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A Generic Tri-Model-Based Approach for Product-Level Digital Twin 

Development in A Smart Manufacturing Environment 

Abstract 
Smart manufacturing, as an emerging manufacturing paradigm, leverages massive in-context data from 

manufacturing systems for intelligent decision makings. In such context, Cyber-Physical Systems (CPS) play a key 
role in digitizing manufacturing systems and integrating multiple systems together for collaborative works. Among 
different levels of smartness and connectedness of CPS, Digital Twin (DT), as an exact digital copy of a physical 
object or system including its properties and relationship with the environment, has a significant impact on realizing 
smart manufacturing. A DT constantly synchronizes with its physical system and provides real-time high-fidelity 
simulations of the system and offers ubiquitous control over the system. Despite its great advantages, few works have 
been discussed about DT reference models, let alone a generic manner to establish it for smart manufacturing. Aiming 
to fill the gap, this research introduces a generic CPS system architecture for DT establishment in smart manufacturing 
with a novel tri-model-based approach (i.e. digital model, computational model and graph-based model) for product-
level DT development. The tri-model works concurrently to simulate real-world physical behaviour and characteristics 
of the digital model. To validate the proposed architecture and approach, a case study of an open source 3D printer 
DT establishment is further conducted. Conclusions and future works are also highlighted to provide insightful 
knowledge to both academia and industries at last. 
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1. Introduction 
The evolution of the cutting-edge Information and Communication Technologies (ICT) have started to push 

manufacturing lines beyond automation towards smart-manufacturing systems [1]. According to the National Institute 
of Standards and Technology (NIST) “Smart Manufacturing systems are systems that are fully-integrated, 
collaborative manufacturing systems that respond in real-time to meet changing demands and conditions in the factory, 
in the supply network, and in customer needs” [2]. In order to achieve that, Cyber-Physical System (CPS) plays a 
significant role, which is the result of a continuous evolution of embedded systems into Mobile Ad-hoc Networks 
(MANETs), Wireless Sensor Networks (WSN) and industrial Internet-of-Things (IoTs) [3,4]. CPS integrates a 
physical object or a system in real-world with its digital model, either a cyber-twin or digital twin (DT) in the virtual 
world through sensors, networks and computing devices [5]. Hence, it is a multidisciplinary system that relies on the 
combination of computation, communication and control technologies (3Cs) to digitize existing systems [6].  

DT serves as one of the core technologies to realize CPS [7], which by definition is an exact virtual copy of a 
physical object or system including its properties and its environment [8]. A DT constantly synchronises with its 
physical system through continuous data transfer and provides real-time status of the system through ultra-realistic 
simulations, making the user feel as if operating the physical system from the virtual environment [9]. Besides 
monitoring, a DT provides deep integration with the control system of the physical system that warrants direct control 
over the physical system.  It can be found that CPS and DT are confusingly similar since they share the common 
objectives of data digitalisation, connectivity, physical system monitoring and to a greater extent imparting smartness 
to objects [10]. Nevertheless, the difference lies in the fact that a CPS is a holistic system that includes the physical 
object, communication interfaces, computational hardware, software applications and the digital model [7], while a 
DT is an interconnected virtual model that represents the physical object. A CPS can achieve the aforementioned 
objectives without relying on a DT, while a DT would have to rely on the CPS infrastructure to realise its goal of 
mirroring the physical system through ultra-realistic simulations and exercising ubiquitous control.  

Despite a surge in technological advancements and industry-wide discussions about CPS [11], the technical 
adaptation and implementation of DTs are still under exploration. Current hardware limitations that restrict real-time 
data processing could be one possible setback for industries to adopt DTs. Also, very few resources explain the actual 
infrastructure behind DTs and their implementations, pointing at another major reason for laxness in DT adoptions. 
Although a great part of existing research has been focusing on identifying the potential areas of DT applications and 
the benefits of DT in different fields, technical aspects of DT establishment are not well-established. To fill this gap, 



this work aims to present a general system architecture for DT establishment by considering both hardware and 
software aspects, and to uncover the core technologies that develop the DT that can be used as a reference model for 
future product-level DT implementation. The rest of this work is organised as follows: Section 2 provides a 
comprehensive review of the related works in the field of DT. Section 3 introduces a generic four-layered CPS 
infrastructure for DT establishment. Section 4 further proposes a novel tri-model-based approach for product-level 
DT development. To validate the system and approach, Section 5 presents a case study of an open-source 3D printer 
DT establishment process. Conclusion and potential future directions are summarised in Section 6 at last. 

