′∥, (3.74)

we know that (3.73) implies (3.35) and hence justifies Lemma 3.3. The proof is complete.

As we can see from (3.74), under the settings of Theorem 3.6, inequality (3.33) can indeed
be strengthened to

K ≤ log(γ−1
2 γ1)

log γ1
|SK |+

log(γ1∆
−1
0 µ∥g0∥)

log γ1
,

where ∥g̃K−1∥ is replaced with ∥g0∥. Consequently, for each bound in Theorems 3.2–3.4, the
second term can be improved to O(1). Yet this will not change the overall order of the bounds.

3.6.3 Trust-region radius and lim-type convergence

As we mentioned in Subsection 3.4, the example by Yuan [154] shows that Algorithm 3.1 does
not ensure ∥gk∥ → 0 if the objective function is nonconvex and η0 = 0. This subsection provides
a simple remedy for the problem reflected by Yuan’s example. In Theorem 3.7, we show that
Algorithm 3.1 can indeed guarantee ∥gk∥ → 0 even if η0 = 0 as long as the trust-region radius
is not expanded (yet may stay unchanged) when it is already large compared to the model
gradient, where the criterion of being large can be any prescribed threshold. Similarly, for the
variant of Algorithm 3.1 that maintains the trust-region radius by (3.68)–(3.69) instead of (3.3),
Theorem 3.8 shows that ∥gk∥ → 0 is secured without requiring η0 > 0 provided that Υk is not
expanded when it is already larger than a prescribed bound.

Theorem 3.7 is inspired by [32, Theorem 5.9], while Theorem 3.8, to the best our knowledge,
is new even for classical trust-region methods, i.e., when Rk and Tk are always identity.

Theorem 3.7. Let Algorithm 3.1 update ∆k according to (3.3), and additionally impose

∆k+1 ≤ ∆k whenever ∆k > µ̄∥∇hk(0)∥ (3.75)

with a constant µ̄ ∈ [0,∞). Then under Assumptions 3.1–3.7, it holds for Algorithm 3.1 that

lim
k→∞

∥gk∥ = 0.

In Yuan’s example, ∆3k → 1, ∆3k+1 → 3, and ∥∇h3k(0)∥ → 0. Hence, for all large k,
∆3k+1 > ∆3k even though ∆3k ≫ ∥∇h3k(0)∥. This is why ∥gk∥ ↛ 0 in view of Theorem 3.7.

33

Imposing (3.75) means to demand ∆k ≤ µ̄∥∇hk(0)∥ as a prerequisite for expanding the
trust-region radius. It differs however from enforcing µ̄∥∇hk(0)∥ as an upper bound for ∆k.
One can indeed require Algorithm 3.1 to update ∆k according to (3.3) and (3.75) with µ̄ = 0. In
that case, ∆k > µ̄∥∇hk(0)∥ trivially for each k ≥ 0, which refrains the algorithm from expanding
the trust-region radius at all. A practical scheme that obeys both (3.3) and (3.75) is

∆k+1 =

γ1∆k if ρk ≤ η1,

γ2∆k if ρk > η2 and ∆k ≤ µ̄∥∇hk(0)∥,
∆k else,

(3.76)

where η2 is in [η1,∞] as before. This resembles the criticality-step strategy in [31] (see also
[32, Algorithm 4.2] and [3, Algorithm 3.1]) in the sense that the update of ∆k takes the size of
model gradient into consideration. Another instance is [86, Algorithm 3.3.2], where ∆k+1 > ∆k

only if ∥dk∥ = ∆k ≤ constant · ∥∇hk(0)∥. We also mention that ∥dk∥ ≡ ∆k in Yuan’s example.
Hence requiring ∆k+1 ≤ ∆k whenever ∥dk∥ < ∆k instead of (3.75) does not guarantee ∥gk∥ → 0.

Now we tailor the techniques in [32] to prove Theorem 3.7. As a preparation, we study sets 13

S = {k ∈ N : ρk > η1} and V = {k ∈ N : ρk > η1 and ∆k ≤ µ̄∥∇hk(0)∥} .

For these sets, (3.3) and (3.75) imply that

∆k+1

≤ γ1∆k if k ∈ N \ S,
= ∆k if k ∈ S \ V,
≥ ∆k if k ∈ V.

(3.77)

In addition to (3.77), we have the following reduction estimations:14

f(xk)− f(xk+1) ≥

1

2
αη1min

{
∆k,

κ∥gk∥
Lh

}
κ∥gk∥ if k ∈ S,

1

2
αη1min

{
∆k,

∆k

Lhµ̄

}
∆k

µ̄
if k ∈ V.

(3.78)

(3.79)

Such estimations hold because the iterate update scheme (3.2) and Assumption 3.3 imply

f(xk)−f(xk+1) ≥ η1[hk(0)−hk(dk)] ≥
1

2
αη1min

{
∆k,

∥∇hk(0)∥
Lh

}
∥∇hk(0)∥ for each k ∈ S,

leading to (3.78) by Assumption 3.6 and to (3.79) by the definition of V. Combining (3.77)
and (3.79) with the fact that f(xk)− f(xk+1) → 0 (consequence of the lower boundedness of f
in Assumption 3.1), we have Lemma 3.4. The argument of its proof is classical.

Lemma 3.4. Let Algorithm 3.1 update ∆k according to (3.3) and (3.75). Then under Assump-
tions 3.1–3.3, it holds for Algorithm 3.1 that

|N \ S|+ |V| = ∞ =⇒ lim
k→∞

∆k = 0.

13 Note that the definition of V involves η1 but not η2. Indeed, η2 is not included in the general form of (3.3)
and (3.75). Scheme (3.76) is merely a special instance but not the general case.

14 In (3.79), we interpret ∆k/µ̄ as ∞ if µ̄ = 0. Indeed, when µ̄ = 0, (3.79) becomes a vacuous truth since V = ∅.

34

Proof. If |N \ S| = ∞ and |V| < ∞, then ∆k → 0 by (3.77). Consider the case with |V| = ∞.
Then (3.79) and the fact that f(xk)− f(xk+1) → 0 imply ∆k → 0 when k ∈ V and k → ∞.
Let ℓk = min{ℓ ∈ V : ℓ ≥ k}. Then ℓk is well defined for each k ≥ 0 as V is infinite,
and ∆ℓk → 0 when k → ∞. In addition, ∆k ≤ ∆ℓk according to the first two lines of (3.77),
because {ℓ : k ≤ ℓ ≤ ℓk − 1} ⊂ N \ V by the definition of ℓk. Hence ∆k → 0.

Now we are ready to prove Theorem 3.7. The key is to examine two cases, namely ∆k ↛ 0
and ∆k → 0. Condition (3.75) is needed only in the first case, where the proof is simple thanks
to Lemma 3.4. In the second one, the lim-type convergence is a feature of Algorithm 3.1 with
no dependence on (3.75), and the proof technique is the Thomas argument [136].

Proof of Theorem 3.7. We consider the following two cases.
Case 1. ∆k ↛ 0 when k → ∞. According to Lemma 3.4, both N \ S and V are finite sets.

Hence S contains all but finitely many positive integers, and ∆k remains constant for sufficiently
large k according to (3.77). Thus (3.78) implies ∥gk∥ → 0 since f(xk)− f(xk+1) → 0.

Case 2. ∆k → 0 when k → ∞. Given a positive number ε, we will show that ∥gk∥ ≤ ε
when k is sufficiently large. Since ∆k → 0, there exists an integer K ≥ 0 such that

∆k

κε/2
≤ min

{[
κ(λ− η1)√

5τβ

] 1
p

,
α(λ− η1)

2(λLh + τ2Lf)

}
for each k ≥ K. (3.80)

With this K, we define
K =

{
k ∈ N : k ≥ K and ∥gk∥ ≥ ε

2

}
.

Then ∥∇hk(0)∥ ≥ κε/2 for each k ∈ K according to Assumption 3.6. Consequently, (3.80) and
Proposition 3.2 imply K ⊂ S. Hence we can specialize (3.78) to K and obtain

f(xk)− f(xk+1) ≥ 1

2
αη1min

{
∆k,

κε

2Lh

}
κε

2
=

1

4
αη1κε∆k for each k ∈ K,

where min{∆k, κε/(2Lh)} = ∆k because (3.80) indeed implies ∆k ≤ κε/(4Lh). Therefore,

∑
k∈K

∆k ≤ 4

αη1κε

∑
k∈K

[f(xk)− f(xk+1)] ≤ 4

αη1κε

∞∑
k=0

[f(xk)− f(xk+1)] ≤ 4[f(x0)− finf]

αη1κε
.

Hence there exists an integer K ′ ≥ K such that 15∑
k∈K, k≥K′

∆k ≤ ε

2τLf
, (3.81)

where τ is the upper bound for {∥Tk∥} in Assumption 3.5. It suffices to show that ∥gk∥ ≤ ε
for each integer k ≥ K ′. Let us consider such a k and set ℓk = min{ℓ : ℓ ≥ k and ∥gℓ∥ < ε/2},
which is well defined because lim infk→∞ ∥gk∥ = 0 (Theorem 3.1). Then

∥gℓk∥ <
ε

2
and {ℓ ∈ N : k ≤ ℓ ≤ ℓk − 1} ⊂ K.

15 Inequality (3.81) is achievable even if K is finite (even empty).

35

We can conclude ∥gk∥ ≤ ε from the Lf -Lipschitz continuity of ∇f and the fact that

∥xk − xℓk∥ ≤
ℓk−1∑
ℓ=k

∥xℓ − xℓ+1∥ ≤
ℓk−1∑
ℓ=k

∥sℓ∥ ≤ τ

ℓk−1∑
ℓ=k

∆ℓ ≤ τ
∑

ℓ∈K, ℓ≥K′

∆ℓ ≤ ε

2Lf
,

which uses ∥sℓ∥ = ∥Tℓdℓ∥ ≤ τ∆ℓ in the third inequality and applies (3.81) in the last one.

It is worth noting that Theorem 3.7 still holds if we replace (3.3) by the more general
scheme (3.65), and the same proof is still applicable, because (3.77) is still guaranteed.

When Algorithm 3.1 defines and updates the trust-region radius according to (3.68)–(3.69)
instead of (3.3), we have Theorem 3.8 as an analogue to Theorem 3.7.

Theorem 3.8. Let Algorithm 3.1 manage ∆k according to (3.68)–(3.69) instead of (3.3), and
additionally impose

Υk+1 ≤ Υk whenever Υk > µ̄ (3.82)

with a constant µ̄ ∈ [0,∞). Then under Assumptions 3.1–3.7, it holds for Algorithm 3.1 that

lim
k→∞

∥gk∥ = 0.

To implement (3.68)–(3.69) with (3.82), we can for instance choose η2 ∈ [η1,∞] and set

Υk+1 =

γ1Υk if ρk ≤ η1,

γ2Υk if ρk > η2 and Υk ≤ µ̄,

Υk else.

In general, enforcing (3.82) does not ensure Υk ≤ µ̄. However, by a straightforward application
of mathematical induction, one can show that (3.69) and (3.82) guarantee

Υk ≤ Ῡ ≡ max{Υ0, γ2µ̄} for each k ≥ 0. (3.83)

Now we give the proof of Theorem 3.8. It uses the bound (3.83) in its final step.

Proof of Theorem 3.8. Define

T = {k ∈ N : ρk > η1} ∪ {0}.

We note that |T | = ∞, and 16

lim
k∈T , k→∞

∥gk∥ = 0. (3.84)

Indeed, if |T | < ∞, then (3.69) would imply Υk+1 ≤ γ1Υk for all but finitely many k, which is
absurd as γ1 < 1 and {Υk} has a positive lower bound (see (3.70)). The limit (3.84) is because

f(xk)− f(xk+1) ≥ η1[hk(0)− hk(dk)] ≥ 1

2
αη1min

{
µ∥gk∥,

κ∥gk∥
Lh

}
κ∥gk∥ for k ∈ T \ {0},

16 Note that (3.84) ensures lim inf ∥gk∥ = 0 for Algorithm 3.1 with (3.3) replace by (3.68)–(3.69). If we further
assume η0 > 0, the same argument shows ∥gk∥ → 0 as long as we change η1 to η0 when defining T . If f is convex
and lower-bounded, then lim inf ∥gk∥ = 0 implies f(xk) → finf and ∥gk∥ → 0 as in the proof of Theorem 3.1.

36

which is rendered by Assumptions 3.3, 3.6 and the fact that ∆k ≥ µ∥gk∥ (see (3.71)).
Now we set

ℓk = max{ℓ ∈ T : ℓ ≤ k} for each k ≥ 0.

Then {ℓk}k≥0 ⊂ T is well defined 17 and ℓk → ∞ (as {ℓk} is monotone and ℓk = k for k ∈ T). So

lim
k→∞

∥gℓk∥ = 0.

We will complete the proof by showing there exists a constant c ∈ (0,∞) such that

∥gk∥ ≤ c∥gℓk∥ for each k ≥ 0. (3.85)

Since ∇f is Lf -Lipschitz and ∥xk+1 − xk∥ ≤ ∥sk∥ = ∥Tkdk∥ ≤ τ∆k = τΥk∥gk∥, we have

∥gk+1∥ ≤ ∥gk∥+ Lf∥xk+1 − xk∥ ≤ (1 + τLfΥk)∥gk∥ ≤ ∥gk∥ exp(τLfΥk) for each k ≥ 0,

and consequently,

∥gk∥ ≤ ∥gℓk∥
k−1∏
ℓ=ℓk

exp(τLfΥℓ) = ∥gℓk∥ exp

(
τLf

k−1∑
ℓ=ℓk

Υℓ

)
for each k ≥ 0. (3.86)

For k ∈ T , (3.86) reduces trivially to ∥gk∥ ≤ ∥gℓk∥ as ℓk = k. Thus (3.85) is achieved if we can
bound

∑k−1
ℓ=ℓk

Υℓ for k ∈ N\T . For such a k, the definition of ℓk ensures {ℓk+1, . . . , k} ⊂ N\T ,
then the update scheme (3.69) implies Υℓ+1 ≤ γ1Υℓ for each ℓ ∈ {ℓk + 1, . . . , k}, and hence

k−1∑
ℓ=ℓk

Υℓ ≤ Υℓk
+

∞∑
j=0

γj1Υℓk+1 = Υℓk
+

Υℓk+1

1− γ1
≤ 2− γ1

1− γ1
Ῡ,

the upper bound (3.83) coming into play in the final step. This completes the proof.

3.6.4 Significance of the algorithmic parameter η1
In Algorithm 3.1, be the trust region updated according to (3.3) or the more general rule (3.65),
the algorithmic parameter η1 is a threshold for ρk such that

ρk > η1 guarantees ∆k+1 ≥ ∆k.

Note that ∆k+1 may equal ∆k when ρk > η1, which is illustrated in the concrete schemes (3.63)
and (3.64). In the implementations of classical trust-region methods, 0 < η1 ≤ 1/2 is typical.

As we have seen in the analysis of Algorithm 3.1, it is essential to ensure the compatibility
between the value of η1 and the geometrical properties of {Rk} and {Tk} in the sense of As-
sumption 3.7. The algorithm can fail to converge when such compatibility does not hold, as will
be demonstrated by Example 6.1 (see the remarks made after the example). In contrast, the
other algorithmic parameters η0, γ0, γ1, and γ2 are free from any constraints but the basic ones,
namely 0 ≤ η0 ≤ η1 and 0 < γ0 ≤ γ1 < 1 ≤ γ2.

17 If we did not include 0 into T , then ℓk would be undefined for k < min T (but it would not lead to an
essential difficulty because we could focus on k ≥ min T). Including 0 into T circumvents such a problem.

37

In addition, it will turn out in Section 6 that η1 has a significant impact upon the behavior
of classical trust-region methods when the gradient information is inaccurate. Setting η1 to a
small value is favorable to the robustness of Algorithm 3.1. The influences of η0, γ0, γ1, and γ2,
on the other hand, are not as strong under the settings of Section 6. See Subsections 6.3, 6.4,
and 6.5 for details.

Similar remarks can be made when Algorithm 3.1 adopts (3.68)–(3.69) to manage the trust
region radius, where η1 works as a threshold for ρk such that ρk > η1 ensures Υk+1 ≥ Υk.

4 Coarse space correction
In this section, we enrich the space transformation framework with another ingredient named
coarse space correction. The primary motivation comes from space decomposition methods
which we will study in Section 5. In that context, coarse space correction is indispensable for
the scalability of algorithms. See Subsection 5.7 for details.

4.1 Incorporating coarse spaces into the space transformation framework
Algorithm 4.1 presents a framework for optimization by space transformation with coarse space.
Compared to the space transformation framework in Algorithm 3.1, iteration k of this algorithm
introduces a coarse space model Hk in addition to hk. A coarse space correction δk is calculated
by minimizing Hk, and the trial step sk incorporates both dk and δk. In practice, for instance, Hk

can be either a low-dimensional simplification of f reflecting its overall geometry without fine
structures, or an approximation to f along a subspace that is beneficial to explore.

Algorithm 4.1 Optimization by Space Transformation with Coarse Space (prototype)
Input: x0 ∈ Rn.
For k = 0, 1, 2, . . . , iterate the following steps.
1. Forward Transformation. Define functions hk : RNk → R and Hk : RMk → R satisfying

∇hk(0) = Rk∇f(xk) and ∇Hk(0) = Ck∇f(xk),

with some positive integers Nk, Mk and some matrices Rk ∈ RNk×n, Ck ∈ RMk×n.
2. Minimization. Calculate dk ≈ argmin{hk(d): d ∈ RNk} and δk ≈ argmin{Hk(δ): δ ∈ RMk}.
3. Backward Transformation. Define

sk = ωkTkdk + (1− ωk)C
T
k δk (4.1)

with a certain matrix Tk ∈ Rn×Nk and a certain weight ωk ∈ (0, 1].
4. Update. Set xk+1 to either xk + sk or xk depending on the quality of sk.

In Algorithm 4.1, the coarse space is range(CT
k) ⊂ Rn, but the Minimization phase for-

mulates the corresponding subproblem in RMk for practicality (normally Mk ≪ n), matrices Ck

and CT
k working as the forward and backward transformations between the coarse space and RMk .

Following the terminology of domain decomposition, we also call Ck and CT
k the restriction and

prolongation operators for the coarse space. Suggested by coarse grid techniques for PDEs, we in-
tentionally set the two operators to be the transposes of each other, which is a notable distinction
from Rk and Tk. We will discuss how to design the coarse space and its restriction/prolongation
operators in Subsection 5.7.2 in the context of space decomposition.

38

Given Ck, to have a model Hk that satisfies ∇Hk(0) = Ck∇f(xk), we can set Hk(δ) to any
function that approximates f(xk + CT

k δ) to the first order or above. A simple example is

Hk(δ) = f(xk) + δTCk∇f(xk) +
1

2
δT
[
CkBkC

T
k

]
δ with Bk ≈ ∇2f(xk), (4.2)

which approximates the second-order Taylor expansion of f(xk+CT
k δ) around d = 0 and resem-

bles the commonly used Galerkin approximation (e.g., [41, Page 106]) in coarse grid techniques
for PDEs. We can devise Bk in (4.2) by techniques including quasi-Newton [106, 146] and ran-
dom sketching [113]. Note that CkBkC

T
k may be obtained by analyzing f in the coarse space

as in [160, Section 2], [157, Section 3], and [158, Section 2] instead of forming Bk in Rn and
multiplying matrices. When Mk ≪ n, pursuing exact or inexact second or even higher-order
information of f(xk + CT

k δ) for δ ∈ RMk can be much more economical than doing the same
with f in Rn, and setting Bk = ∇2f(xk) or even Hk(δ) = f(xk + CT

k δ) may become affordable.
The weight ωk in the Backward Transformation phase can be either set to a constant

chosen a priori or determined adaptively, for example, by a line search. The only constraint is
that {ωk} should be bounded away from zero, which will be stated in Assumption 4.1.

As what we did for Algorithm 2.1 in Section 3, we incorporate trust regions into Algorithm 4.1
to guarantee global convergence, obtaining Algorithm 4.2.

Algorithm 4.2 Optimization by Space Transformation with Coarse Space (trust-region version)
Input: Identical to Algorithm 3.1.
For k = 0, 1, 2, . . . , iterate the following steps.
1. Forward Transformation. Identical to Algorithm 4.1.
2. Minimization. Calculate

dk ≈ argmin
{
hk(d) : d ∈ RNk , ∥d∥ ≤ ∆k

}
and δk ≈ argmin

{
Hk(δ) : δ ∈ RMk , ∥δ∥ ≤ ∆k

}
.

3. Backward Transformation. Identical to Algorithm 4.1.
4. Update. Update xk and ∆k according to (3.2) and (3.3) with

ρk =
f(xk)− f(xk + sk)

ωk[hk(0)− hk(dk)] + (1− ωk)[Hk(0)−Hk(δk)]
. (4.3)

4.2 Analysis of the space transformation framework with coarse space
4.2.1 Assumptions and a lower bound for the reduction ratio

For the analysis of Algorithm 4.2, we adopt the assumptions that Section 3 postulates on f , {hk},
{dk}, {Rk}, and {Tk}. In addition, we impose Assumption 4.1 on the new ingredients {Hk},
{Ck}, {δk}, and {ωk}.

Assumption 4.1 (Assumptions on {Hk}, {Ck}, {δk}, and {ωk}).
1. For each k ≥ 0, Hk is continuously differentiable in RMk , and ∇Hk is LH-Lipschitz continuous

in RNk with a constant LH independent of k.
2. There exists a positive constant ν such that ∥Ck∥ ≤ ν for each k ≥ 0.
3. Hk(δk) ≤ Hk(0) for each k ≥ 0.

39

4. There exists a constant ω ∈ (0, 1] such that ωk ≥ ω for each k ≥ 0.

The assumption on {Hk} is conventional, while the requirements on {Ck} and {δk} are nearly
trivial. Note that we do not demand δk to achieve any kind of sufficient decrease. Consequently,
it is insecure to rely solely on CT

k δk to define the trial step sk. That is why the weight of Tkdk
in sk has to stay bounded away from zero as elaborated in the assumption on {ωk}.

Special attention should be paid to (4.3), which defines the reduction ratio ρk of iteration k.
Its denominator, namely the predicted reduction, is neither hk(0)− hk(dk) nor Hk(0)−Hk(δk)
but a weighted sum of the two, the weights being the same as those in the definition (4.1) of the
trial step sk. The structure of ρk leads to the following lemma, which states that ρk is either
not less than 1 or roughly as large as [f(xk)− f(xk + Tkdk)]/[hk(0)− hk(dk)]. This observation
is critical for us to establish the global convergence of Algorithm 4.2.

Lemma 4.1. Under Assumptions 3.1, 3.3, and 4.1, when ∆k ≤ ∥Rkgk∥/Lh, Algorithm 4.2 fulfills

ρk ≥ min

{
1,

f(xk)− f(xk + Tkdk)

hk(0)− hk(dk)
−

[LH + (2∥Tk∥2 + ∥Ck∥2)Lf]∆k

αω∥Rkgk∥

}
. (4.4)

Proof. We first note that 18
a

b+ c
≥ min

{
1,

a− c

b

}
(4.5)

for any real numbers a, b, and c with b > 0 and c ≥ 0. Therefore, setting

a = f(xk)− f(xk + sk), b = ωk[hk(0)− hk(dk)], c = (1− ωk)[Hk(0)−Hk(δk)],

it suffices to show that

a− c

b
≥ f(xk)− f(xk + Tkdk)

hk(0)− hk(dk)
−

[LH + (2∥Tk∥2 + ∥Ck∥2)Lf]∆k

αω∥Rkgk∥
. (4.6)

Since b = ωk[hk(0)− hk(dk)], we have

f(xk)− f(xk + Tkdk)

hk(0)− hk(dk)
− a− c

b
=

ωk[f(xk)− f(xk + Tkdk)] + c− a

b
. (4.7)

To prove (4.6), we will overestimate the right-hand side of (4.7) by examining its denominator
and numerator individually. Regarding the denominator b, according to Assumption 3.3 and
the facts that ∆k ≤ ∥Rkgk∥/Lh and ωk > ω (item 4 of Assumption 4.1), we have

b = ωk[hk(0)− hk(dk)] ≥ αω

2
∥Rkgk∥∆k. (4.8)

Now we consider the numerator. By Assumptions 3.1 and 4.1 (item 1), we have Taylor expansions

ωk[f(xk)− f(xk + Tkdk)] ≤ −ωkg
T
k Tkdk +

ωkLf

2
∥Tkdk∥2,

c ≤ −(1− ωk)[∇Hk(0)]
Tδk +

(1− ωk)LH

2
∥δk∥2,

− a ≤ gTk sk +
Lf

2
∥sk∥2.

(4.9)

(4.10)

(4.11)

18 If a > b+ c, then (4.5) is trivial. Otherwise, (a− c)(b+ c) = ab+ (a− b− c)c ≤ ab, implying (4.5).

40

According to the fact that sk = ωkTkdk + (1 − ωk)C
T
k δk (see (4.1)) and ∇Hk(0) = Ckgk, the

first-order terms in (4.9)–(4.11) add up to zero. Hence, taking the sum of (4.9)–(4.11), we have

ωk[f(xk)− f(xk + Tkdk)] + c− a ≤
ωkLf

2
∥Tkdk∥2 +

(1− ωk)LH

2
∥δk∥2 +

Lf

2
∥sk∥2

≤
Lf

2
∥Tk∥2[∆k]

2 +
LH

2
[∆k]

2 +
Lf

2
∥sk∥2,

(4.12)

the second inequality being because 0 ≤ ωk ≤ 1. By the definition of sk and the convexity of ∥·∥2,

∥sk∥2 ≤ ωk∥Tkdk∥2 + (1− ωk)∥CT
k δk∥2 ≤ ∥Tk∥2[∆k]

2 + ∥Ck∥2[∆k]
2. (4.13)

Inequalities (4.12) and (4.13) lead us to

ωk[f(xk)− f(xk + Tkdk)] + c− a ≤
(LH

2
+ Lf∥Tk∥2 +

Lf

2
∥Ck∥2

)
[∆k]

2.

Combining this inequality with (4.7), (4.8), we obtain (4.6), which completes the proof.

4.2.2 Global convergence and worst-case complexity

With Lemma 4.1 proved, we can proceed to establish the global convergence and worst-case
complexity of Algorithm 4.2. According to the proofs in Subsections 3.4–3.6, we only need
to establish for Algorithm 4.2 the counterparts of Lemmas 3.2 and 3.3 with µ defined below
in (4.16). Precisely speaking, it suffices to prove

ωk[hk(0)− hk(dk)] + (1− ωk)[Hk(0)−Hk(δk)] ≥ 1

2
ακµ∥g̃k∥2 for each k ≥ 0, (4.14)

and
K ≤ log(γ−1

2 γ1)

log γ1
|SK |+

log(γ1∆
−1
0 µ∥g̃K∥)

log γ1
(4.15)

with
SK = {k ∈ N : 0 ≤ k ≤ K − 1 and ρk > η1} .

The left-hand side of (4.14) is the predicted reduction for iteration k of Algorithm 4.2. Its
counterpart in Lemma 3.2 is hk(0)− hk(dk), which is the predicted reduction in the case of
Algorithm 3.1.

Theorem 4.1. Consider Algorithm 4.2 with η1 < 1. Under Assumptions 3.1–3.7 and 4.1,
Algorithm 4.2 enjoys the global convergence elaborated in Theorems 3.1 and 3.7, and it possesses
the worst-case complexity bounds quantified in Theorems 3.2–3.4 with

µ = ωmin

{
∆0

∥g0∥
, γ0κ

[
κ(λ− η1)√

5τβ

] 1
p

,
α ωγ0κ(λ− η1)

2[ωλLh + LH + (2τ2 + ν2)Lf]

}
. (4.16)

Proof. We will establish (4.14) and (4.15) following the road map set up in Subsections 3.2
and 3.3. First of all, as the counterpart of Lemma 3.1, we claim that Algorithm 4.2 satisfies

ρk ≥ min

{
1,

gTk TkRkgk
∥Rkgk∥2

(
1− tanϕk tanψk −

Lh∆k

α∥Rkgk∥

)
− Lk∆k

α∥Rkgk∥

}
(4.17)

41

provided that ϕk + ψk < π/2 and ∆k ≤ α∥Rkgk∥/Lh, where ϕk and ψk are still the angles defined
in (3.11)–(3.12), and

Lk = ω−1(LH + 2Lf∥Tk∥2 + Lf∥Ck∥2) + Lf∥Tk∥2. (4.18)

Indeed, it is straightforward to check that the lower bound presented in Lemma 3.1 still holds for
[f(xk)−f(xk+Tkdk)]/[hk(0)−hk(dk)], that is to say when ϕk + ψk < π/2 and ∆k ≤ α∥Rkgk∥/Lh,
Algorithm 4.2 achieves

f(xk)− f(xk + Tkdk)

hk(0)− hk(dk)
≥

gTk TkRkgk
∥Rkgk∥2

(
1− tanϕk tanψk −

Lh∆k

α∥Rkgk∥

)
−
Lf∥Tk∥2∆k

α∥Rkgk∥
.

Hence (4.17) is true according to (4.4).
The second step is to prove that ρk > η1 when ∆k becomes sufficiently small. Since we as-

sume η1 < 1, it suffices to ensure that the second term on the right-hand side of (4.17) exceeds η1.
Following the proof of Proposition 3.2, one can see that ρk > η1 when

∆k

∥∇hk(0)∥
≤ min

{[
κ(λ− η1)√

5τβ

] 1
p

,
α(λ− η1)

2(λLh + L)

}
, (4.19)

where L is an upper bound for {Lk} defined in (4.18).19 Since 0 < ω ≤ 1, ∥Tk∥ ≤ τ , and
∥Ck∥ ≤ ν, we can take

L = ω−1[LH + (3τ2 + ν2)Lf].

