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Abstract: Nowadays, industrial companies embrace the cutting-edge artificial intelligence (AI) 

techniques to achieve smart manufacturing over the entire organization. However, effective data 

collection and annotation still remain as a big challenge in many manufacturing scenarios. Transfer 

learning, serving as a breakthrough of learning sharing knowledge and extracting latent features from 

scarce data, has attracted much attention. Transfer learning in literature mainly focuses on the definitions 

and mechanisms of interpretation while lacking a systematic implementation scheme for manufacturing. 

To fulfill this gap and facilitate industrial resource use efficiency, this paper attempts to systematize 

strategies of transfer learning in today’s smart manufacturing in a step-by-step manner. Twenty 

representative transfer learning works are investigated from the perspectives of manufacturing activities 

along the engineering product lifecycle. Meanwhile, the potential availability of industrial dataset is also 

briefly introduced. It is hoped this research can provide a clear guide for both academics and industrial 

practitioners to design appropriate learning approaches according to their own industrial scenarios.  

Keywords: Transfer learning, smart manufacturing, domain adaptation, manufacturing intelligence 



1. INTRODUCTION 

Currently, with the emergence of Industrial Internet of 

Things (IIoT), cyber-physical-human systems become a 

prevailing paradigm with a huge amount of data generated in 

modern factories. These data contain useful information and 

knowledge on design, manufacturing, distribution and usage 

stages across the engineering product lifecycle. Hence, it is 

necessary to learn latent representations from industrial data, 

which immerse manufacturing activities with condition 

awareness and decision-making capabilities. 

As a prevailing approach for pattern classification, deep 

learning is regarded as a powerful solution to extract 

knowledge and make appropriate decision from industrial 

data (Li, ZHENG and Zheng, 2020). Nevertheless, deep 

learning-based computing intelligence relies heavily on 

enormous amounts of data, which has to cover all possible 

scenarios for one manufacturing task. It is often expensive, 

time-consuming, and even unrealistic in many industrial 

activities (Arinez et al., 2020). To overcome such bottleneck 

and achieve better resource efficiency, transfer learning 

enables to construct deep neural networks using pre-trained 

models or transfer knowledge between different feature 

spaces, avoiding training models from scratch and annotating 

data collected across different working conditions, machines, 

products and users (i.e., industrial scenario variances). 

In general, strategies of transfer learning include: instance-

based transfer learning, feature-based transfer learning, 

model-based transfer learning and relation-based transfer 

learning (Zhuang et al., 2019). Note that the main objective 

in industrial tasks is domain adaptation, which focuses on 

reducing the distribution difference of data collected among 

industrial scenario variances (i.e., instances between the 

source domain and the target domain). In this context, 

solutions mainly consist of finetune, adaptation layer and 

generative adversarial nets for deep learning models, which 

extract general features and share latent weights between the 

source domain and the target domain (e.g., different machines) 

for knowledge transferring. However, most people who 

engaged in the traditional manufacturing industry have few 

experiences on constructing transfer learning networks for 

smart manufacturing process. Therefore, this research aims to 

provide a stepwise survey on the transfer learning cases 

adopted in manufacturing activities, so that assist academics 

and industrial practitioners can readily design their own 

appropriate learning approaches accordingly.  

The remaining is organized as follows. Section 2 introduces 

the manufacturing intelligence in industrial activities and the 

available datasets of each scenario. Transfer learning-based 

solutions are then introduced to transfer knowledge between 

industrial tasks. Recommended network architectures and 

preferred transfer leaning-based training strategies are given 

as a guideline in Section 3. Finally, conclusions and future 

research directions are highlighted in Section 4. 