 

2. Literature Review 
As reported earlier, DT serves as the core part of the holistic CPS, which has successfully been adopted in many 

sectors including military [12], healthcare [13] and manufacturing [14]. Hence, understanding CPS infrastructure and 
its implementation are the fundamental basis for DT establishment. Despite those achievements in a broad view, this 
section restricts its scope by reviewing works related to both CPS architecture and DT implementations for smart 
manufacturing from existing literature to identify the gaps.  

2.1 CPS architecture 

In literature, the first prototype architecture for CPS was proposed by Tan et al. [6], in which a global reference 
time-based event/information-driven approach has been highlighted to establish a network of connected objects 
between the physical and digital world. Shi et al. [15] conducted a survey on the various application scenarios of CPS, 
and identified the key issues in CPS implementation including modelling, data transmission, security etc. Despite 
those generic concepts, CPS has been widely adopted in the manufacturing field. For instances, Lee et al. proposed 
[7,16] a 5C architecture for implementing CPS in an industrial environment and an efficient way of managing and 
analysing data through a clustering algorithm for prognostic health management. Meanwhile, Leitão et al. [17] 
identified the key challenges in implementing industrial CPS architecture by conducting the study on four major 
European innovation projects. Zheng et al. [18] proposed a CPS-enabled conceptual framework for smart 
manufacturing involving various aspects of manufacturing such as design, monitoring, control, inspection and 
scheduling. Liu et al. [19] introduced a augmented reality-assisted computer numerical control (CNC) machine tool 
based on MT-connect and OPC protocols. Zhang et al. proposed [20] an agent and CPS-based self-organizing and 
self-adaptive intelligent shop-floor framework to support smart manufacturing. 

2.2 DT in the smart manufacturing scenario 

Uhlemann et al. [21] believed that DT has a huge potential in real-world applications especially in the 
manufacturing sector and has a colossal role to play in Industry 4.0.  Glaessgen et al. [12] elaborated how DTs can 
bring about Industry 4.0 transformation and assist in tracking military vehicles in the defence sector. Owing to its 
deeper ties with the physical counterpart, a DT can be used in various stages of the product development process for 
project lifecycle management [22] and the relevant works are explained sequentially below.  

In the design stage, although a DT cannot make suggestions on new product development, it can provide valuable 
information during the next-generation of iterative product development [23]. Zheng et al. [24] introduced a data-
driven cyber-physical product development approach for closed-loop design iterations and further defined the 
implementation strategies for value co-creation process [25]. Tao et al. [26] proposed a DT-driven product design 
approach to assist in the optimised redesign of existing products. Meanwhile, a flexible DT concept using a modular 
approach for evaluating product designs was suggested by Guo et al. [27]. DebRoy et al. [28] revealed how DT can 
facilitate additive manufacturing in analysing microstructure, heat transfer properties and structural rigidity of 
manufactured parts during rapid prototyping.  

During the manufacturing phase, DT can be used to overwatch the manufacturing process and provide a status 
update on the scenario. Lu et al. [29] summarizes the core research issues in the DT-driven smart manufacturing field. 
For instances, Tan et al. [30] proposed a DT construction framework which models IoT data into a simulation model. 
Schluse et al. [31] introduced a DT simulation technology for manufacturing facilities, to monitor manufacturing 
systems throughout its entire life cycle. A reliable and efficient infrastructure for improved communication and 
interaction between physical and virtual shop-floors using DTs were presented by Ding et al. [32], whereas the key 
components towards realising a new paradigm of smart factories through a shop-floor based DT were explained by 
Tao et al. [33]. Moreover, Söderberg et al. [34] put forward a DT system for mass customised production in 
manufacturing facilities by leveraging its power in simulation to optimize the manufacturing system.  



In the distribution and usage stage, for instances, Nikolakis et al. [35] developed a DT for industrial logistical 
application and tried to improve efficiency by enhanced planning and control. Petković et al. [36] proposed to use 
virtual reality digital warehouse twins to realistically simulate worker behaviours. Lee et al. [37] presented a predictive 
and effective system maintenance method by utilising IMS WatchDog agent for analysing data collected through a 
CPS infrastructure and a cloud-based DT. Haag and Anderl [38] asserted that by developing a DT alongside its physical 
product and to remain its virtual counterpart till the end of its product lifecycle will provide more effective and 
streamlined services. Tuegel et al. [39] explained how a DT equipped with a multi-physics model would inherit the 
characteristics of the physical model and how real-time integrated data will help in better management of the physical 
object through scheduled maintenance and timely replacements. 