Then we can establish a lower bound for the trust-region radius ∆k. Similar to Proposi-
tion 3.3, we can prove that Algorithm 4.2 satisfies

∆k ≥ µ′∥g̃k∥ for each k ≥ 0 (4.20)

with

µ′ = min

{
∆0

∥g0∥
, γ0κ

[
κ(λ− η1)√

5τβ

] 1
p

,
αγ0κ(λ− η1)

2(λLh + L)

}
. (4.21)

Now we are ready to prove (4.15). Following the proof of Lemma 3.2, we have

hk(0)− hk(dk) ≥ 1

2
ακµ′∥g̃k∥2. (4.22)

Since ω ≤ ωk ≤ 1 and Hk(0)−Hk(δk) ≥ 0 (Assumption 4.1), it follows from (4.22) that

ωk[hk(0)− hk(dk)] + (1− ωk)[Hk(0)−Hk(δk)] ≥ 1

2
ακωµ′∥g̃k∥2 for each k ≥ 0,

which is identical to (4.14) because µ = ωµ′ according to (4.16) and (4.21).
To justify (4.15), we note that (4.20) leads to

K ≤ log(γ−1
2 γ1)

log γ1
|SK |+

log(γ1∆
−1
0 µ′∥g̃K−1∥)
log γ1

according to the proof of Lemma 3.3. This implies (4.15) because µ ≤ µ′ and log γ1 < 0.
With (4.14) (sufficient predicted reduction) and (4.15) (significant proportion of iterations

with ρk > η1), we can then replicate the analysis in Subsections 3.4 and 3.5 to establish the
global convergence and worst-case complexity for Algorithm 4.2 as desired.

19 Observe that the second term on the right-hand side of (4.17) is almost the same as the right-hand side
of (3.21). The only difference is that Lf∥Tk∥2 is replaced by Lk. Consequently, (4.19) takes the same form
as (3.25) except that τ2Lf is replaced by L, while (4.21) duplicates (3.30) with τ2Lf changed to L as well.

42

4.3 Remarks
In Algorithm 4.2, the two trust-region subproblems in the Minimization phase take the
same trust-region radius. This is only for the simplicity of the presentation. In practice,
the Hk-subproblem can use a trust-region radius ∆′

k that may differ from ∆k. In that case,
while ∆k is updated according to the reduction ratio ρk defined in (4.17), one can define ∆′

k

in any fashion that ensures {∆′
k/∆k} bounded from above along the iterations. Our analy-

sis will hold with minor modifications. Indeed, our proofs resort to the trust-region radius of
the Hk-subproblem only in (4.13), where ∥sk∥2 has to be dominated by a constant multiple
of [∆k]

2. Such a domination holds as long as supk≥0∆
′
k/∆k <∞.

As generalizations of (4.1) and (4.17), Algorithm 4.2 can also define

sk = ωkTkdk + ω′
kC

T
k δk,

ρk =
f(xk)− f(xk + sk)

ωk[hk(0)− hk(dk)] + ω′
k[Hk(0)−Hk(δk)]

,

where ωk and ω′
k are nonnegative weights that do not necessarily sum up to 1. Our analysis

will hold with minor modifications as long as {ωk} and {ω′
k} are bounded from above and there

exists a positive constant ω such that ωk ≥ ω for each k ≥ 0. In fact, the constraint ωk + ω′
k = 1

only affects (4.13) in our analysis. Without such a constraint, we will have

∥sk∥2 = ∥ωkTkdk +ω′
kC

T
k δk∥2 ≤ 2(ω2

k∥Tkdk∥2 +ω′ 2
k ∥CT

k δk∥2) ≤ 2(ω2
k∥Tk∥2 +ω′ 2

k ∥Ck∥2)[∆k]
2

instead of (4.13). Hence one can still dominate ∥sk∥2 by a multiple of [∆k]
2 provided that {ωk}

and {ω′
k} are bounded from above.

Before closing this section, we point out that Algorithm 4.1 can be interpreted as a special
instance of Algorithm 2.1 by arguments similar to those in Subsection 5.4. However, we cannot
cast the theory of Algorithm 2.1 to establish that of Algorithm 4.1, because it would necessitates
assumptions much more stringent than Assumption 4.1.

5 Optimization by space decomposition
5.1 Introduction
High-dimensional optimization problems are emerging progressively from various areas such as
statistics, data science, and artificial intelligence. They are challenging the optimization com-
munity and urging the development of parallel algorithms that are scalable and adapted to
modern High Performance Computing architectures. Meanwhile, parallel computing has always
been a major theme in the study of numerical partial differential equations (PDEs), where
domain decomposition [130, 141, 41] is proven to be a successful methodology yielding highly
scalable algorithms. Several critical techniques contribute to the scalability of such algorithms,
Restricted Additive Schwarz [14] and coarse space correction [148] being two examples. Such
techniques, however, are little explored in parallel optimization algorithms, unless the optimiza-
tion problem is the discretization of an infinite-dimensional problem.

We will bridge this gap by proposing a space decomposition framework for problem (1.1),
which extends the Additive Schwarz type domain decomposition methods to nonlinear optimiza-
tion. Under this framework, we can explore both Restricted Additive Schwarz and coarse space

43

correction. Our approach is entirely algebraic and we do not assume the optimization problem
discretizes an underlying infinite-dimensional problem.

Indeed, we will see that the space decomposition framework can be regarded as a special
instance of the space transformation framework studied in Sections 2–3. Our investigation on
the space decomposition framework will be a concrete instance of the discussion in Section 2–3.

This section is organized as follows. In Subsection 5.2, we introduce Additive Schwarz type
methods in domain decomposition for linear systems. Subsection 5.3 extends these methods
to the optimization problem (1.1), resulting in the space decomposition framework. Subsec-
tion 5.4 shows that such a framework is indeed a special instance of the space transformation
framework studied in Section 2. The framework in Subsection 5.3 is only conceptual, and there
are three critical questions concerning its implementation: how to configure the decomposi-
tion/synchronization matrices, how to guarantee the global convergence, and how to incorpo-
rate course space correction. The three subsequent subsections answer these questions. Sub-
section 5.5 elaborates Additive Schwarz type decomposition/synchronization matrices according
to well-known strategies in domain decomposition, including Restricted Additive Schwarz (Sub-
section 5.5), Subsection 5.6 globalizes the space decomposition framework via trust regions by
means of specializing the corresponding investigation in Section 3 on the space transformation
framework. Coarse space correction is explored in Subsection 5.7 following the exploration in
Section 4. Section 5.8 presents numerical experiments with a quite simple implementation of
our space decomposition framework. By highly encouraging performance of Restricted Additive
Schwarz and coarse space correction on nonlinear optimization problems, we demonstrate the
potential of developing scalable parallel optimization algorithms based on our framework.

5.2 Additive Schwarz type methods for linear systems
To motivate our space decomposition framework for optimization, we briefly introduce the Ad-
ditive Schwarz type methods in domain decomposition for linear systems [14, 51, 80].

Let us consider solving a linear system

Au = r (5.1)

by an iterative scheme uk+1 = uk +∆uk. The correction step ∆uk should be an approximate
solution to the residual system

A∆u = r−Auk. (5.2)
We pursue such a solution following the algebraic domain decomposition methodology (see, for
instance, [41, Section 1.3]). For illustrative purpose, we suppose system (5.1) is 4-dimensional
with 20 u = [v ; w ; y ; z], and that the entry-wise formulation of the residual system (5.2) is

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

∆v
∆w
∆y
∆z

 =

ak
bk
ck
tk

 , (5.3)

where [ak ; bk ; ck ; tk] represents the residual r−Auk. We group [v ; w ; y ; z] into two blocks

[v ; w ; y] and [w ; y ; z], (5.4)
20 As mentioned in the introduction, the Matlab-style notation [a ; b ; · · · ; c] denotes a vertical array with a,

b,. . . , c being the entries.

44

which are overlapping at variables w and y. In domain decomposition for PDEs, overlaps
can facilitate information exchange between different subdomains and improve the efficiency of
algorithms [41, Section 1.5].

Grouping the variables as (5.4) amounts to decomposing R4 into two overlapping subspaces 21

X 1 = span{e1, e2, e3} and X 2 = span{e2, e3, e4},

where ej is the jth canonical coordinate vector.22 The restriction of (5.3) to X 1 is A11 A12 A13

A21 A22 A23

A31 A32 A33

 ∆v
∆w
∆y

 =

 ak
bk
ck

 , (5.5)

which seeks for a correction step in X 1 so that the two sides of (5.3) match each other when
orthogonally projected to X 1. For simplicity, we suppose that the restricted residual system (5.5)
has a unique solution

[
∆v1k ; ∆w

1
k ; ∆y

1
k

]
, which gives us a correction step

d1
k =

[
∆v1k ; ∆w

1
k ; ∆y

1
k ; 0

]
∈ X 1. (5.6)

Similarly, we can obtain
d2
k =

[
0 ;∆w2

k ; ∆y
2
k ; ∆z

2
k

]
∈ X 2 (5.7)

by solving A22 A23 A24

A32 A33 A34

A42 A43 A44

 ∆w
∆y
∆z

 =

 bk
ck
tk

 . (5.8)

It remains now to define a full-space correction step ∆uk using the subspace steps. Various
strategies exist in domain decomposition literatures. The Additive Schwarz (AS) strategy takes
the sum of the subspace correction as the full-space correction step, namely

AS: ∆uk =
[
∆v1k ; ∆w

1
k +∆w2

k ; ∆y
1
k +∆y2k ; ∆z

2
k

]
. (5.9)

However, this may lead to surplus correction to the overlapping variables w and y. To avoid such
overcorrection, the Restricted Additive Schwarz (RAS) strategy restricts the subspace steps into[

∆v1k ; ∆w
1
k ; 0 ; 0

]
and

[
0 ; 0 ; ∆y2k ; ∆z

2
k

]
to annihilate the overlap and then “glues” the restricted steps together, that is

RAS: ∆uk =
[
∆v1k ; ∆w

1
k ; ∆y

2
k ; ∆z

2
k

]
. (5.10)

RAS (5.10) can be generalized to the Weighted Restricted Additive Schwarz (WRAS) strategy

WRAS : ∆uk =
[
∆v1k ; (1− p)∆w1

k + p∆w2
k ; q∆y

1
k + (1− q)∆y2k ; ∆z

2
k

]
, (5.11)

where p and q are weights between 0 and 1 (they may vary along the iterations). WRAS (5.11)
avoids overcorrection by averaging the overlapping corrections, reducing to RAS when p = q = 0.

45

∆v1k

∆w1
k

∆y1k

0

d1
k

0

∆w2
k

∆y2k

∆z2k

d2
k

∆v1k

∆w1
k +∆w2

k

∆y1k +∆y2k

∆z2k

AS

∆v1k

∆w1
k

∆y2k

∆z2k

RAS

∆v1k

∆w̄k

∆ȳk

∆z2k

WRAS

Figure 4: Illustration of AS (5.9), RAS (5.10), and WRAS (5.11).

We illustrate AS (5.9), RAS (5.10), and WRAS (5.11) in Figure 4, where, for WRAS (5.11), we
denote ∆w̄k = (1− p)∆w1

k + p∆w2
k and ∆ȳk = q∆y1k + (1− q)∆y2k.

There is another strategy called ASH (Additive Schwarz with Harmonic Extension) [14, 51].
This strategy first modifies the right-hand sides of (5.5) and (5.8) to

[ak ; bk ; 0] and [0 ; ck ; tk] (5.12)

in order to suppress the overlap. It then solves the modified version of (5.5) and (5.8) to obtain
subspace correction steps

d̃1
k =

[
∆ṽ1k ; ∆w̃

1
k ; ∆ỹ

1
k ; 0

]
and d̃2

k =
[
0 ; ∆w̃2

k ; ∆ỹ
2
k ; ∆z̃

2
k

]
, (5.13)

and finally sets the full-space correction step to the sum of the two, namely

ASH : ∆uk =
[
∆ṽ1k ; ∆w̃

1
k +∆w̃2

k ; ∆ỹ
1
k +∆ỹ2k ; ∆z̃

2
k

]
. (5.14)

We can define the weighted variant of ASH, named WASH, by replacing (5.12) with[
ak ; (1− p)bk ; qck

]
and

[
pbk ; (1− q)ck ; tk

]
,

where, as in WRAS (5.11), p and q are weights between 0 and 1. Another possibility, called
RASH (Symmetrized Restricted Additive Schwarz) [14, 51], is to take

RASH : ∆uk =
[
∆ṽ1k ; ∆w̃

1
k ; ∆ỹ

2
k ; ∆z̃

2
k

]
,

which can be regarded as the composite of RAS and ASH, explaining its code name RASH. One
can also devise a weighted version of RASH by composing WRAS and WASH.

When there is no overlap, all the methods described above reduce to the block Jacobi Itera-
tion. Here we focus on parallel (additive) methods, although there exist sequential (multiplica-
tive) variants that are similar to the block Gauss-Seidel Iteration. We refer to [14, 51] for more

21 Recall that we use superscripts to denote the indices for subspaces and objects that are corresponding to
subspaces, such as N i, Ri, T i, hi

k, di
k, and ∆i

k.
22 Notably, the subscript j here is not an iteration counter. This does not follow our general convention about

subscripts and superscripts but introduces no confusion.

46

general descriptions of AS, (W)RAS, (W)ASH, and RASH. See [80] for a survey on Additive
Schwarz type domain decomposition methods, and [53, 57] for historical notes.

It is worth noting that, AS, (W)RAS, (W)ASH, and RASH are often used as preconditioners
for other iterative algorithms like Krylov subspace methods (see preconditioners M−1

RAS and M−1
ASH

and Algorithm 1 in [14]). Here we consider them as iterative solvers, which is the case in, for
instances, [46], [53, Section 3.3], and [41, Section 1.7.1]. Indeed, these iterative solvers can also
be regarded as the Richardson Iteration [126] preconditioned by the AS, (W)RAS, (W)ASH,
and RASH preconditioners. We also note that, as an iterative solver, (W)RAS belongs to the
multisplitting methods defined in [50, Definition 2.2], which are iterative schemes that proceed
with multiple splittings of the coefficient matrix A in parallel.

In general, (W)RAS and (W)ASH outperform AS and RASH. According to [14, Remarks 2.4
and 2.5], RAS and ASH lead to preconditioners with similar efficiency (see [51, Theorem 6.1]
for a theoretical explanation), and both of them are more efficient than the AS and RASH
preconditioners. [46] and [53, Theorem 3.5] explain the superiority of RAS to AS by showing
that the former, when applied to the discrete approximation of certain PDEs, is identical to
the discretization of the continuous Parallel Schwarz method 23 by Lions [91, Section I.4] and
consequently enjoys better convergence properties. Frommer and Szyld [51] show that (W)RAS
and (W)ASH lead to convergent iterative schemes when A is a nonsingular M-matrix (see [51,
Theorems 4.4, 6.2, and 6.4]), while it is not the case for RASH (see [51, Example 6.3]); subse-
quently, the authors suggest that RASH is “less attractive”. We can also interpret the advantage
of (W)RAS and (W)ASH over AS by observing the case where the coefficient matrix A of sys-
tem (5.1) is nearly diagonal. For instance, A = D+E, where D is a nonsingular diagonal matrix
and ∥E∥ ≪ mini |Dii|. With such a coefficient matrix, decomposition methods should work well
as the system is almost decoupled. It is indeed the case for (W)RAS and (W)ASH, which can
generate nearly exact correction steps thanks to the presumed structure of A, while AS, due to
the very same structure, will obviously suffer from surplus corrections on the overlap.

5.3 A space decomposition framework for nonlinear optimization
We will extend the methods illustrated in Subsection 5.2 to optimization problem (1.1). We
desire particularly a framework that encompasses (W)RAS and (W)ASH due to their good
performance. Before doing this, note that for the full-space correction step ∆uk defined by
RAS (5.10) or WRAS (5.11), we generally have

∆uk /∈ span{d1
k, d

2
k, uk},

where d1
k and d2

k are the subspace correction steps in (5.6)–(5.7). This fact distinguishes (W)RAS
strikingly from the strategies in Parallel Variable Distribution [49, 131], Parallel Gradient Dis-
tribution [93], Parallel Variable Transformation [52], and Parallel Line Search Subspace Correc-
tion [42]. For (W)ASH, although the full-space correction step does lie in the linear span of
the subspace ones (see (5.13)–(5.14)), none of these existing strategies incorporates a procedure
equivalent to modifying the right-hand sides of (5.5) and (5.8), which, in optimization context,
is a first-order modification to the objective function, as we will elaborate later.

23 The name “Parallel Schwarz method” was coined by Gander [53]. The term used by Lions [91] was “parallel
versions of the Schwarz alternating method”.

47

To find a natural extension to the methods in Subsection 5.2, we consider a strongly convex
quadratic function

f(u) =
1

2
uTAu− rTu,

whose minimization is equivalent to solving Au = r. Such equivalence enables us to examine
the methods in Subsection 5.2 from the view point of optimization.

We still illustrate the idea by a 4-dimensional case as in Subsection 5.2. We observe that, at
iteration k, all the Additive Schwarz type methods indeed define certain subspace models

hik : R3 → R (i = 1, 2), (5.15)

calculate subspace steps 24

dik = argmin
{
hik(d) : d ∈ R3

}
(i = 1, 2), (5.16)

and then set

∆uk =
2∑

i=1

T idik (5.17)

with certain matrices T i ∈ R4×3 (i = 1, 2). To see this, we define matrices

U1 =

1 0 0
0 1 0
0 0 1
0 0 0

 , U2 =

0 0 0
1 0 0
0 1 0
0 0 1

 , Ũ1 =

1 0 0
0 1 0
0 0 0
0 0 0

 , Ũ2 =

0 0 0
0 0 0
0 1 0
0 0 1

 . (5.18)

Recall that AS and RAS first solve (5.5) and (5.8), which is equivalent to minimizing

hik(d) =
1

2
dT[U i]TAU id+ dT[U i]T(Auk − r) (d ∈ R3, i = 1, 2). (5.19)

With the solutions d1k = [∆v1k ;∆w
1
k ;∆y

1
k] and d2k = [∆w2

k ;∆y
2
k ;∆z

2
k], AS and RAS then de-

fine ∆uk by (5.17) with T i = U i and T i = Ũ i respectively. On the other hand, ASH and
RASH obtain d1k = [∆ṽ1k ;∆w̃

1
k ;∆ỹ

1
k] and d2k = [∆w̃2

k ;∆ỹ
2
k ;∆z̃

2
k] by solving a modified version

of (5.5) and (5.8) with right-hand sides (5.12), which is equivalent to minimizing

hik(d) =
1

2
dT[U i]TAU id+ dT[Ũ i]T(Auk − r) (d ∈ R3, i = 1, 2). (5.20)

Then ASH and RASH invoke (5.17) with T i=U i and T i= Ũ i respectively. WRAS and WASH
can be interpreted in the same way as RAS and ASH except that Ũ1 and Ũ2 are replaced with
their weighted generalizations

W 1 =

1 0 0
0 1− p 0
0 0 q
0 0 0

 and W 2 =

0 0 0
p 0 0
0 1− q 0
0 0 1

 (0 ≤ p, q ≤ 1), (5.21)

24 Note that the dik defined by (5.16) is not identical to the di
k in (5.6)–(5.7). They are indeed linked with each

other by di
k = U idik.

48

which reduce to Ũ1 and Ũ2 in (5.18) when p = q = 0.
Subspaces {X i}2i=1 do not appear explicitly in the process elaborated above. They are

represented by R3. Indeed, hik can be regarded as a model of f(uk +d) in X i. However, for the
sake of practicality, the model is formulated in R3 instead of X i. A critical feature of hik is that

∇hik(0) = Ri∇f(uk) (5.22)

with a certain matrix Ri. Since ∇f(uk) = Auk − r, we can see from (5.19) that Ri = [U i]T

for AS and RAS, and from (5.20) that Ri = [Ũ i]T for ASH and RASH. Similarly, WRAS
sets Ri = [U i]T and WASH takes Ri = [W i]T. Recalling the configurations of {T i} mentioned
above, we note that Ri and T i are generally not the transposes of each other except for AS and
RASH, which are known to be less favorable than the other strategies.

Another particular feature of (W)ASH should be stressed: the subspace model functions of
(W)ASH generally do not match the objective function in terms of first-order information, but
impose a first-order modification to the objective function. For example, recall the hik defined
in (5.20) serves as a model of f(uk + d) in X i in the case of ASH. However,

∇hik(0) = [Ũ i]T(Auk − r) = [Ũ i]T∇f(uk),

which differs from [U i]T∇f(uk) by excluding the derivative of f with respect to the third com-
ponent of u, and hence generally does not match the gradient of f(uk + d) (d ∈ X i) at 0. The
purpose of the first-order modification, as we observed in Subsection 5.2, is to avoid surplus
correction on the overlap. Importantly, after the first-order modification is imposed, the full-
space correction step in (W)ASH is defined by summing the subspace ones directly without any
modification, in contrast to the RASH strategy that modifies the subspace corrections again on
the overlap and leads to inadequate correction. To the best of our knowledge, there do not exist
analogues to (W)ASH in space decomposition methods for general nonlinear optimization. We
also note that (5.20) sets ∇hik(0) using Ũ i but defines ∇2hik(0) with U i. Therefore, model hik
excludes the derivative information of f with respect to the third component of u, but the
curvature information is retained. If ∇2hik(0) were set to [Ũ i]TAŨ i, then the information of f
in the third variable would be completely absent from hik, missing the point of deploying an
overlap between the two blocks of variables. Similarly, WASH uses W i only to form ∇hik(0),
while ∇2hik(0) is set to [U i]TAU i (i = 1, 2).

With (5.15)–(5.17) and (5.22), we can easily extend the Additive Schwarz type methods for
the linear system (5.1) into a space decomposition framework for the optimization problem (1.1).
We formalize the framework in Algorithm 5.1. This framework covers all the strategies intro-
duced in Subsection 5.2. As far as we know, this is the first space decomposition framework
that encompasses (W)RAS and (W)ASH for problem (1.1).

Algorithm 5.1 essentially decomposes Rn into subspaces {X i}mi=1, yet the decomposition does
not appear explicitly. Instead, subspace X i is represented by RNi . The algorithm then works in
each subspace (in parallel) to obtain subspace steps and updates the iterate by combining the
subspace steps.

In the Decomposition phase of Algorithm 5.1, the (first-order) local information of f at
the current iterate xk is distributed from Rn to spaces {RNi}mi=1 via matrices {Ri}mi=1, and then
models {hik}mi=1 are constructed according to such distributed information. The matrices {Ri}mi=1

can be configured according to the decomposition {X i}mi=1. See Subsection 5.5 for details. In
the Minimization phase, for each i ∈ {1, 2, . . . ,m}, hik is minimized approximately to obtain

49

Algorithm 5.1 Optimization by Space Decomposition (prototype)
Input: x0 ∈ Rn, m ∈ N+, {N i}mi=1 ⊂ N+; Ri ∈ RNi×n, T i ∈ Rn×Ni (i = 1, 2, . . . ,m).
For k = 0, 1, 2, . . . , iterate the following steps.
1. Decomposition. For each i ∈ {1, 2, . . . ,m}, define a function hik : RNi → R satisfying

∇hik(0) = Ri∇f(xk).

2. Minimization. Calculate dik ≈ argmin
{
hik(d) : d ∈ RNi} (i = 1, 2, . . . ,m).

3. Synchronization. Define

sk =
m∑
i=1

T idik.

4. Update. Set xk+1 to either xk + sk or xk depending on the quality of sk.

a step dik ∈ RNi . The exact sense of minimizing hik is left vague and will be elaborated in
Subsection 5.6 (see Algorithm 5.2 and Assumption 5.2). The Synchronization phase maps the
subspace steps {dik}mi=1 back to Rn by linear transformations {T i}mi=1 and then sum them up to
obtain a full-space step sk in Rn. The configuration of {T i}mi=1, in conjugation with {Ri}mi=1,
will be covered in Subsection 5.5. Finally, the Update phase updates xk to xk+1 using sk. This
part is also left vague and will be detailed in Algorithm 5.2.

The Synchronization phase of Algorithm 5.1 is by design much simpler than the Decom-
position and Minimization phases. Such a feature makes Algorithm 5.1 particularly suitable
for parallel implementation, where the Decomposition and Minimization phases are natu-
rally parallelizable while a complicated Synchronization phase would become a bottleneck.
The Update phase most likely involves objective function evaluation (see Algorithm 5.2 for an
implementation), which can be parallelized by exploiting particular problem structures such as
partial separability [71, 27, 26].

Algorithm 5.1 specifies only the gradient of hik, which is adequate for the convergence in
terms of first-order stationarity (see Subsection 5.6.3). Although higher-order information such
as ∇2hik is not needed for the analysis, it will affect the practical performance of the algorithm.
To fulfill ∇hik(0) = Ri∇f(xk), we can set hik(d) to any function that matches f(xk + [Ri]Td) to
the first order. Similar to what Section 4 elaborated for the coarse space model Hk, one may
set hik to an approximate second-order Taylor expansion of f(xk+[Ri]Td) around d = 0, namely

hik(d) = f(xk) + dTRi∇f(xk) +
1

2
dTRiBk[R

i]Td with Bk ≈ ∇2f(xk), (5.23)

or even define hik(d) = f(xk + [Ri]Td), both being probably far more affordable than doing the
same in Rn if N i ≪ n. However, in contrast to the coarse space model, requiring hik(d) to
match f(xk + [Ri]Td) beyond the first order is not always a good strategy. Indeed, as in (5.19),
setting hik(d) to approximate f(xk + [Ri]Td) to high order is sensible if {Ri}mi=1 and {T i}mi=1 are
configured according to AS or (W)RAS (see Subsection 5.5 about how to do this), but it is not
the case if {Ri}mi=1 and {T i}mi=1 follow (W)ASH, as we can see from (5.20). The model hik(d)
in (5.20) matches f(xk+[Ri]Td) to the first order but deliberately differs from it in the quadratic
term. Instead of (5.23), which fits AS and (W)RAS, (5.20) suggests setting for (W)ASH

hik(d) = f(xk) + dTRi∇f(xk) +
1

2
dT[T i]TBkT

id with Bk ≈ ∇2f(xk),

50

which distinguishes itself from (5.23) due to the discrepancy between T i and [Ri]T.
It is critical to observe the relation between the frameworks of space transformation (Al-

gorithm 2.1) and space decomposition (Algorithm 5.1). Obviously, Algorithm 2.1 is a special
case of Algorithm 5.1 with m = 1. Less obviously yet more importantly, Algorithm 5.1 can also
be regarded as a special instance of Algorithm 2.1, as we mentioned in the introduction and
will detail in Subsection 5.4. Such an observation reduces the investigation of the space decom-
position framework to an application of what we have learnt about the space transformation
framework. Following Section 3, we will incorporate trust regions into Algorithm 5.1 in order
to guarantee global convergence. This will lead us to Algorithm 5.2, which is in turn a special
case of Algorithm 3.1, the trust-region version of Algorithm 5.1. We will then establish the
theory of Algorithm 5.2 by casting that of Algorithm 3.1 to this special case. Similarly, we can
incorporate coarse space correction into Algorithm 5.1 according to the discussion in Section 4.

Before diving into the analysis, we will elaborate in Subsection 5.5 how to configure the
matrices {Ri}mi=1 and {T i}mi=1 in practice. We will extend the strategies in the 4-dimensional
illustrative example to the n-dimensional case. Since ∇hik(0) = Ri∇f(xk), we can interpret hik(d)
as a first-order model of f(xk + [Ri]Td). Similar to (2.1), one may expect that setting T i = [Ri]T

is sensible. However, it is in general not the best choice, as we can infer from the quadratic
example discussed in the beginning of the current subsection.

Remark 5.1. For simplicity, the Minimization phase of Algorithm 5.1 denotes the variable
of hik by d regardless of k or i. By writing hik(d), we imply that d ∈ RNi. Therefore, for the
symbol d without any subscript or superscript, its dimension depends on whose variable it is
standing for, which will always be clearly indicated by context. See also Remark 2.1 in Section 2.

Remark 5.2. One can generalize Algorithm 5.1 by allowing m, {Ri}mi=1, and {T i}mi=1 to vary
along the iterations. Our discussions can be easily extended to cover such a generalization.

5.4 Space decomposition is a special instance of space transformation
Now we show that the space decomposition framework presented in Algorithm 5.1 is indeed a
special instance of the space transformation framework given in Algorithm 2.1. Define 25

Nk =
m∑
i=1

N i. (5.24)

For each d ∈ RNk , decompose d as

d =
[
d1 ; d2 ; · · · ; dm

]
∈ RNk (5.25)

so that di ∈ RNi (i = 1, 2, . . . ,m). Define

hk(d) =

m∑
i=1

hik(d
i). (5.26)

25 Since Algorithm 5.1 fixes {N i}mi=1 along the iterations (just for simplicity; see Remark 5.2), the Nk defined
in (5.24) does not depend on k, but we keep the index k to align with the notation of Algorithm 2.1.