2. APPLICATIONS OF TRANSFER LEARNING IN 

INDUSTRIAL SCENARIOS 

2.1 Domain Adaptation for Multi-source Manufacturing Data 
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As aggregated sensory data along engineering lifecycle is 

obtained across different operation conditions or 

manufacturing configurations enabled by the IIoT, those 

industrial data suffer variances on feature space and 

probability distribution. Traditional deep learning methods 

fail to generate intelligence since these models have to be 

trained and tested on data from the same domain, by 

annotating sufficiently typical data coving all possible 

conditions (e.g., user/manufacturing/product/sensor etc.). It 

remains as a big challenge for most industrial scenarios with 

large time consumption, high price cost and much annotation 

difficulty resulted from labelling multi-source data. Hence, 

domain adaptation plays a critical role in minimising the 

impact of distribution differences of those data and further 

learning useful knowledge.  

For a manufacturing activity, source domain Ds can be 

obtained by labelling a small amount of data on a single 

working condition or one machine. The source domain Ds 

consists of a feature space s and a marginal distribution 

P(Xs), i.e.,  , ( )s s sD P X , where Xs denotes the obtained 

dataset. Data collected in real production process is regarded 

as the target domain Dt, which is defined as  , ( )t t tD P X . 

Because of the different conditions, machines or sensors, 

dataset between the source domain and the target domain are 

not in the same distribution. Normally, the source domain is 

referred as   ,s s s

i iD X Y , where s s

iX   is a data sample 

and s

iY  is its corresponding label. While the target domain is 

denoted as   t t

iD X , where t t

iX  is an unlabelled data 

example. Note that it is assumed that the source and target 

domains share the domain-invariant feature spaces and label 

spaces, as data from different working conditions or 

machines only differ in their probability distributions. 

Therefore, the objective of transfer learning is to train a 

classifier f with the source domain data, where the classifier f: 
t tX Y can predict the label t

iY for a target data t

iX .   

 

Fig. 1. An overview of transfer learning-enabled manufacturing intelligence throughout engineering lifecycle. 

2.2 Transfer Learning-enabled Manufacturing Intelligence 

and Dataset Availability 

Transfer learning-enabled manufacturing intelligence can be 

achieved via domain adaptation between data across different 

industrial scenario variances, including finetune, adaptation 

layer and generative adversarial nets, as presented in Fig. 1 

and Table 1. It mainly aims to construct sharing feature 

representations between following variant conditions, e.g., 

from old configurations to new one, from historical records to 

real one, from simulation to physics, and from other objects 

to target one. In products’ design stage (Lin et al., 2018), data 

knowledge from old configurations can be shared in 

lithography simulation scenarios via finetune. In the 

manufacturing stage, public datasets, such as ImageNet and 

COCO (Rendall et al., 2018), can be regarded as source data 

for some object detection tasks. For scheduling decision-

making during the distribution stage, historical production 

records can be referred as source dataset to fine-tune 

prediction model in the production progress (Huang et al., 

2019). In the usage stage over products’ lifecycle, especially 

for the PHM task, there are a large number of available 
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public datasets, e.g., CWRU, IMS, Bogie and Crack datasets 

(Li et al., 2020). Therefore, various methods have been 

deployed to improve the capacity of the target prediction 

function in the target domain (i.e., real applications) using the 

knowledge learned from the source domain (i.e., simulation 

data or other machines’ data). 

In this context, transfer learning can adapt a deep learning 

model that has been trained via a source domain, to a relevant 

target domain in which data is scare. Simulation data, 

historical data and data of almost the same objects (e.g., 

machines, humans, products) are preferred as the source 

domain. Meanwhile, despite the listed application scenarios, 

there is still more potential cases (see Fig. 1), of which 

transfer learning can assist production activities and boost 

manufacturing intelligence. With the supplement of the 

application scenarios, the selection program for source 

dataset and corresponding knowledge-transferring methods 

can be provided to enterprises as the assisted guideline for 

service deploying in the production process.    

Table 1.  Transfer learning-based applications along manufacturing activities 

 Scenarios Source data Strategy Method Ref. 