Despite the rapid development of information technologies, the industry-wide talk about CPS and DT, and the 
businesses’ interest, the implementation seems to be far from happening [40]. Lee [10] presented various challenges 
that are looming CPS implementation and considers safety, robustness and agility to be the most important concerns 
as a physical world is very different from a controlled digital world. After reviewing the existing works, it can be 
inferred that most works focussed on adopting CPS and DT in a high-level view (e.g. the overall manufacturing system) 
[41] or leveraging the potential of DTs to reap its benefits, while the development of a generic DT at product-level has 
not been well-addressed. 

 

3. Generic system architecture for DT establishment 
The proposed generic architecture consists of four different layers, the physical layer, data extraction and 
consolidation layer, cyberspace layer and the interaction layer. A schematic representation of the proposed CPS 
architecture showing four different layers for the establishment of a digital twin is shown in Figure 1. The physical 
layer includes all the physical items in their working environment. The data extraction and consolidation layer act as 
an interface between the physical layer and the cyberspace layer by data digitalisation, transmission and reception. 
The cyberspace layer forms the crux of this framework and is the layer in which the DT exists and exercises control 
over the entire infrastructure. The final layer is the user interaction layer which presents the realised objective of DT, 
ubiquitous monitoring and control to the users. The proposed framework differs from previously proposed frameworks 
in its core, the actual DT in the cyberspace, by utilising a tri-model based approach to add more versatility. The tri-
model based approach provides vast and deeper interaction with the physical model than the conventional geometrical 
design-based DT with cognitive intelligence by leveraging the state-of-the-art artificial intelligence. 

To actualise its two constitutional purposes, a DT should have two modes of operation, a monitoring mode and 
a control mode. In the monitoring mode, the DT operates like a cyber-twin and mirrors the physical object like a digital 
shadow while retaining limited supervisory powers over the physical object. Meanwhile, in the control mode, the DT 
exercises complete command over the physical system and acts as the system’s command centre. Throughout this 
paper, DT functions and behaviours are explained separately based on these two modes of operation to avoid conflict 
of control precedence between a command given to the physical system directly and through a DT. More details on 
the limited supervisory powers and control precedence are explained in the sections below to present the individual 
layers of the DT framework. 



 
Figure 1. The proposed CPS architecture for DT development.



3.1 Physical Layer 

The physical layer includes the physical system under observation along with its environment and their 
interaction as shown in Figure 1. The physical layer may include numerous machines each following different 
communication protocols as well as different communication interfaces for data transfer. For these systems to be 
monitored digitally, they must be digitalized and made available on the digital network. Digitalization of systems is 
done by acquiring complete data about the system and its environment throughout its entire product life cycle through 
various data acquisition methods either directly or with the help of additional sensors and devices. Depending on the 
communication protocol utilised, the data obtained from each system will be encoded in a standard prescribed in the 
communication protocol based on the OSI model. This results in an enormous amount of data packets that must be 
interpreted separately from one another making it difficult for further processing. 

During the control mode, the physical layer is the end actuated layer as opposed to the monitor mode in which 
the physical layer is the initiation point. The control signals or commands that are sent as data packets from the digital 
twin based on user input actuates the physical model accordingly. For this, the control systems connected to the 
individual physical systems must be open, active and be able to act upon live commands. In short, during the control 
mode, the digital twin acts as a high-level SCADA software that manages the entire physical system but with and 
additional visual representation of the entire physical world. Also, the DT is intelligent, interactive and can 
continuously evolve by virtue of Machine Learning (ML) and Artificial Intelligence (AI). 

3.2 Data Extraction and Consolidation Layer 

Data extraction and consolidation layer act as a bridge between the physical and cyber layer by receiving all the 
data packets from the physical systems, processing them and converting them into a machine-readable form before 
passing it on to the cyber layer. The data packets that are received from the physical layer are encrypted according to 
the communication protocol used by the physical systems. As it is extremely inefficient to process data from every 
object in the physical system independently, the collected data must be consolidated in a standard machine-readable 
format. The module contains a processing device such as a microcontroller or computer while also providing the 
necessary infrastructure to connect the various communication interfaces from the physical layer. All the 
communication protocols follow the OSI model for data transmission and reception with each protocol using its unique 
method of encoding and decoding techniques. Hence, the data extraction module first runs a scanning algorithm on 
the incoming data to identify the communication protocol it uses. The identified data packets are then sent to the 
respective extraction software that decodes the seven layers of the OSI model to obtain the data passed on by the 
machine as shown in Figure 1. The data from different machines are presented in a machine-readable unified data 
format such as a .txt or .csv file. The files are then uploaded to the cloud from which the data can be accessed 
universally. 