51

Then hk is a function in RNk . Indeed, it is separable with respect to the decomposition of d
given in (5.25) (even though we do not assume the separability of f in Rn). Hence

∇hk(0) =
[
∇h1k(0) ; ∇h2k(0) ; · · · ; ∇hmk (0)

]
. (5.27)

Furthermore, since ∇hik(0) = Ri∇f(xk), ∇hk(0) is the following transformation of ∇f(xk):

∇hk(0) = Rk∇f(xk)

with
Rk =

[
R1 ; R2 ; · · · ; Rm

]
∈ RNk×n. (5.28)

Now let
dk =

[
d1k ; d

2
k ; · · · ; dmk

]
∈ RNk . (5.29)

Since dik approximately minimizes hik, we can regard dk as an approximate minimizer of hk. In
addition, the trial step sk defined in Algorithm 5.1 can be written as sk = Tkdk with

Tk =
[
T 1 , T 2 , · · · , Tm

]
∈ RNk×n. (5.30)

Hence Algorithm 5.1 is an instance of Algorithm 2.1 with Nk, hk, Rk, Tk, and dk specified above.

5.5 Additive Schwarz type decomposition/synchronization matrices
We will refer to {Ri}mi=1 and {T i}mi=1 in Algorithm 5.1 as decomposition matrices and synchro-
nization matrices respectively. They correspond to the restriction and prolongation operators in
domain decomposition. As mentioned in Subsection 5.3, these matrices can be chosen based on
a decomposition of Rn. Although Algorithm 5.1 is applicable to general decompositions of Rn,
this subsection focuses on the special case where Rn is decomposed according to a partition
of the coordinate index set {1, 2, . . . , n}. Under such a setting, we introduce how to define
the decomposition/synchronization matrices according to the Additive Schwarz type methods
in domain decomposition. Implementing Algorithm 5.1 with such matrices, we generalize the
Additive Schwarz type domain decomposition methods to nonlinear optimization problem (1.1).

5.5.1 Decomposition, restriction, multiplicity, and several useful matrices

We assume that Rn is decomposed into {X i}mi=1 with

X i = span
{
ej : j ∈ Xi

}
(i = 1, 2, . . . ,m),

where {Xi}mi=1 is a given partition of {1, 2, . . . , n}, meaning that
∅ ̸= Xi ⊂ {1, 2, . . . , n} for each i ∈ {1, 2, . . . ,m},
m∪
i=1

Xi = {1, 2, . . . , n}.

As in algebraic domain decomposition methods [41, Section 1.3], our discussion here will be
entirely algebraic and assume no geometrical/physical background for {Xi}mi=1 (as well as its re-
striction that will be introduced later). However, if such background information is available, we
should take it into consideration when designing {Xi}mi=1. For instance, if the coupling pattern
of the variables can be described by a graph, we can configure {Xi}mi=1 as in [14, Section 2].

52

Definition 5.1. If the partition {Xi}mi=1 satisfies Xi ∩Xi′ = ∅ for all i, i′ ∈ {1, 2, . . . ,m} with
i ̸= i′, then we say that {Xi}mi=1 is non-overlapping; otherwise, it is said to be overlapping.

Definition 5.2. Let {X̃i}mi=1 be a partition of {1, 2, . . . , n}. We call {X̃i}mi=1 a restriction of
{Xi}mi=1 if {X̃i}mi=1 is non-overlapping and X̃i ⊂ Xi for each i ∈ {1, 2, . . . ,m}.

Given an integer j ∈ {1, 2, . . . , n} and a set X ⊂ {1, 2, . . . , n}, we henceforth use 1
(
j ∈ X

)
to denote the following binary value that indicates whether j ∈ X is true or false:

1
(
j ∈ X

)
=

{
1 if j ∈ X,

0 else.

Definition 5.3. Let {Xi}mi=1 be a partition of {1, 2, . . . , n}. For each j ∈ {1, 2, . . . , n},

θj =
m∑
i=1

1
(
j ∈ Xi

)
is called the multiplicity of {Xi}mi=1 at j. Moreover, we call

θ = max
1≤j≤n

θj

the multiplicity 26 of the partition {Xi}mi=1.

The number θj is an integer between 1 and m, and it counts how many times j appears in
the partition {Xi}mi=1. Clearly, 1 ≤ θ ≤ m, and θ = 1 if and only if {Xi}mi=1 is non-overlapping,
while θ = m if and only if there exists a j ∈ {1, 2, . . . , n} belonging to all Xi for i ∈ {1, 2, . . . ,m}.
The multiplicity θ is critical in the analysis of Algorithm 5.2, especially when {Ri}mi=1 and {T i}mi=1

are configured according to RAS (5.36) or WRAS (5.37) (see Theorem 5.1).

Example 5.1. Suppose that n = 4. Let X1 = {1, 2, 3}, X2 = {2, 3, 4}, X̃1 = {1, 2}, and
X̃2 = {3, 4}. Then {Xi}2i=1 is an overlapping particular of {1, 2, 3, 4} with multiplicity 2, while
{X̃i}2i=1 is a non-overlapping one. Moreover, {X̃i}2i=1 is a restriction of {Xi}2i=1. They are the
partitions used in Subsection 5.3.

Given a partition {Xi}mi=1 of {1, 2, . . . , n} and its restriction {X̃i}mi=1, we now introduce
several matrices that will be the building blocks for the decomposition/synchronization matrices.

For each i ∈ {1, 2, . . . ,m}, we define U i to be the matrix whose columns constitute an
enumeration of {ej : j ∈ Xi} with j in the ascending order. We formulate this definition as

U i = [ej]j∈Xi . (5.31)

With the same notation, we define

Ũ i =
[
1
(
j ∈ X̃i

)
ej
]
j∈Xi . (5.32)

In other words, Ũ i enumerates {1
(
j ∈ X̃i

)
ej : j ∈ Xi} with j in the ascending order. In addition,

W i =
[
wi
jej
]
j∈Xi , (5.33)

26 [41, Definition 5.4] calls it “multiplicity of intersections”.

53

where {wi
j : 1 ≤ i ≤ m, 1 ≤ j ≤ n} ⊂ [0, 1] is a set of numbers satisfying 27

m∑
i=1

wi
j 1
(
j ∈ Xi

)
= 1 for each j ∈ {1, 2, . . . , n}. (5.34)

Alternatively, one can define W i as U iDi, where Di is the |Xi| × |Xi| diagonal matrix whose
diagonal enumerates {wi

j}j∈Xi with j in the ascending order. [41, Definition 1.11] calls {Di}mi=1

a set of partition of unity matrices for {Xi}mi=1.
Matrices {Ũ i}mi=1 can be regarded as a particular instance of {W i}mi=1 with wi

j = 1
(
j ∈ X̃i

)
.

Another commonly used instance sets wi
j = θ−1

j regardless of i, which indeed leads to

W i =

[
m∑
ℓ=1

U ℓ[U ℓ]T

]−1

U i,

because
∑m

ℓ=1 U
ℓ[U ℓ]T is an n× n diagonal matrix whose (j, j) entry is θj (see Lemma E.1).

For {Xi}mi=1 and {X̃i}mi=1 in Example 5.1, the corresponding {U i}mi=1, {Ũ i}mi=1, and {W i}mi=1

are given in (5.18) and (5.21).

5.5.2 Additive Schwarz type decomposition/synchronization matrices

Let {Xi}mi=1 be the partition of {1, 2, . . . , n} discussed before and {X̃i}mi=1 be a restriction
of {Xi}mi=1. With the help of the matrices {U i}mi=1, {Ũ i}mi=1, and {W i}mi=1, following the Additive
Schwarz type decomposition/synchronization strategies [14, 46, 50, 51] and the illustrations in
Subsection 5.3, we can define the decomposition/synchronization matrices {Ri}mi=1 and {T i}mi=1

for Algorithm 5.1 as follows.

AS: Ri = [U i]T, T i = U i, (5.35)
RAS: Ri = [U i]T, T i = Ũ i, (5.36)

WRAS: Ri = [U i]T, T i = W i, (5.37)
ASH: Ri = [Ũ i]T, T i = U i, (5.38)

WASH: Ri = [W i]T, T i = U i, (5.39)
RASH: Ri = [Ũ i]T, T i = Ũ i. (5.40)

Note that RAS is a special case of WRAS, and ASH is a special case of WASH.
We stress that (W)RAS and (W)ASH do not necessarily maintain T i = [Ri]T when {Xi}mi=1

is overlapping, while AS and RASH insist on such an equality. The first two are much more
favorable in domain decomposition, as we mentioned in Subsection 5.2. In Subsection 5.8.2,
we will demonstrate numerically that the same preference still holds when these decomposi-
tion/synchronization strategies are applied to nonlinear optimization problems without any PDE
background. Comparing AS and RAS as illustrations, our experiment will show that the latter
is clearly superior to the former.

27 The subscript j of wi
j is inherited from ej , the jth canonical coordinate vector in Rn. It is not an iteration

counter, which violates our general convention about subscripts and superscripts but introduces no confusion.

54

5.6 Globalizing the space decomposition framework by trust regions
5.6.1 A trust-region version of the space decomposition framework

Algorithm 2.1 is not implementable before further elaborations on the Minimization and
Update phases, which will play critical roles in the global convergence of the resultant al-
gorithm. Since Algorithm 2.1 embraces Algorithm 5.1 as a special case, we can implement
the latter according to the trust-region version of the former. This leads us to Algorithm 5.2,
where the Minimization phase calculates dik by approximately solving a trust-region subprob-
lem min∥d∥≤∆i

k
hik(d), and the Update phase proceeds in a typical trust-region fashion according

to the reduction ratio ρk defined in (5.42).

Algorithm 5.2 Optimization by Space Decomposition (trust-region version)
Input: x0 ∈ Rn, ∆0 > 0; η0 ≥ 0, η1 > 0 with η0 ≤ η1; γ0, γ1, γ2 with 0 < γ0 ≤ γ1 < 1 ≤ γ2;
m ∈ N+, {N i}mi=1 ⊂ N+; Ri ∈ RNi×n, T i ∈ Rn×Ni (i = 1, 2, . . . ,m).
For k = 0, 1, 2, . . . , iterate the following steps.
1. Decomposition. Identical to Algorithm 5.1.
2. Minimization. For each i ∈ {1, 2, . . . ,m}, set

∆i
k =

∥∥∇hik(0)∥∥√∑m
i=1

∥∥∇hik(0)∥∥2 ·∆k (5.41)

and calculate
dik ≈ argmin

{
hik(d) : d ∈ RNi

, ∥d∥ ≤ ∆i
k

}
.

3. Synchronization. Identical to Algorithm 5.1.
4. Update. Update xk and ∆k according to (3.2) and (3.3) with

ρk =
f(xk)− f(xk + sk)∑m
i=1

[
hik(0)− hik(d

i
k)
] . (5.42)

Special attention should be paid to the configuration (5.41) of the subspace trust-region
radii {∆i

k}mi=1. Recall that Algorithm 5.2 implicitly decomposes Rn into subspaces {X i}mi=1,
and hik is essentially a model for f(xk + d) in X i. The size of ∇hik(0) in turn measures the first-
order optimality of f at xk along X i, and the algorithm determines {∆i

k}mi=1 according to such
optimality measurements. A subspace with lower optimality (i.e., a bigger value of ∥∇hik(0)∥)
receives a longer trust-region radius, because it is both necessary and possible to make larger
progress in this subspace.

Inheriting the relation between Algorithms 2.1 and 5.1, Algorithm 5.2 can be regarded as
a special instance of Algorithm 3.1 with Nk, hk, Rk, Tk, and dk specified in Subsection 5.4.
Indeed, according to (5.29) and (5.41),

∥dk∥ =
(m∑

i=1

∥dik∥2
) 1

2 ≤
(m∑

i=1

[∆i
k]

2
) 1

2
= ∆k.

55

Therefore, ∆k essentially works as a trust-region radius in RNk , and dk defined by (5.29) can be
interpreted as an approximate solution to the trust-region subproblem min∥d∥≤∆k

hk(d) with hk
given by (5.26). Moreover, with such definitions of hk and dk, the reduction ratio ρk defined
in (3.1) turns out to be exactly the one specified in (5.42).

In light of the aforesaid relationship between Algorithm 3.1 and 5.2, we can cast the theory
of the former to establish the global convergence and worst-case complexity bounds for the
latter, as we will do in Subsection 5.6.3, where we will present the global convergence and worst-
case complexities of Algorithm 5.2 with Additive Schwarz type decomposition/synchronization
matrices {Ri}mi=1 and {T i}mi=1 introduced in Subsection 5.5.

Note that one can modify Algorithm 5.2 to manage the trust-region radius ∆k by (3.65)
or (3.68)–(3.69) instead of (3.3), where ∇hk(0) is given in (5.27) for the usage of (3.68). Ac-
cording to Subsection 3.6, such modifications will not lead to essential differences in our theory
of Algorithm 5.2: replacing (3.3) with (3.65) only slightly affects the multiplicative constants
in the worst-case complexities bounds, while switching the rule to (3.68)–(3.69) does not affect
anything. We also mention that, if Algorithm 5.2 manages ∆k by (3.68)–(3.69) instead of (3.3),
then (5.41) will reduce to

∆i
k = Υk∥∇hik(0)∥.

We point that [72] also proposed an Additive Schwarz type trust-region method (APTS).
However, the decomposition/synchronization matrices in APTS (restriction/interpolation op-
erators following the terminology in [72]) are transposes of each other, as one can see from
Section 3.1.4, equation (3.2.1), and equation (4.1.2) of [72].

5.6.2 Fulfilling Assumptions 3.2–3.7

In order to cast the theory of Algorithm 3.1 to Algorithm 5.2 with Additive Schwarz type decom-
position/synchronization matrices, this subsection will discuss how the assumptions postulated
in Subsection 3.2 can be satisfied in this case. All the propositions in this subsection will be
proved in Appendix D.

We first postulate Assumption 5.1 on the subspace models {hik}, which can ensure Assump-
tion 3.2 for hk defined in (5.26), as is detailed in Propositions 5.1.

Assumption 5.1 (Smoothness of subspace models). For each k ≥ 0 and i ∈ {1, 2, . . . ,m}, the
model hik is continuously differentiable, and ∇hik is Lipschitz continuous in RNi with a Lipschitz
constant Lh > 0 independent of k and i.

Proposition 5.1. Under Assumption 5.1, for each k ≥ 0, the model hk defined by (5.26) is
continuously differentiable and ∇hk is Lh-Lipschitz continuous in RNk with Nk defined in (5.24).

As for the subspace trust-region steps {dik}, we impose Assumption 5.2. Then Assump-
tions 3.3 and 3.4 are guaranteed for dk defined in (5.29), as we will elaborate in Proposition 5.2.

Assumption 5.2 (Sufficient decreases of subspace trust-region steps). For each k ≥ 0 and each
i ∈ {1, 2, . . . ,m}, the subspace step dik satisfies

hik(d
i
k) ≤ hik(d̄

i
k), (5.43)

where

d̄ik = −min

{
∆i

k∥∥∇hik(0)∥∥ , 1

Lh

}
∇hik(0). (5.44)

56

Here we define 0/0 = 0 in case ∥∇hik(0)∥ = 0 (which necessitates ∆i
k = 0 according to (5.41)).

Similar to the step d̄k defined in (3.7), it holds for d̄ik that

d̄ik = argmin
{
hik(0) + dT∇hik(0) +

Lh

2
∥d∥2 : d ∈ RNi

, ∥d∥ ≤ ∆i
k

}
,

whose objective function majorizes hik(d). Akin to the case of d̄k, the step d̄ik is less demanding
than the classical Cauchy step, namely a minimizer of hik(d) on the half line {−t∇hik(0) : t ≥ 0}
subject to ∥d∥ ≤ ∆k, and Assumption 5.2 holds as long as the subspace steps achieve the Cauchy
decreases. See the comments made on d̄k and dC

k on page 15.

Proposition 5.2. Under Assumptions 5.1 and 5.2, for the model hk defined in (5.26) and the
step dk defined in (5.29), it holds that

hk(0)− hk(dk) ≥ 1

2
∥∇hk(0)∥min

{
∆k,

∥∇hk(0)∥
Lh

}
(5.45)

and

sinϕk ≤

√
2Lh∆k

∥∇hk(0)∥
, (5.46)

where ϕk is the angle between dk and −∇hk(0) defined in (3.11).

Proposition 5.2 tells us that Assumptions 5.1–5.2 validate Assumption 3.3 with α = 1 and
Assumption 3.4 with β = 2Lh and p = 1/2. Note that α = 1 is achieved because Assumption 5.2
demands (for simplicity) (5.43) for each subspace trust-region step.

Now let us examine Assumptions 3.5–3.7 for the transformations Rk and Tk defined by (5.28)
and (5.30) using the Additive Schwarz type decomposition/synchronization matrices {Ri}mi=1

and {T i}mi=1 given in (5.35)–(5.40). To this end, we define

τ ({Tk}) = sup
k≥0

∥Tk∥, κ({Rk}) = inf
k≥0

inf
g ̸=0

∥Rkg∥
∥g∥

, λ({Rk, Tk}) = inf
k≥0

inf
g ̸=0

gTTkRkg

∥Rkg∥2
. (5.47)

Proposition 5.3 presents some bounds for these quantities, justifying Assumptions 3.5–3.7.

Proposition 5.3. Let θ be the multiplicity of {Xi}mi=1 defined in Definition 5.3. Suppose
that {Ri}mi=1 and {T i}mi=1 are defined by one of AS (5.35), WRAS (5.37), WASH (5.39), and
RASH (5.40). Then for the transformations Rk and Tk formed according to (5.28) and (5.30),
we have the following conclusions on the values of τ , κ, and λ defined in (5.47).
1. AS: τ =

√
θ, κ ≥ 1, λ = 1.

2. WRAS: τ ≤ 1, κ ≥ 1, λ ≥ θ−1.
3. WASH: τ =

√
θ, κ ≥

√
θ−1, λ ≥ 1.

4. RASH: τ = 1, κ = 1, λ = 1.

We recall that RAS (5.36) is a special case of WRAS (5.37), and ASH (5.38) is a special case
of WASH (5.39). Thus Proposition 5.3 covers RAS and ASH as well.

57

5.6.3 Global convergence and worst-case complexity bounds

According to the theory of Algorithm 3.1 in Section 3, with the help of Propositions 5.1–5.3,
we can establish immediately the global convergence and worst-case complexity bounds for
Algorithm 5.2 when it uses the Additive Schwarz type decomposition/synchronization matrices
specified in Subsection 5.5.

Theorem 5.1. Consider Algorithm 5.2. Suppose that {Ri}mi=1 and {T i}mi=1 are defined according
to a partition {Xi}mi=1 of {1, 2, . . . , n}. Let one of the following situations be true.
1. {Ri}mi=1 and {T i}mi=1 are defined by AS (5.35), ASH (5.38), WASH (5.39), or RASH (5.40),

and the algorithmic parameter η1 is less than 1.
2. {Ri}mi=1 and {T i}mi=1 are defined by RAS (5.36) or WRAS (5.37), and the algorithmic pa-

rameter η1 is less than θ−1, where θ is the multiplicity of {Xi}mi=1 defined in Definition 5.3.
Then under Assumptions 3.1, 5.1, and 5.2, Algorithm 5.2 enjoys the global convergence elaborated
in Theorems 3.1 and 3.7, and it possesses the worst-case complexity bounds quantified in
Theorems 3.2–3.4.

Theorem 5.1 tells us that Algorithm 5.2 equipped with Additive Schwarz type decomposi-
tion/synchronization matrices enjoys the same convergence as Algorithm 3.1 provided that the
parameter η1 is compatible with the decomposition/synchronization strategy. In the cases of AS,
(W)ASH, and RASH, the constraint on η1 is 0 < η1 < 1, which is a common requirement in
trust-region methods. Things become more interesting when Algorithm 5.2 adopts (W)RAS, in
which case the multiplicity θ of {Xi}mi=1 comes into play and 0 < η1 < θ−1 turns out sufficient.

5.7 Coarse space correction
Algorithm 5.1 will likely slow down when the number of subspaces increases. This is because
the Minimization phase minimizes f along the subspaces separately, losing the coupling infor-
mation between them. This phenomenon is well studied in domain decomposition, and coarse
space correction [148, 92] is the remedy. The idea is to enrich the decomposition {X i}mi=1 by
a so-called coarse space X 0

k that overlaps with each X i, representing global information that is
otherwise scattered among the subspaces. We expect that minimizing f in xk+X 0

k will transmits
information across the subspaces and thus recovering some information lost when the coupling
between {X i}mi=1 is ignored.

Both theoretically and numerically, it has been proved that coarse spaces can substantially
enhance domain decomposition algorithms for PDEs. Indeed, such a coarse component can
render convergence bounds that are independent of the number of subdomains [11, 148] and
hence guarantee scalability in parallel computing. The idea of coarse space correction has also
achieved remarkable success in PDE optimization [8, 9]. Thus we are motivated to integrate this
technique into our space decomposition framework so that such a technique can be exploited in
general nonlinear optimization as well.

5.7.1 Incorporating coarse spaces into the space decomposition framework

Algorithm 5.3 formulates a framework that incorporates coarse space correction into optimiza-
tion by space decomposition. In the algorithm, the coarse space X 0

k is not shown explicitly but
represented by RMk . Matrices Ck and CT

k work as the restriction/prolongation operators for

58

the coarse space. Note that they are the transposes of each other, which is different from the
configuration of the decomposition/synchronization matrices.

Algorithm 5.3 Optimization by Space Decomposition with Coarse Space (prototype)
Input: Identical to Algorithm 5.1.
For k = 0, 1, 2, . . . , iterate the following steps.
1. Decomposition. Define functions {hik}mi=1 as Algorithm 5.1 does. In addition, define a

function Hk : RMk → R satisfying
∇Hk(0) = Ck∇f(xk)

with a certain positive integer Mk and a certain matrix Ck ∈ Rn×Mk .
2. Minimization. Calculate steps {dik}mi=1 as Algorithm 5.1 does. In addition, calculate

δk ≈ argmin
{
Hk(δ) : δ ∈ RMk

}
.

3. Synchronization. Define

sk = ωk

m∑
i=1

T idik + (1− ωk)C
T
k δk (5.48)

with some matrices T i ∈ Rn×Ni (i = 1, 2, . . . ,m) and a certain weight ωk ∈ (0, 1].
4. Update. Set xk+1 to either xk + sk or xk depending on the quality of sk.

Reusing the arguments in Subsection 5.4, we can show that Algorithm 5.3 is a special in-
stance of Algorithm 4.1 with Nk, hk, Rk, dk, and Tk specified in Subsection 5.4. Hence we can
globalize Algorithm 5.3 by trust regions according to Algorithm 4.2 (the trust-region version of
Algorithm 4.1), obtaining Algorithm 5.4.

In Algorithm 5.4, the trust-region subproblem for the coarse space model Hk takes a full
trust-region radius as shown in (5.49), while the subspace models {hik}mi=1 share a single trust-
region radius according to (5.41). Such a difference is due to the distinct roles played by Hk

and {hik}mi=1: Hk is supposed to reflect (coarsely) the behavior of f(xk + d) for d in Rn, while
each hik depicts f(xk + d) only for d in a subspace of Rn. This distinction is also manifested in
the way that sk integrates the coarse space step δk and the subspace steps {dik}mi=1: in (5.48), δk
acts as a counterpart to the ensemble of {dik}mi=1 but not any individual of them.

The global convergence and worst-case complexity theory of Algorithm 5.4 can be established
by specializing that of Algorithm 4.2. In particular, we have Theorem 5.2, which follows directly
from Theorem 4.1 with the help of Propositions 5.1–5.3.

Theorem 5.2. Consider Algorithm 5.4. Suppose that the matrices {Ri}mi=1, {T i}mi=1 and the al-
gorithmic parameter η1 are configured as in Theorem 5.1. Then under Assumptions 3.1, 4.1, 5.1,
and 5.2, Algorithm 5.4 enjoys the global convergence elaborated in Theorems 3.1 and 3.7, and
it possesses the worst-case complexity bounds quantified in Theorems 3.2–3.4.

The convergence rate (worst-case complexity) in Theorem 5.2 is standard. We have yet to
investigate how the coarse space correction can expedite the convergence. Such an effect will
be clearly demonstrated by the numerical experiments in Subsections 5.8.3–5.8.4, although the
theoretical analysis will be left for future study.

59

Algorithm 5.4 Optimization by Space Decomposition with Coarse Space (trust-region version)
Input: Identical to Algorithm 5.2.
For k = 0, 1, 2, . . . , iterate the following steps.
1. Decomposition. Identical to Algorithm 5.3.
2. Minimization. Calculate steps {dik}mi=1 as Algorithm 5.2 does. In addition, calculate

δk ≈ argmin
{
Hk(δ) : δ ∈ RMk , ∥δ∥ ≤ ∆k

}
. (5.49)

3. Synchronization. Identical to Algorithm 5.3.
4. Update. Update xk and ∆k according to (3.2) and (3.3) with

ρk =
f(xk)− f(xk + sk)

ωk
∑m

i=1

[
hik(0)− hik(d

i
k)
]
+ (1− ωk)[Hk(0)−Hk(δk)]

. (5.50)

5.7.2 Devising coarse spaces

Designing an effective coarse space is nontrivial. It is still under active investigation even in
domain decomposition for PDEs [148, 92, 41, 55] after years of exploration. Good coarse spaces
rely on the geometrical/physical background or structure of the problem. For example, if the
solution is known to be sparse, then it is natural to define a coarse space to be the space spanned
by the canonical basis vectors corresponding to the best available estimated support set of the
solution. For generic problems, there are still some problem-independent algebraic coarse spaces
to try. Here we suggest some possibilities.

The first possibility is to choose a linear space spanned by subspace steps of previous itera-
tions. For instance, we can set

X 0
k = span

{
T idilk

}m
i=1

(5.51)

as the coarse space for iteration k, where lk can be either k − 1 (i.e., the last iteration) or
max{l ∈ N : l ≤ k − 1 and ρl > η0} (i.e., the last successful iteration).28 Since dilk inhabits
in RNi , coarse space (5.51) relies on T i ∈ Rn×Ni to map dilk to Rn. This coarse space resembles
but still differs from the basic idea of [49, 93, 131, 52, 42], which explore the space spanned
by the subspace steps of the current iteration, yet they do not use such a space as a coarse
space. More importantly, (5.51) defines X 0

k by the subspace steps of a previous iteration, which
makes the Minimization phase of Algorithms 5.3–5.4 parallelizable. One can also choose
X 0
k = span

{
[Ri]Tdilk

}m
i=1

. It is similar to (5.51), but dilk is mapped to Rn by [Ri]T instead of T i.
The second possibility is to define a coarse space based on previous full-space steps. Exploring

steps of past iterations is a common way of accelerating iterative schemes, momentum-type
accelerated algorithms [114, 103] being prominent examples. Here we can simply take

X 0
k = span{slk} (5.52)

as a coarse space, where lk again signifies k−1 or max{l ∈ N : l ≤ k−1 and ρl > η0}. Despite its
simplicity, this coarse space worked quite well in our tests (see Subsections 5.8.3–5.8.4). Alter-
natively, we can decompose slk into components according to the space decomposition {X i}mi=1

28 For the second strategy, when {l ∈ N : l ≤ k− 1 and ρl > η0} = ∅, we can set lk = k− 1. For both strategies,
when k = 0, the coarse space has to be chosen ad hoc or set to {0}.

60

and use such components to span a coarse space. In particular, for the Additive Schwarz type
methods introduced in Subsection 5.5, we can either choose X 0

k = span
{
U i[U i]Tslk

}m
i=1

, or set

X 0
k = span

{
U i[Ũ i]Tslk

}m
i=1

= span
{
Ũ i[Ũ i]Tslk

}m
i=1
. (5.53)

Note that each entry of slk appears exactly once in the vectors
{
U i[Ũ i]Tslk

}m
i=1

due to {Ũ i}mi=1

(see (5.32)), while it can be repeated in
{
U i[U i]Tslk

}m
i=1

if the decomposition {X i}mi=1 is over-
lapping. For this reason, we suggest decomposing slk by

{
U i[Ũ i]Tslk

}m
i=1

, and
{
U i[W i]Tslk

}m
i=1

is another possibility (see (5.33) for the definition of W i).
All the coarse spaces described above can be further enriched by gradient directions if they

are available. For instance, instead of (5.52), we can define

X 0
k = span{slk , −gk}, (5.54)

the motivation coming from the subspace viewpoint on conjugate gradient method [160], which
suggests exploring the subspace spanned by the current gradient and previous steps.

Recall that Algorithms 5.3–5.4 implement coarse space correction by restriction/prolongation
operators Ck and CT

k . For coarse space (5.51), a possible definition for Ck is

Ck =

[
T 1d1lk

∥T 1d1lk∥
, · · · ,

Tmdmlk
∥Tmdmlk∥

]
.

If (nearly) zero vectors occur in {T idilk}
m
i=1, we exclude them from Ck. This definition fulfills

item 2 of Assumption 4.1, which is the only assumption that Theorem 5.2 imposes on the
coarse space restriction/prolongation operators. The other aforementioned coarse spaces can be
implemented by devising Ck in a similar way. For (5.53), the columns of such Ck constitute an
orthonormal basis of X 0

k , because
{
U i[Ũ i]Tslk

}m
i=1

are mutually orthogonal.
Coarse spaces (5.51)–(5.54) all worked well in our experiments (see Subsections 5.8.3–5.8.4).

Intriguingly, the one-dimensional space (5.52) performed remarkably on the problems we tried.
However, we stress that coarse space correction is a highly problem-dependent technique. It will
be no surprise if the suggestions made here turn out ineffective for certain problems.

5.8 Numerical illustrations
The space decomposition framework elaborated in Algorithms 5.1–5.4 contains important in-
gredients that have been proved crucial in PDEs, particularly the overlapping strategies like
(W)RAS and coarse space correction. The purpose of this subsection is to demonstrate numer-
ically the significance of such ingredients even if the optimization problem is not PDE-based.

