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Abstract— The estimation of 6D pose of industrial parts is
a fundamental problem in smart manufacturing. Traditional
approaches mainly focus on matching corresponding key point
pairs between observed 2D images and 3D object models via
hand-crafted feature descriptors. However, key points are hard
to discover from images when the parts are piled up in disorder
or occluded by other distractors, e.g., human hands. Although
the emerging deep learning-based methods are capable of
inferring the poses of occluded parts, the accuracy is not
satisfactory largely due to the loss of spatial resolution from
multiple downsampling operations inside convolutional neural
networks. To overcome this challenge, this paper proposes a
6D pose estimation model consisting of a pose estimator and
a pose refiner, by leveraging High-Resolution Networks as the
backbone. Experiments are further conducted on a dataset of
industrial parts to demonstrate its effectiveness.

I. INTRODUCTION

The recent advances in smart manufacturing and human-
robot collaboration [1], [2] raise the demand for precise
part location and pose estimation to meet the efficiency and
flexibility requirements. For instance, robots need to be able
to consistently recognize objects of interest to cope with
uncertainties introduced by human collaborators or flexible
production.

Traditional applications of pose estimation of industrial
parts mainly rely on tactile sensors. Saund et al. [3] proposed
to localize parts by touching the part at different points with
a probe on a robotic arm and introduced a particle filter-
based algorithm to tackle the pose estimation problem. In
[4] the authors introduced an optimization algorithm that
uses tactile and force sensors to optimize the pose estimation
provided by vision methods. Despite high precision in certain
applications, these physical contact-based methods might fail
in scenarios such as narrow spaces or complicated structures.

Vision-based methods, including hand-crafted feature-
based and deep learning-based approaches, have also been
widely adopted in industrial part localization for high-level
flexibility and efficiency. The former ones can work effi-
ciently in highly organized workshops while suffering from
rigid requirement of light sources, such as the approaches of
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speeded up robust features (SURF) [5], background subtrac-
tion [6], and so on. Deep learning-based methods, especially
convolutional neural networks (CNN), are endowed with
better effectiveness and robustness. Nguyen et al. [7] utilized
MobileNetV2 [8] to identify positive object patches from
images for robot grasping. Object detection models such as
region-based CNN (Faster R-CNN [9], Mask R-CNN [10])
were adopted for localizing industrial objects in [11]-[13].
Nevertheless, these methods only provide 2D information
which is not suitable for complex tasks such as human-robot
handover, where 3D information of objects is indispensable.

To make the leap from 2D to 3D, researchers formulated
the problem as 6 degree-of-freedom (6D) pose estimation, re-
ferring to estimating the translation and rotation of objects in
3D coordinates given the 3D object models. Existing 6D pose
estimation researches mainly have two perspectives: feature-
based and template-based. Feature-based methods aim at
matching corresponding key points based on the extracted
features between the observed 2D image and the given 3D
object model [14], [15], and the object pose parameters are
further calculated from the correspondence. As for template-
based methods, the object poses are obtained by calculating
the similarities between the observed image and a set of pre-
defined templates, and the most similar template represents
the object pose [16]-[18]. However, these methods cannot
properly handle heavy occlusion or textureless objects, in
which case feature points are incomplete or missing.

Recent studies of CNN-based 6D pose estimation has
shown promising results [19]-[22]. These methods manage
to mitigate the suffering from occlusion and textureless ob-
jects by learning to predict pose parameters in a data-driven
manner without explicit modelling of feature correspondence
or template similarity. To further improve the pose estimation
accuracy, some studies decided to borrow the idea from
feature points-based methods and predict the correspondence
of key points via CNN models [23], [24], while others added
an extra refinement stage upon the CNN-based 6D pose
estimation model [25], [26].