On contrary, during the control mode, the control signal to individual systems are sent as consolidated 
information from the layers above and must be distributed to the physical systems. The data from the cloud is read 
continuously and the module scans the incoming data, identifies the physical object to which the information is to be 
sent and determines the communication protocol associated with the machine. It then passes the respective data to the 
corresponding sub-program that enforces the seven layers of the OSI model on the data and converts them into smaller 
data packets in the corresponding machine-readable form and are finally conveyed over to the physical layer. 

3.3 Cyberspace layer 

Cyberspace layer forms the core of the DT architecture and is the layer in which DT is established. The 
cyberspace layer contains the proposed Tri-model DT established in the cloud and cloud storage for data handling. To 
provide ubiquitous access to the physical system, the digital twin is established on the cloud and the internet serves as 
the communication medium so that the DT can be accessed from anywhere. The DT is not just a visual replica of the 
physical system but a more advanced digital version of the physical object that includes all the physical and chemical 
properties of the system and thereby obeys the laws of science in a similar manner to the physical system. In order to 
make this realistic DT, the digital model is augmented by a backend graph-based model that inhibits the digital model 
through constraints that impose laws of science upon the digital world and a computational model that evaluates the 
digital model’s real-time condition as well as its feasibility to perform a future task as mentioned in Figure 1. These 
three models are interconnected and controlled by a Digital Twin API that is also responsible for data transmission 
and reception to and from the cloud storage. Cyberspace contains a web data storage server that stores the raw data 
obtained from the data extraction and consolidation layer as well as it’s corresponding processed information. The 
processed information is obtained from the tri-model digital twin through the digital twin API. As the amount of cloud 



storage is limited and expensive, only the most recent and latest data is stored in the cloud for immediate retrieval. 
After which it is transferred to offline storage where it is permanently stored. 

In the monitor mode, data that is transferred from the data extraction and consolidation layer is first stored in the 
server. The data is obtained by the DT API which passes it on to the three individual models to perform their respective 
task. The updated information is stored back in the server corresponding to the input data and is also forwarded to the 
interaction layer. In the control mode, the user input from the interaction layer is received by the DT API, first stored 
in the server, then processed, verified and updated visually by the computational, graph-based and digital models 
respectively. The information is stored once again in the server corresponding to user input while also being transferred 
to the data extraction and consolidation layer. 

3.4 Interaction layer 

 Interaction layer is the final layer of the DT framework and it allows human interaction with the physical system 
by way of the digital twin. The existence of DT in the cloud space provides opportunities to access them from anywhere 
on any device, even those with low processing power as almost all the work is done in the cloud space and only the 
result is projected or streamed to the accessing device through a secure web portal. Hence, the interaction layer can 
be any device that can present visual information while recognizing user interaction. It can be as simple as a 
smartphone or a mixed reality headset that can provide an immersive experience as shown in Figure 1. In the monitor 
mode, the DT in the cloud space processes all the information and updates the digital model. This updated digital 
model is then presented along with the relevant real-time status of the physical system to the user in an interactive 
webpage or an executable program. In the control mode, the interaction layer acts as an HMI with a visual 
representation of the system via the digital twin. The DT provides real-time synchronisation and model update with 
the physical system and thereby provides the user with immersive control rather than a conventional approach. The 
interactive model translates the user input through trigger points that execute respective actions and passes it onto the 
cyberspace as command signals which are then processed by the DT API and passed on to the physical world. 

 

4. Tri-model-based approach for product-level DT development 
The DT is a complex digital object requiring huge amounts of data, with visualizing and rendering capability, 
computational power and intelligence, which is achieved by fusing different technologies together. The digital model 
can be developed by using any existing CAD modelling software through external APIs. Since the DT operates in 
real-time during the whole lifecycle of the physical object, a data handling software is also required to process the 
enormous amount of data generated. A graph-based model (NoSQL database) can establish multiple relationships 
among physical systems and within them considering both structured information of the objects and the unstructured 
data from the context (e.g. documents). Hence, it also ensures that the life-time data of the digital twin is stored which 
can be used for product analysis and next-generation product development. As mentioned earlier, the high-level 
computations required to impart real-world characteristics to the digital model are performed on a computational 
software and the real-world constraints are added through a graphical model.  

