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Abstract

Index-funds are one of the most popular investment vehicles among investors, with

total assets indexed to the S&P500 exceeding $8.7 trillion at-the-end of 2016. Recently,

enhanced-index-funds, which seek to outperform an index while maintaining a similar

risk-profile, have grown in-popularity. We propose an enhanced-index-tracking method

that uses the linear absolute shrinkage selection operator (LASSO) method to minimize

the Conditional Value-at-Risk (CVaR) of the tracking error. This minimizes the large

downside tracking-error while keeping the upside. Using historical and simulated data,

our CLEIR method outperformed the benchmark with a tracking error of ∼ 1%. The

effect is more pronounced when the number of the constituents is large. Using 50-80

large stocks in the S&P 500 index, our method closely tracked the benchmark with an

alpha 2.55%.
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1 Introduction

Since the introduction of Index tracking funds by Vanguard in 1976, the industry has grown

dramatically, accounting for 19.3% of all equity investments at the end of 2016 (Investment

Company Institute 2017). Indexing or benchmarking investments is popular because it

provides investors with simple passive investment vehicles that have low transactions costs.

This has led to a huge demand for the creation and sale of index tracking funds (Arnott et

al. 2005).

Modern portfolio theory recommends that investors hold capitalization-weighted portfo-

lios (the market portfolio) of risky assets, which according to the CAPM model, is mean-

variance efficient. However, many papers, both in academia and industry, have shown that

capitalization-weighted indices such as the S&P500 and Russell 1000 do not lie on the effi-

cient frontier. At the same time, it is, almost impossible to find an index that unambiguously

lies on the efficient frontier ex ante. The belief among investors nonetheless seems to be that

the capitalization-weighted indices are almost efficient, which may explain why investing

in such indices is still quite popular. Investors find Exchange-Traded Index Funds (ETFs)

and index tracking mutual funds attractive because of their low transaction costs and the

perception that they track their underlying indices closely. These expectations make index

replication a critical task for the institutions that create these Index Funds and ETFs (Blume

and Edelen 2002).

Currently two main replication strategies exist in the market: full or exact replication, and

sampling or partial replication. The full replication strategy is straightforward but difficult to

implement. A full replication of the S&P500, for example, would require the fund to hold all

500 constituent stocks at their capitalization weights at all times. Market frictions including

illiquidity, monitoring costs, redemptions and inflows, taxes, and dividends lead to frequent

rebalancing that makes it difficult to implement a full replication strategy. The strategy is

even more expensive to implement for an index such as th Russell 2000 that has 2000 smaller,

less liquid stocks. Because of these concerns most index funds use sampling strategies that

choose a subset of stocks in the benchmark to track the index. Further, if the index is not

value weighted - for example equally weighted - then it may require frequent rebalancing.

Hence using a subset of stocks becomes more attractive as it will reduce transactions costs.

The two basic steps involved in index replication strategies are sampling and optimizing.

Two widely used sampling strategies are stratified sampling and large market capitalization

stock sampling. In the latter case, the index replicator holds only the largest stocks by market

capitalization or by market volume, which are liquid and hence will have lower implicit and
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explicit transactions costs. In this paper we will explore large market capitalization stock

sampling. The optimization involves obtaining optimal weights for the stocks in the sample

by minimizing the tracking error volatility (TEV). Tracking error (TE) is the difference

between the index return and benchmark return it is supposed to mimic over a specified

time interval.

Traditionally, an index replicator’s objective has been to minimize TEV. This is consid-

ered a “passive” strategy. Recently, however, enhanced indexation has gained popularity. In

this strategy the fund managers strive to outperform the index while keeping TE low. One

way to enhance the index performance is to control or minimize the negative TE (index fund

under-performs the benchmark index) rather than positive errors (index fund outperforms

than benchmark index). Hence an index replicator would prefer to minimize the fund’s

negative tracking error while maximizing the positive tracking error that occurs when the

fund outperforms the benchmark. In this paper we replicate a benchmark index (is the

value-weight index return of all CRSP firms incorporated in the US and listed on the NYSE,