Although CNN-based approaches have made some sig-
nificant improvements in object 6D pose estimation, there
are still some problems in this field. One critical issue is
that subtle pose differences can be easily neglected since
the backbone networks are usually borrowed from renowned
classification models such as VGGNet [27] and GoogLeNet
[28], which leverages a gradually downsampled structure to
obtain a more compact representation with higher semantic
information that could facilitate object classification or detec-
tion, but lower spatial resolution which is not ideal for tasks
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that require more subtle spatial features such as semantic
segmentation and 6D pose estimation.

This study suggests that the task of 6D pose estimation not
only requires strong semantic representations to recognize
the object, but also precise spatial features to distinguish
small variations of object pose. Aiming at exploiting the
advantage of high resolution features, in this study, High-
Resolution Network (HRNet) [29] is leveraged as the back-
bone network, upon which a model is constructed that
directly predicts 6D pose parameters from RGB image and
its corresponding depth image (RGB-D). It is hard to achieve
accurate pose estimation through a single shot, hence a refin-
ing stage is additionally adopted. Concretely, the predicted
6D pose parameters from the first stage would be utilized
to render the 3D object model to its estimated pose, and
the rendered RGB-D image is concatenated with the original
image and sent to a refining network to predict the difference
between the coarse estimation result and ground-truth pose.

The rest of the paper is organized as follows: Section
IT and IIT will explain the proposed method in detail and
show its effectiveness with experimental results respectively.
Section IV will summarize the main contributions of this
work and highlight the future directions.

II. METHODOLOGY

In this section, the proposed high-resolution network-
based 6D pose estimation method is explained in detail.
Provided with the observed RGB-D image and 3D object
model, the objective of 6D pose estimation is to infer
the object pose parameters, which are normally presented
as a SE(3) transformation (SE: Special Euclidean Group)
consisting of a 3-DoF (Degree of Freedom) rotation R and a
3-DoF translation t. With the estimated R, t and the object’s
3D model, the complete 3D information of the object can be
well obtained.

A. Architecture Overview

The overall architecture of the proposed model for 6D
pose estimation of industrial parts is illustrated in Fig.
1. The architecture mainly consists of three stages, i.e.,
industrial parts detection, coarse pose estimation, and pose
refinement. The detection stage takes RGB image as input,
and output parts bounding boxes and classification results.
The detection stage can be regarded as a preprocessing
step and the following pose estimation stages are actually
agnostic to which specific detection model is used, so this
study simply adopts Faster R-CNN [9] as the detector. Then
in the coarse pose estimation stage, an HRNet-based pose
estimation network is constructed to better distinguish small
pose differences of industrial parts by taking advantage of
high-resolution features. The coarse pose estimation network
takes the cropped RGB-D patch of the detected part as input,
and estimates the rotation R and translation t respectively.
The final stage is designed for pose refinement, which first
generates a rendered RGB-D image based on the estimated
coarse pose parameters and the object 3D model, then con-
catenate the rendered image and the cropped image together

as the input, and estimate the pose deviations AR and At.
By applying the predicted AR and At to the coarse R and
t, the final 6D pose estimation is obtained.

B. Industrial Parts Detection

The first step of this work is to extract the regions of
interest for industrial parts. Concretely, the observed image
might contain multiple industrial parts, for which the indi-
vidual regions and categories need to be extracted first to
facilitate subsequent 6D pose estimation. For a specific part
in the image, the image patch will be cropped according
to the detection results which are normally represented
as bounding boxes. Then the following pose estimation
processes only need to consider the cropped image area,
which brings two benefits: 1) The removal of irrelevant
image area could ease the model training process; 2) Better
computational efficiency. Meanwhile, the part category given
by the classification results will be used to decide which
part model should be applied to the rendering process in the
pose refinement stage. Therefore, a successful detector Faster
R-CNN is employed to locate industrial parts in complex
industrial scenarios, regardless of occlusion and textureless
interference. Under this prerequisite, the work can pay more
attention to the following two-stage pose estimation.