We put forward a note of caution before presenting the experiments: our space decomposi-
tion framework is not proposed as a specific algorithm but a general foundation for designing
and interpreting algorithms that utilize space decomposition methodology. When applied to a
particular type of problems, the framework has to be adapted as much as possible to the prob-
lem structure (e.g., separability, sparsity, scaling), taking into account the geometrical/physical
background if such information is available, as will be illustrated in Subsection 5.8.4. This is the
same as domain decomposition, which is general framework to be tailored when a certain class
of problems are given (e.g., [24, Sections 9–11]). The aim of our examples is to illustrate the
key ingredients rather than discovering the optimal implementation of our framework, which
depends on particular applications and we leave it for future research.

61

5.8.1 General settings of the experiments

Our experiments are based on an unsophisticated implementation of Algorithms 5.2 and 5.4 with
the Additive Schwarz type decomposition/synchronization matrices introduced in Subsection 5.5.
As illustrations, we focus on AS (5.35) and RAS (5.36). We elaborate here all the key points in
the implementation that will lead to the results presented later.

To implement Algorithms 5.2 and 5.4 with AS (5.35) and RAS (5.36) on an n-dimensional
problem, we need first to define a partition {Xi}mi=1 of {1, 2, . . . , n} and a restriction {X̃i}mi=1

of {Xi}mi=1, where m ≥ 2 is the number of subspaces. Here we simply define them by dividing
{1, 2, . . . , n} into balanced groups.29 Assume for simplicity that m divides n. We begin with

X̃i =
{ n
m
(i−1) + 1, . . . ,

n

m
i
}
, i = 1, 2, . . . ,m, (5.55)

which splits {1, 2, . . . , n} into m groups of size n/m following the natural order, and then
let Xi be

{
(min X̃i) − no/2, . . . , (max X̃i) + no/2

}
, introducing overlaps of size no between

consecutive groups. Here, again for simplicity, we assume no to be an even number, and re-
quire 0 ≤ no ≤ n/m so that overlaps are limited to neighboring groups. Exceptions should
be made for Xi when i = 1 and i = m, where we take X1 =

{
1, . . . , (max X̃1) + no/2

}
and

Xm =
{
(min X̃m)− no/2, . . . , n

}
to keep Xi within {1, 2, . . . , n}. Overall, we set

Xi =
{ n
m
(i−1) + 1− no

2
, . . . ,

n

m
i+

no
2

} ∩
{1, 2, . . . , n} , i = 1, 2, . . . ,m. (5.56)

According to Definitions 5.1–5.3, {Xi}mi=1 is a partition of {1, 2, . . . , n}, {X̃i}mi=1 is a restriction
of {Xi}mi=1, and the multiplicity of {Xi}mi=1 is

θ =

{
1 if no = 0,

2 if 1 ≤ no ≤ n/m.

With {Xi}mi=1 and {X̃i}mi=1, the decomposition/synchronization matrices {Ri}mi=1 and {T i}mi=1

can be constructed according to AS (5.35) or RAS (5.36).
In the Decomposition phase of Algorithm 5.2, according to (5.23), we simply set

hik(d) = f(xk) + dTRi∇f(xk) +
1

2
dTRi∇2f(xk)[R

i]Td, d ∈ RNi
(N i = |Xi|).

The Minimization phase of Algorithm 5.2 solves its subproblem by the Toint-Steihaug trun-
cated conjugate gradient method described in [30, Algorithm 7.5.1], which achieves the Cauchy
decrease and fulfills Assumption 5.2. For trail step acceptance, the Update phase of Algo-
rithm 5.2 chooses η0 = 0. We use (3.64) to update trust-region radius with γ1 = 1/2, γ2 = 2,
η1 = λ/10, and η2 = 3λ/4, where λ is the upper bound imposed on η1 by Theorem 5.1, namely

λ =

{
1 for AS,
θ−1 for RAS.

29 Similar to domain decomposition, our space decomposition framework is intended to be implemented in
parallel when applied to large-scale problems. In such a setting, it is essential to limit load imbalance between
tasks executed in parallel. Thus it is rational to balance the number of variables in each subspace, assuming that
the cost of each subproblem in the Minimization phase of Algorithm 5.2 is roughly proportional to the dimension
of the subspace. Such an assumption holds for the problems tested here. In practice, problem-dependent and
possibly iteration-dependent partitions should be devised according to the actual cost of the subproblems.

62

In other words, λ = 1/2 for RAS with no ≥ 1 and λ = 1 otherwise. Note that we should
calculate ∥dk∥ by

√∑m
i=1 ∥dik∥2 in (3.64), because dk =

[
d1k ; d

2
k ; · · · ; dmk

]
when we interpret

Algorithm 5.2 as a special case of Algorithm 3.1, as we can recall from (5.29). ∆0 is set to 1.
Algorithm 5.4 is implemented by integrating coarse spaces into the implementation of Algo-

rithm 5.2. It suffices to specify Ck, Hk, δk, and ωk. Matrix Ck is defined according to one of the
coarse spaces (5.51)–(5.54) recommended in Subsection 5.7.2. Then following (4.2), we choose

Hk(δ) = f(xk) + δTCk∇f(xk) +
1

2
δT
[
Ck∇2f(xk)C

T
k

]
δ, δ ∈ RMk .

To obtain δk, we solve the trust-region subproblem in the coarse space still by the Toint-Steihaug
truncated conjugate gradient method. For ωk, we simply pick a constant value 3/4. Assump-
tion 4.1 is fulfilled under these configurations of Ck, Hk, δk, and ωk. Incorporating coarse spaces
does not change the schemes for trial step acceptance and trust-region radius update, but the
reduction ratio ρk should be calculated by (5.50) instead of (5.42).

Coarse spaces (5.51)–(5.54) need to specify lk. Both lk = max{l ∈ N : l ≤ k−1 and ρl > η0}
and lk = k − 1 were tried in our (rather limited) tests. Unexpectedly, the two strategies led to
little difference. Thus lk = k−1 is chosen for simplicity (k ≥ 1). At iteration 0, we define C0 = 0
and ω0 = 0 for coarse spaces (5.51)–(5.53), while C0 = −g0/∥g0∥ and ω0 = 3/4 for (5.54).

5.8.2 A comparison between AS and RAS

We first try our implementation of Algorithm 5.2 on a set of test problems, compare the behavior
of AS and RAS, and manifest the superiority of RAS over AS when the partition {Xi}mi=1 is
overlapping. By the performance of RAS, we will demonstrate the potential of designing highly
scalable parallel optimization algorithms based on our space decomposition framework.

The test problems are taken from CUTEst [62] and Powell [119]. The first column of Table 2
contains their names, each accompanied by a bracketed letter indicating the sparsity pattern of
the problem’s Hessian matrix with the code below.
1. A: arrowhead matrix with all nonzeros in the diagonal and the last row/column;
2. B: band matrix;
3. D: double arrowhead matrix with nonzeros in the diagonal, the first and last rows/columns;
4. F: full matrix without particular sparsity.
These patterns reflect the coupling structures of corresponding problems. Although such struc-
tures are not exploited in our implementation of Algorithm 5.2, they affect the behavior of the
algorithm. The formulations and standard starting points of these problems can be found in [119]
(arwhead, chrosen, penalty1, and vardim) or [62] (all but chrosen). Problems arwhead,
engval1, powellsg, power, tridia, and vardim are convex, while the others are nonconvex.

The test problems are with adjustable dimension. As illustrations, we solved the 103- and 104-
dimensional versions of them by our implementation of Algorithm 5.2 with the number m of
subspaces being 10 and 102 respectively. The overlap size no was set to 0, 2, 4, or 6. Both
AS and RAS were tried when defining the decomposition/synchronization matrices. The two
strategies are identical when no = 0. As a reference, we also executed Algorithm 5.2 with
no decomposition (m = 1), our implementation reducing to a standard trust-region method
in Rn. Table 2 presents the number of iterations for all the variants of Algorithm 5.2 to fulfill

63

Overlap size 0 2 4 6 No decomposition
Strategy AS/RAS AS RAS AS RAS AS RAS

arwhead (A) 5 7 5 7 5 7 5 5
5 5 5 5 5 5 5 5

broydn3d (B) 20 22 9 28 7 29 7 6
22 33 10 30 9 33 8 8

broydnbd (B) 8 15 8 15 8 17 8 8
10 15 9 16 10 18 10 9

chrosen (B) 33 190 26 197 27 217 24 22
29 139 28 165 34 132 27 31

cosine (B) 140 7478 105 – 110 – 104 4514
347 – 356 – 578 – 247 3378

cragglvy (B) 37 23 15 23 15 25 15 15
39 19 16 26 15 22 14 14

engval1 (B) 11 17 10 20 10 22 10 10
13 21 12 25 12 28 12 12

errinros (B) 68 404 72 1979 68 4113 67 90
152 155 159 2538 136 1421 145 82

freuroth (B) 9 138 9 318 9 1551 9 8
10 30 10 24 10 22 10 9

powellsg (B) 15 28 15 132 19 149 15 15
16 29 16 182 22 197 16 16

tridia (B) 19 24 10 25 9 35 8 6
23 26 12 27 10 32 9 7

eg2 (D) 8 33 8 23 9 25 14 8
12 18 13 16 13 13 9 7

penalty1 (F) 19 19 19 19 19 19 19 23
20 24 20 21 20 21 20 28

power (F) 8 9 9 9 8 9 9 14
9 14 8 17 8 17 8 16

vardim (F) 10 10 10 10 10 10 10 14
15 12 14 12 10 13 10 15

Table 2: Number of iterations for AS/RAS to solve some test problems (bracketed letter:
coupling pattern; odd row: 103 variables, 10 subspaces; even row: 104 variables, 102 subspaces).

64

convergence criterion ∥gk∥ ≤ 10−6∥g0∥, a “–” being displayed if such a condition was not achieved
within 104 iterations.

First of all, as expected, RAS (5.36) rather than AS (5.35) turned out to be the correct
strategy to define the decomposition/synchronization matrices in the overlapping cases (no > 0).
Therefore, RAS is an appropriate overlapping strategy while AS is not. The surplus correction
of AS (5.35) was detrimental for all the problems except arwhead, penalty1, and vardim, where
the two strategies performed similarly. The comparison between AS and RAS matches what
is known for linear systems arising from PDEs (see Subsection 5.2 and the references therein),
although the problems in Table 2 have absolutely no PDE background.

For broydn3d, cragglvy, tridia, as well as 104-dimensional vardim, introducing overlaps
in the decomposition significantly reduced the number of iterations provided that RAS was the
overlapping strategy. Moreover, for these problems, augmenting the overlap size expedited the
convergence of RAS, resembling the behavior of parallel Schwarz domain decomposition methods
for certain types of PDEs and linear systems (see, e.g., [41, Section 1.5] and [51, Section 5]). It
will be interesting to investigate such a phenomenon theoretically.

With RAS being the overlapping strategy, Algorithm 5.2 worked well on the test problems
despite the naïveness of our implementation. In particular, the algorithm scaled nicely when
both the dimension and number of subspaces were enlarged by a factor of 10. Its scalability
is also reflected by the surprising fact that, even with 102 subspaces, RAS did not need much
more iterations than the full-space method to converge for these problems, including the fully
coupled penalty1, power, and vardim. For problem cosine, whose Hessian is tridiagonal, RAS
even greatly outperformed the full-space method. Due to the considerably lower dimension
of the subspaces, one can expect for a large class of problems that establishing models and
solving subproblems in the subspaces are much more economical than doing the same in the full
space, the latter becoming even impossible when the problem is huge. Moreover, the subspace
computations are parallel among the subspaces by the design of our framework. Thus the nice
scalability of RAS can lead to considerable speedup when it is implemented on parallel machines.

The performance of RAS on these test problems implies that RAS is naturally well adapted
to the coupling structures of such problems. It is however unrealistic to expect RAS can work
equally well on all types of problems. This urges us to characterize analytically the problems
that RAS can handle, opening a broad avenue for future research.

5.8.3 Improvement by coarse space correction: an algebraic example

Our second experiment is to test Algorithm 5.4 and illustrate the significance of coarse space
correction. We will show by an example that, when the objective function has relative strong
coupling among the variables, Algorithm 5.4 with appropriate coarse spaces can considerably
outperform Algorithm 5.2, and that coarse spaces can evidently improve the scalability of our
space decomposition framework when the number of subspaces increases.

We focus on coarse spaces (5.51)–(5.54) introduced in Subsection 5.7.2, which are problem-
independent and purely algebraic. For convenience, we assign the following code names to
them: SS (Subspace Steps) for (5.51), FS (Full-space Step) for (5.52), DF (Decomposition of
Full-space step) for (5.53), and CG (Conjugate Gradient) for (5.54). In addition, Nil indicates
that no coarse space is in use, where we define Ck = 0 and ωk = 1 in Algorithm 5.4 so that
it reduces to Algorithm 5.2. In all cases, we use RAS with overlap size no = 2 to set the
decomposition/synchronization matrices.

65

chrosen chrosen RC chrosen SRC

Nil SS FS DF CG Nil SS FS DF CG Nil SS FS DF CG
2 31 18 22 22 24 32 26 24 23 26 32 27 25 24 25
4 22 18 24 24 25 34 24 24 23 27 35 24 25 24 27
8 29 24 24 27 25 51 26 23 24 33 52 26 25 25 33

16 28 23 24 23 23 70 31 27 30 35 72 33 33 30 37
32 22 19 21 19 20 89 37 31 35 40 100 31 34 33 40
64 24 19 20 19 20 120 33 32 32 41 106 36 35 34 40

128 24 20 21 20 21 135 37 40 35 40 116 38 41 33 42
256 24 20 21 20 22 145 37 39 33 42 117 40 40 36 42

Table 3: Number of iterations for Algorithm 5.4 with RAS and no = 2 to solve chrosen and its
variants with 6400 variables (columns: coarse spaces; rows: number of subspaces).

To test Algorithm 5.4 and the coarse spaces, we use the chrosen (chained Rosenbrock) prob-
lem from Powell [119] and its variants that we define later. The objective function of chrosen is

f(x) =

n−1∑
i=1

[
4(ui − u2i+1)

2 + (1− ui+1)
2
]
, x = [u1 ; u2 ; · · · ; un] ∈ Rn.

The standard starting point is x0 = [−1 ; −1 ; · · · ; −1].
Table 3 shows in its first part (under “chrosen”) the numbers of iterations for our implemen-

tation of Algorithm 5.4 to achieve ∥gk∥ ≤ 10−6∥g0∥ on the 6400-dimensional 30 chrosen problem
with various coarse spaces (corresponding to columns) and different numbers of subspaces (cor-
responding to rows). We see that Algorithm 5.4 scaled quite well when the number of subspaces
increased more than 100 times (2 to 256). It was the case even for the version with no coarse
space, the implementation being identical to Algorithm 5.2. The coarse spaces typically reduced
the number of iterations, yet the effect was not significant.

According to these results, one may infer that coarse spaces are beneficial but not obligatory.
However, such an inference will turn out invalid if we introduce more coupling into the objective
function. To see this, we consider a perturbation of chrosen defined by

fV (x) = f(x) +
1

2
xTV V Tx, x ∈ Rn,

where V ∈ Rn×r is a constant matrix with r columns (r ≪ n) whose 2-norms are σ > 0. By
the term (xTV V Tx)/2, we intend to embed simple yet nontrivial coupling into fV in addition to
the chrosen objective function f . Note that rank (V V T) ≤ r, and the eigenvalues of V V T are
located in [0, rσ2]. We propose two probabilistic schemes for generating V (once generated, V
is fixed so that fV (x) is a deterministic function of x), resulting in two variants of chrosen.
1. chrosen with Random Coupling (chrosen RC). The columns of V are independent samples

from the uniform distribution on σ Sn−1, where Sn−1 is the unit sphere in Rn. Each sample
can be obtained by drawing a vector from the standard normal distribution in Rn and scaling
its 2-norm to σ. Then, almost surely, V V T is a full matrix and hence couples all the variables.

30 We choose n = 6400 so that, for simplicity, it is always divisible by the number of subspaces.

66

2. chrosen with Sparse Random Coupling (chrosen SRC). The columns of V are generated
independently as follows: draw a vector of n independent random variables taking val-
ues −1, 1, and 0 with probability p/2, p/2, and 1−p respectively, and scale its 2-norm
to σ. Here p ∈ (0, 1) is a constant. In this case, V V T is sparse with roughly rp2n2 nonzeros.
Setting r = 2 and σ = 5, we generated 10 independent instances of chrosen RC, solved

them by our implementation of Algorithm 5.4 with various combinations of coarse space and
number of subspaces, and recorded for each combination the average number of iterations
(rounded to the nearest integer) to achieve ∥gk∥ ≤ 10−6∥g0∥. Table 3 presents these values
in its second part below “chrosen RC”, columns corresponding to different coarse spaces while
rows corresponding to different numbers of subspaces. The same experiment was conducted on
chrosen SRC with r = 2, σ = 5, and p = 10−1, results shown in the third part of Table 3.

Compared with chrosen, Algorithm 5.4 took more iterations to solve chrosen RC and
chrosen SRC due to the additional coupling. Nevertheless, Algorithm 5.4 still scaled well on
chrosen RC and chrosen SRC when the number of subspaces varied from 2 to 256. Even with-
out coarse space, the iteration number grew less than five times on average while the number
of subspaces increased more than 100 times. However, with coarse spaces, the performance was
evidently better: the problems were solved with considerably smaller iteration numbers, which
grew at a visibly slower rate when the number of subspaces was increasing.

To conclude, coarse spaces (5.51)–(5.54) worked well on chrosen and its variants. Their
effectiveness was more evident when additional coupling was injected into the chrosen objective
function. Little difference was detected among the four of them. However, recall that coarse
space correction is a rather problem-dependent technique. The generic coarse spaces tested here
will change their behavior when problems change, and they will be defeated by problem-specific
strategies when problem structure is available to exploit, as we will see in next experiment.

5.8.4 Exploiting problem structure: a geometrical example

The final experiment will illustrate how to implement Algorithms 5.2 and 5.4 according to the
particularity of a given problem. For an example with geometrical background, we design a
structure-aware decomposition and a problem-dependent coarse space, and show that such an
adapted implementation can greatly outperform the generic one introduced in Subsection 5.8.1.

Our illustrative example is a simple instance of Plateau’s problem in R3, namely to find a
surface of minimal area with a prescribed boundary [44]. Being applied in a wide variety of
sciences, this problem admits analytical solutions only in special cases, and numerical methods
are needed in general [43, 142]. As a simple illustration, we consider the following instance:

min
Φ

∫∫
[0, 1]2

[
1 + ∥∇Φ(u, v)∥2

] 1
2
du dv

s.t. Φ(u, v) =

0 u ∈ [0, 1], v = 0 or 1,

sin(4πv) +
1

10
sin(120πv) v ∈ [0, 1], u = 0 or 1.

(5.57)

Discretizing [0, 1]2 by a regular grid G = {(ihn, jhn) | 0 ≤ i, j ≤ n + 1
}

with hn = 1/(n + 1),
we obtain a discretization of problem (5.57), whose objective function is

1

2

n∑
i=0

n∑
j=0

[
h2n+(zi, j−zi+1, j)

2+(zi+1, j+1−zi+1, j)
2
] 1
2 +
[
h2n+(zi, j−zi, j+1)

2+(zi+1, j+1−zi, j+1)
2
] 1
2 ,

67

where zi, j is the value of Φ at grid node (ihn, jhn). Due to the boundary conditions in (5.57),
the discretized problem is n2-dimensional with {zi, j | 1 ≤ i, j ≤ n} being the decision variables.

To tackle the discretized problem by Algorithms 5.2 and 5.4, we can concatenate {zi, j} into
a vector in Rn2 and invoke the generic implementation of these algorithms in Subsection 5.8.1.
A better strategy is to pursue a problem-specific implementation, which is explained below.

We partition the variable indices {(i, j) | 1 ≤ i, j ≤ n} in a way respecting the two-dimensional
structure of the variables. Take integers m1 ≥ 1, m2 ≥ 1, and no ≥ 0 so that, for simplicity, m1

and m2 divide n, and no is even. Following (5.55)–(5.56), set {Xi}m1
i=1 and {Y j}m2

j=1 to partition
{1, 2, . . . , n}, both with overlap size no, their restrictions being {X̃i}m1

i=1 and {Ỹ j}m2
j=1 respectively.

Then we take {Xi×Y j | 1 ≤ i ≤ m1, 1 ≤ j ≤ m2} as anm1×m2 partition of {(i, j) | 1 ≤ i, j ≤ n},
and {X̃i × Ỹ j | 1 ≤ i ≤ m1, 1 ≤ j ≤ m2} as its restriction. The multiplicity of this partition is

θ =

1 if no = 0 or m1 = m2 = 1,

2 if no ≥ 1 and max{m1,m2} > min{m1,m2} = 1,

4 else.

It is not essential to require that {Xi}m1
i=1 and {Y j}m2

j=1 have the same overlap size, yet we do
have to ensure no ≤ min{n/m1, n/m2} so that overlaps are limited to neighboring groups.

To devise a coarse space, we note that (5.57) leads to a quasi-linear elliptic boundary value
problem by its Euler-Lagrange equation (see, e.g., [44, equation (1.2)]). Hence it is sensible
to trial the HEM (Harmonically Enriched Multiscale) coarse space [56], which renders optimal
coarse spaces for certain linear elliptic problems. For each (i, j) ∈ {1, . . . ,m1}×{1, . . . ,m2} and
each overlapped index (i, j) ∈ Xi×Y j , define a function Ψ on G by assigning Ψ = 1 at (ihn, jhn),
setting Ψ = 0 outside (Xi × Y j)hn, and extending these values to G harmonically. Our coarse
space is spanned by these discrete functions, each of which constitutes a column of the restriction
matrix Ck. The dimension of this coarse space 31 is approximately 2nno(m1+m2), which is much
smaller than the dimension n2 of the variable space as long as m1,m2 ≪ n and no is small. To
further reduce the dimension, we subsample the discrete functions by taking only one out of
every four of them, leading to a coarse space whose dimension is about nno(m1 +m2)/2.

We solved a 1282-dimensional discretization of problem (5.57) by Algorithm 5.4 using both
the generic implementation in Subsection 5.8.1 and the problem-specific one elaborated above.
We tried coarse spaces SS (5.51), FS (5.52), DF (5.53), CG (5.54), and HEM, the last one
equipped only in the problem-specific implementation. The case without coarse space was also
tested, Algorithm 5.4 being then reduced to Algorithm 5.2. The starting point was 0. Table 4
displays the numbers of iterations for the two implementations to fulfill ∥gk∥ ≤ 10−6∥g0∥ with
coarse spaces varying across the columns and number of subspaces varying across the rows. A “–
” is displayed if such a condition was not achieved within 104 iterations. To have m subspaces, m
being 2, 4, . . . , 256 as in the table, the generic implementation applied (5.55)–(5.56) to vector
x = [z1,1 ; · · · ; zn,1 ; z1,2 ; · · · ; zn,2 ; · · · ; z1,n ; · · · ; zn,n] ∈ Rn2 (where n = 128), while the
problem-specific implementation took a

√
m×

√
m or

√
m/2×

√
2m two-dimensional partition

depending on whether
√
m is an integer or not. Both implementations set no = 2, yet in the

second case the overlaps between the variable groups were indeed larger than no due to the
two-dimensional structure of the partition. RAS was always the overlapping strategy.

31 There are around nno(m1+m2−2) overlapped indices, most belonging to two groups while very few associated
with four. Thus the process of defining the discrete function Ψ generates a bit more than 2nno(m1 + m2 − 2)
functions, that is to say approximately 2nno(m1 +m2) of them.

68

Generic implementation Problem-specific implementation

Nil SS FS DF CG Nil SS FS DF CG HEM

2 243 133 52 52 48 158 63 33 33 50 39
4 318 212 67 67 62 114 63 34 34 51 35
8 – 357 102 98 111 140 89 42 41 65 39

16 1104 683 129 126 179 173 134 53 52 95 38
32 2000 1209 196 182 300 252 195 68 67 136 39
64 – 2022 325 249 536 341 259 80 81 175 57

128 – – – – – 502 357 97 104 242 60
256 – – 374 384 275 650 436 156 133 271 81

Table 4: Number of iterations for two implementations of Algorithm 5.4 to solve a discretized
Plateau’s problem with 1282 variables (columns: coarse spaces; rows: numbers of subspaces).

Above all, we highlight the outstanding performance of the problem-specific implementation
with HEM coarse space. When the number of subspaces was 64, 128, or 256, this implemen-
tation enjoyed more than 100 times of speedup in terms of iteration number compared to the
generic version without coarse space, which did not achieve the converge criterion even after 104
iterations. Comparing the HEM column with all the others in Table 4, it is reasonable to
conclude that both the structure-aware decomposition and the problem-dependent coarse space
contributed to such a speedup, which confirms the significance of structure-exploiting in the
implementation of our space decomposition framework.

The problem-specific implementation outperformed the generic one in all situations as antic-
ipated. The performance of the latter was however acceptable so long as it was equipped with
coarse spaces FS, DF, or CG, exception made when there were 128 subspaces. This extremely
bad exception is indeed a quite good demonstration for the importance of structure-aware decom-
position. Applying partition (5.56) to x = [z1,1 ; · · · ; zn,1 ; z1,2 ; · · · ; zn,2 ; · · · ; z1,n ; · · · ; zn,n]
with m = n = 128 and no = 2, we see for each j ∈ {2, · · · , n− 1} that the jth group of variables
are {zn, j−1, z1, j, z2, j, . . . , zn, j, z1, j+1}, variable zi, j losing its coupling with zi, j−1 and zi, j+1

unless i = 1 or i = n. Since zi, j couples with at most four variables in this problem, such a par-
tition misses roughly half of the coupling information overall. This is significantly worse than the
case with m = n/2 = 64, where about 1/4 of the coupling is ignored while 3/4 retained, which
probably contributed to the sudden deterioration of the algorithm from m = 64 to m = 128.

For both the generic implementation and the problem-specific one, coarse spaces FS, DF,
and CG performed much better than SS. The first three worked (unexpectedly) well even with
the generic implementation in the 256-subspace case, while SS failed to converge within 104

iterations. Such a clear distinction was not observed in Subsection 5.8.3, which testifies the
problem-dependent nature of coarse spaces.

We close this subsection by emphasizing that, despite the importance of geometrical structure
in this example, our space decomposition framework is not particularly designed for this type of
problems and has absolutely no dependence on such structure. The generality of our framework
has been manifested clearly by the theory in Subsections 5.6–5.7 and by the experiments in
Subsections 5.8.2–5.8.3, providing us with a solid basis and a strong motivation to explore our
framework on more applications in the investigations yet to come.

69

6 Optimization based on inaccurate gradients
6.1 Introduction
As elaborated in Subsection 1.2, optimization base on inaccurate gradients is becoming increas-
ingly relevant due to modern applications. However, most classical gradient-based optimization
algorithms are designed to work with accurate gradients. We are thus obliged to investigate the
behavior of existing algorithms when they are fed with inaccurate gradient information.

Such investigations have been conducted on trust-region methods under a variety of assump-
tions (see [97, 138, 15, 17, 75] and [30, Section 8.4]), where global convergence is established
when the inaccurate gradients satisfy certain consistency conditions (see [97, inequality (4.3)]) or
the gradient inaccuracy is below some threshold (see [138, inequality (14)], [15, inequality (5)],
[75, Remark 4.1], and [30, Assumption AM.3b]). However, these existing results are asymptotic.
To gain deeper insights into the impact of gradient inaccuracy on trust-region methods, we need
non-asymptotic results, namely global convergence rates or worst-case complexity bounds.

Interestingly, our analysis on the space transformation framework provides results of this
type without extra effort. Suppose that the inaccurate gradient at xk is ĝk. Then by setting

Rk =
ĝkg

T
k

∥gk∥2
∈ Rn×n, (6.1)

the inaccurate gradient can be regarded as a linear transformation of the accurate one, that is

ĝk = Rkgk.

In this way, trust-region methods using inaccurate gradients can be encompassed by Algo-
rithm 3.1 as a particular instance. We note that in this case

Tk = I ∈ Rn×n. (6.2)

Therefore, by casting the theory of Algorithm 3.1 to this special instance, we can effortless
establish a relative complete theory on the behavior of trust-region methods based on inaccurate
gradients. As in [15, 16] and [30, Section 8.4], we focus on the scenario where ĝk approximates gk
with a bounded relative error, which is a quite common scenario in practice if the gradient eval-
uation involves solving lower-level problems given finite computing resource and finite precision
arithmetic [15, 59, 78]. We will establish the global convergence of trust-region methods in this
scenario and, more importantly, obtain their worst-case complexity bounds. It will turn out
that gradient inaccuracy, as long as confined within certain limits, does not affect the order of
the complexity bounds; in addition, its impact on the multiplicative constants in the bounds
is quite mild and completely decided by algorithmic parameters while being independent of the
optimization problem. On the other hand, once the gradient inaccuracy exceeds the aforemen-
tioned limits, the behavior of trust-region methods will deteriorate in a dramatic way that is
clearly detectable in computation.

Surely, our results can be obtained by directly investigating ĝk without considering the trans-
formation Rk. However, the space transformation framework provides a new way of interpreting
gradient inaccuracy: rather than regarding the inaccuracy as an error, we perceive it as a trans-
formation. This new perspective reveals similarities between otherwise utterly distinct topics.
In addition, research effort is economized by answering seemingly unrelated questions within
one single framework.