AMEX, or NASDAQ, or S&P500) by selecting a full set or subset of firms from the set of

the whole portfolio universe or largest 100 firms by market capitalization, and determine

the portfolio weights that minimize the Conditional Value-at-Risk (CVaR) of the tracking

error. CVaR has several nice properties as a metric for risk management: (1) CVaR is a

coherent risk measure (Artzner et al. 2009) and CVaR of a portfolio of returns is a convex

function of the weights;(2) CVaR minimizes the left tail of the TE distribution and hence

allows the index to outperform the benchmark; (3) CVaR optimization can be reduced to

convex programming and in some cases to linear programming (see Rockafellar and Uryasev

2000, 2002).

We solve the stock selection and weighting problem via LASSO (Least Absolute Shrinkage

and Selection Operator) algorithm proposed by Tibshirani (1996). LASSO minimizes an

objective function such as the residual sum of squares or in our case the CVaR, subject to

the sum of the absolute value of the coefficients being less than a constant. Because of the

nature of this constraint it can lead to some of the weights being exactly zero. This is an

advantage when we want to select a subset of the stocks to include in a portfolio. A limitation

of LASSO algorithm is that it cannot restrict the weights to be nonnegative. However this

is not a serious concern given that some funds that use indexation such as mutual funds, are

allowed to short sales (Chen, Desai and Krishnamurthy 2013). In this study we allow the

weights in the replicated portfolio to be negative as well as positive. However, we set the

LASSO penalty value low (s = 1.5) for the l1 minimization constraint to reduce the amount

of short selling. This constraint limits the amount of short sales or negative weights on the
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stocks in the fund.3 The LASSO penalty s can be alternatively selected by cross-validation.

Besides the LASSO penalty, we also add one more feasibility constraint that the weights sum

to one:
∑p

i=1wi = 1. We also theoretically show the oracle property of the estimators, which

guarantees that our estimators are best sparse linear approximation of the true values. In the

online Appendix, we analyze the behavior of the objective function and provide theoretical

evidence why the portfolio obtained via CLEIR outperforms the benchmark.

The remainder of this paper is organized as follows: In section 2 we briefly review the

existing literature. Section 3 describes CVaR-LASSO Enhanced Index Replication (CLEIR)

model and the formulation of the problem. We use a transformation developed by Rockafellar

and Uryasev (2000) that makes it easier to solve the optimization problem. Section 4 presents

empirical results and compares the CLEIR method with the additional weighting methods

in different portfolio universes from year 1988 to 2018, with the value-weighted index as the

benchmark. Section 4 further examines the out of sample properties of CLEIR performance

using daily stock return data from 2003 to 2012 to track S&P 500 index. We present our

conclusion in Section 5.

3Chen, Desai and Krishnamurthy (2013) find that the magnitude of short sales is around 15.65% of net
assets on average, thus we choose a penalty level s = 1.5, which limits the short sales up to 25%.
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2 Literature Review

The main strategies that have been proposed to implement index tracking are full replica-

tion, partial replication, and enhanced replication. Full replication involves holding all the

constituent securities in the exact same proportion as in the benchmark portfolio at all times.

However, in many instances market frictions may not permit this strategy to be feasible. In

these instances the index replicator can use a partial replication strategy using a subset of

the most liquid firms in the index. An enhanced replication strategy, in contrast, seeks to

outperform an index while maintaining a similar risk profile. Our methodology falls into the

enhanced replication category.

A comprehensive review of traditional index tracking methodology is provided by Blume

and Edelen (2002) and Chavez-Bedoya and Birge (2014). In addition to traditional index-

ations strategies, researchers and practitioners are also interested in alternative indexations

(sometimes called smart-beta indexation). The goal in these strategies is to outperform a

benchmark index while keeping close to the risk profile of the index. Heuristic-based weight-

ing methodologies and optimization-based weighting methodologies are two main methods

used in alternative indexing strategies. Chow et al. (2011) define heuristic-based weighting

methodologies as “ad hoc weighting schemes established on simple and, arguably, sensible

rules.” For example, naive diversification, or the “1/N” rule is one kind of heuristic-based

weighting methodology, which assigns equal weight for each stock in the sampling pool.