C. Coarse Pose Estimation

Instead of segmenting each object with extra branches
[20], this study simply crop the part region from the observed
image as input of the pose estimation model. Based on the
cropped RGB-D image, the pose estimation model can di-
rectly regress the part pose parameters including the rotation
matrix R and translation vector t of the part to fully recover
its pose in 3D space. The details are illustrated as follows. d
image as input of the pose estimation model. Based on the
cropped RGB-D image, a pose estimation model will directly
regress the part pose parameters. This section illustrates the
details of the pose estimation model as follows.

1) Depth Image: The introduction of depth image plays
an essential role in our pose estimation model. Existing
methods such as [20], [25] tend to tackle the 6D pose
estimation problem only from RGB images, which could
bring uncertainties for the translation estimation. Without
depth information, a traditional pose estimation model has
to memorize the size of a specific object for coordinate
transformation, which can be further utilized to transform
each object from 2D image pixels to 3D space. This is not
only difficult for the model to learn, but also prone to error
when facing similar objects with different actual sizes, which
is often the case for industrial parts such as bolts. Although
[20] has explored to tackle this problem with ICP refinement
algorithm, it is infeasible for real industrial applications due
to the time-consuming computation.

To avoid the above issue, this study simply attaches depth
image as an extra channel to the RGB image to form an
RGB-D image, which is further input to the pose estimation
model for processing.
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2) High-Resolution Feature Extraction: A critical limi-
tation that hinders current methods [19], [20] of 6D pose
estimation is that deep neural networks are prone to lose spa-
tially feature representation after the gradually downsampling
operations, e.g., VGGNet [27] and GoogLeNet [28]. Inspired
by [29], this study adopts the backbone network design of
High-Resolution Networks, which can ensure both spatially
precise and semantically strong feature representation for
6D pose estimation. The major differences between classi-
fication network design and high-resolution network design
are shown as Fig. 2. While normal deep learning networks
quickly decrease the feature map size, high-resolution net-
work maintains the spatial resolution throughout the process.

| Tl
\ N

Classification Network High-Resolution Network

Fig. 2. Backbone comparison.

Overall architecture.

The input to the network has the shape 4 x H x W, where
4 represents the 4-channel RGB-D image, H means image
height and W means image width. The first two convolution
layers have 3 x 3 kernels and the strides are 2, after which
the feature map resolution is decreased to % X %.

The main body of the network consists of several parallel
branches with different spatial resolutions. As Fig. 1 (b)
shows, the uppermost branch maintains the resolution % X
% until the final fusion, while gradually lower-resolution
branches are added to the network one-by-one with 1 of
resolution of the previous branch until there are four branches
with different resolutions.

In the middle of the model, there are interleaved connec-
tions between the parallel branches every few convolutions. It
is commonly acknowledged that low-resolution feature maps
represent semantic information better while high-resolution
feature maps contain more precise spatial information. The
interleaved design is leveraged to better fuse and exchange
information between multiresolution branches.

At the final part of the network, feature maps from
higher-resolution branches are first downsampled by % and
concatenated with the ones from lower-resolution branches.
This process repeats until all the features are squeezed into
the final feature maps, which are further processed by 2 fully

connected (FC) layers sequentially. Finally, the translation



parameters are estimated by an FC layer with 3 neurons and
the rotation parameters are estimated by another FC layer
with 4 neurons.

3) 6D Pose Estimation: With the definition of input
format and network structure in previous parts, the model is
ready to do forward inference. To be able to train the model,
a loss function is required to represent the prediction error.
In this part, the pose parameterization is first introduced and
then the loss function is defined based on the estimated pose
parameters.