70

The structure of this section is as follows. Subsection 6.2 formulates in Algorithm 6.1 a
trust-region framework that solves (1.1) based on inaccurate gradients. The framework is iden-
tical to classical trust-region methods except that the gradients used in trust-region models are
not assumed to be accurate. Directly applying the theory of our space transformation frame-
work, Subsections 6.3 and 6.4 establish the global convergence and worst-case complexities of
Algorithm 6.1 when the relative gradient error is below certain bounds that depend solely on
the algorithmic parameter η1 (Theorems 6.1 and 6.2). Subsections 6.3 and 6.4 measure rela-
tive gradient error in two different ways, and they are compared and unified in Subsection 6.5,
which finds the largest admissible region of inaccurate gradients that guarantees Algorithm 6.1
to converge. Subsection 6.6 discusses briefly the behavior of gradient descent with Armijo line
search and inaccurate gradients, showing that such a line-search method is indeed a trust-region
method in disguise and hence covered by our theory. Subsection 6.7 will demonstrate numeri-
cally the sharpness of the bounds imposed on gradient inaccuracy by Subsections 6.3–6.5, with
a focus on Theorem 6.1. Some remarks are included in Subsection 6.8. In addition, as a simple
application of our theoretical study, Appendix H shows that the trust-region algorithms built in
GNU Octave 32 are unstable with respect to gradient inaccuracy and provides a simple remedy.

Before starting, we emphasize that our aim here is to study the behavior of trust-region
methods when inaccurate gradients are given. We will not discuss how to produce such gradients
or how to detect the magnitude of gradient inaccuracy, both being extremely important in
practice. There is no uniform answer to the former as it is problem-dependent and we refer
to [108, Chapter 8] and [100] for discussions, while the latter is investigated in-depth by [99, 101].

6.2 A trust-region framework using inaccurate gradients
Algorithm 6.1 presents a trust-region framework for solving (1.1) based on inaccurate gradient
information. Compared with classical trust-region methods, the only difference is that the model
gradient ∇hk(0) may not be ∇f(xk).

Algorithm 6.1 A trust-region framework using inaccurate gradients
Input: Identical to Algorithm 3.1.
For k = 0, 1, 2, . . . , iterate the following steps.
1. Define a model hk : Rn → R with ∇hk(0) = ĝk for a certain vector ĝk ∈ Rn.
2. Calculate dk ≈ argmin

{
hk(d) : ∥d∥ ≤ ∆k

}
.

3. Define ρk = [f(xk)− f(xk + dk)]/[hk(0)− hk(dk)]. Update ∆k according to (3.3) and set

xk+1 =

{
xk if ρk ≤ η0,

xk + dk if ρk > η0.
(6.3)

With Rk and Tk defined in (6.1) and (6.2), Algorithm 6.1 is clearly a special instance of Algo-
rithm 3.1. By casting the theory of Algorithm 3.1 to Algorithm 6.1, we will depict the behavior
of Algorithm 6.1 when the relative error in ĝk is bounded. There exist multiples ways of quan-
tifying such a relative error: it can be defined as ∥ĝk − gk∥/∥gk∥ according to [78, Section 1.2],

32 GNU Octave [45] is an open-source clone of Matlab that is practically used in industry and engineer-
ing, e.g., [90]. See www.gnu.org/software/octave/ for details.

71

www.gnu.org/software/octave/

or measured by ∥ĝk − gk∥/∥ĝk∥ as in [15] and [30, Section 8.4]. We will consider both cases in
the following two subsections, and then compare and unify the results in Subsection 6.5.

One can choose any matrix Rk that validates Rkgk = ĝk to conduct the analysis, and (6.1) is
not the only possibility.33 Different choices of Rk will not affect the resultant theory, because Rk

never appears alone but always in the form of Rkgk in our analysis of Algorithm 3.1.
Instead of the updating scheme (3.3), one can modify Algorithm 6.1 to manage the trust-

region radius ∆k by (3.65) or by (3.68)–(3.69). According to Subsection 3.6, such modifications
will not lead to essential differences in the theory of Algorithm 6.1.

The algorithmic parameter η1 plays a significant role in our theory. Note that we will always
require η1 < 1 in the analysis of Algorithm 6.1. This requirement is entirely conventional in
classical trust-region methods, although it was not needed in our investigation on Algorithm 3.1,
where Assumption 3.7 was imposed instead.

6.3 Inaccurate gradients with bounded relative error of type I
6.3.1 Global convergence and worst-case complexity

Consider the scenario where the relative error ∥ĝk − gk∥/∥gk∥ is bounded. Casting the theory
in Section 3 to Algorithm 6.1, we obtain immediately the following theorem.

Theorem 6.1. Consider Algorithm 6.1 with η1 < 1. Suppose that

∥ĝk − gk∥ ≤ ζ∥gk∥ for each k ≥ 0, (6.4)

where ζ is a constant such that

0 ≤ ζ < min{η−1
1 − 1, 1}. (6.5)

Then under Assumptions 3.1–3.4, Algorithm 6.1 enjoys the global convergence elaborated in
Theorems 3.1 and 3.7, and it possesses the worst-case complexity bounds quantified in Theo-
rems 3.2–3.4, with κ and µ taking the particular values

κ(ζ) = 1− ζ, (6.6)

µ(ζ) = min

{
∆0

∥g0∥
, γ0κ(ζ)

[
κ(ζ) [(1 + ζ)−1 − η1]√

5β

] 1
p

,
αγ0κ(ζ) [(1 + ζ)−1 − η1]

2[(1 + ζ)−1Lh + Lf]

}
. (6.7)

To prove Theorem 6.1, we only need to verify that Rk and Tk defined in (6.1) and (6.2) fulfill
Assumptions 3.5–3.7 with appropriate values of τ , κ, and λ. We will do this in Appendix F.

After verifying Assumptions 3.5–3.7, Theorems 3.5, 3.6, and 3.8 are also applicable here:
when Algorithm 6.1 follows the more general rule (3.65) to update ∆k, Theorem 6.1 holds after
a minor modification to µ; if Algorithm 6.1 maintains ∆k using (3.68)–(3.69) instead of (3.3),
then Theorem 6.1 holds after replacing Theorem 3.7 with its counterpart Theorem 3.8.

The upper bound min{η−1
1 −1, 1} in (6.5) cannot be improved in the context of Theorem 6.1,

otherwise the global convergence of Algorithm 6.1 is not guaranteed. This will be explained in
the remarks succeeding Example 6.1 and demonstrated numerically in Subsection 6.7.

33 Another instance is Rk = I +
(ĝk − gk)g

T
k

∥gk∥2
.

72

6.3.2 Impact of gradient inaccuracy

In the typical case of η1 ≤ 1/2, Theorem 6.1 tells us that Algorithm 6.1 converges as long as ζ < 1
in (6.4). In other words, gradient inaccuracy does not jeopardize the global convergence of the
algorithm as long as the magnitude of the inaccuracy is uniformly below that of the true gradient
(i.e., the signal-to-noise ratio is uniformly higher than 1 : 1, or expressed in decibels, 0 dB).

The complexity part of Theorem 6.1 sheds light on how the gradient inaccuracy affects the
non-asymptotic behavior of Algorithm 6.1. Let us take the O(ϵ−2) bound of Algorithm 6.1 in
the general nonconvex case as an example. According to Theorems 3.2 and 6.1, the worst-case
complexity of Algorithm 6.1 is

kgϵ ≤ Kg
ϵ (ζ) ≡ 2 log(γ−1

2 γ1)

ακ(ζ)µ(ζ) η1 log γ1
(f0 − finf)ϵ

−2 +
log[γ1∆

−1
0 µ(ζ)ϵ]

log γ1
.

Note that Kg
ϵ (0) is exactly the worst-case complexity bound provided by Theorem 3.2 for Algo-

rithm 6.1 when the gradient information is indeed accurate (i.e., the case with Rk = Tk = I).
Compared with Kg

ϵ (0), the bound Kg
ϵ (ζ) is enlarged by

Kg
ϵ (ζ)

Kg
ϵ (0)

times due to the gradient inaccuracy. Since the first term in Kg
ϵ (ζ) is dominant when ϵ is small,

it is reasonable to expect that
Kg

ϵ (ζ)

Kg
ϵ (0)

≤ κ(0)µ(0)

κ(ζ)µ(ζ)
(6.8)

as long as ϵ is not too large. This is indeed true when ϵ ≤ γ−1
1 e−1∥g0∥. In this case,

0 < γ1∆
−1
0 µ(ζ)ϵ ≤ γ1∆

−1
0 µ(0)ϵ ≤ e−1 (note that µ(0) = µ ≤ ∆0/∥g0∥ by (3.30)).

Since function t 7→ t log t is decreasing when 0 < t ≤ e−1, we know that

[γ1∆
−1
0 µ(ζ)ϵ] log[γ1∆

−1
0 µ(ζ)ϵ] ≥ [γ1∆

−1
0 µ(0)ϵ] log[γ1∆

−1
0 µ(0)ϵ],

which implies

log[γ1∆
−1
0 µ(ζ)ϵ]

log γ1
≤ µ(0)

µ(ζ)
· log[γ1∆

−1
0 µ(0)ϵ]

log γ1
≤ µ(0)κ(0)

µ(ζ)κ(ζ)
· log[γ1∆

−1
0 µ(0)ϵ]

log γ1
(6.9)

because log γ1 < 0, log[γ1∆
−1
0 µ(ζ)ϵ] < 0, and κ(0)/κ(ζ) ≥ 1. With (6.9), one can verify (6.8)

easily. Plugging the values of κ(ζ) and µ(ζ) given by (6.6) and (6.7) into (6.8), we obtain

Kg
ϵ (ζ)

Kg
ϵ (0)

≤ 1

(1− ζ)2
max

{[
(1 + ζ)(1− η1)

(1− ζ)[1− η1(1 + ζ)]

] 1
p

,
(1 + ζ)(1− η1)

1− η1(1 + ζ)

}
. (6.10)

Note that, in addition to the relative error magnitude ζ, the upper bound presented on
the right-hand side of (6.10) depends solely on the algorithmic constant η1 and the order p in
Assumption 3.4. Remarkably, this bound is independent of the optimization problem (1.1) itself.

The same analysis can be done for the O(ϵ−1) and O(log(ϵ−1)) bounds of Algorithm 6.1 in
the convex and strongly convex cases, and it turns out that the factor (6.10) are applicable to
these two cases as well, provided that ϵ is not too large.

73

As an illustration, consider the scenario that the gradient evaluation has only one correct
significant digit.34 Then ζ = 1/2 in the worst case. Suppose that η1 = 1/4, which is typical,
and p = 1/2, which is normal in practice according to Proposition 3.1. Then the worst-case
complexities of Algorithm 6.1 have the same orders as when the gradient is accurate; moreover,
the enlargement factor (6.10) is at most

(1 + ζ)2(1− η1)
2

(1− ζ)4[1− η1(1 + ζ)]2
< 52,

which is clearly independent of problem (1.1) and quite benign.

6.4 Inaccurate gradients with bounded relative error of type II
6.4.1 Global convergence and worst-case complexity

Now we switch our attention to the relative error measured by ∥ĝk − gk∥/∥ĝk∥. Parallel to
Theorem 6.1, we have the following theorem.

Theorem 6.2. Consider Algorithm 6.1 with η1 < 1. Suppose that

∥ĝk − gk∥ ≤ ζ∥ĝk∥ for each k ≥ 0, (6.11)

where ζ is a constant such that
0 ≤ ζ < 1− η1. (6.12)

Then under Assumptions 3.1–3.4, Algorithm 6.1 enjoys the global convergence elaborated in
Theorems 3.1 and 3.7, and it possesses the worst-case complexity bounds quantified in Theo-
rems 3.2–3.4, with κ and µ taking the particular values

κ(ζ) = (1 + ζ)−1,

µ(ζ) = min

{
∆0

∥g0∥
, γ0κ(ζ)

[
κ(ζ) (1− ζ − η1)√

5β

] 1
p

,
αγ0κ(ζ) (1− ζ − η1)

2[(1− ζ)Lh + Lf]

}
.

Theorem 6.2 is proved in Appendix F by verifying Assumptions 3.5–3.7 with appropriate
values of τ , κ, and λ. After such verification, Theorems 3.5, 3.6, and 3.8 are also applicable
here: if Algorithm 6.1 follows the more general rule (3.65) to update ∆k, then Theorem 6.2
holds after a minor modification to µ; if Algorithm 6.1 maintains ∆k using (3.68)–(3.69) instead
of (3.3), then Theorem 6.2 holds after replacing Theorem 3.7 with its counterpart Theorem 3.8.

The upper bound 1 − η1 in (6.12) cannot be improved in the context of Theorem 6.2, oth-
erwise the global convergence of Algorithm 6.1 is not guaranteed. See the remarks succeeding
Example 6.1 for the reason.

34 Let x̂ be an approximation to a real number x. According to [78, Section 1.2], there exist different ways to
define “x̂ has one significant digit”. One possible definition is that x̂ and x can be rounded to the same number
with a single significant digit, where rounding is the operation of replacing a given number by the nearest number
with a desired amount of significant digits. Another definition requires |x − x̂| to be less than half a unit in the
first significant digit of x. In both cases, |x̂− x| ≤ |x|/2. We say that ĝk has one correct significant digit if each
component of ĝk has one correct significant digit as an approximation to the corresponding component of gk. This
is corresponding to the componentwise relative error widely used in error/perturbation analysis [78, Section 1.2].

74

Conditions (6.11)–(6.12) were proposed by [15] to establish the global convergence (but not
the complexity) of trust-region methods when the gradients are inaccurate. [30, Theorems 8.4.5
and 8.4.7] also proved such convergence under a similar circumstance. Assumption 3.4 is not
needed in [30], because an assumption stronger than (6.11)–(6.12) is imposed upon the gradient
inaccuracy. Using our notation, [30] requires that the constant ζ in (6.11) satisfies

0 ≤ ζ <
α

2
(1− η1), (6.13)

which can be seen from Assumptions AN.1, AA.1, and AM.3b of [30]. Since α ∈ (0, 1], inequal-
ity (6.13) is strictly stronger than (6.12). When the trust-region step dk reduces the model hk at
least as much as the Cauchy step does, which is normally the case in practice, Assumption 3.4
holds automatically (see Proposition 3.1) but inequality (6.13) is still stricter than (6.12).

Although (6.12) and (6.13) differ by only a constant factor α/2, the practical implication of
such a difference is not negligible. Taking squares,35 we can see for all t ∈ [0, 1) that

∥ĝk − gk∥ < t∥ĝk∥ ⇐⇒
∥∥∥∥ĝk − gk

1− t2

∥∥∥∥ < t

1− t2
∥gk∥. (6.14)

Hence, for a given gk, {ĝk : ∥ĝk − gk∥ < t∥ĝk∥} specifies a ball with radius t∥gk∥/(1 − t2).
Enlarging t from t = α(1− η1)/2 to T = 1− η1, the volume of this ball is multiplied by(

T

1− T2
· 1− t2

t

)n

>

(
T

t

)n

=

(
2

α

)n

≥ 2n.

Therefore, if ĝk is generated by some random perturbation of gk, it can be significantly easier
to fulfill ∥ĝk − gk∥ < (1− η1)∥ĝk∥ than achieving ∥ĝk − gk∥ < α(1− η1)∥ĝk∥/2.

However, we emphasize that the discussion in [30] is indeed much more general, covering
much broader situations, while what we mention here is but its specialization to our context.

6.4.2 Impact of gradient inaccuracy

Theorem 6.2 tells us that Algorithm 6.1 converge as long as the noise contained in the gradient
information takes a proportion uniformly lower than 1− η1, which is 75% if η1 = 1/4.

The complexity bounds revealed in Theorem 6.2 tell us again how the gradient inaccuracy
affects the worst-case iteration complexities of 6.1. Following the argument in Subsection 6.3.2,
by checking [κ(0)µ(0)]/[κ(ζ)µ(ζ)], we will see that the gradient inaccuracy subject to (6.11)
enlarges the complexity bounds by a factor of at most

(1 + ζ)2max

{[
(1 + ζ)(1− η1)

1− ζ − η1

] 1
p

,
1− η1

1− ζ − η1

}
, (6.15)

provided that the threshold ϵ for stationarity is not too large. Again, the factor (6.15) is entirely
determined by the relative error magnitude ζ, the algorithmic parameter η1, and the order p in
Assumption 3.4, while being completely independent of the optimization problem (1.1).

As an illustration, suppose that η1 = 1/4, p = 1/2, and ζ = 55%, allowing the noise in the
gradient information to have higher magnitude than the true gradient (a scenario not covered
by Theorem 6.1), the factor in (6.15) is less than 82.

35 ∥ĝk − gk∥ < t∥ĝk∥ ⇐⇒ (1− t2)∥ĝk∥2−2gTk ĝ + ∥gk∥2 < 0 ⇐⇒
∥∥∥∥√1− t2ĝk − gk√

1− t2

∥∥∥∥2

<
t2

1− t2
∥gk∥2.

75

6.5 The largest admissible region of inaccurate gradients
Theorems 6.1 and 6.2 depict the behavior of Algorithm 6.1 based on two different ways of
measuring relative error. It is natural to compare the two theorems and see whether one of
them is stronger. To this end, let us consider the following regions of inaccurate gradient ĝk:{

ĝk : ∥ĝk − gk∥ < min{η−1
1 − 1, 1}∥gk∥

}
, (6.16){

ĝk : ∥ĝk − gk∥ < (1− η1)∥ĝk∥
}
, (6.17)

which are entirely specified by the true gradient gk and the algorithmic parameter η1. They are
the upper limits for the regions of ĝk presented in Theorems 6.1 and 6.2. Region (6.16) is a
ball. This is also the case for region (6.17): setting t = 1− η1 in (6.14), we have

∥ĝk − gk∥ < (1− η1)∥ĝk∥ ⇐⇒
∥∥∥∥ĝk − gk

2η1 − η21

∥∥∥∥ < 1− η1
2η1 − η21

∥gk∥.

For n = 2, Figure 5 illustrates the regions (6.16) and (6.17) when η1 varies.36 If 0 < η1 < 1/2,
which is typically true in practice, neither one of two regions contains the other as a subset, and
hence neither Theorems 6.1 nor 6.2 is stronger than the other; when 1/2 ≤ η1 < 1, region (6.16)
contains region (6.17), and hence Theorem 6.1 is stronger than Theorem 6.2.

gk0

(a) 0 < η1 <
1

2

gk0

(b) η1 =
1

2

gk0

(c) 1

2
< η1 < 1

Legend:

∥ĝk − gk∥ < min{η−1
1 −1, 1}∥gk∥ ∥ĝk − gk∥ < (1− η1)∥ĝk∥

∥∥∥ĝk − gk
2η1

∥∥∥ < ∥gk∥
2η1

Figure 5: Admissible regions for the inaccurate gradient ĝk with different values of η1.

Now consider the circumscribed circle of the union of (6.16) and (6.17) assuming that n = 2
and 0 < η1 < 1/2. As illustrated in Figure 5(a), under such a setting, the leftmost point in the
union is 0, which comes from (6.16); the rightmost one 37 is gk/η1, which comes from (6.17).

36 As illustrations, Figure 5 takes η1 = 2/5 and 3/5 in subfigures (a) and (c) respectively. Note that the
subfigures do not visualize gk with the same length. Region (6.18) is also shown in Figure 5 in addition to (6.16)
and (6.17). When η1 = 1/2, regions (6.16) and (6.18) become identical as in subfigure (b).

37 For any ĝk in (6.17), we have ∥gk∥ > η1∥ĝk∥ by triangle inequality, and hence ∥ĝk∥ < ∥gk∥/η1. Therefore,
in (6.17), the point farthest away from 0 is gk/η1, which, when n = 2, gives the rightmost point in Figure 5(a).

76

Hence the circumscribed circle is {ĝk : ∥ĝk−gk/(2η1)∥ = ∥gk∥/(2η1)}, and the region it encloses is{
ĝk :

∥∥∥∥ĝk − gk
2η1

∥∥∥∥ <
∥gk∥
2η1

}
, (6.18)

as illustrated in Figure 5. It turns out that region (6.18) is indeed the largest admissible region
for the inaccurate gradient ĝk in Algorithm 6.1, for any n ≥ 1 and any η1 ∈ (0, 1). Roughly
speaking, if ĝk stays uniformly inside region (6.18) for each k ≥ 0, then Algorithm 6.1 behaves
essentially the same as when the gradients are accurate (see Theorem 6.3); in contrast, if the
inequality in (6.18) is violated for all k ≥ 0, then Algorithm 6.1 is not globally convergent in
general (see Example 6.1). It is worth noting that all the three regions (6.16), (6.17), and (6.18)
are entirely decided by η1 and the accurate gradient gk, and they all expand when η1 shrinks. In
this sense, a smaller value of η1 enables Algorithm 6.1 to tolerate higher inaccuracy in gradients.

Theorem 6.3. If there exists a constant ζ ∈ [0, 1) such that∥∥∥∥ĝk − gk
2η1

∥∥∥∥ ≤ ζ

2η1
∥gk∥ for each k ≥ 0, (6.19)

then the transformations {Rk} and {Tk} defined in (6.1) and (6.2) fulfill Assumptions 3.5–3.7
with τ = 1, κ = (1− ζ)/(2η1), and λ = 2η1/(1 + ζ). Consequently, under Assumptions 3.1–3.4,
Algorithm 6.1 enjoys the global convergence elaborated in Theorems 3.1 and 3.7, and it possess
the worst-case complexity bounds quantified in Theorems 3.2–3.4.

The proof of Theorem 6.3 is in Appendix F. We can also cast Theorems 3.5, 3.6, and 3.8 to
this case: if Algorithm 6.1 updates ∆k following (3.65) instead of (3.3), then Theorem 6.3 holds;
if Algorithm 6.1 maintains ∆k using (3.68)–(3.69) instead of (3.3), then Theorem 6.3 holds with
Theorem 3.7 replaced by Theorem 3.8.

Example 6.1. Apply Algorithm 6.1 to function f(x) = ∥x∥2/2. Suppose that, for each k ≥ 0,
the model is hk(d) = ĝTk d+ ∥d∥2/2 with a nonzero vector ĝk ∈ Rn outside region (6.18), namely∥∥∥∥ĝk − gk

2η1

∥∥∥∥ ≥ ∥gk∥
2η1

, (6.20)

and dk solves the trust-region subproblem min∥d∥≤∆k
hk(d) exactly. Then {xk} converges, and∥∥∥ lim

k→∞
xk − x0

∥∥∥ ≤ ∆0

1− γ1
. (6.21)

Hence {xk} cannot converge to the unique stationary point 0 unless x0 is sufficiently close to it.

Indeed, (6.20) makes ρk > η1 unattainable, and hence {∆k} decays geometrically according
to (3.3), forcing {xk} to converge to a point in a neighborhood of x0. Details are explained
below as the justification for Example 6.1.

Justification. Let k an arbitrary iteration index. Taking squares, we see (6.20) equivalent to

gTk ĝk ≤ η1∥ĝk∥2. (6.22)

77

Since hk(d) = ĝTk d + ∥d∥2/2 and dk solves min∥d∥≤∆k
hk(d) exactly, we have dk = −tkĝk for a

certain scalar tk > 0. Hence (6.22) leads to

− dTk gk ≤ −η1dTk ĝk. (6.23)

Since f and hk are quadratic, their second-order Taylor expansions are exact, that is

f(xk)− f(xk + dk) = −dTk gk −
1

2
∥dk∥2 and hk(0)− hk(dk) = −dTk ĝk −

1

2
∥dk∥2.

Combining these expansions with (6.23) and noting that η1 < 1, we have

f(xk)− f(xk + dk) ≤ η1[hk(0)− hk(dk)]. (6.24)

Since hk(0) − hk(dk) > 0, (6.24) shows that ρk > η1 is never achieved. Hence by the updating
rule (3.3) of ∆k, we have ∆k ≤ γk1∆0 for each iteration. Therefore, {xk} is a Cauchy sequence
and hence convergent, with (6.21) justified by

∑∞
k=0∆k ≤

∑∞
k=0 γ

k
1∆0 = ∆0/(1− γ1).

gk0

Legend:
Region defined by (6.25) with c > η−1

1 Region defined by (6.18)

Figure 6: Inaccurate gradients fulfilling (6.25) may not be in the admissible region (6.18).

One may expect that Algorithm 6.1 converges provided that ĝk and gk make an acute angle
uniformly smaller than π/2 and ∥ĝk∥/∥gk∥ stays bounded away from zero and infinity, namely

gTk ĝk ≥ a∥gk∥∥ĝk∥ and b∥gk∥ ≤ ∥ĝk∥ ≤ c∥gk∥ (6.25)

for each k ≥ 0 with certain positive constants a, b, and c. Yet Example 6.1 shows that such
an expectation is wrong, because the region defined by (6.25) is not a subset of (6.18) if the
constant c is larger than η−1

1 (see Figure 6 for an illustration with η1 = 2/5, a =
√
3/2, b = 1/2,

and c = 3). Recalling that Algorithm 6.1 is a special case of Algorithm 3.1 with Rk and Tk
defined in (6.1) and (6.2), we also see that the length and angle conditions (3.4)–(3.5) cannot
ensure the convergence of Algorithm 3.1. Further more, with Rk and Tk in (6.1) and (6.2), the
reformulation (6.22) of (6.20) becomes exactly

gTk TkRkgk ≤ η1∥Rkgk∥2.

78

Thus Example 6.1 shows that Algorithm 3.1 may fail to converge without Assumption 3.7.
Example 6.1 also confirms that the constants min{η−1

1 −1, 1} and 1 − η1 in Theorems 6.1
and 6.2 are not improvable. If we replace them with larger values, then the regions specified
in (6.4) and (6.11) will not entirely lie in region (6.18) (see Figure 5), and then the global converge
of Algorithm 6.1 is not guaranteed. This will be demonstrated numerically in Subsection 6.7.

6.6 Gradient descent with Armijo line search and inaccurate gradients
One may suspect that the admissible region (6.18) is unique to trust-region methods and will
not emerge if line search is in use. However, we will show that the same region comes naturally
into play if one examines gradient descent based on Armijo line search and inaccurate gradients.
Indeed, gradient descent based on Armijo line search turns out a disguised trust-region method.

For a later-revealed reason, let us use t instead of k to denote an iteration counter. At itera-
tion t, an Airmijo line-search method chooses a search direction pt , and then sets xt+1 = xt+Υtpt
with a step size Υt fulfilling the Armijo condition, namely

f(xt +Υtpt) < f(xt) + η1Υtp
T
t gt . (6.26)

Typically, Υt is obtained by backtracking (e.g., [108, Algorithm 3.1]). A gradient descent method
will take pt = −gt , and condition (6.26) then reduces to f(xt − Υtgt) < f(xt) − η1Υt∥gt∥2.
Therefore, we can formulate a simple gradient descent algorithm using Armijo line search and
inaccurate gradients into Algorithm 6.2.

Algorithm 6.2 An Armijo line-search gradient descent algorithm using inaccurate gradients
Input: x0 ∈ Rn, Υ0 > 0, η1 ∈ (0, 1).
For t = 1, 2, 3, . . . , iterate the following steps.
1. Choose a certain vector ĝt ∈ Rn.
2. Set xt+1 = xt−Υt ĝt , where Υt is the largest number in {Υt−1, 2

−1Υt−1, 2
−2Υt−1, . . . } with

f(xt −Υt ĝt) < f(xt)− η1Υt∥ĝt∥2. (6.27)

Terminate if no such Υt exists.

The right-hand side of (6.27) involves ĝt instead of gt , the latter being unavailable in this
context. Thus Algorithm 6.2 differs from an iterative process that sets xt+1 = xt + Υtpt with
a direction pt = −ĝt ≈ −gt and a step size Υt satisfying (6.26), which does converge provided
that ĝt and gt make an acute angle bounded away from π/2 and ∥ĝt∥/∥gt∥ remains bounded
away from zero. Such a process is not feasible without access to accurate gradients due to (6.26).

If Algorithm 6.2 does not always take the inaccurate gradient from the admissible re-
gion (6.18) (k changed to t), then it can fail to converge due to the following simple observation.
Proposition 6.1. If f is convex, Algorithm 6.2 terminates once it encounters an iteration with∥∥∥∥ĝt −

gt
2η1

∥∥∥∥ ≥ ∥gt∥
2η1

. (6.28)

Proof. As (6.22), we can reformulate (6.28) into gTt ĝt ≤ η1∥ĝt∥2. Hence, for a convex function f ,
once (6.28) happens, we have

f(xt −Υĝt)− f(xt) ≥ −ΥĝTt gt ≥ −Υη1∥ĝt∥2 for all Υ > 0.

79

Therefore, the Armijo condition (6.27) is not achievable and Algorithm 6.2 terminates.

In the scenario described by Proposition 6.1, Algorithm 6.2 fails unless xt is stationary.
This is still true if we replace (6.27) with any condition even stronger (the backtracking is not
essential), including the (strong) Wolfe conditions and the Goldstein condition [108, Section 3.1].

On the other hand, if the inaccurate gradient stays uniformly inside the admissible region in
the sense of (6.19), then the convergence theory of Algorithm 6.2 is covered by Subsection 6.5.
Indeed, it is straightforward to verify that Algorithm 6.2 can be reformulated into Algorithm 6.3,
which is a particular instance of Algorithm 6.1 except that ∆k is maintained by (3.68)–(3.69)
rather than (3.3). Algorithm 6.3 enjoys the global convergence in Theorems 3.1 and 3.8 as well as
the worst-case complexities in Theorems 3.2–3.4 according to the comments after Theorem 6.3.