DeMiguel, Garlappi, and Uppal (2009) provide empirical evidence that portfolios based on

equal weighting perform well relative to portfolios based on mean-variance optimization. An-

other heuristic-based weighting methodology is risk-cluster equal weighting, which weights

the portfolio by equally weighting stocks in a risk cluster (Chow et al. 2011). Fernholz

(1995) employs a diversity weighting design that blends the portfolio based on different

weighting schemes. For example, the blending could be based on market capitalization and

equal weighting. Arnott et al. (2005) propose an indexation method where the weights

are based the fundamental characteristics (e.g. sales, earnings, or size). Recently Lejeune

and Samatli-Pa (2013) address a sampling replication strategy based on stochastic integer

problem to construct risk-averse enhanced index funds. Their innovative method takes the

derivation of a deterministic equivalent for the risk constraint and then use a block decom-

position technique to provide a well scale and fast convergent solution.

In terms of optimization-based weighting indexation, mean-variance optimization is the

traditional way to construct an alternative indexation. Chopra and Ziemba (1993) ad-

dress the importance of the estimation risk in forming the mean-variance optimal portfolio.
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Michaud (1989), Kan and Zhou (2007) and others emphasize the estimation loss in covariance

matrix estimation. In order to reduce the significant estimation risk, Chopra and Ziemba

(1993) suggest a fixed mean vector (that is, the minimum variance portfolio) to improve the

portfolio performance. Haugen and Baker (1991) and Clarke, De Silva and Thorley (2006)

propose a minimum-variance strategy, and they provide empirical evidence to support that

their strategy will improve the cap-weighted indexation return and reduce the volatility.

Goto and Xu (2015) argue the estimation of the covariance matrix is still problematic, and

they apply the graphical LASSO method to estimate the sparse inverse covariance matrix.

In addition, Basak and Shapiro (2001) analyze the portfolio policies which maximize the

utility when the investors manage market risk using Value-at-Risk (VaR). Further Basak,

Shapiro and Tepla (2006) also discuss a framework, which maximizes the utility under the

constraint of risk measures, to evaluate relative performance evaluation. Goel et al. (2018)

implement the mixed Conditional Value-at-Risk to design portfolios for index tracking and

enhanced indexing problems. And further Goel et al. (2019) develop the methodology for

robust optimization of mixed Conditional Value-at-Risk stable tail-adjusted return ratio us-

ing copulas, with the applications in portfolio construction. Besides the literature using risk

measures, Bonami and Lejeune (2009) discuss an exact solution approach for the portfolio

optimization when there are stochastic and integer constraints. Choueifaty and Coignard

(2008) and Amenc et al. (2011) develop several indexation strategies which maximize the

Sharpe ratio. Chow et al. (2011) provide a comprehensive analysis of most of the passive in-

vesting alternative indexations in their survey paper and Cai et al. (2018) empirical examines

several popular alternative indexations’ performance in the Chinese A-Share market.
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3 CVaR-LASSO Enhanced Index Replication(CLEIR)

3.1 Objective

The objective in the enhanced replication strategy we propose is to use a small subset of the

most liquid stocks to replicate and track a benchmark index such as S&P500. Instead of the

traditional objective of minimizing tracking error volatility (TEV), we minimize the CVaR

of the TE. The optimization is achieved via the LASSO optimization methodology proposed

by Tibshirani (1996).

The objective function and the constraints are given by,

min
wi

CVaRα

(
Yt −

p∑
i=1

wiRit

)
,

subject to, 
∑p

i=1 |wi| ≤ s,∑p
i=1wi = 1,

where Yt is the rate of return of the index at time t, CV aRα is the α percent level of the

Conditional Value-at-Risk, Rit is the rate of return of the ith candidate stock at time t.

There are are a total of p candidate stocks and w = (w1, . . . , wp) is the weight of ith stock

in the final index replicating portfolio. We allow short position in stocks and hence wi can

be negative.