The 6D pose is represented by a rotation R and a
translation t. Let t = (t,,t,,t,)” be the translation vector
of the object, where t, and , represent the object center in
the image coordinates and ¢, the average distance from the
object to the camera. Here ¢, and ¢, are actually the pixel
deviations from the left-top corner of the cropped image
patch to the center of the object for the convenience of
implementation. The actual position could be easily obtained
by combining this representation and the bounding box
coordinates of the object from the detection stage. And the
loss function for translation regression is defined as:

- 9 R
LaGit) = {0;5@ 02 fi-t < 0
’t — t| — 0.5 otherwise
where  denotes the ground truth translation and ¢ denotes the
estimated translation. Notice that this is actually the smooth-
L1 loss function [9], which is differentiable at 0.
Following existing work [20], the rotation R is represented
using a quaternion q = ¢, + ¢;i + ¢;j + qik as follows:
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which is easier for the model to learn than naive rotation
angles. And the loss function for rotation regression is
defined as:

N 1 o 2
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where x; denotes the i*" point of N points of the 3D object
model, z; the 4" point, R the ground truth rotation, and R
the estimated rotation. The basic idea is to apply the ground-
truth rotation and estimated rotation to a point of object
model and calculate the L2 distance. But for symmetrical
objects, different rotation angles might result in the same
appearance, which cannot be represented well by simply
taking the L2 distance of applying rotation matrices to a same
point. So this loss function instead measures the distance
between a point with the estimated rotation and the closest
point with the ground-truth rotation.

The overall loss function is simply defined as the sum of
the previous two loss functions:

LoveTall = LR + Lt (4)

D. Pose Refinement

To improve the pose estimation accuracy, a pose refine-
ment stage is introduced in this study. The goal is to predict
the pose estimation error of the coarse pose estimation stage.
To achieve this goal, the estimated pose from the previous
stage is first applied to the 3D object model to obtain a
rendered RGB-D image, which is then concatenated with the
cropped RGB-D image same as the input of the coarse pose
estimation stage to form an 8-channel tensor as the input of
pose refinement model.

The backbone network of pose refinement takes the same
design as the coarse pose estimation stage. Although this is
not compulsory, this paper utilizes the same backbone model
for the convenience of implementation and also exploiting
the advantage of high-resolution feature representation.

The output format is also highly similar to that of the
coarse pose estimation stage. The only difference is that the
estimated target is the relative pose error AR and At rather
than absolute pose parameters. Applying the estimated pose
error to the coarse pose, the final pose is obtained as follows:

Rﬁnal = ARR, (5)
tﬁnal =t+ Ata (6)

where Rganal and tana) represent the final rotation and
translation. The loss functions for pose refinement also takes
the same form as in coarse pose estimation but replacing R
and t with Rana1 and tana) respectively.

III. EXPERIMENTS
A. Dataset

To demonstrate the effectiveness of the proposed model,
experiments are conducted on an industrial 3D object
dataset—MVTec ITODD [30], which is specifically designed
for industrial parts aiming to facilitate industrial applications.
The dataset contains 28 types of industrial parts with over
50,000 labeled samples that are synthesized via a physics-
based renderer. Considering that the synthetic data is only
randomly generated by sampling from a particular set of
parameters and the computational resource constraints during
the experiment process, we decided to randomly choose
5,000 samples from the original dataset as the new training
set and 1,000 as the new test set. Although 5,000 samples
seem to be insufficient for training large CNN models, in
the experiment we found it is acceptable since the whole
distribution space is covered via random sampling. The
following experiments and results are all based on this new
division.

B. Experimental Setup

The whole model is implemented using PyTorch [31].
And the experiments are conducted using a single Nvidia
RTX2060s GPU as the acceleration device.

The Faster R-CNN detector is first trained separately
using the official implementation of torchvision as a part
of the PyTorch library. During the training process of the



Faster R-CNN detector, the pretrained weights provided
by PyTorch are leveraged to initialize the model, which
enables the detector to adapt to the relatively small training
set more easily and mitigate the overfitting problem. The
backbone network of Faster R-CNN is ResNet50 [32], which
is renowned for its ability to deal with vanishing gradient via
residual connections. Other parameters related to the detector
remained their default values. The training process of the
detector took about 19 hours. After the detector is trained,
the weights are fixed for the rest of the whole experiment
process.