Algorithm 6.3 A trust-region reformulation of Algorithm 6.2
Input: x0 ∈ Rn, Υ0 > 0, η1 ∈ (0, 1).
For k = 0, 1, 2, . . . , iterate the following steps.
1. Set hk(d) = dTĝk and ∆k = Υk∥ĝk∥.
2. Calculate dk = argmin

{
hk(d) : ∥d∥ ≤ ∆k

}
.

3. Define ρk = [f(xk)− f(xk + dk)]/[hk(0)− hk(dk)]. Set

xk+1 =

{
xk if ρk ≤ η1,

xk + dk if ρk > η1,
and Υk =

{
Υk/2 if ρk ≤ η1,

Υk if ρk > η1.

Algorithms 6.2 and 6.3 do not count iterations at the same pace: the former defines an
iteration as the full backtracking process for achieving the Armijo condition, while the latter
takes each trial in the backtracking as an individual iteration. For Algorithm 6.3, defining kt as
the counter of the tth iteration fulfilling ρk > η1, then xkt and Υkt correspond respectively to xt
and Υt in Algorithm 6.2. Thus we use different symbols to denote their iteration counters.

To summarize, although Algorithm 6.2 is of line-search type, its global convergence requires
the inaccurate gradient to stay in the admissible region (6.18). If the inaccurate gradient stays
uniformly inside (6.18), then Algorithm 6.2 converges globally with virtually the same worst-
case complexities as the accurate-gradient case. Consequently, Algorithm 6.2 tolerates relative
gradient error below min{η−1

1 −1, 1} measured by ∥ĝt − gt∥/∥gt∥ or 1 − η1 by ∥ĝt − gt∥/∥ĝt∥,
both bounds being not improvable, and Theorems 6.1–6.2 hold for Algorithm 6.2 after minor
modifications to κ(ζ) and µ(ζ).

Therefore, in the smooth yet not necessarily convex case, we have effortlessly established a
relatively complete theory for gradient descent with Armijo line search and inaccurate gradients.
It demonstrates again the versatility of our space transformation framework.

6.7 Numerical experiment
Example 6.1 indicates that we cannot improve the bounds imposed by Theorems 6.1–6.3 on
inaccurate gradients, but the objective function in Example 6.1 is extremely special. Now we will
show that such bounds are also clearly observable for other functions in numerical computations.

As an illustration, we will focus on Theorem 6.1. The theorem reveals that, in terms of
∥ĝk − gk∥/∥gk∥, Algorithm 6.1 tolerates any relative error uniformly below min{η−1

1 −1, 1}.

80

If this bound is sharp, then the performance of Algorithm 6.1 should deteriorate dramatically
once it is violated. We will demonstrate such a phenomenon by observing the effectiveness the
algorithm with different values of η1 on problems with various levels of relative gradient error.

6.7.1 Quantifying the effectiveness of an algorithm

Before our experiment, we need first to clarify and quantify what we mean by the effectiveness of
an algorithm. Suppose that an algorithm A is applied to the minimization of a smooth function f
without constraints, the output being xout. Then it is reasonable to say that A is effective on f
up to an optimality tolerance ε ∈ (0, 1) if

∥∇f(xout)∥ ≤ ε∥∇f(x0)∥,

yet we need to measure the effectiveness with finer granularity. To this end, note that the decimal
form of ∥∇f(xout)∥/∥∇f(x0)∥ contains roughly

[
− log10 (∥∇f(xout)∥/∥∇f(x0)∥)

]
leading zeros

counted from the digit before the decimal point, while the optimality tolerance ε indicates that
we indeed desire (− log10 ε) such zeros. Hence we define the ε-effectiveness of A on f as

e ε(A, f) = min

{
1,

1

log ε
log

[
∥∇f(xout)∥
∥∇f(x0)∥

]}
,

which is the proportion of leading zeros achieved by A. Clearly, e ε(A, f) = 1 if and only if A is
effective on f up to ε. The ε-effectiveness of A on a set F of functions is defined as

E ε(A,F) =
1

|F|
∑
f∈F

e ε(A, f). (6.29)

When ε and F are fixed in a context, for brevity, we will call E ε(A,F) the effectiveness of A.

6.7.2 General settings of the experiment

Focusing on Theorem 6.1, the relative gradient error at xk is always defined as ∥ĝk − gk∥/∥gk∥
and we will not repeat this fact. Since Theorem 6.1 only covers the situation where the error is
below a certain magnitude ζ along all the iterations, it is reasonable to investigate its sharpness
by observing the scenario where

∥ĝk − gk∥
∥gk∥

= ζ for each k ≥ 0.

To have such a scenario, given ζ and x, we artificially generate an inaccurate gradient for f by

ĝ(x) = ∇f(x) + ζ∥∇f(x)∥ e, (6.30)

where e is a sample from the uniform distribution on Sn−1, drawn independently for different x.
It does not matter whether ĝ produces the same result or not when repeatedly evaluated at a
single x, as the algorithm tested here will not involve gradient re-evaluation at any point.

We implement a vanilla version of Algorithm 6.1. Our experiment is mainly concerned with
the trust-region radius update, for which we adopt a simple yet commonly used scheme, namely

∆k+1 =

γ1∆k if ρk ≤ η1,

∆k if η1 < ρk ≤ η2,

γ2∆k if ρk > η2,

(6.31)

81

with parameters η1 and η2 between 0 and 1. Various values of η1 ∈ (0, 1) will be tested, and η2
typically should be larger than η1 and 3/4 ≤ η2 ≤ 1, so we set η2 = max{3/4, min{3η1/2, 1}}.
To define the trust-region model hk, we follow the suggestion in [108, Section 6.2] and take

hk(d) = dTĝ(xk) +
1

2
dTBkd

with Bk updated by the SR1 quasi-Newton method. Specifically, as in [108, Algorithm 6.2],

Bk+1 =
(yk −Bkdk)(yk −Bkdk)

T

dTk (yk −Bkdk)
if |dTk (yk −Bkdk)| ≥ r∥dk∥∥yk −Bkdk∥, (6.32)

where r ∈ (0, 1) is prescribed, and yk is the change in gradient corresponding to dk, namely

yk = ĝ(xk + dk)− ĝ(xk).

Note that (6.32) is applied even if xk+1 = xk. If the condition in (6.32) fails, then set Bk+1 = Bk.
The update is restarted by setting Bk+1 = B0 when (6.32) leads to a matrix with elements above
a safeguarding value L. Otherwise, ∥Bk∥ may become increasingly large (gradient inaccuracy
promotes such a process), violating Assumption 3.2, and hence slows down or jeopardizes the
convergence as in the case with accurate gradients. Limited-memory approaches [107] could also
be tried but the Hessian of hk is not our focus. After defining ∆k and hk, we solve the trust-region
subproblem by the Toint-Steihaug truncated conjugate gradient method [30, Algorithm 7.5.1].

Our implementation sets η0 = 0 in (6.3) for trial step acceptance. In addition, we let ∆0 = 1,
γ1 = 1/2, γ2 = 2, B0 = I, r = 10−4, and L = 104. For the termination of the algorithm, we
choose positive parameters ε̂, Kmax and ∆min, and halt the iteration once

∥ĝk∥ ≤ ε̂∥ĝ0∥ or k ≥ Kmax or ∆ ≤ ∆min,

outputting xout = xk. Note that (1 − ζ)∥∇f(x)∥ ≤ ∥ĝ(x)∥ ≤ (1 + ζ)∥∇f(x)∥, where ζ is the
relative gradient error. Therefore, given a desired optimality tolerance ε, we set

ε̂ = ε(1 + ζ)−1(1− ζ)

so that ∥∇f(xout)∥ ≤ ε∥∇f(x0)∥ is achieved if the algorithm is terminated due to ∥ĝk∥ ≤ ε̂∥ĝ0∥
rather than reaching the maximal iteration number Kmax or minimal trust-region radius ∆min,
which are respectively set to 500n and machine epsilon in the implementation.

6.7.3 Results of the experiment

We test the effectiveness of Algorithm 6.1 with optimality tolerance ε = 10−6. The problem
set F is obtained by perturbing the problems listed in Table 2 with dimension n = 20. For each of
these problems and each ζ ∈ {0, 1/50, 2/50, . . . , 49/50, 1}, we contaminate the gradient according
to (6.30), generating a perturbed problem with relative gradient error ζ. Given a ζ, the problem
set F contains 10 independently perturbed instances for each problem in Table 2, summing up
to 150 problems with relative gradient error ζ. For each η1 ∈ {1/50, 2/50, . . . , 49/50}, we tested
the corresponding implementation of Algorithm 6.1 on these problems, recording its effectiveness
defined in (6.29).

Figure 7 plots the effectiveness of Algorithm 6.1 when the algorithmic parameter η1 was
varying from 0 to 1. It displays individually the results obtained when the error magnitude ζ

82

Figure 7: Effectiveness of Algorithm 6.1 plotted against algorithmic parameter η1
(vertical lines: theoretical upper bounds of η1 when relative gradient error ζ = 1/2 or 9/10).

was set to 1/2 or 9/10. According to Theorem 6.1, for Algorithm 6.1 to tolerate relative gradient
error of magnitude ζ without losing convergence, it suffices to maintain ζ < min{η−1

1 , 1}, or

η1 < (1 + ζ)−1. (6.33)

Figure 7 indicates such a bound for ζ = 1/2 and ζ = 9/10 by vertical lines. As predicted by
the theory, the algorithm behaved stably when the bound was respected, while suffering from
a dramatic drop in its effectiveness once (6.33) was violated. In particular, when the error
magnitude was high, namely ζ = 9/10, we see a striking match between the theory and the
numerical result. The match was less sharp when the error magnitude was lower, yet the rapid
deterioration in the effectiveness was still detectable once (6.33) was violated.

Accompanying Figure 7, Figure 8 plots the effectiveness of Algorithm 6.1 when the error
magnitude ζ was varying from 0 to 1. It displays the result for three implementations of the al-
gorithm with η1 = 1/10, η1 = 1/2, and η1 = 2/3 respectively. For each of these implementations,
recall that the algorithm tolerates relative gradient error of magnitude ζ so long as

ζ < min{η−1
1 − 1, 1}. (6.34)

This upper bound is 1/2 for η1 = 2/3, as indicated by the vertical line in Figure 8, and it
becomes 1 when η1 = 1/2 or η1 = 1/10. Again, we observe a significant deterioration in the
effectiveness of the algorithm once (6.34) was violated for η1 = 2/3. For η1 = 1/2, which is the
critical value in (6.34), the situation was different, and the effectiveness started to deteriorate
when the error magnitude was quite close to but smaller than 1. Such a distinction is not covered
by our theory in this current work, which is an interesting motivation for future investigation. Yet
the result with η1 = 1/2 does not contradict Theorem 6.1, as the convergence of Algorithm 6.1 is
ensured only when ζ < 1 but not ζ = 1, the latter of which can lead to divergence according to

83

Figure 8: Effectiveness of Algorithm 6.1 plotted against relative gradient error
(vertical line: theoretical upper bound of tolerable relative gradient error when η1 = 2/3).

Example 6.1. We can at least say that the behavior of the algorithm reflected the bound (6.34)
both when η1 = 2/3 and η1 = 1/2. For η1 = 1/10, which is a value used in practice, the
effectiveness of Algorithm 6.1 was always close to 1 without significant variation along with the
error magnitude, matching Theorem 6.1 and confirming the robustness of practical trust-region
methods with respect to gradient inaccuracy. Since the maximal iteration number was limited
by Kmax = 104, it is not expected to observe the effectiveness of Algorithm 6.1 being exactly 1.

As a summary, the numerical behavior of Algorithm 6.1 in our experiment reflected quite well
the bound {η−1

1 − 1, 1} imposed by Theorem 6.1 on the relative gradient error ∥ĝk − gk∥/∥gk∥.
The effectiveness of Algorithm 6.1 deteriorated rapidly when such a bound was violated, mani-
festing the sharpness of the result.

6.7.4 Choosing η1 in practice

Our theory in Subsections 6.3–6.5 and the experiment above confirm an intriguing and useful
fact: the algorithmic parameter η1 determines how much relative gradient error is tolerable for
Algorithm 6.1, and a smaller value of η1 implies higher tolerance to gradient inaccuracy. Such
a conclusion can already be inferred from [15] and [30, Theorems 8.4.5 and 8.4.7]. In light of
Theorems 6.1–6.3 and our numerical results, the decisive role of η1 becomes crystal clear.

In practice, if the gradient evaluation is inaccurate with a known magnitude of relative error,
then we can choose η1 accordingly. To be precise, suppose that Algorithm 6.1 uses the gradient
information provided by an inaccurate oracle ĝ : Rn → Rn that satisfies

∥ĝ(x)−∇f(x)∥
∥∇f(x)∥

≤ ζ < 1, (6.35)

84

which is the case in our experiment, then it is sufficient to chose

η1 < (1 + ζ)−1;

if ĝ satisfies
∥ĝ(x)−∇f(x)∥

∥ĝ(x)∥
≤ ζ < 1,

then we can chose
η1 < 1− ζ.

For instance, if the gradient evaluation has only one correct significant digit, then ζ ≤ 1/2
in (6.35), and hence setting η1 < 2/3 (recall that η1 ≤ 1/2 is common in practice) can ensure
Algorithm 6.1 to converge globally with essentially the same worst-case complexities as when
the gradient evaluation is accurate. Even if the magnitude of relative error is unknown, Theo-
rems 6.1–6.3 and our numerical experiment suggest that setting η1 to a small value is favorable
for avoiding performance deterioration caused by gradient inaccuracy.

This principle of taking a small η1 is well documented in [61, Section 4.4], and our theory
serves as a footnote for it. Nevertheless, not every widely used implementation of trust-region
methods follows this principle. For example, the trust-region algorithms in GNU Octave [45]
violate this principle and hence suffer when gradients are inaccurate. Appendix H details the
problem with a simple remedy, illustrating how our theoretical study can make practical impacts.

As mentioned in Subsection 6.6, gradient descent with Armijo line search is a disguised
trust-region method. Thus the comments made here are also applicable to it.

6.8 Remarks
The theorems in Subsection 6.3 and 6.4 (as well as Subsection G.2 in Appendix G) reveal that
gradient inaccuracy influences the worst-case iteration complexity bounds of Algorithm 6.1 in
a fairly benign way, provided that the inaccuracy does not exceed certain thresholds. Such an
inaccuracy does not affect the orders of the bounds in terms of criticality measures, and the
multiplicative constants in the bounds are enlarged modestly. Thus trust-region methods as
described in Algorithm 6.1 are quite robust with respect to gradient inaccuracy. While such
robustness has been known for a long time [97, 138, 15, 17, 75, 81], Theorems 6.1 and 6.2 refine
our knowledge by quantifying the complexity bounds.

Moreover, recalling the discussions in Subsection 1.2, we should note that an inaccurate
gradient may be much easier to obtain than the accurate one, or much cheaper to transmit
in distributed computing environments. Since the iteration complexities of Algorithm 6.1 are
fairly stable with respect to gradient inaccuracy, we may expedite the resolution of optimization
problems by deliberately exploiting inaccurate gradient evaluations. Such a strategy would lose
its theoretical basis if we did not establish the stability of the iteration complexities.

7 Discussions and conclusions
We developed a new and versatile space transformation framework for unconstrained optimiza-
tion. At each iteration, the framework transmits information about the objective function to an
auxiliary space where a step is obtained according to the transmitted information, and then up-
dates the iterate by transferring this step back to the original space where the objective function

85

is initially posed. To obtain an algorithm that is convergent regardless of the starting point, we
chose the trust-region globalization technique. We refrained from stating similar results with
the Levenberg-Marquardt approach [88, 94, 109, 77], where dk would be defined by

dk ≈ argmin
{
hk(d) +

σk
2
∥d∥2 : d ∈ RNk

}
instead of (2), the update of trust-region radius being replaced by adjustment of σk. With such
a globalization strategy, it is indeed possible to prove that our transformation framework still
achieves global convergence as well as the O(ϵ−2), O(ϵ−1) and O(log(ϵ−1)) complexity bounds.
For the cubic or high-order regularization approaches [70, 105, 18, 19, 7, 36, 21], the global con-
vergence is provable, yet the improved complexity bounds such as the O(ϵ−3/2) one for nonconvex
problems in [19] would involve higher-order conditions in addition to ∇hk(0) = Rk∇f(xk) and
hence necessitate the transformation of higher-order information. Extending our framework to
such higher-order cases requires further investigation. Within the trust-region realm, [35] de-
vises a strategy that also renders an O(ϵ−3/2) complexity bound in the nonconvex case. It will
be interesting to study how our framework can integrate such a strategy. Refined complexity
analysis as proposed by [34] can also be considered within our framework.

The forward/backward transformations Rk and Tk in the current framework are linear. If Rk

and Tk are nonlinear in Algorithm 3.1, then, as long as they are sufficiently smooth, one can still
establish a lower bound for the reduction ratio ρk as in Lemma 3.1, but Rk and Tk will have to be
replaced by their Fréchet derivatives, which are linear transformations. This is possible because
such a lower bound only needs to hold when ∆k is sufficiently small, in which case Rk and Tk
can be well approximated with linear transformations defined by their derivatives. Once this
bound is established, following the roadmap set in Section 3, the theory on global convergence
and worst-case complexities can mostly be reproduced. This is why we decided to focus on
linear transformations in our analysis. Nevertheless, nonlinear transformations can be useful in
practice, because they do occur naturally, for example, in Space Mapping methods [4, 5, 144] that
will be commented below. One can also generalize our framework to the case where the decision
variable space X and the auxiliary space Yk are both Banach spaces [143]. In such a context, as
mentioned in Section 2, the forward transformation Rk should be a mapping between the dual
spaces X ′ and Y ′

k. To extend our theory to such a much more general setting, we expect that
more assumptions would be needed on the regularities of the spaces and the transformations.

We specialized the transformation framework into a space decomposition framework that en-
abled us to extend the parallel Schwarz method for PDEs to unconstrained smooth yet possibly
nonconvex optimization. It would however be important, as it happens for domain decompo-
sition in PDEs, to adapt the many components of our framework to specific applications. For
instance, the decomposition should be designed to exploit the coupling pattern of variables and
also balance the workload among subspaces for the sake of parallel performance. It will also
be reasonable to consider updating the subspace trust-region radii separately according to indi-
vidual reduction ratios defined for each subspace, as in [30, Section 10.2] and [28, 27, 26]. The
best coarse spaces are known to be application dependent in PDEs, and we expect the same
will happen for optimization. Exploiting coarse models or low-fidelity yet economical surrogates
has been the central idea of Space Mapping [4, 5, 144] and surrogate-based optimization meth-
ods [69, 111], with a remarkable success achieved in engineering. It is thus worth investigating
how such models and surrogates can guide us to design coarse spaces and coarse space models.

In numerical PDEs, domain decomposition methods are mainly used as preconditioners
rather than iterative solvers [11, 14, 147]. As an initial attempt, we only applied Additive

86

Schwarz type methods and coarse space correction as iterative solvers. To use them as precondi-
tioners in the context of nonlinear optimization, one may adopt the methodology of ASPIN [13],
for instance. This will lead us to the investigation of nonlinear preconditioning [40, 54] within
our space decomposition framework, which is another fascinating topic.

Our space decomposition method is synchronous in the sense that the reconstruction step
waits for the optimization in all subspaces to be terminated. This would become a drawback
when the computational load is much imbalanced among the processors in charge of the subspace
minimization. Therefore, it is natural to consider an asynchronous extension of this method
where each subspace uses the latest information from other subspaces to build its subproblem
and conducts the optimization without waiting for each other (see [1], [149, Section 4] and [112]
for examples), which will be theoretically interesting with significant practical impacts.

As an introduction to frameworks and their fundamental theory, we did not go into details
about applications but only tried academic test problems in our experiments. Many real-world
problems naturally enjoy structures that are favorable to space decomposition, such as the partial
separability in Networks Optimization [140], the (overlapping) group structure in (Overlapping)
Group Lasso [96, 82], and the layer structure in Deep Neural Networks [76]. To apply our
framework to such problems, extensions are needed, for instance, to accommodate constraints
and to deal with nonsmooth problems, which are possible directions for future research.

As mentioned in Subsection 1.2, optimization based on inaccurate function/gradient infor-
mation is drawing considerable research attention, and there exist already an abundant amount
of investigations along this direction. In particular, [3, 67, 23, 145] also study the behavior of
trust-region methods when the function/gradient evaluations are inaccurate. They cover two
important aspects that were not discussed here, namely inaccuracy in function values and inac-
curacy with randomness. However, these works all measure inaccuracy as absolute errors that
can be controlled actively and diminished to zero at least with a certain probability, which is
similar to what we cover in Appendix G.2 but in probabilistic fashions. None of them measures
inaccuracy in terms of relative errors as we did, yet we note that function values or gradients
with bounded relative errors occur naturally if they are provided by solving lower-level subprob-
lems with finite computing resources and finite precision arithmetic [59, 78]. Thus it will be
interesting to extend our work to the situation where function values and/or gradients are with
relative errors that are only bounded in certain probabilistic senses.

The probabilistic situation suggests that we should extend our space transformation frame-
work by incorporating random transformations. In this current work, all the requirements we
impose on the transformations are assumed to hold at each iteration. It will be interesting to
relax the requirements and investigate, following [3, 66, 122, 67], how the space transformation
framework will behave if the transformations are random and the requirements hold only proba-
bilistically. Besides being mathematically fascinating, such an investigation would have several
implications in practice. For example, it could enable us to understand the fault-tolerance be-
havior of the space decomposition framework if the subproblem solver in each subspace fails
with a certain probability to deliver the subspace step. It will also be highly intriguing to study
stochastic gradient descent (SGD) [123, 10, 60] methods under such a random space transforma-
tion framework. Besides, introducing randomness in the transformations might provide a new
way of avoiding convergence to saddle points as in [58, 84].

With all these perspectives, the paradigm of optimization by space transformation opens an
exciting and broad research avenue to explore.

87

Appendix

A Proof of inequality (3.18)
Proof. By considering u = −dk/∥dk∥, v = tk/∥tk∥, and w = rk/∥rk∥, it suffices to prove that

uTv ≥ (uTw)(vTw)−
√
[1− (uTw)2][1− (vTw)2]. (A.1)

Since ∥w∥ = 1, it is easy to see that I − wwT is idempotent. Hence

uTv − (uTw)(vTw) = uT(I − wwT)v = uT(I − wwT)2v ≥ −∥(I − wwT)u∥∥(I − wwT)v∥. (A.2)

Noting that ∥(I − wwT)u∥ =
√
uT(I − wwT)2u =

√
uT(I − wwT)u =

√
1− (uTw)2, and similarly,

∥(I − wwT)v∥ =
√
1− (vTw)2, we obtain (A.1) from (A.2).

B Proof of Proposition 3.1
Proof. without loss of generality that ∆k ≤ ∥∇hk(0)∥/Lh (otherwise, the desired conclusion is trivial).
Then d̄k = −∆k∇hk(0)/∥∇hk(0)∥ due to (3.7). By Taylor expansion,

hk(0)− hk(d̄k) ≥ −(d̄k)
T∇hk(0)−

Lh

2
∥d̄k∥2 = ∆k∥∇hk(0)∥ −

Lh

2
[∆k]

2, (B.1)

hk(0)− hk(dk) ≤ −dTk∇hk(0) +
Lh

2
∥dk∥2 ≤ −dTk∇hk(0) +

Lh

2
[∆k]

2. (B.2)

From (B.1)–(B.2) and hk(dk) ≤ hk(d̄k), we obtain −dTk∇hk(0) ≥ ∆k∥∇hk(0)∥ − Lh[∆k]
2 ≥ 0. Hence

cosϕk =
−dTk∇hk(0)

∥dk∥∥∇hk(0)∥
≥ ∆k∥∇hk(0)∥ − Lh[∆k]

2

∆k∥∇hk(0)∥
= 1− Lh∆k

∥∇hk(0)∥
≥

√
1− 2Lh∆k

∥∇hk(0)∥
,

and consequently sinϕk =
√

1− cos2 ϕk ≤
√
2Lh∆k/∥∇hk(0)∥.

C Proof of Proposition 3.4
Proof. Let a = ∥∇hk(0)∥ and b = min{∆k, ∥∇hk(0)∥/Lh}. By Assumption 3.3 and Taylor expansion,

α

2
ab ≤ −dTk∇hk(0) +

Lh

2
∥dk∥2 ≤ ∥dk∥a+

Lh

2
∥dk∥2.

Hence
Lh

2
∥dk∥2 + ∥dk∥a−

α

2
ab ≥ 0.

Regarding this as a quadratic inequality about ∥dk∥, and noting that Lhab ≤ a2, we obtain

∥dk∥ ≥ −a+
√
a2 + αLhab

Lh
=

αab

a+
√
a2 + αLhab

≥ αab

a+
√
a2 + αa2

=
αb

1 +
√
1 + α

.

We complete the proof by noting that 1 +
√
1 + α ≤ 3, as α ∈ (0, 1].

88

D A lemma on the convergence rate of real sequences
The following lemma facilitates our complexity analysis under convexity. It is independent of our algo-
rithmic discussion. Its proof technique has been widely used in the complexity analysis of optimization
algorithms under convexity (for instance, see the proof of Theorem 2.1.14 in [102]).

Lemma D.1. Let k be a positive integer, and {ai} be a real sequence such that

ai ≥ r

k∑
j=i

a2j for each i ∈ {1, 2, . . . , k}, (D.1)

where r is a positive constant. Then
min

1≤i≤k
ai ≤ 2

rk
. (D.2)

Proof. If k = 1, then (D.1) reduces to a1 ≥ ra21, implying (D.2). If ak = 0, then (D.2) is trivial. So we
assume k ≥ 2 and ak > 0. Let Ai =

∑k
j=i a

2
j for i ∈ {1, 2, . . . , k}. Then A1 ≥ · · · ≥ Ak > 0. By (D.1),

Ai −Ai+1 = a2i ≥ r2A2
i for each i ∈ {1, 2, . . . , k − 1}.

Therefore,

1

A⌈k/2⌉
=

1

A1
+

⌈k/2⌉−1∑
i=1

Ai −Ai+1

AiAi+1
≥ A1 −A2

A2
1

+

⌈k/2⌉−1∑
i=1

Ai −Ai+1

A2
i

≥ r2⌈k/2⌉ ≥ r2k

2
.

This leads to the following estimation and hence justifies (D.2):

2

r2k
≥ A⌈k/2⌉ =

k∑
i=⌈k/2⌉

a2i ≥ (k − ⌈k/2⌉+ 1) min
⌈k/2⌉≤i≤k

a2i ≥ k

2
min

1≤i≤k
a2i .

E Proofs of Propositions 5.1–5.3
Propositions 5.1 and 5.2 connect {hik} with {hk} and {dik} with {dk}. Here are their proofs.

Proof of Proposition 5.1. The differentiability of hk is obvious. We will verify the Lipschitz continuity
of ∇hk. To this end, let x and y be vectors in RN and decompose them as

x =
[
x1 ; x2 ; · · · ; xm

]
and y =

[
y1 ; y2 ; · · · ; ym

]
with xi, yi ∈ RNi

.

Then due to the separability of hk and the Lipschitz continuity of ∇hik (i = 1, 2, . . . ,m),

∥∇hk(x)−∇hk(y)∥2 =

m∑
i=1

∥∥∇hik(xi)−∇hik(yi)
∥∥2 ≤

m∑
i=1

L2
h∥xi − yi∥2 = L2

h∥x− y∥2.

Therefore, ∇hk is Lh-Lipschitz continuous.

Proof of Proposition 5.2. By Assumption 5.2 and the definition (5.26) of hk, we have

hk(0)− hk(dk) =

m∑
i=1

[
hik(0)− hik(d

i
k)
]
≥

m∑
i=1

[
hik(0)− hik(d̄

i
k)
]
= hk(0)− hk(d̂k),

where
d̂k =

[
d̄1k ; d̄

2
k ; · · · ; d̄mk

]
. (E.1)

89

We will show that d̂k indeed equals d̄k defined in (3.7). Consequently, inequality (5.45) is true according
to the reduction estimation (3.8), and (5.46) holds according to Proposition 3.1. With (5.26), we have

∥∇hk(0)∥ =
[m∑

i=1

∥∥∇hik(0)∥∥2] 1
2

.

Hence, according to (5.41), we can rewrite (5.44) as

d̄ik = −min

{
∆k

∥∇hk(0)∥
,

1

Lh

}
∇hik(0). (E.2)

Combining (5.27) and (E.2), we can formulate d̂k defined in (E.1) as

d̂k = −min

{
∆k

∥∇hk(0)∥
,

1

Lh

}
∇hk(0) = d̄k,

with d̄k being defined by (3.7). This completes the proof.

Now we consider Proposition 5.3, which specifies some bounds for the quantities τ , κ, and λ de-
fined in (5.47). For convenience, we first prove the following lemma on the matrices {U i}mi=1, {Ũ i}mi=1,
and {W i}mi=1 defined in Subsection 5.5.1. We will use

Diag
1≤j≤n

(
aj)

to denote the n× n diagonal matrix whose diagonal entries are a1, a2, . . . , an.

Lemma E.1. For {U i}mi=1, {Ũ i}mi=1, and {W i}mi=1 defined in (5.31), (5.32), and (5.33), it holds that
m∑
i=1

U i[U i]T = Diag
1≤j≤n

(
θj), (E.3)

m∑
i=1

Ũ i[Ũ i]T =

m∑
i=1

W i[U i]T = I, (E.4)

Diag
1≤j≤n

(
θ−1
j

)
≤

m∑
i=1

W i[W i]T ≤ I. (E.5)

Note that inequality (E.5) is entry-wise. It implies that
∑m

i=1W
i[W i]T is diagonal and

Diag
1≤j≤n

(
θ−1
j

)
⪯

m∑
i=1

W i[W i]T ⪯ I,

where ⪯ signifies the Löwner partial order: A ⪯ B if and only if B −A is positive semidefinite.