4.1 Digital Model 

Two most commonly used and prominent ways of creating a digital model include parametric modelling and 
solid modelling. Parametric modelling makes use of numeric values like dimensions, equations and their relations to 
control the geometry. This reduces the complexity in designing a system that interacts with other digital objects by 
means of numeric data. In a real-world scenario, there may be more than one instance of the physical object or a 
manufacturer may opt to provide digital twin as a service for the customers. In such cases, for every physical object 
made, a unique digital twin must be associated with it throughout its entire product cycle. This creates the need for 
creating multiple instances of the same digital twin with minor variations because of irregularity in manufacturing to 
be created. In order to overcome the difficulty of making individual digital models for every physical object, a 
parametric reference model can be made, as shown in Figure 2. Just like the physical systems, the environment in 
which the system exists and with which it interacts also plays a crucial role in determining the efficiency and service 
life of the system. The objects’ environment may include physical objects such as other systems, human operator etc., 
or environmental factors such as wind, moisture etc., that has an influence on the system's performance. For example, 
while modelling a Digital Twin for an aircraft, the aircraft’s performance varies according to the external air pressure, 
airstream velocity, air density and moisture content along with the temperature. In such scenarios, airflow or an 
extremely large wind tunnel is modelled as an environment and the parameters are updated real-time through sensor 
data and its interaction is controlled by the backend computational model with reference from the graph-based model 



and the working conditions. Hence in order to exactly compute the status and performance of the system its 
surrounding is also essential. Hence, the working environment of the object must also be recreated digitally, referred 
to as the digital twin environment, also shown in Figure 2, to simulate real-world experience on the digital model. 

 
Figure 2. Digital model establishment and its interaction with other models

The reference model is a flexible model made by incorporating all the tolerance and variations the physical 
system can possibly have and is scalable and amendable within the prescribed limits. The reference model must include 
static properties that are constant among all instances of the DT such as material properties, geometrical constraints 
that define the degree of freedom of the system etc., of the physical system to maintain similarity and consistency with 



the physical system. A knowledge base of all possible variations of the physical object including its surface properties 
like appearance, roughness, lustre etc., and other geometrical variations based on Design for Manufacturing and 
Assembly (DFMA), Geometric Dimensions and Tolerancing (GD&T) and past experiences are developed to 
incorporate all these values into the reference model. Once the reference model is created, a new twin can be derived 
as a subset of it, instead of creating one individually from the scratch saving time and manpower. 

4.2 Computational Model 

Besides the geometrical constraints, the laws of physics that govern the physical object must be added to a digital 
model to make it a ‘real-twin’. It is also necessary to include these physical attributes so that the digital twin can be 
used in a simulated run to determine the point and cause of failure before operating the physical system. The need for 
a multi-physics model to capture the DT’s interaction with its environment and its effect on the structure and geometry 
have been explained by [39]. An object’s interaction to thermal loads and its effects are defined through 
thermodynamic models and computational fluid dynamics models, static and dynamic loads through stress-strain 
models and structural dynamic models, the effect of chemical agents in the environment like humidity through a 
chemical model and others depending on the factors involved. The conventional method of product evaluation includes 
solving the different analytical models separately and evaluating them individually for failure conditions. A digital 
twin provides a platform to combine the different analytical models together and integrate them into a single entity to 
perform more realistic analysis and evaluations on the object, as shown in Figure 3. 

 
Figure 3. Computational Model architecture and its core components

The computational model only provides the numerical values regarding the status of the system based on the 
real-time data collected. Whenever a process is initiated in the physical system, the DT API consults the graph-based 
model on the components involved in the process directly or indirectly, the effects the system is subjected to and the 
type of analysis to be performed are all provided by the graph-based model. The entire process chart of computational 
model performance is presented in Figure 4. With this information, the data from the cloud storage server is transferred 
to the computational model for computation. The results are then recorded, and the status of the machine is presented 
to the user in the interaction layer. These analyses can be carried out in certain CAD modelling software directly with 
the help of built-in simulation features, but the flexibility provided by computational models to provide our own 
conditions, parameters and the complete availability of data from every individual step are some of the advantages of 
using a separate computational model. Also, this approach is the only possible way when modelling software without 
simulation support is utilised. Besides, the computational model unburdens a certain workload from the digital model 
and hence this activity is less resource-intensive and faster than the simulation approach. 



 
Figure 4. Working process of Computational model 

 
Figure 5. The underlying framework of the graph-based model. 

4.3 Graph-Based Model 

When a CAD environment is used to develop a digital model, the constraints and relations can be defined in the 
CAD program itself. Nevertheless, if the digital model is developed in a graphics modelling software such as Blender, 
then the amount of real-world constraints and relations that can be defined to the model is restricted. Also, the digital 
model includes a digital copy of the physical system and its environment. In such cases, the interaction between the 
environment and the system cannot be defined in the CAD environment. For example, human interaction with an HMI 
on the physical system, the wind blowing over an object, etc. These kinds of interactions and relations can be defined 
in a graph-based model, where a complex and innumerable amount of interactions and relations can be set up and 
stored, as shown in Figure 5. On top of these, the physical object is restricted from utilizing its functionality to a full 
extent because of reasons such as pre-built safety measures to avoid catastrophes, cycle-time optimizations, etc. These 
features may vary depending on the intended use of the product and impose additional restrictions on the physical 
system other than geometrical constraints.  