Design 

optimization 

Lithography 

simulation 

Old lithography 

configurations 
Model-based Finetune 

(Lin et 

al., 2018) 

Part detection Pellet classification ImageNet Model-based Finetune 

(Rendall 

et al., 

2018) 

Process 

control 

Tool selection for 

CNC machines 
Process case samples Instance-based Finetune 

(Zhou et 

al., 2018) 

Scheduling 

decision 

Production progress 

prediction 

Historical production 

data 
Model-based Finetune 

(Huang et 

al., 2019) 

Prognostics 

health 

management 

(PHM) 

Fault diagnosis in a 

car production line 
Simulation data Feature-based Adaptation layer 

(Xu et al., 

2019) 

Fault diagnosis of 

rotating machines 

CWRU, IMS, Bogie 

and Crack datasets 
Feature-based 

Generative 

adversarial nets 

(Li et al., 

2020) 

Prognostics of cutting 

tool 

Labelled data of 

another tool  
Model-based Adaptation layer 

(Sun et 

al., 2019) 

Table 2.  Preferred transfer learning architecture 

Architecture Data Ref. 

Sparse 

Autoencoder 

(SAE)  

Two hidden layers 
Two hyperspectral datasets (around 42776 samples for each 

dataset) – Images 

(Deng et 

al., 2019) 

Three hidden 

layers 

Vibration signals collected with 4 motor loads (2000 samples 

with 4000 sample lengths) – Signals 

(Wen, Gao 

and Li, 

2019) 

Five hidden layers 
4000 samples of Device Electrocardiogram during the production 

process (each sample containing 196 data points) – Signals 

(Xu et al., 

2019) 

Denoising 

Autoencoder 

(DAE) 

Two hidden layers 
4 categories in ImageNet (2000 samples for each category) – 

Images 

(Zhu et al., 

2019) 

VGG16 

Frozen the first 3 

convolution blocks 

6000 samples for 6 working conditions of motor (each sample 

containing 1024 data points) – Signals 

(Shao et al., 

2019) 

Initialized weight 

of ImageNet  
5923 pellet images with two classifications – Images 

(Rendall et 

al., 2018) 

ResNet 

Three residual 

blocks 

Five hyperspectral datasets (around 42776 samples for each 

dataset) – Images 

(Zhao et 

al., 2020) 

Four residual 

blocks 

8000 samples of 980 mask clips (each sample consisting an image 

and centre threshold) – Images 

(Lin et al., 

2019) 

 

3. STEP-WISE APPLICATION IN PRACTICE 

3.1 Data Scale and Transfer Learning Architecture 

To efficiently extract sharing domain-invariant features 

between source and target domains, the transfer learning-

based network architecture should be designed according to 

the scale, modality, and format of available data, as 

illustrated in Table 2. For example, sparse Autoencoder (SAE) 

with three hidden layers was utilized to extract sharing 

invariant latent feature spaces of vibration signals between 

four different working conditions (Wen, Gao and Li, 2019). 

A 16-layer convolutional neural network (CNN)-stacked 

network (i.e. VGG16) was re-trained with target image data 

to fine-tune the feature extraction ability in a part detection 

system (Rendall et al., 2018). For 3D images containing RGB 

colours and threshold information, residual neural network 
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(ResNet) was adopted to classify invariant features from old 

lithography configurations to a target one (Lin et al., 2019). 

These typical works provide a benchmark that indicates the 

data scale requirement for transfer learning-based models, 

when the model is trained by architectures from AE, VGG16 

to ResNet in a single modality. Besides, stacked AE 

architectures are normally employed to extract latent 

information of 1D-format data, including time-series signals 

of fault diagnostics and prognostics, text structures of 

production data (Huang et al., 2019), and recordings of the 

production process (Shao et al., 2019). While stacked CNN 

architectures are almost utilized to classify sharing features 

from 2D-format data (time-frequency data or images) or 3D-

format data (depth images).   