Proof. Only the facts concerning {W i} need proofs. The others can be verified by direct calculations.
We first prove

∑m
i=1W

i[U i]T = I. According to (5.31) and (5.33),

W i[U i]T =
∑
j∈Xi

wi
jeje

T
j =

n∑
j=1

wi
j 1
(
j ∈ Xi

)
eje

T
j .

Thus
m∑
i=1

W i[U i]T =

m∑
i=1

n∑
j=1

wi
j 1
(
j ∈ Xi

)
eje

T
j =

n∑
j=1

m∑
i=1

wi
j 1
(
j ∈ Xi

)
eje

T
j =

n∑
j=1

eje
T
j = I,

90

where the penultimate equality is because
∑m

i=1 w
i
j 1
(
j ∈ Xi

)
= 1 as imposed by (5.34).

Now we prove (E.5). Since 0 ≤W i ≤ U i for each i ∈ {1, 2, . . . ,m}, we have

0 ≤
m∑
i=1

W i[W i]T ≤
m∑
i=1

W i[U i]T = I,

implying that
∑m

i=1W
i[W i]T is a diagonal matrix. It remains to check that the (j, j) entry of this matrix

is at least θ−1
j . We first observe that, for any real number t,

0 ⪯
m∑
i=1

[
tU i −W i

] [
tU i −W i

]T
=

m∑
i=1

[
t2U i[U i]T − tU i[W i]T − tW i[U i]T +W i[W i]T

]
.

According to (E.3) and the fact that both
∑m

i=1 U
i[W i]T and

∑m
i=1W

i[U i]T equal I (they are the trans-
poses of each other and the second one is already proved to be identity), the above inequality implies

0 ⪯ t2 Diag
1≤j≤n

(
θj)− 2tI +

m∑
i=1

W i[W i]T.

Setting t = θ−1
j and checking the (j, j) entry of the right-hand side, we see that the (j, j) entry

of
∑m

i=1W
i[W i]T is at least θ−1

j .

Now we give the proof of Proposition 5.3.

Proof of Proposition 5.3.
1. AS. According to AS (5.35) and Lemma E.1, we have

TkT
T
k =

m∑
i=1

U i[U i]T = Diag
1≤j≤n

(θj), (E.6)

RT
kRk = TkT

T
k = Diag

1≤j≤n
(θj) ⪰ I, (E.7)

TkRk = RT
kRk. (E.8)

Invoking (E.6), (E.7) and (E.8) one by one, we obtain

∥Tk∥ =
√

max
1≤j≤n

θj =
√
θ, ∥Rkg∥ ≥ ∥g∥, and gTTkRkg = ∥Rkg∥2,

implying τ =
√
θ, κ ≥ 1, and λ = 1.

2. WRAS. According to WRAS (5.37) and Lemma E.1, we have

TkT
T
k =

m∑
i=1

W i[W i]T ⪯ I,

RT
kRk =

m∑
i=1

U i[U i]T = Diag
1≤j≤n

(θj) ⪰ I,

TkRk =

m∑
i=1

W i[U i]T = I ⪰ θ−1 Diag
1≤j≤n

(θj) = θ−1RT
kRk.

Hence ∥Tk∥ ≤ 1, ∥Rkg∥ ≥ ∥g∥, and gTTkRkg ≥ θ−1∥Rkg∥2, implying τ ≤ 1, κ ≥ 1, and λ ≥ θ−1.

91

3. WASH. According to WASH (5.39) and Lemma E.1, we have

TkT
T
k =

m∑
i=1

U i[U i]T = Diag
1≤j≤n

(θj),

RT
kRk =

m∑
i=1

W i[W i]T ⪰ Diag
1≤j≤n

(θ−1
j) ⪰ θ−1I,

TkRk =

m∑
i=1

U i[W i]T =

[
m∑
i=1

W i[U i]T

]T
= I ⪰

m∑
i=1

W i[W i]T = RT
kRk.

Hence ∥Tk∥ = θ, ∥Rkg∥ ≥
√
θ−1∥g∥, and gTTkRkg ≥ ∥Rkg∥2, implying τ =

√
θ, κ ≥

√
θ−1, and λ ≥ 1.

4. RASH. According to RASH (5.40) and Lemma E.1, we have

TkT
T
k =

m∑
i=1

Ũ i[Ũ i]T = I, RT
kRk = TkT

T
k = I, and TkRk = RT

kTk.

Hence ∥Tk∥ = 1, ∥Rkg∥ = ∥g∥, and gTTkRkg = ∥Rkg∥2, implying τ = κ = λ = 1.

F Proofs of Theorems 6.1–6.3
Theorems 6.1–6.3 cast the theory of Algorithm 3.1 to Algorithm 6.1 under three different conditions on the
inaccurate gradient ĝk. To prove them, we only need to verify that Rk and Tk defined by (6.1)–(6.2) fulfill
Assumptions 3.5–3.7 with appropriate values of τ , κ, and λ, and then invoke Theorems 3.1–3.4 and 3.7.

Indeed, since Tk ≡ I, Assumption 3.5 always holds trivially with τ = 1. We only need to justify
Assumptions 3.6–3.7. Since Rkgk = ĝk and TT

k gk = gk under (6.1)–(6.2), it is equivalent to show that

∥ĝk∥ ≥ κ∥gk∥ and gTk ĝk ≥ λ∥ĝk∥2

for appropriate values of κ and λ.

Proof of Theorem 6.1. Assumption 3.5 holds with τ = 1. According to (6.4),

∥ĝk∥ ≥ ∥gk∥ − ∥ĝk − gk∥ ≥ (1− ζ)∥gk∥,

which validates Assumption 3.6 with κ = 1− ζ > 0. Condition (6.4) also implies

∥ĝk∥2 − 2gTk ĝk + ∥gk∥2 ≤ ζ2∥gk∥2 and ∥ĝk∥ ≤ ∥gk∥+ ∥ĝk − gk∥ ≤ (1 + ζ)∥gk∥,

which give us

gTk ĝk ≥ ∥ĝk∥2

2
+

1− ζ2

2
∥gk∥2 ≥ ∥ĝk∥2

2
+

1− ζ2

2
· ∥ĝk∥2

(1 + ζ)2
= (1 + ζ)−1∥ĝk∥2,

justifying Assumption 3.7 with λ = (1 + ζ)−1 > η1.
Assumptions 3.5–3.7 are verified. The proof is completed by invoking Theorems 3.1–3.4 and 3.7.

Proof of Theorem 6.2. Assumption 3.5 holds with τ = 1. According to (6.11),

∥gk∥ ≤ ∥ĝk∥+ ∥ĝk − gk∥ ≤ (1 + ζ)∥ĝk∥, (F.1)

which validates Assumption 3.6 with κ = (1 + ζ)−1 > 0. Condition (6.11) also implies that

(ĝk − gk)
Tĝk ≤ ∥ĝk − gk∥∥ĝk∥ ≤ ζ∥ĝk∥2,

and hence gTk ĝk ≥ (1− ζ)∥ĝk∥2, justifying Assumption 3.7 with λ = 1− ζ > η1.
Assumptions 3.5–3.7 are verified. The proof is completed by invoking Theorems 3.1–3.4 and 3.7.

92

Proof of Theorem 6.3. Assumption 3.5 holds with τ = 1. According to (6.19),

∥Rkgk∥ = ∥ĝk∥ ≥
∥∥∥∥ gk2η1

∥∥∥∥− ∥∥∥∥ĝk − gk
2η1

∥∥∥∥ ≥ 1− ζ

2η1
∥gk∥,

which validates Assumption 3.6 with κ = (1− ζ)/(2η1) > 0. Condition (6.19) also implies

∥ĝk∥2 −
gTk ĝk
η1

+
∥gk∥2

4η21
≤ ζ2

4η21
∥gk∥2 and ∥ĝk∥ ≤

∥∥∥∥ gk2η1

∥∥∥∥+ ∥∥∥∥ĝk − gk
2η1

∥∥∥∥ ≤ 1 + ζ

2η1
∥gk∥,

which gives us

gTk ĝk ≥ η1∥ĝk∥2 +
1− ζ2

4η1
∥gk∥2 ≥ η1∥ĝk∥2 +

1− ζ2

4η1
·
(

2η1
1 + ζ

)2

∥ĝk∥2 =
2η1
1 + ζ

∥ĝk∥2,

justifying Assumption 3.7 with λ = 2η1/(1 + ζ) > η1.
Assumptions 3.5–3.7 are verified. The proof is completed by invoking Theorems 3.1–3.4 and 3.7.

G Alternative assumptions on {dk}, {Rk}, and {Tk}
In the investigation of our space transformation framework (i.e., Algorithm 3.1), Assumptions 3.4 and 3.7
seem more particular than the other hypotheses. The first of them requires that the angle ϕk between
the trust-region step dk and the negative model gradient −∇hk(0) becomes small when the trust-region
radius ∆k is small (compared with ∥∇hk(0)∥), and the second demands that gkTkRkgk/∥Rkgk∥2 remains
uniformly larger than the algorithmic parameter η1.

This section will elaborate more on these assumptions and present alternatives to them. The alter-
native assumptions can render the same global convergence and worst-case complexity theory of Algo-
rithm 3.1 as in Section 3, except for modifications on the lower bound µ of {∆k/∥g̃k∥} in (3.30).

As an application of the theory under the alternative assumptions, we will investigate the behavior of
trust-region methods (as described in Algorithm 6.1) when the gradient accuracy is controlled dynamically
according to the size of the trust region.

G.1 The alternative assumptions and the resultant theory of Algorithm 3.1
To find alternatives for Assumptions 3.4 and 3.7, let us first examine what are their consequences that
are critical to the convergence of Algorithm 3.1. For convenience, we denote

ϑk =
∆k

∥∇hk(0)∥
.

What matters is the situation when ϑk tends to zero. Indeed, Assumption 3.7 ensures that

lim inf
ϑk→0

gTkTkRkgk
∥Rkgk∥2

> η1, (G.1)

With the help of Assumptions 3.5 and 3.6, Assumption 3.7 also implies that

lim sup
ϑk→0

| tanψk| < ∞, (G.2)

as we can see from (3.23). Meanwhile, we know from Assumption 3.4 that

lim
ϑk→0

tanϕk = 0. (G.3)

93

Consequently,
lim

ϑk→0
tanϕk tanψk = 0. (G.4)

According to the bound for ρk in Lemma 3.1, inequality (G.1) and equation (G.4) are the essentials that
ensure Proposition 3.2, which says that ρk surpasses η1 when ∆k/∥∇hk(0)∥ is small. Any assumptions
that guarantee (G.1) and (G.4) with certain rates can serve as alternatives to Assumptions 3.4 and 3.7
to establish an analogue of Proposition 3.2 and hence secure the global convergence and worst-case
complexity of Algorithm 3.1. For (G.1), the following slight generalization of Assumptions 3.7 is sufficient.

Assumption G.1 (Alternative to Assumption 3.7). There exist constants λ > η1, υ > 0, and q > 0
such that

gTkTkRkgk
∥Rkgk∥2

≥ λ− υ

[
∆k

∥∇hk(0)∥

]q
for each k ≥ 0.

Note that ∆k/∥∇hk(0)∥ is indeed ∆k/∥Rkgk∥ as ∇hk(0) = Rkgk. Assumption G.1 displays it as
∆k/∥∇hk(0)∥ to stress that it is the ratio between the trust-region radius and the model gradient length.

Now we seek an alternative to Assumption 3.4 that can render (G.4). Symmetric to (G.2)–(G.3), one
can ensure (G.4) by

lim sup
ϑk→0

| tanϕk| < ∞,

lim
ϑ→0

tanψk = 0.

(G.5)

(G.6)

Note that (G.5) holds under the conventional assumptions on hk and dk, namely Assumptions 3.2 and 3.3.
Indeed, as shown in Subsection 3.2.2, the named assumptions lead to (3.10), which implies

cosϕk ≥ 1

2

(
α− Lh∆k

∥∇hk(0)∥

)
=

1

2
(α− Lhϑk). (G.7)

Hence
lim sup
ϑk→0

| tanϕk| ≤ lim sup
ϑk→0

| secϕk| ≤ 2α−1.

Therefore, to guarantee (G.4), it suffices to ensure (G.6). Thus we propose the following assumption on Rk

and Tk, more precisely, on the angle between Rkgk and TT
k gk. It is the ψk-counterpart of Assumption 3.4.

Assumption G.2 (Alternative to Assumption 3.4). There exist constants β ≥ 0 and p > 0 such that

sinψk ≤ β

[
∆k

∥∇hk(0)∥

]p
for each k ≥ 0,

where ψk is the angle between Rkgk and TT
k gk as defined in (3.12).

Assumption G.2 requiresRkgk and TT
k gk to be approximately in the same direction when ∆k/∥∇hk(0)∥

is small. In general, this is not necessarily the case, and that is why Assumption 3.4 was proposed. How-
ever, Assumption G.2 may hold true if one actively controls the discrepancy between Rkgk and TT

k gk in
course of the algorithm. We will see such an example in Section G.2 when studying trust-region methods
that use inaccurate gradients whose accuracy is adaptively chosen according to the size of the trust region.

If Assumption G.2 is true, then the convergence (G.4) holds with rate O([∆k/∥∇hk(0)∥]p), and
Assumption 3.4 is not needed any more. In Subsection 3.2.5, we mentioned the possibility of waiving
Assumption 3.4 when Rk and Tk are always the transposes of each other. Assumption G.2 can be
interpreted as a generalization of that comment.

Theorem G.1 presents the theory of Algorithm 3.1 when Assumption 3.7 is replaced by its generalized
version Assumption G.1 and the place of Assumption 3.4 is taken by its ψk-counterpart Assumption G.2.
Its proof is sketched briefly. Similar to Theorem 3.5, if Algorithm 3.1 updates ∆k following the more
general rule (3.65) instead of (3.3), then Theorem G.1 holds after modifying µ defined below in (G.8).

94

Theorem G.1. Under Assumptions 3.1, 3.2, 3.3, 3.5, 3.6, G.1, and G.2, Algorithm 3.1 enjoys the
global convergence elaborated in Theorems 3.1 and 3.7, and it possesses the worst-case complexity bounds
quantified in Theorems 3.2–3.4, except that the constant µ defined in (3.30) should be replaced with

µ = min

{
∆0

∥g0∥
, γ0κ

[
α(λ− η1)

5βλ

] 1
p

, γ0κ

(
λ− η1
5υ

) 1
q

,
αγ0κ(λ− η1)

5(λLh + τ2Lf)

}
. (G.8)

Proof. We only need to prove that ρk > η1 when

∆k

∥∇hk(0)∥
≤ min

{[
α(λ− η1)

5βλ

] 1
p

,

(
λ− η1
5υ

) 1
q

,
α(λ− η1)

5(λLh + τ2Lf)

}
, (G.9)

which is an analogue of Proposition 3.2. If this is proved, then one can verify that Proposition 3.3 holds
with the new µ, and Theorems 3.1–3.4 and 3.7 can be established as in Section 3.

Essentially the same arguments as in the proof of Proposition 3.2 can prove that (G.9) ensures ρk > η1,
except that the roles of ϕk and ψk are exchanged. We claim that

0 ≤ tanϕk tanψk <
5(λ− η1)

4
√
6λ

. (G.10)

Let us first show how to derive ρk > η1 from (G.9)–(G.10), and then verify (G.10) in the end.
Assumption G.1 and the second term in (G.9) imply that gTkTkRkgk ≥ 0, and hence 0 ≤ ψk ≤ π/2.

Meanwhile, the third term in (G.9) ensures ∆k ≤ α∥∇hk(0)∥/Lh, which tells us 0 ≤ ϕk ≤ π/2 according
to (3.9). Additionally, tanϕk tanψk < 1 by (G.10). Therefore,

ϕk + ψk <
π

2
.

Hence, recalling that ∆k ≤ α∥∇hk(0)∥/Lh, we can invoke Lemma 3.1 to obtain

ρk ≥ gTkTkRkgk
∥Rkgk∥2

(
1− tanϕk tanψk − Lh∆k

α∥Rkgk∥

)
− Lf∥Tk∥2∆k

α∥Rkgk∥
. (G.11)

By (G.10) and the third term in (G.9), and noting that ∇hk(0) = Rkgk, we also have

1− tanϕkψk − Lh∆k

α∥Rkgk∥
> 1− 5(λ− η1)

4
√
6λ

− Lh

α
· α(λ− η1)

5(λLh + τ2Lf)
> 1− 5

4
√
6
− 1

5
> 0.

Thus, we can push (G.11) forward by Assumption G.1 and Assumption 3.5, obtaining

ρk ≥
(
λ− υ

[
∆k

∥∇hk(0)∥

]q)(
1− tanϕk tanψk − Lh∆k

α∥∇hk(0)∥

)
− τ2Lf∆k

α∥∇hk(0)∥

= λ− υ

[
∆k

∥∇hk(0)∥

]q
−
(
λ− υ

[
∆k

∥∇hk(0)∥

]q)(
tanϕk tanψk +

Lh∆k

α∥∇hk(0)∥

)
− τ2Lf∆k

α∥∇hk(0)∥

≥ λ− υ

[
∆k

∥∇hk(0)∥

]q
− λ

(
tanϕk tanψk +

Lh∆k

α∥∇hk(0)∥

)
− τ2Lf∆k

α∥∇hk(0)∥

= λ− υ

[
∆k

∥∇hk(0)∥

]q
− λ tanϕk tanψk − (λLh + τ2Lf)∆k

α∥∇hk(0)∥
.

Plugging (G.10) and the last two terms in (G.9) into the last line above, we arrive at

ρk > λ− υ · λ− η1
5υ

− λ · 5(λ− η1)

4
√
6λ

− (λLh + τ2Lf)

α
· α(λ− η1)

5(λLh + τ2Lf)

> λ− λ− η1
5

− 5(λ− η1)

4
√
6λ

− λ− η1
5

> η1.

95

Now we verify (G.10). By Assumption G.2 and the first term in (G.9),

sinψk ≤ β · α(λ− η1)

5βλ
=

α(λ− η1)

5λ
.

Thus sinψk < 1/5. Recalling that 0 ≤ ψk ≤ π/2, we have cosψk >
√

1− (1/5)2 = 2
√
6/5, and hence

0 ≤ tanψk <
α(λ− η1)

2
√
6λ

. (G.12)

The third term in (G.9) implies that ∆k/∥∇hk(0)∥ ≤ α/(5Lh). Thus we can obtain from (G.7) that

0 ≤ tanϕk ≤ secϕk ≤ 5

2α
. (G.13)

With (G.12)–(G.13), inequality (G.10) is justified.

G.2 Inaccurate gradients with dynamic accuracy
Let us consider Algorithm 6.1 again. In practice, if one has control over the accuracy of ĝk, then it is
natural to adjust ∥ĝk − gk∥ adaptively according to the progress of the computation. In particular, large
values of ∥ĝk − gk∥ should be tolerable when algorithms takes long steps, which is the case when ∆k is
large in 6.1. Otherwise, ∥ĝk − gk∥ has to be small. In this spirit, [75, inequality (4.4)] proposes condition

∥ĝk − gk∥ ≤ ξmin{∥ĝk∥, ∆k} for each k ≥ 0. (G.14)

on the inaccurate gradients {ĝk} used in trust-region methods to guarantee the global convergence, where ξ
is a positive constant. Indeed, [75] extends its investigation to the more general context of trust-region
SQP algorithms, though worst-case complexity was not discussed.

Using Theorem G.2, we can obtain the global convergence and worst-case complexities of Algo-
rithm 6.1 under a condition that generalizes (G.14) slightly.

Theorem G.2. Consider Algorithm 6.1 with η1 < 1. Assume there exist constants ζ and ξ such that

∥ĝk − gk∥ ≤ min {ζ∥ĝk∥, ξ∆k} for each k ≥ 0. (G.15)

Then under Assumptions 3.1–3.3, Algorithm 6.1 enjoys the global convergence elaborated in Theorems 3.1
and 3.7, and it possesses the worst-case complexity bounds quantified in Theorems 3.2–3.4, with κ and µ
taking the particular values

κ(ζ) = (1 + ζ)−1 and µ(ζ, ξ) = min

{
∆0

∥g0∥
,
αγ0κ(ζ) (1− η1)

5ξ
,
αγ0κ(ζ) (1− η1)

5(Lh + Lf)

}
.

Proof. According to Theorem G.1, we only need to verify that the transformations Rk and Tk defined
in (6.1) and (6.2) fulfill Assumptions 3.5, 3.6, G.1 and G.2 with

τ = 1, κ = (1 + ζ)−1, λ = 1, υ = β = ξ, and p = q = 1.

After the verification, the value of µ specified by (G.8) will turn out to be

µ(ζ, ξ) = min

{
∆0

∥g0∥
,
αγ0κ(ζ) (1− η1)

5ξ
,
αγ0(1− η1)

5ξ
,
αγ0κ(ζ) (1− η1)

5(Lh + Lf)

}
= min

{
∆0

∥g0∥
,
αγ0κ(ζ) (1− η1)

5ξ
,
αγ0κ(ζ) (1− η1)

5(Lh + Lf)

}
.

96

Assumption 3.5 holds trivially with τ = 1 as Tk = I.
Condition (G.15) implies (F.1), meaning that Assumption 3.6 holds with κ = (1 + ζ)−1.
Recalling that Rkgk = ĝk and TT

k gk = gk, condition (G.15) implies that

1− gTkTkRkgk
∥Rkgk∥2

= 1− gTk ĝk
∥ĝk∥2

≤ ∥ĝk − gk∥∥ĝk∥
∥ĝk∥2

≤ ξ∆k

∥ĝk∥
,

justifying Assumption G.1 with λ = 1, υ = ξ, and q = 1.
Considering the orthogonal projection ḡk of ĝk to the direction of gk, we have

sinψk =
∥ĝk − ḡk∥

∥ĝk∥
≤ ∥ĝk − gk∥

∥ĝk∥
≤ ξ∆k

∥ĝk∥
,

which validates Assumption G.2 with β = ξ and p = 1. The proof is then complete.

Via the complexities revealed by Theorem G.2, we can again observe the impact of gradient in-
accuracy on the worst-case iteration complexity of trust-region methods. Following the argument in
Subsection 6.3.2, we can see according to Theorem G.2 that the gradient inaccuracy subject to (G.15)
enlarges the iteration complexity bounds of Algorithm 6.1 at most by a factor of

κ(0)µ(0, 0)

κ(ζ)µ(ζ, ξ)
≤ (1 + ζ)2 max

{
1,

ξ

Lh + Lf

}
,

provided that the threshold ϵ for stationarity is not too large.

H Stabilizing the trust-region algorithms in GNU Octave
As an interesting application of our theoretical investigation in Section 6, we will examine the trust-region
algorithms fminunc and fsolve built in GNU Octave (www.gnu.org/software/octave/) and show that
their trust-region radius updating schemes are problematic, leading to severe instability when applied to
problems with inaccurate gradient (for fminunc) or function (for fsolve) evaluation. The problem can
be solved by replacing their trust-region updating schemes with any classical one.

We focus on fminunc, a trust-region algorithm for (1.1) with quadratic models based on Powell’s
damped BFGS update [117]. In version 5.1.0 (the latest one up to November 2019), it maintains the
trust-region radius as follows: with Ω(t) = min{max{0.1, 0.8 t}, 0.9}, ρ̃0 = 0, and Γ0 = 1/2, define{

ρ̃k+1 = ρ̃k, Γk+1 = Γ
√
2

k , ∆k+1 = Γk∆k if ρk < Ω(ρ̃k),

ρ̃k+1 = ρk, Γk+1 = 1/2, ∆k+1 ≥ min{∆k,
√
2∥Dkdk∥} else,

(H.1)

where Dk is a scaling matrix. The definition of ∆k+1 when ρk ≥ Ω(ρ̃k) is not detailed as it is irrelevant
to our discussion here. Note that Γk ≤ 1/2 for each k ≥ 0.

Unfortunately, (H.1) will not work when gradients are inaccurate, i.e., when ĝk = ∇hk(0) is not
necessarily gk = ∇f(xk), following the notation of Section 6. To see why, consider a scenario where the
trust-region model at iteration 0 works so well that ρ0 = ρ ≥ 0.9, while, additionally and deliberately,
assuming that ∆1 is small. Let us see what will happen by quick estimations without rigorous details.
Since ρ0 = ρ ≥ 0.9 ≥ Ω(ρ̃0), (H.1) sets ρ̃1 = ρ0 = ρ. As ∆1 is small, we have

ρ1 =
f(x1)− f(x1 + d1)

h1(0)− h1(d1)
≈ −dT1 g1

−dT1 ĝ1
≈ ĝT1 g1

∥ĝ1∥2
, (H.2)

where the first approximation replaces the differences by first-order terms, while the second is because
problem min∥d∥≤∆k

hk(d), solved by Powell’s dogleg method [115] in fminunc, leads to d1 ≈ −∆1ĝ1/∥ĝ1∥
when ∆1 is small. Since ρ̃1 = ρ, it is sensible to infer from (H.2) that ρ1 < Ω(ρ̃1) if ĝT1 g1 < Ω(ρ)∥ĝ1∥2.

97

www.gnu.org/software/octave/

If ρ1 < Ω(ρ̃1) does occur, then (H.1) will set ρ̃2 = ρ̃1 = ρ, and ∆2 ≤ ∆1/2, which is again small. We can
reuse the inference above and speculate ρ2 < Ω(ρ̃2) provided that ĝT2 g2 < Ω(ρ)∥ĝ2∥2. Indeed, if

ĝTk gk < Ω(ρ)∥ĝk∥2 for each k ≥ 1, (H.3)

then it is likely that ρk < Ω(ρ̃k) will take place consecutively, and (H.1) will keep setting ρ̃k+1 = ρ and
∆k+1 ≤ ∆k/2, forcing {xk} to converge to a point within a neighborhood of x0 as in Example 6.1, which
necessarily implies failure of fminunc unless x0 is sufficiently close to a stationarity point. This process
is even expedited by the fact that {Γk} decays according to (H.1). Indeed, (H.3) means that ĝk always
falls outside the admissible region (6.18) of inaccurate gradients found in Subsection 6.5 for η1 = Ω(ρ),
because, similar to (6.22), one can show that (H.3) is equivalent to∥∥∥ĝk − gk

2Ω(ρ)

∥∥∥ >
∥gk∥
2Ω(ρ)

for each k ≥ 1.

Although the argument made above contains stringent conditions and unjustified estimations, we will
see that it reflects very well the difficulty encountered by fminunc in practice. The reason behind the
difficulty is that (H.1) does not contain a small η1 that ensures ∆k+1 ≥ ∆k whenever ρk > η1. Indeed, in
the scenario described above, fminunc demands ρk ≥ Ω(ρ) before stopping the contraction of ∆k. The
value of Ω(ρ) is at least Ω(0.9) = 0.72 due to the aforementioned condition that ρ ≥ 0.9.

This situation can be rectified by switching (H.1) to any classical scheme with a small η1. As an
illustration (not necessarily the optimal choice), we correct the fminunc code using (6.31) with η1 = 1/10,
η2 = 3/4, and then test the corrected version together with the GNU Octave version on problems with
relative gradient error ζ ∈ {0, 1/50, 2/50, . . . , 49/50, 1} as described in Subsection 6.7.2. Figure 9 plots
their effectiveness defined in (6.29) against relative gradient error. Obviously, the GNU Octave version
suffered from gradient inaccuracy, while the corrected version behaved stably as ensured by our theory.

fsolve built in GNU Octave is a trust-region algorithm for nonlinear least-squares. Its trust-region
radius updating scheme is essentially the same as (H.1) and can be corrected likewise. We also mention
that the fminunc and fsolve in Matlab (version R2019b) update trust-region radius using particular
instances of (3.65) with η1 = 1/4 and η1 = 1/20 respectively, and hence they are stable with respect to
gradient inaccuracy according to our theory in Section 6.

We end this whole paper by an interesting fact hidden in Figure 9. Note that (H.1) cannot be included
by (3.65) as a special case and hence stays outside the coverage of our theory in Section 6. However, in
the aforementioned scenario where (H.1) does not work well, fminunc behaves as if it took a classical
scheme to update the trust-region radius, but chose η1 = Ω(0.9) = 0.72, a value too large. By such an
analogy, Theorem 6.1 suggests that the algorithm will suffer when relative gradient error has magnitude

ζ ≥ [Ω(0.9)]−1 − 1 ≈ 0.39.

Figure 9 shows a vertical line at ζ = 0.39. We can see a rapid drop in the effectiveness of GNU Octave
fminunc once this line is passed. It is entertaining to realize that such a behavior is predicted so precisely
by the theory derived from Algorithm 2.1, a framework that looks so unrelated to fminunc.

98

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 9: Effectiveness of two versions of fminunc plotted against relative gradient error.

References
[1] C. Audet, J. E. Dennis, Jr., and S. Le Digabel. Parallel space decomposition of the mesh adaptive

direct search algorithm. SIAM J. Optim., 19:1150–1170, 2008.
[2] M. Baboulin, A. Buttari, J. Dongarra, J. Kurzak, J. Langou, J. Langou, P. Luszczek, and S. Tomov.

Accelerating scientific computations with mixed precision algorithms. Comput. Phys. Commun.,
180:2526–2533, 2009.

[3] A. S. Bandeira, K. Scheinberg, and L. N. Vicente. Convergence of trust-region methods based on
probabilistic models. SIAM J. Optim., 24:1238–1264, 2014.