A graph-based model can be represented as 𝐺𝐺 =< 𝑁𝑁,𝐸𝐸 >, where N stands for nodes of graph and E means the 
edges between nodes. According to our previous work [42], there are three main types of Ns, including product 



component (P), service component (S) and context information (C), and the edge in-between each two nodes 
represents the interrelationship of them. Hence, this graph-based model can help store the core information of the 
physical system with the ever-growing interrelations and nodes through data collection process. More importanatly, it 
enables the context-aware cognitions to guide the digital model and the computational model in performing the 
necessary tasks. For instance, the real-time variation of extrusion speed (C), will affect/result in the change/upgrade 
of the extruder module (P) or monitoring service (C). Following such manner, some artificial intelligence (AI) 
approaches of the computation model can be leveraged in predicting/recommending the best solution in a graph-based 
learning manner [43], and to make the physical product ever smarter (e.g. cognitive manufacturing). 

4.4 Digital Twin API 

Although each model has a pre-determined function of their own, they must be co-ordinated and the data flow 
among them must be facilitated in a smooth way. Hence an external program that can interact with the three models 
such as an API was developed. This API references the standard libraries of each modelling platform to interact with 
the platform externally and to impart additional functionality to the platform. By utilising the libraries of all three 
platforms, the API can direct those platforms by acting as the control centre of the Tri-model DT as shown in Figure 
6 below. The DT API has three sub-programs, to coordinate with each model. Each sub-program has the respective 
reference libraries and commands to invoke the respective software platform on which the model is built. For example, 
when the digital model is developed in SolidWorks, the digital model API or sub-program will contain SolidWorks 
reference libraries and objects to that will provide an external program to access the digital model within SolidWorks. 
Similarly, for the computational model, if MATLAB is used, MATLAB libraries and other sets of definitions to access 
and run a specific MATLAB script within the MATLAB environment and return the results are defined. Similarly, for 
graph-based models, the respective libraries are used. The DT API also contains its own set of the code block to 
coordinate and control the data flow among each DT model and stands responsible for storing and retrieving data and 
information to and from the storage. 

 
Figure 6. A simplified framework of DT API.

In the monitor mode, the DT API detects the process being carried out by the physical system through its ties 
with the physical systems control. The DT API requests the graph model to identify the components of the system 
involved in the process by pathfinding algorithm as shown in Figure 4. The nodes in the identified path become the 
active nodes and the components of the physical system involved in it are detected. Based on the process, the type of 
effect the components will be subjected to is also determined from the knowledge base. The DT API passes on this 
information along with the data obtained from the physical layer to the computational model and requests it to perform 
the necessary computations as presented in Figure 3. The DT API cross-references the results provided by the 
computational model with the graph-based model knowledge base to verify if the system is under the safe operating 
condition as mentioned in Figure 4. If the system exceeds the safety limit, the DT API intimates the user and stops the 
physical system immediately. Once the backend processing is done, the digital model is updated to visually represent 
the status of the system as shown in Figure 2. The digital model and the processed status information of the system 
are then forwarded to the interaction layer for user monitoring.  

In the control mode, the user inputs are converted as corresponding data signals which are then received by the 
DT API. Based on these signals, the DT API requests the graph-based model to identify the path and the active nodes 



of the graph from which the components, the effects they are subjected to are determined. The computational model 
then analyses and presents the results to the graph-based model through DT API. If the results are in the safe zone, the 
digital model is updated, and the data is passed on for storage and to the data extraction and consolidation layer. As 
mentioned in Figure 4, the graph-based model references the database to check if the data and corresponding processed 
information are already available. As the DT API stores every data and its corresponding processed information, if a 
match is found, the information is retrieved instead of computing again. This makes the DT faster as it evolves by 
collecting more data. 

5. Case Study and Discussions 

To demonstrate the proposed framework and approach, an open-source 3D printer has been chosen for DT 
implementation. The chosen 3D printer, ANET A8, is a Prusa i3 clone that operates on the RepRap platform. The 
ANET A8 is also an entry-level 3D printer with basic functionalities such as printing from a micro-SD card or through 
USB serial communication. The open nature of ANET A8 allows easy customization and upgradations. Initially, the 
stock firmware present in the 3D printer’s motherboard was replaced by Marlin, a widely used open-source firmware 
that supports additional functionalities such as multiple screen output, sensor and nozzle additions, etc. 