3.2 Annotation Data and Transfer Learning Procedure 

Based on the availability of data between source and target 

domains, three transfer learning procedures can be employed 

as solutions for domain adaptation over industrial data, i.e., 

finetune, adaptation layer and generative adversarial nets. 

Finetune-based transfer learning mainly transfers knowledge 

at the model/parameter level, and it is effective when there 

are sufficient annotation datasets in the source domain but 

only a small amount of annotation data in the target domain. 

A typical finetune-based deep CNN architecture is shown in 

Fig. 2. As the convolutional operation (w*x) for 2D data in 

CNN is spontaneous without confusion, a finetune-based 

feature extractor which can learn knowledge from 1D data is 

illustrated as an example here, i.e., 1D convolution and 

pooling operations. Let D n

iX R  be a data sample from 

 ; s t  as the input, where n is the length of data points, i.e. 

(1) (2) ( ), , ,   
D n

i i i iX x x x . Correspondingly, a 1D convolution 

kernel is referred as | 1,2, ,∈  c

jK R j = m  with filter size w, 

where m is the number of filters. The convolutional (conv) 

layer is to take a dot product between the kernel c

jK  and the 

input D

iX to extract features, 

 , ( ):( 1)

1

;   



 
   

 


m
D C D C c k k w C

i i r j i

j

X f X K x b               (1) 

Where  is the dot product, ∈ Cb R is the bias term and 

 r
is the non-linear activation function (e.g., Relu). By 

sliding the kernel c

jK over D

iX for k=1 to k=n-w+1, output 

vector , 1 D C n w

iX R can be obtained, 

, (1) (2) ( 1)

, , ,, , ,     
D C n w

i i c i c i cX x x x            (2) 

Next is the pooling operation, which is achieved by 

connecting a pooling layer with the convolutional layer. Let 

take the max pooling function as an example, 

 , ( ):(( 1) )

,max | 1,2, ,( 1)D P l s l s

i i cX x l n w s                (3) 

Where s is the pooling length, and , ( 1)/ D P n w s

iX R  is the 

pooling output vector. After blocks of convolution and 

pooling operations, fully connected (FC) layer is connected 

to flatten the output, 

 , , ,   
D FC D P

i iX flatten down X s            (4) 

Where,  flatten is the flatten function, and  down is 

shown in (3). Then softmax regression can be selected as the 

activation function for the last FC layer and predict a 

confidence score of label for each data sample. For one K-

label classification task, the probability of data sample 
D

iX belonging to the q-th label is, 

   
 

,

,

,

1

exp
| ;

exp






 



F D FC F

q i qD D FC F

i i k
F D FC F

q i q

q

w X b
p Y q X

w X b

         (5) 

Where  ,F F F

q qw b   denotes weight and bias terms of the 

last FC layer. As low-level layers normally pay attention to 

extract general features (e.g., objects’ corner), finetune-based 

transfer learning often use pre-trained weights (e.g., weight 

from ImageNet or COCO) to initial networks, avoiding 

training from scratch. Besides, these low-level layers can also 

be trained by source data which subjects to almost the same 

distribution, to improve extraction ability. Then, these layers 

are frozen, and weights of high-level layers is fine-tuned via 

the target domain dataset for knowledge transferring. Due to 

the existence of public large-scale labelling data or nearly 

zero-cost simulation data, application scenarios of finetune-

based transfer learning approaches include part detection, 

industrial inspection, tool selection and scheduling decision.  

 

Fig. 2. Finetune-based transfer learning procedure. 

The core of the adaptation layer-based transfer learning 

approach is to reduce the discrepancy of extracted features 

between source and target domains, as shown in Fig. 3 (a). 

By minimizing domain loss and classification errors, the 

extractor of feature extraction layers can focus on extracting 

domain-invariant features. The loss function L of adaptation 

layer-based transfer learning is defined as： 

   , ,s s s t

c aL L D Y L D D                             (6) 
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lithography configurations to a target one (Lin et al., 2019). 