The CVaR objective function is a new way to replicate an index compared to the usual

square error loss or other types of overall mean loss functions. CVaR has the attractive prop-

erty of it minimizing the likelihood the tracking portfolio will underperform the benchmark

by a large amount (i.e. it minimizes the extreme tail risk of the tracking error). In contrast

most other loss functions penalize both under-performance and over-performance. Although

the traditional loss functions may efficiently control the tracking errors, they also limit the

ability to outperform the benchmark. Our objective of partial penalization using CVaR

should be more attractive to portfolio managers who would naturally prefer to minimize

underperformance while outperforming the benchmark. There are other partial penalization

methods such as VaR. However, VaR does not account for properties of the distribution

beyond its specified confidence level. This may lead to undesirable outcomes for skewed or

discrete distributions. On the other hand , CVaR controls for the overall performance over

a range of possibilities below the specified α level in which a loss actually occurs.

The optimization of CVaR can be achieved using several techniques. We propose to use
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the LASSO method that yields sparse models, which is an advantage given we would like to

replicate the benchmark index with a small subset of stocks. This is because LASSO can

shrink some weights to zero. Further, with some mild conditions on the objective function,

the results are guaranteed to be the best weights when the sample size is large, as is typically

the case for financial data. Also, the LASSO constraint can be easily changed into a collection

of linear constraints. This makes it a more feasible convex optimization problem to solve.

Finally, the simple linear constraints increase the speed of obtaining a solution when sample

size is large, but also make the solutions more robust.

In sum, the TE-CVaR objective and LASSO method can be used to create an index

that can track a benchmark with fewer stocks and at the same time has the potential to

outperform the benchmark by minimizing the large expected negative TE.

3.2 Risk Measures: VaR and CVaR

In this section, we briefly discuss the definition and properties of VaR (Value-at-Risk) and

CVaR (Conditional Value-at-risk), two widely used measures in risk management. Unlike

volatility measures such as the variance of returns that measure the variability in both upside

(gain) and downside (loss) of an asset, the VaR and CVaR describe the loss associated with

an asset or portfolio and hence are more appropriate for risk management. See Sarykalin,

Serraino, and Uryasev [2008] for a discussion of the pros and cons of VaR and CVaR in risk

management and optimization. Here we provide a brief summary of some major differences

between the two measures and their use in optimization of portfolios.

3.2.1 VaR

Let ξ be a loss random variable such as the loss (negative returns) on an index or portfolio

of assets. The V aRα(ξ) at a confidence level α ∈ (0, 1),

VaRα = inf{ζ|P (ξ ≤ ζ) ≥ α}.

The VaR concept was introduced in 1990 by JP Morgan for risk management following

the 1987 market crash. VaR is a very popular measure as it is simple and provides one

number to describe the potential loss during a set time period with a certain probability. A

major criticism of VaR is that it does not address scenarios in which the VaR is exceeded. In

addition, VaR has some undesirable mathematical properties. It is not a coherent measure

of risk and is not sub-additive. For these reasons we consider CVaR instead as the objective

function to minimize in replicating a benchmark portfolio.
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3.2.2 CVaR

CVaRα =
1

1− α
EξI[ξ≥VaRα].

CVaR was proposed as a risk measure by Rockefellar and Uryasev (2000) as an alter-

native to VaR. CVaR , under certain conditions, equals the average of the loss beyond a

specified confidence level, and hence it’s name conditional value at risk. In this is sense

it is a measure that summarizes all the potential losses below a specified confidence level.

It has some nice mathematical properties. It is a coherent measure and also sub-additive.

More importantly, Rockefellar and Uryasev (2000, 2002) show that it is superior to VaR in

optimization applications.

3.3 LASSO Method

In this section, we first provide some necessary definitions and outline without proof that

LASSO method can asymptotically converge to an optimum with a good choice of a penalty

parameter. The detailed proof is given in the Appendix.