[4] J. W. Bandler, R. M. Biernacki, S. H. Chen, P. A. Grobelny, and R. H. Hemmers. Space mapping
technique for electromagnetic optimization. IEEE Trans. Microw. Theory Tech., 42:2536–2544,
1994.

[5] J. W. Bandler, R. M. Biernacki, S. H. Chen, R. H. Hemmers, and K. Madsen. Electromagnetic
optimization exploiting aggressive space mapping. IEEE Trans. Microw. Theory Tech., 43:2874–
2882, 1995.

[6] A. S. Berahas, R. H. Byrd, and J. Nocedal. Derivative-free optimization of noisy functions via
quasi-Newton methods. SIAM J. Optim., 29:965–993, 2019.

[7] E. G. Birgin, J. L. Gardenghi, J. M. Martínez, S. A. Santos, and Ph. L. Toint. Worst-case evaluation
complexity for unconstrained nonlinear optimization using high-order regularized models. Math.
Program., 163:359–368, 2017.

[8] A. Borzì and V. Schulz. Multigrid methods for PDE optimization. SIAM Rev., 51:361–395, 2009.
[9] A. Borzì and V. Schulz. Computational Optimization of Systems Governed by Partial Differential

Equations. Comput. Sci. Eng. SIAM, Philadelphia, 2011.
[10] L. Bottou. Large-scale machine learning with stochastic gradient descent. In Y. Lechevallier and

G. Saporta, editors, Proceedings of COMPSTAT’2010, pages 177–186, Heidelberg, 2010. Physica-
Verlag.

99

[11] J. Bramble, J. Pasciak, and A. Schatz. The construction of preconditioners for elliptic problems by
substructuring, I. Math. Comp., 47:103–134, 1986.

[12] R. H. Byrd, R. Schnabel, and G. A. Shultz. Approximate solution of the trust region problem by
minimization over two-dimensional subspaces. Math. Program., 40:247–263, 1988.

[13] X.-C. Cai and D. E. Keyes. Nonlinearly preconditioned inexact Newton algorithms. SIAM J. Sci.
Comput., 24:183–200, 2002.

[14] X.-C. Cai and M. Sarkis. A restricted additive Schwarz preconditioner for general sparse linear
systems. SIAM J. Sci. Comput., 21:792–797, 1999.

[15] R. Carter. On the global convergence of trust region algorithms using inexact gradient information.
SIAM J. Numer. Anal., 28:251–265, 1991.

[16] R. Carter. A worst-case example using linesearch methods for numerical optimization with inexact
gradient evaluations. Technical Report MCS-P283-1291, Argonne National Laboratory, 1991.

[17] R. Carter. Numerical experience with a class of algorithms for nonlinear optimization using inexact
function and gradient information. SIAM J. Sci. Comput., 14, 1993.

[18] C. Cartis, N. I. M. Gould, and Ph. L. Toint. Adaptive cubic regularisation methods for uncon-
strained optimization. Part I: motivation, convergence and numerical results. Math. Program.,
127:245–295, 2011.

[19] C. Cartis, N. I. M. Gould, and Ph. L. Toint. Adaptive cubic regularisation methods for uncon-
strained optimization. Part II: worst-case function-and derivative-evaluation complexity. Math.
Program., 130:295–319, 2011.

[20] C. Cartis, N. I. M. Gould, and Ph. L. Toint. On the oracle complexity of first-order and derivative-
free algorithms for smooth nonconvex minimization. SIAM J. Optim., 22:66–86, 2012.

[21] C. Cartis, N. I. M. Gould, and Ph. L. Toint. Evaluation complexity bounds for smooth constrained
nonlinear optimization using scaled KKT conditions and high-order models. In I. C. Demetriou
and P. M. Pardalos, editors, Approximation and Optimization. Springer, Berlin, 2019.

[22] C. Cartis and Ph. L. Gould, N. I. M. Toint. Complexity bounds for second-order optimality in
unconstrained optimization. J. Complexity, 28:93 – 108, 2012.

[23] C. Cartis and K. Scheinberg. Global convergence rate analysis of unconstrained optimization
methods based on probabilistic models. Math. Program., 169:337–375, 2018.

[24] T. F. Chan and T. P. Mathew. Domain decomposition algorithms. Acta Numer., 3:61–143, 1994.

[25] T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud. Neural ordinary differential
equations. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,
editors, Proceedings of the 31st International Conference on Neural Information Processing Systems,
pages 6571–6583. Curran Associates, Inc., 2018.

[26] X. Chen and Ph. L. Toint. High-order evaluation complexity for convexly-constrained optimization
with non-Lipschitzian group sparsity terms. arXiv:1902.10767, 2019.

[27] X. Chen, Ph. L. Toint, and H. Wang. Partially separable convexly-constrained optimization with
non-Lipschitzian singularities and its complexity. SIAM J. Optim., 29:874–903, 2019.

[28] A. R. Conn, N. I. M. Gould, A. Sartenaer, and Ph. L. Toint. Convergence properties of minimization
algorithms for convex constraints using a structured trust region. SIAM J. Optim., 6:1059–1086,
1996.

[29] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. LANCELOT: A Fortran Package for Large-Scale
Nonlinear Optimization (Release A). Springer-Verlag, Berlin, 1992.

100

[30] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust-Region Methods. SIAM, Philadelphia, 2000.

[31] A. R. Conn, K. Scheinberg, and Ph. L. Toint. On the convergence of derivative-free methods for
unconstrained optimization. In A. Iserles and M. D. Buhmann, editors, Approximation Theory and
Optimization: Tributes to M. J. D. Powell, pages 83–108. Cambridge University Press, Cambridge,
1997.

[32] A. R. Conn, K. Scheinberg, and L. N. Vicente. Global convergence of general derivative-free trust-
region algorithms to first- and second-order critical points. SIAM J. Optim., 20:387–415, 2009.

[33] F. E. Curtis, Z. Lubberts, and D. P. Robinson. Concise complexity analyses for trust region
methods. Optim. Lett., 12:1713–1724, 2018.

[34] F. E. Curtis and D. P. Robinson. Regional complexity analysis of algorithms for nonconvex smooth
optimization. Technical Report COR@L Technical Report 18T-003-R1, Department of Industrial
and Systems Engineering, Lehigh University, Lehigh, 2018.

[35] F. E. Curtis, D. P. Robinson, and M. Samadi. A trust region algorithm with a worst-case iteration
complexity of O(ϵ−3/2) for nonconvex optimization. Math. Program., 162:1–32, 2017.

[36] F. E. Curtis, D. P. Robinson, and M. Samadi. An inexact regularized newton framework with a
worst-case iteration complexity of O(ϵ−3/2) for nonconvex optimization. IMA J. Numer. Anal.,
39:1296–1327, 2018.

[37] A. d’Aspremont. Smooth optimization with approximate gradient. SIAM J. Optim., 19:1171–1183,
2008.

[38] J. C. De los Reyes. Numerical PDE-Constrained Optimization. Springer, Berlin, 2015.

[39] O. Devolder, F. Glineur, and Y. Nesterov. First-order methods of smooth convex optimization with
inexact oracle. Math. Program., 146:37–75, 2014.

[40] V. Dolean, M. J. Gander, W. Kheriji, F. Kwok, and R. Masson. Nonlinear preconditioning: How
to use a nonlinear Schwarz method to precondition Newton’s method. SIAM J. Sci. Comput.,
38:A3357–A3380, 2016.

[41] V. Dolean, P. Jolivet, and F. Nataf. An Introduction to Domain Decomposition Methods: Algo-
rithms, Theory, and Parallel Implementation. SIAM, Philadelphia, 2015.

[42] Q. Dong, X. Liu, Z. Wen, and Y. Yuan. A parallel line search subspace correction method for
composite convex optimization. J. Oper. Res. Soc. China, 3:163–187, 2015.

[43] J. Douglas. A method of numerical solution of the problem of Plateau. Ann. of Math., 29:180–188,
1927.

[44] J. Douglas. Solution of the problem of Plateau. Trans. Amer. Math. Soc., 33:263–321, 1931.

[45] J. W. Eaton. GNU Octave 4.2 Reference Manual. Samurai Media Limited, United Kingdom, 2017.

[46] E. Efstathiou and M. J. Gander. Why restricted additive Schwarz converges faster than additive
Schwarz. BIT, 43:945–959, 2003.

[47] J. Fan. Convergence rate of the trust region method for nonlinear equations under local error bound
condition. Comput. Optim. Appl., 34:215–227, 2006.

[48] J. Fan and Y. Yuan. A new trust region algorithm with trust region radius converging to zero.
In D. Li and X. Q. Cai, editors, Proceedings of the 5th International Conference on Optimization:
Techniques and Applications, pages 786–794. World Scientific Publishing, Singapore, 2001.

[49] M. C. Ferris and O. L. Mangasarian. Parallel variable distribution. SIAM J. Optim., 4:815–832,
1994.

101

[50] A. Frommer and H. Schwandt. A unified representation and theory of algebraic additive Schwarz
and multisplitting methods. SIAM J. Matrix Anal. Appl., 18:893–912, 1997.

[51] A. Frommer and D. B. Szyld. An algebraic convergence theory for restricted additive Schwarz
methods using weighted max norms. SIAM J. Numer. Anal., 39:463–479, 2002.

[52] M. Fukushima. Parallel variable transformation in unconstrained optimization. SIAM J. Optim.,
8:658–672, 1998.

[53] M. J. Gander. Schwarz methods over the course of time. Electron. Trans. Numer. Anal., 31:228–255,
2008.

[54] M. J. Gander. On the origins of linear and non-linear preconditioning. In C.-O. Lee, X.-C. Cai,
D. E. Keyes, H. Kim, A. Klawonn, E.-J. Park, and O. B. Widlund, editors, Domain Decomposition
Methods in Science and Engineering XXIII, pages 153–161. Springer, Berlin, 2017.

[55] M. J. Gander and A. Loneland. SHEM: An optimal coarse space for RAS and its multiscale
approximation. In C.-O. Lee, X.-C. Cai, D. E. Keyes, H. Kim, A. Klawonn, E.-J. Park, and
O. B. Widlund, editors, Domain Decomposition Methods in Science and Engineering XXIII, pages
313–321. Springer, Berlin, 2017.

[56] M. J. Gander, A. Loneland, and T. Rahman. Analysis of a new harmonically enriched multiscale
coarse space for domain decomposition methods. arXiv:1512.05285, 2015.

[57] M. J. Gander and G. Wanner. The origins of the alternating Schwarz method. In J. Erhel, M. J.
Gander, L. Halpern, G. Pichot, T. Sassi, and O. B. Widlund, editors, Domain Decomposition
Methods in Science and Engineering XXI, pages 487–495. Springer, Berlin, 2014.

[58] R. Ge, F. Huang, C. Jin, and Y. Yuan. Escaping from saddle points — online stochastic gradient
for tensor decomposition. In P. Grünwald, E. Hazan, and S. Kale, editors, Proceedings of The 28th
Conference on Learning Theory, pages 797–842. PMLR, 2015.

[59] D. Goldberg. What every computer scientist should know about floating-point arithmetic. ACM
Comput. Surv., 23:5–48, 1991.

[60] E. Gorbunov, F. Hanzely, and P. Richtárik. A unified theory of SGD: Variance reduction, sampling,
quantization and coordinate descent. arXiv:1905.11261, 2019.

[61] N. I. M. Gould, D. Orban, A. Sartenaer, and Ph. L. Toint. Sensitivity of trust-region algorithms
to their parameters. 4OR, 3:227–241, 2005.

[62] N. I. M. Gould, D. Orban, and Ph. L. Toint. CUTEst: a constrained and unconstrained testing
environment with safe threads for mathematical optimization. Comput. Optim. Appl., 60:545–557,
2015.

[63] G. N. Grapiglia, J. Yuan, and Y. Yuan. On the convergence and worst-case complexity of trust-
region and regularization methods for unconstrained optimization. Math. Program., 152:491–520,
2015.

[64] G. N. Grapiglia, J. Yuan, and Y. Yuan. Nonlinear stepsize control algorithms: Complexity bounds
for first-and second-order optimality. J. Optim. Theory Appl., 171:980–997, 2016.

[65] S. Gratton, C. Royer, and L. N. Vicente. A decoupled first/second-order steps technique for
nonconvex nonlinear unconstrained optimization with improved complexity bounds. to appear in
Math. Program., 2019.

[66] S. Gratton, C. W. Royer, L. N. Vicente, and Z. Zhang. Direct search based on probabilistic descent.
SIAM J. Optim., 25:1515–1541, 2015.

[67] S. Gratton, C. W. Royer, L. N. Vicente, and Z. Zhang. Complexity and global rates of trust-region
methods based on probabilistic models. IMA J. Numer. Anal., 38:1579–1597, 2018.

102

[68] S. Gratton and Ph. L. Toint. A note on solving nonlinear optimization problems in variable
precision. arXiv:1812.03467, 2018.

[69] S. Gratton and L. N. Vicente. A surrogate management framework using rigorous trust-region
steps. Optim. Methods Softw., 29:10–23, 2014.

[70] A. Griewank. The modification of Newton’s method for unconstrained optimization by bounding
cubic terms. Technical Report Technical Report NA/12, DAMTP, University of Cambridge, 1981.

[71] A. Griewank and Ph. L. Toint. On the unconstrained optimization of partially separable functions.
In M. J. D. Powell, editor, Nonlinear Optimization 1981, pages 119–137. Academic Press, London,
1982.

[72] C. Groß. A Unifying Theory for Nonlinear Additively and Multiplicatively Preconditioned Global-
ization Strategies: Convergence Results and Examples From the Field of Nonlinear Elastostatics
and Elastodynamics. PhD thesis, University of Bonn, Bonn, 2009.

[73] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan. Deep learning with limited numerical
precision. In F. Bach and D. Blei, editors, Proceedings of the 32nd International Conference on
Machine Learning, pages 1737–1746. PMLR, 2015.

[74] G. Heidel and V. Schulz. A Riemannian trust-region method for low-rank tensor completion.
Numer. Linear Algebra Appl., 25:e2175, 2018.

[75] M. Heinkenschloss and L. N. Vicente. Analysis of inexact trust-region SQP algorithms. SIAM J.
Optim., 12:283–302, 2002.

[76] C. F. Higham and D. J. Higham. Deep learning: An introduction for applied mathematicians.
SIAM Rev., to appear.

[77] D. J. Higham. Trust region algorithms and timestep selection. SIAM J. Numer. Anal., 37:194–210,
1999.

[78] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia, second edition,
2002.

[79] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich. Optimization with PDE Constraints. Springer,
Berline, 2009.

[80] M. Holst. Algebraic Schwarz theory. Technical Report CRPC-994-10, Department of Applied
Mathematics and CRPC, California Institute of Technology, California, 1994.

[81] P. D. Hough and J. C. Meza. A class of trust-region methods for parallel optimization. SIAM J.
Optim., 13:264–282, 2002.

[82] L. Jacob, G. Obozinski, and J.-P. Vert. Group lasso with overlap and graph lasso. In L. Bottou
and M. Littman, editors, Proceedings of the 26th Annual International Conference on Machine
Learning, pages 433–440. ACM, New York, 2009.

[83] C. G. J. Jacobi. Über eine neue Auflösungsart der bei der Methode der kleinsten Quadrate vork-
ommenden linearen Gleichungen. Astronomische Nachrichten, 22:297–306, 1845.

[84] C. Jin, R. Ge, P. Netrapalli, Sham M. Kakade, and M. I. Jordan. How to escape saddle points
efficiently. In D. Precup and Y. W. Teh, editors, Proceedings of the 34th International Conference
on Machine Learning, pages 1724–1732. JMLR, 2017.

[85] D. Kalamkar et al. A study of BFLOAT16 for deep learning training. arXiv:1905.12322, 2019.

[86] C. T. Kelley. Iterative Methods for Optimization. SIAM, Philadelphia, 1999.

[87] L. Kugler. Is “good enough” computing good enough? Commun. ACM, 58:12–14, 2015.

103

[88] K. Levenberg. A method for the solution of certain non-linear problems in least squares. Quart.
Appl. Math., 2:164–168, 1944.

[89] S. Leyffer, S. M. Wild, M. Fagan, M. Snir, K. Palem, H. Finkel, and K. Yoshii. Doing Moore with
less – leapfrogging Moore’s law with inexactness for supercomputing. Technical Report ANL/MCS-
P6077-1016, Argonne National Laboratory MCS, 2016.

[90] K.-A. Lie. An introduction to reservoir simulation using MATLAB/GNU Octave. Cambridge
University Press, Cambridge, 2019.

[91] P. L. Lions. On the Schwarz alternating method. I. In R. Glowinski, G. H. Golub, G. A. Meurant,
and J. Périaux, editors, First International Symposium on Domain Decomposition Methods for
Partial Differential Equations, pages 1–42. SIAM, Philadelphia, 1988.

[92] J. Mandel and B. Sousedík. Coarse spaces over the ages. In Y. Huang, R. Kornhuber, O. B.
Widlund, and J. Xu, editors, Domain decomposition Methods in Science and Engineering XIX,
pages 213–220. Springer, 2011.

[93] O. L. Mangasarian. Parallel gradient distribution in unconstrained optimization. SIAM J. Control
Optim., 33:1916–1925, 1995.

[94] D. W. Marquardt. An algorithm for least-squares estimation of nonlinear parameters. J. Soc.
Indust. Appl. Math., 11:431–441, 1963.

[95] J. R. R. A. Martins, J. J. Alonso, and J. J. Reuther. A coupled-adjoint sensitivity analysis method
for high-fidelity aero-structural design. Optim. Eng., 6:33–62, 2005.

[96] L. Meier, S. Van De Geer, and P. Bühlmann. The group lasso for logistic regression. J. R. Stat.
Soc. Ser. B. Stat. Methodol., 70:53–71, 2008.

[97] J. J. Moré. Recent developments in algorithms and software for trust region methods. In A. Bachem,
M. Grötschel, and B. Korte, editors, Mathematical Programming: The State of Art. Springer-Verlag,
Berlin, 1983.

[98] J. J. Moré and D. Sorensen. Computing a trust region step. SIAM J. Sci. Stat. Comp., 4:553–572,
1983.

[99] J. J. Moré and S. M. Wild. Estimating computational noise. SIAM J. Sci. Comput., 33:1292–1314,
2011.

[100] J. J. Moré and S. M. Wild. Estimating derivatives of noisy simulations. ACM Trans. Math. Software,
38:19:1–19:21, 2012.

[101] J. J. Moré and S. M. Wild. Do you trust derivatives or differences? J. Comput. Phys., 273:268–277,
2014.

[102] Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Kluwer Academic
Publishers, London, 2004.

[103] Yu. Nesterov. A method of solving a convex programming problem with O(1/k2) convergence rate.
Soviet Mathematics Doklady, 27:372–376, 1983.

[104] Yu. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM
J. Optim., 22:341–362, 20112.

[105] Yu. Nesterov and B. T. Polyak. Cubic regularization of Newton method and its global performance.
Math. Program., 108:177–205, 2006.

[106] Q. Ni and Y. Yuan. A subspace limited memory quasi-Newton algorithm for large-scale nonlinear
bound constrained optimization. Math. Comp., 66:1509–1520, 1997.

[107] J. Nocedal. Updating quasi-Newton matrices with limited storage. Math. Comp., 35:773–782, 1980.

104

[108] J. Nocedal and S. Wright. Numerical Optimization. Springer Ser. Oper. Res. Financ. Eng. Springer,
New York, second edition, 2006.

[109] M. R. Osborne. Nonlinear least squares — the Levenberg algorithm revisited. J. Austral. Math.
Soc., 19:343–357, 1976.

[110] K. V. Palem. Inexactness and a future of computing. Phil. Trans. R. Soc. A, 372:20130281, 2014.
[111] B. Peherstorfer, K. Willcox, and M. Gunzburger. Survey of multifidelity methods in uncertainty

propagation, inference, and optimization. SIAM Rev., 60:550–591, 2018.
[112] Z. Peng, Y. Xu, M. Yan, and W. Yin. ARock: An algorithmic framework for asynchronous parallel

coordinate updates. SIAM J. Sci. Comput., 38:A2851–A2879, 2016.
[113] M. Pilanci and M. J. Wainwright. Newton sketch: A near linear-time optimization algorithm with

linear-quadratic convergence. SIAM J. Optim., 27:205–245, 2017.
[114] B. T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR Compu-

tational Mathematics and Mathematical Physics, 4:1–17, 1964.
[115] M. J. D. Powell. A hybrid method for nonlinear equations. In P. Rabinowitz, editor, Numerical

Methods for Nonlinear Algebraic Equations, pages 87–114. Gordon & Breach Science, London, 1970.
[116] M. J. D. Powell. Convergence properties of a class of minimization algorithms. In O. L. Mangasarian,

R. R. Meyer, and S. M. Robinson, editors, Nonlinear Programming 2: Proceedings of the Special
Interest Group on Mathematical Programming Symposium Conducted by the Computer Sciences
Department at the University of Wisconsin-Madison, April 15–17, 1974, pages 1–27. Academic
Press, 1975.

[117] M. J. D. Powell. Algorithms for nonlinear constraints that use Lagrangian functions. Math. Pro-
gram., 14:224–248, 1978.

[118] M. J. D. Powell. On the global convergence of trust region algorithms for unconstrained minimiza-
tion. Math. Program., 29:297–303, 1984.

[119] M. J. D. Powell. The NEWUOA software for unconstrained optimization without derivatives. In
G. Di Pillo and M. Roma, editors, Large-scale nonlinear optimization, pages 255–297. Springer,
Boston, 2006.

[120] M. J. D. Powell. On the convergence of a wide range of trust region methods for unconstrained
optimization. IMA J. Numer. Anal., 30:289–301, 2010.

[121] A. Quarteroni and A. Valli. Domain Decomposition Methods for Partial Differential Equations.
Oxford Science Publications, Oxford, 1999.

[122] P. Richtárik and M. Takáč. Parallel coordinate descent methods for big data optimization. Math.
Program., 156:433–484, 2016.

[123] H. Robbins and S. Monro. A stochastic approximation method. Ann. Math. Statist., 22:400–407,
1951.

[124] R. T. Rockafellar. Convex Analysis. Princeton University Press, New Jersey, 1970.
[125] R. T. Rockafellar and R. J.-B. Wets. Variational Analysis. Springer, Berlin, 1998.
[126] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia, second edition, 2003.
[127] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and Ph. Moritz. Trust region policy optimization. In

Proceedings of the 32nd International Conference on International Conference on Machine Learning,
pages 1889–1897. PMLR, 2015.

[128] H. A. Schwarz. Über einen Grenzübergang durch alternierendes Verfahren. Vierteljahrsschrift der
Naturforschenden Gesellschaft in Zürich, 15:272–286, 1870.

105

[129] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu. 1-bit stochastic gradient descent and its application to
data-parallel distributed training of speech DNNS. In H. Li, H. Meng, B. Ma, E. Chng, and L. Xie,
editors, Fifteenth Annual Conference of the International Speech Communication Association. ISCA,
2014.

[130] B. F. Smith, P. E. Bjørstad, and W. D. Gropp. Domain Decomposition: Parallel Multilevel Methods
for Elliptic Partial Differential Equations. Cambridge University Press, Cambridge, 1996.

[131] M. V. Solodov. New inexact parallel variable distribution algorithms. Comput. Optim. Appl.,
7:165–182, 1997.

[132] M. V. Solodov and S. K. Zavriev. Error stability properties of generalized gradient-type algorithms.
J. Optim. Theory Appl., 98:663–680, 1998.

[133] T. Steihaug. The conjugate gradient method and trust regions in large scale optimization. SIAM
J. Numer. Anal., 20:626–637, 1983.

[134] X.-C. Tai and M. Espedal. Rate of convergence of some space decomposition methods for linear
and nonlinear problems. SIAM J. Numer. Anal., 35:1558–1570, 1998.

[135] X.-C. Tai and J. Xu. Global and uniform convergence of subspace correction methods for some
convex optimization problems. Math. Comp., 71:105–124, 2002.

[136] S. W. Thomas. Sequential Estimation Techniques for Quasi-Newton Algorithms. PhD thesis, Cornell
University, New York, 1975.

[137] Ph. L. Toint. Towards an efficient sparsity exploiting Newton method for minimization. In I. S.
Duff, editor, Sparse Matrices and Their Uses, pages 57–88. Academic Press, London, 1981.

[138] Ph. L. Toint. Global convergence of a class of trust-region methods for nonconvex minimization in
Hilbert space. IMA J. Numer. Anal., 8:231–252, 1988.

[139] Ph. L. Toint. Nonlinear stepsize control, trust regions and regularizations for unconstrained opti-
mization. Optim. Methods Softw., 28:82–95, 2013.

[140] Ph. L. Toint and D. Tuyttens. On large scale nonlinear network optimization. Math. Program.,
48:125–159, 1990.

[141] A. Toselli and O. B. Widlund. Domain Decomposition Methods — Algorithms and Theory, vol-
ume 34 of Springer Ser. Comput. Math. Springer, Berlin, 2006.

[142] Ø. Tråsdahl and E. M. Rønquist. High order numerical approximation of minimal surfaces. J.
Comput. Phys., 230:4795–4810, 2011.

[143] M. Ulbrich. Optimization methods in Banach spaces. In Optimization with PDE Constraints, pages
97–156. Springer, Dordrecht, 2009.

[144] L. N. Vicente. Space mapping: Models, sensitivities, and trust-regions methods. Optim. Eng.,
4:159–175, 2003.

[145] X. Wang and Y. Yuan. Stochastic trust region methods with trust region radius depending on
probabilistic models. arXiv:1904.03342, 2019.

[146] Z. Wang and Y. Yuan. A subspace implementation of quasi-Newton trust region methods for
unconstrained optimization. Numer. Math., 104:241–269, 2006.

[147] A. J. Wathen. Preconditioning. Acta Numer., 24:329–376, 2015.

[148] O. B. Widlund. The development of coarse spaces for domain decomposition algorithms. In
M. Bercovier, M. J. Gander, R. Kornhuber, and O. B. Widlund, editors, Domain Decomposition
Methods in Science and Engineering XVIII, pages 241–248. Springer, 2009.

106

[149] S. Wright. Coordinate descent algorithms. Math. Program., 151:3–34, 2015.

[150] Y. Wu, E. Mansimov, R. Grosse, S. Liao, and J. Ba. Scalable trust-region method for deep rein-
forcement learning using Kronecker-factored approximation. In I. Guyon, U. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Proceedings of the 30th Interna-
tional Conference on Neural Information Processing Systems, pages 5279–5288. Curran Associates,
Inc., 2017.

[151] J. Xu. Iterative methods by space decomposition and subspace correction. SIAM Rev., 34:581–613,
1992.

[152] P. Xu, F. Roosta-Khorasani, and M. W. Mahoney. Second-order optimization for non-convex
machine learning: An empirical study. arXiv:1708.07827, 2018.

[153] Z. Yao, A. Gholami, P. Xu, K. Keutzer, and M. W. Mahoney. Trust region based adversarial attack
on neural networks. In The IEEE Conference on Computer Vision and Pattern Recognition, 2019.

[154] Y. Yuan. An example of non-convergence of trust region algorithms. In Y. Yuan, editor, Advances
in Nonlinear Programming, pages 205–215. Kluwer Academic Publishers, Dordrecht, 1998.

[155] Y. Yuan. On the truncated conjugate gradient method. Math. Program., 87:561–573, 2000.

[156] Y. Yuan. A review of trust region algorithms for optimization. In J. M. Ball and J. C. R. Hunt,
editors, Proceedings of the Fourth International Congress on Industrial and Applied Mathematics,
pages 271–282. Oxford University Press, Oxford, 2000.

[157] Y. Yuan. Subspace techniques for nonlinear optimization. In R. Jeltsch, T.-T. Li, and I. H.
Sloan, editors, Some topics in industrial and applied mathematics, pages 206–218. World Scientific
Publishing, Singapore, 2007.

[158] Y. Yuan. A review on subspace methods for nonlinear optimization. In S. Y. Jang, Y. R. Kim,
Lee D.-W., and I. Yie, editors, Proceedings of the International Congress of Mathematicians (Seoul
2014), pages 807–827. Kyung Moon Sa Co. Ltd., Seoul, 2014.

[159] Y. Yuan. Recent advances in trust region algorithms. Math. Program., 151:249–281, 2015.

[160] Y. Yuan and J. Stoer. A subspace study on conjugate gradient algorithms. ZAMM Z. Angew.
Math. Mech., 75:69–77, 1995.

107

	Introduction
	Optimization by space decomposition
	Optimization based on inaccurate gradients
	Organization of the paper and main results

	A framework for optimization by space transformation
	blackA trust-region version of the space transformation framework
	Globalizing the space transformation framework by a trust region
	Assumptions and their consequences
	Key facts that lead to the convergence properties
	Global convergence
	Worst-case complexity
	Comments on the update of trust-region radius

	Coarse space correction
	Incorporating coarse spaces into the space transformation framework
	Analysis of the space transformation framework with coarse space
	Remarks

	Optimization by space decomposition
	Introduction
	Additive Schwarz type methods for linear systems
	A space decomposition framework for nonlinear optimization
	Space decomposition is a special instance of space transformation
	Additive Schwarz type decomposition/synchronization matrices
	Globalizing the space decomposition framework by trust regions
	Coarse space correction
	Numerical illustrations

	Optimization based on inaccurate gradients
	Introduction
	A trust-region framework using inaccurate gradients
	Inaccurate gradients with bounded relative error of type I
	Inaccurate gradients with bounded relative error of type II
	The largest admissible region of inaccurate gradients
	Gradient descent with Armijo line search and inaccurate gradients
	Numerical experiment
	Remarks

	Discussions and conclusions
	Appendix