These typical works provide a benchmark that indicates the 

data scale requirement for transfer learning-based models, 

when the model is trained by architectures from AE, VGG16 

to ResNet in a single modality. Besides, stacked AE 

architectures are normally employed to extract latent 

information of 1D-format data, including time-series signals 

of fault diagnostics and prognostics, text structures of 

production data (Huang et al., 2019), and recordings of the 

production process (Shao et al., 2019). While stacked CNN 

architectures are almost utilized to classify sharing features 

from 2D-format data (time-frequency data or images) or 3D-

format data (depth images).   
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domains, three transfer learning procedures can be employed 

as solutions for domain adaptation over industrial data, i.e., 

finetune, adaptation layer and generative adversarial nets. 

Finetune-based transfer learning mainly transfers knowledge 

at the model/parameter level, and it is effective when there 

are sufficient annotation datasets in the source domain but 

only a small amount of annotation data in the target domain. 

A typical finetune-based deep CNN architecture is shown in 

Fig. 2. As the convolutional operation (w*x) for 2D data in 

CNN is spontaneous without confusion, a finetune-based 

feature extractor which can learn knowledge from 1D data is 

illustrated as an example here, i.e., 1D convolution and 

pooling operations. Let D n
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i i i iX x x x . Correspondingly, a 1D convolution 
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where m is the number of filters. The convolutional (conv) 

layer is to take a dot product between the kernel c
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input D

iX to extract features, 
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Where  is the dot product, ∈ Cb R is the bias term and 
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is the non-linear activation function (e.g., Relu). By 

sliding the kernel c

jK over D
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Next is the pooling operation, which is achieved by 

connecting a pooling layer with the convolutional layer. Let 

take the max pooling function as an example, 
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pooling operations, fully connected (FC) layer is connected 
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Where,  flatten is the flatten function, and  down is 

shown in (3). Then softmax regression can be selected as the 

activation function for the last FC layer and predict a 

confidence score of label for each data sample. For one K-
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iX belonging to the q-th label is, 
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q qw b   denotes weight and bias terms of the 

last FC layer. As low-level layers normally pay attention to 

extract general features (e.g., objects’ corner), finetune-based 

transfer learning often use pre-trained weights (e.g., weight 

from ImageNet or COCO) to initial networks, avoiding 

training from scratch. Besides, these low-level layers can also 

be trained by source data which subjects to almost the same 

distribution, to improve extraction ability. Then, these layers 

are frozen, and weights of high-level layers is fine-tuned via 

the target domain dataset for knowledge transferring. Due to 

the existence of public large-scale labelling data or nearly 

zero-cost simulation data, application scenarios of finetune-

based transfer learning approaches include part detection, 

industrial inspection, tool selection and scheduling decision.  

 

Fig. 2. Finetune-based transfer learning procedure. 

The core of the adaptation layer-based transfer learning 

approach is to reduce the discrepancy of extracted features 

between source and target domains, as shown in Fig. 3 (a). 

By minimizing domain loss and classification errors, the 

extractor of feature extraction layers can focus on extracting 
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Where  ,s s

cL D Y  is the classification loss on annotation data 

of the source domain,  ,s t

aL D D  is the domain loss on the 

discrepancy penalty,   balances the weights of these two 

losses. For a dataset with K labels, the classification errors 

can be defined as, 

  

 
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,

1 1

,

,1 1

1

1
log | ;

exp1
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c i i i

i j
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j i jD
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l i l
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I Y j
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

               (7) 

Where N is the batch size of training samples, and  I  

denotes an indicator function. The domain loss normally 

adopts maximum mean discrepancy (MMD) distance (Guo et 

al., 2019), which is defined as, 

      , ,, : sup s t

s t s FC t FC

H i iX p X q
H

D D D E X E X


 


       
         (8) 