5.1 DT establishment with a 3D Printer 

The DT is established in a sequential way as explained below. The physical world contains the physical system, 
the ANET A8 3D printer. The 3D printer uses an RS232 serial interface for data transmission. A Raspberry Pi, 
connected in serial communication with the 3D Printer, acts as the data extraction and consolidation module, acting 
as an infrastructure that bridges the physical world with the cyberspace. A backend python software has been 
developed to communicate with the 3D printer via serial communication. The software requests and receives 
encapsulated data from the 3D printer five times per second translates them into useful information and writes the 
data to a temporary file. Another program simultaneously uploads the data to the cloud server. In control mode, the 
program downloads the data from the server and the data is read, translated into G-Code (3D printers work on G-
Code) and the commands are passed over to the physical printer. 

On the other side, a Digital Twin API in the form of a standalone application has been developed in Visual C# 
using WPF App and .Net framework 4.5 in Visual Studio to act as the bridge between the three DT models. By 
referencing the libraries and SDK of the respective programs, the API can interact with and add additional 
functionalities to the programs.  The API references the libraries and SDK of the program it interacts with and can be 
used to add any sort of additional functionalities to the programs. The API acts as a command centre for the three 
digital twin models that reside within three different environments and ensures smooth information flow across them 
as and when required. The API overwatches the operating mode of the digital twin i.e. control mode or monitor mode 
and assigns the priority either to the digital system or the physical system respectively. The API also downloads raw 
data from the storage server and uploads processed information to the server. Besides, the Digital Twin API handles 
all the communication to and from the interaction layer, and the schematic of the developed DT is shown in Figure 7. 

 
Figure 7. DT implementation for the 3D printer case.



A parametric model of the ANET A8 3D printer has been developed in SolidWorks and the assembly relations, 
geometrical constraints, material properties and surface features are added to the digital model to give it a realistic 
effect. As mentioned, it is essential to make a base reference model from which the individual digital twins can be 
derived. Since the 3D printer is a small tabletop 3D printer, its environment is only the desk on which it is placed and 
the air surrounding it. The desk has no effect on the 3D printer besides acting as a support and hence it is neglected. 
The surrounding air and room temperature are included in the computational model. A knowledge base of all possible 
geometric variations such as the tolerance limits, minor manufacturing and assembly defects that are accepted in 
quality check, customization features such as colour, surface finish etc., are required to incorporate all these variable 
parameters into the base model to develop a reference model. The digital model of the 3D printer and a corresponding 
front end interface developed for user interaction is shown in Figure 8. 

 
Figure 8. The interactive 3D model and control interface of the 3D printer case.

A digital twin can provide an ultra-realistic digital copy of the physical object only by the addition of its physical 
attributes. Due to the limited availability of sensor information from the 3D printer, developing a complete structural, 
physical and thermal model of the system to provide the real-time physical condition of the system was not possible. 
The 3D printer was only capable of sensing temperature changes in its extruder and hotbed, speed of the fan attached 
to the extruder and the nozzle and the x, y and z axes movements. Additional sensors could have been utilized for data 
collection and a more accurate simulation but there are other hardware limitations such as the Raspberry Pi which had 
a weak processor to handle huge amounts of real-time data. Hence the computational model containing only the 
thermal models of the extruder and the hotbed was considered feasible. The computational model was developed in 
MATLAB using MATLAB’s built-in functions for thermal analyses. The parts of the digital 3D printer are made 
in .STEP format so that it can be read by MATLAB. Once the DT API provides information for computation from the 
graph-based model, the computational model obtains the necessary .STEP files and perform computation. A snippet 
showing the thermal model used for analysing the hotbed has been shown in Appendix A. 

A graphical model of the ANET A8 3D printer developed in Neo 4J is shown below in Figure 9. The graphical 
model is essentially a knowledge base that acts as a rulebook for the digital twin and makes sure the digital model 
operates within acceptable or correct limits. The graphical model and computational model work in conjunction to 
determine the status of the system and warns the user if the system is critical or when it is subjected to peak load. As 
mentioned earlier, the DT stores incoming data and its corresponding processed information. Hence, as the amount of 
data collected increases over time, the DT will become faster and will be able to provide instantaneous results for 
simulations. When combined with the power of ML and AI, the graph model can be evolved to provide customized 
suggestions and a study on combining DT with AI is being carried out and will be presented in future work. 