As for the coarse pose estimation and pose refinement
models, the layers in the backbone are initialized with the
weights pretrained on ImageNet [33], and other layers are
randomly initialized. Adam optimizer with initial learning
rate 0.001 is utilized in model training. Training batch size
is set to 8 for the two pose estimation stages. The training
code is developed based on the code published by Labbe et
al. [34]. For more detailed parameter settings, please refer
to the original code base. The training process lasts for 500
epochs, which requires about 24 hours for each stage.

C. Results

The performance of the proposed model is evaluated on
the new test set. Following [20], the average distance with
symmetrical objects (ADD-S) is leveraged as the evaluation
metric:

ADD — § = % N?éi}le(inJrf) ~ (Ra; +t)H2, 7)

which basically takes the same idea as the loss function for
rotation regression. While previous work normally choose
a predefined distance threshold to calculate the percent
accuracy, this study directly reports the average distance
calculated by equation (7) for simplicity.

Table I presents the evaluation results comparison between
baseline model and the proposed model. The baseline model
was proposed in [34], which had the best performance
on the utilized dataset, and only the single-view model
is adopted in the experiments of this work because the
dataset only contains single-view data. The main differences
between the baseline model and the proposed model lie in
the backbone design and depth image usage. Concretely, the
baseline model uses EfficientNet-B3 [35] as the backbone
network, which is the state-of-the-art classification model on
ImageNet, and the baseline model only takes RGB image as
input without depth channel.

TABLE I
EVALUATION RESULTS COMPARISON

Method Backbone Depth  Refinement | ADD-S

. .. w/o w/lo 0.0636
Baseline [34] | EfficientNet-B3 wio W/ 0.0252
w/ w/o 0.0442

Proposed HRNetV2-W32 W/ W/ 0.0163

As Table I depicts, the proposed model with refinement has
the smallest ADD-S distance 0.0163 on the test set. Compar-
ing with the baseline model, the proposed model performs
better with or without the refinement stage, suggesting that
the introduction of high-resolution model design and depth
image significantly improves the performance. Note that the
reported results of the baseline model are different from
the original paper because the experimental setup and the
evaluation metric are different. To make a fair comparison,
both models were trained under the same setting as section
III-B shows. In terms of evaluation time for a single sample,
the baseline model requires 0.69s on average for the whole
process but varies from 0.4s to 0.9s depending on the number
of objects presented, while the proposed model is about 0.2s
slower on average.

Fig. 3 demonstrates some examples of 6D pose estimation
results. For each pair, the left picture is the input image
and the right one represents the rendered image according
to the estimated 6D pose parameters. The left two columns
show some good examples, while the right two columns are
several failure cases, which shows the model still has trouble
estimating the rotation of symmetrical objects.

Results Results

Images

Images

Fig. 3. Examples of 6D pose estimation results.

IV. CONCLUSIONS

In this work, a two-stage 6D pose estimation model was
proposed to facilitate the recognition of small pose variations
of industrial parts, consisting of a coarse pose estimation
stage and a pose refinement stage. High-Resolution Net-
work was leveraged as backbone network in both stages to
maintain high-resolution feature representations. Meanwhile,
depth information was incorporated to the model as an
extra channel of the input. Then the rotation and translation
parameters are regressed separately in the first stage and
refined in the refinement stage. The experimental result
shows that the proposed model outperforms the baseline
model on an industrial parts dataset. Nevertheless, it still
has its own limitations when dealing with the rotation of
symmetrical objects. Hence, future work can be done to 1)
explore better approaches to handle symmetrical objects, 2)
reduce the dependency on large amounts of training data,



and 3) implement it into more promising applications (e.g.
human-robot collaborative assembly).
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