Where “:=” means “define” and sup(·) is the supremum of 

one set. The reproducing kernel Hilbert space (RKHS) is 

denoted as H and   H   means mapping data to feature 

spaces in RKHS. With ns data samples s

iX  from the source 

domain and nt ones t

iX  from the target domain, the distance 

between  ,s FC

ip X  and  ,t FC

iq X  is calculated as, 
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     (9) 

As    ,
H

x y  can always be calculated by kernel function 

( , )k x y  in RKHS. Taking Gaussian kernels as an example, 

the unbiased estimation of DH is calculated as follows, 
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          (10) 

Therefore, the loss function L is rewritten as, 

ˆ
cL L D             (11) 

As shown in Fig. 3 (a), let 
f  and 

c  be parameters for the 

feature extractor and the classifier. The optimization object 

can be denoted as, 

     * *

,

ˆ, min ,
f c

f c c f c fL L D
 

               (12) 

With the learning rate  , parameters 
f  and 

c  of the 

adaptation layer-based model can be updated as follows, 

ˆ
c

f f

f f

c
c c

c

L D

L

   
 

  


  
      


 



          (13) 

In this context, adaptation layer-based transfer learning can 

be employed in scenarios, of which data of the target domain 

lack annotation information. It’s an effective solution to solve 

the large differences of data distribution between source and 

target domains, or difficulty of data annotation. Industrial 

applications include user requirement configuration, activity 

recognition, comments analysis and PHM, as sensory data of 

these organisations suffer huge discrepancy. 

 

Fig. 3. Adaptation layer (a) and generative adversarial net (b). 

Generative adversarial nets contain feature extractor G, 

domain discriminator D and classifier, as shown in Fig. 3 (b). 

Feature extractor G continuously learns domain-invariant 

features between source dataset and target datasets, aiming to 

make the domain discriminator D unable to distinguish which 

domain one data comes from. The loss function of generative 

adversarial nets is defined as, 

   , ,s s s t

c dL L D Y L D D           (14) 

Where, the optimization objective is to minimize the category 

classification error  ,s s

cL D Y  and maximize the domain 

classification error  ,s t

dL D D  respectively, and the 

 ,s s

cL D Y  is the same as (7). The domain classification cost 

can be donated as, 

   , ,

1 1

1 1s tn n
i s FC j t FC

d d i d j

i js t

L l X l X
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               (15) 

Where, the 
dl  is referred as follows, 
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Where, di is the ground truth label of the belonging domain 

for the i-th sample ,D FC

iX , and  ,D FC

id X  is the predicted one 

for the sample. Similarly, adding a parameter 
d  for domain 

discriminator D, the model can be updated like (13). In this 

way, generative adversarial nets-based transfer learning 

further improves the ability to learn domain-invariant 

features between source and target domains. This approach 

fits knowledge transfer between different working conditions 

in diagnostics and prognostics applications, of which sensory 

signals data are almost subject to the same distribution. 

4. CONCLUSIONS AND DISCUSSION 

This research provides a stepwise guide to both engineers and 

researchers who concern about transfer learning-enabled 

manufacturing intelligence along any stage of the engineering 

product lifecycle. The objective of transfer learning in 

industrial activities, i.e., domain adaptation for multi-source 

manufacturing data, were depicted, and application scenarios 

and corresponding source domain datasets were sorted out. 

Moreover, transfer learning-based network architectures and 

training strategies were recommended as the guideline for 

practitioners based on existing industrial applications. In this 

way, more transfer learning-based solutions may readily 

extract domain-invariant features and learn sharing 

knowledge between different operating conditions or 

manufacturing configuration in industrial activities. Despite 

the abovementioned contributions, two promising future 

research are highlighted here, namely 1) exploring the impact 

of simulation data generated by cyber-physical-human 

systems or digital twin on the performance of transfer 

learning-based models, and 2) studying transferability 

between source domains and target domains in an 

interpretable manner to avoid a negative transfer. 
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