As mentioned earlier, the three models of the digital twin are coordinated by the Digital Twin API that acts as a 
command centre for the Digital Twin. The DT API receives the transmitted data from the cloud, cross-references it 
with the Neo4J graphical model, asks the MATLAB computational model to perform computations if needed and 
finally passes the processed information to the SolidWorks digital model. The processed information from MATLAB 
is once again cross-checked with the Neo4J to see if the operations are safe. If the results yield an unsafe value the DT 
stops the system and prompts the user in the interaction layer. The information is also stored in the cloud corresponding 
to the data. For example, the extruder nozzle is continuously heated during the 3D printing process. The thermal 
computational model computes the heat map and if the thermal stress exceeds the limit of the copper extruder, the 
process is stopped. Instead of the thermal stress, if the temperature value exceeds the maximum value (due to material 
blockage or insufficient airflow), the process is halted by the information from graph-based model even before 
computing. The Digital Twin requires extensive processing power because of the incredible amount of real-time data 
being handled and the computation involved. Hence, it is set up on the cloud instead of the end-user platform and an 
interactive dashboard has been developed that can stream contents of the digital twin to the end-user. This allows the 
end-user to utilize the power of digital twin from any device with an internet connection making it ubiquitous. When 
the user commands the DT from the interaction layer, the same process is carried out in the DT API.  

 
Figure 9. An example of graph-based model of the 3D Printer extruder developed in Neo4j. 

5.2 Discussions 

As mentioned, the limitation of the proposed approach of DT is the extensive processing power required for 
computing. The time taken to process the data in the DT takes 2-3 seconds in average which results in a 2-second 
delay for updating the digital model in case of monitor mode and a 2-second delay to update both the digital and 
physical model while in control mode. Since the data from the physical world and user inputs from the interaction 
layer are captured real-time, the delay in processing causes the DT API to skip data that has been collected in the 
meantime. It must also be noted that this is a simple system with limited data from both the physical world and the 
interaction layer. In a highly complex setup, this problem will be more significant. Nevertheless, the research provides 
the benefit of having a DT which can simulate real-world behaviour of the physical system and the added intelligence 
of graph-based and computational model to provide a significant improvement over DTs with just the digital model. 
The computational model of the 3D printer helps in regulating the thermal stress and keeps the system temperature 
low by halting the process thereby reducing the failure rate of extruder and hot-bed. The computational model along 
with the graphical model serve to improve the quality of the system rather than improving productivity or efficiency. 
However, in the future work will be done to incorporate ML into the system, which, with the data can regulate the 
system to operate within preferred parameters. 

The proposed DT establishment framework can serve as a reference model for DT implementations including 
the necessary CPS infrastructure required to set up a functional DT. It also provides a more compelling model for data 
collection and utilisation compared to conventional DAQs. The tri-model based approach justifies the added cost of 
DT implementation by providing actual information on product failure and helps in failure prediction besides 



providing remote monitoring and ubiquitous control. Furthermore, the graph model can provide information on the 
most used features and the highly utilised components based on query requests, which facilitate next generation 
product improvement.  

 

6. Conclusion and Future work 
Smart manufacturing has been the hot topic of the decade and ever-increasing industries are implementing smart 
production lines to manufacture the products. Although CPS is widely adopted, the real implementation of DT has 
often been overlooked. Despite most existing high-level discussions, little considers the product-level reference model, 
as a generic approach, to establish the DT. To fill these gaps, this work first introduced a generic 4-layered CPS system 
architecture, including the physical layer, the data extraction and consolidation layer, the cyberspace layer and the 
interaction layer, serving as the fundamental basis for DT establishment. Moreover, a tri-model-based reference model 
for product-level DT development was proposed, where the core scientific contributions are summarised below: 

1) Digital Model provides not only a virtual representation of the physical objects, but also the ubiquitous access 
and control over it, where high-fidelity simulation can be performed.  

2) Computational Model helps to predict the system behaviour and health condition through computation and 
ensures safe operating conditions of the system.  

3) Graph-based Model supports the intelligent decision makings and stores the ever-growing user and system 
generated data, thereby reducing the workload on the computational system. It also helps in identifying the most 
significant process and component of a system to facilitate future product improvement. 

By leveraging this model, the product-level DT can be simulated in a more realistic way and it can be used for 
predictive analysis for successful completion of a task or accurate scheduling of maintenance, repair and etc. A case 
study of 3D printer DT implementation has been further conducted to demonstrate the proposed framework and 
approach. However, there are some limitations in the current implementation. For instance, the processing time is 
significant and the digital model update and the results in the interaction layer suffer from large latency. Nevertheless, 
despite the hardware limitations, it did not affect the generic adoption of this DT reference model for industries moving 
towards smart manufacturing. Moreover, it is suggested that future works should focus on optimising the DT for real-
time computing and reduced latency (e.g. cloud-edge computing infrastructure), and the incorporation of AI into the 
DT (e.g. machine learning techniques). It is envisioned that the power of a DT largely relies on the amount of data 
that it can extract and process into meaningful context-aware values to both manufacturers and end-users. 
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Appendix A 

A snippet of computational model used to perform thermal analysis on hot-bed 
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