We assume all the random variables we consider are continuous, i.e., all the distributions

of stocks and the index are continuous. Let α be the significant level for CVaR. Let ξw,α be

the α quantile for the random variable Y −
∑p

i=1wiRi. Let

ρw,α

(
p∑
i=1

wiRi, Y

)
=

1

1− α

(
Y −

p∑
i=1

wiRi

)
I[Y−

∑p
i=1 wiRi>ξwi,α],

be the loss function where I[Y−
∑p
i=1 wiRi>ξwi,α] is an indicator function. The excess shortfall,

ρwi,α, is convex in wi for all i. Let (Yt, Rit), t = 1, . . . , n be our sample, and assume they are

i.i.d . Let

Eρwi,α =
1

n

n∑
t=1

Eρwi,α

(
p∑
i=1

wiRit, Yt

)
= CVaRα

(
Y −

p∑
i=1

wiRi

)
,

and

Enρw,α =
1

n

n∑
t=1

ρw,α

(
p∑
i=1

wiRit, Yt

)
,

which is a sample version of CVaRα. Define

w0 = argmin
w

Eρw,α = argmin
w

CVaRα

(
Y −

p∑
i=1

wiRi

)
,
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standing for the best w in theory when we consider CVaRα. Define

E (w) = Eρw,α − Eρw0,α = CVaRα

(
Y −

p∑
i=1

wiRi

)
− CVaRα

(
Y −

p∑
i=1

w0
iRi

)
,

measuring how far our estimation is from the optimum. Theorem 1 described later shows

that the optimization will eventually converge to the optimum weights provided we have

enough data. The LASSO estimator in its Lagrange multiplier form is

ŵ = argmin
w

(
Enρw.α + λ

p∑
i=1

|wi|

)
.

Definition 1. (Margin Condition) We say the margin condition holds with some strictly

convex function G, if there exits η > 0, for all
∑n

t=1 (
∑p

i=1 (wi − w0
i )Rit)

2 ≤ η,

E (wi) > G

 n∑
t=1

(
p∑
i=1

(
wi − w0

i

)
Rit

)2
 .

This condition restricts our population error to be exactly larger than zero if w is not from

the true model.

Our objective in using LASSO is to choose some of the stock weights wi to be exactly

zero. This is an important reason for choosing the LASSO method for optimization. Let

S ⊂ {1, . . . , p}, and SC = {1, . . . , p} \S and wS,i = wiI[i∈S]. Let |S| be the number of ele-

ments in S. The next condition sets l1 norm of the coefficients bounded by some generalized

l2 norm.

Definition 2. (Compatibility Condition) We say the compatibility condition is met for the

set S , with constant ϕ (S) > 0, if for all wi, that satisfy
∑p

i=1 |wSc,i| ≤ 2
∑p

i=1 |wS,i|, it holds

that (
p∑
i=1

|wS,i|

)2

≤
n∑
t=1

(
p∑
i=1

wiRit

)2
|S|

ϕ2 (S)
.

Let H (v) be the conjugate convex for G (u) defined in 3.3, margin condition, and G (0) =

0,

H (v) = sup
u

(uv −G (u)) , u ≥ 0.

Now we can define the concept oracle, which is the true target of LASSO estimator,
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Definition 3. (Oracle) w∗ is oracle if

(w∗, S∗) = argmin
w,S

(
3E (wS) + 2H

(
4λ
√
|S|

ϕ (S)

))
,

where S ⊂ {1, 2, . . . , p}.
We can view oracle w∗ be a best approximation to w0 with l0 penalty for number of

nonzero entries under CVaRα loss. In our index replication case, these optimal weights

incorporate the trade off between tracking error and penalty on including too many stocks.

Let

2ε∗ = 3E (w∗S∗) + 2H

(
4λ
√
|S∗|

ϕ (S∗)

)
.

Define empirical process to be

νn (w) = Enρw,α − Eρw,a,

which measures the error between sample loss and population loss. Let

T =

(Y,R) : sup
λ0

∑p
i=1|wi−w∗i |≤ε∗

|νn (w)− νn (w∗)| < ε∗

 ,

and if we choose the proper λ0 having order
√

ln p/n, T will have a large probability by

concentration inequality in Bousquet (2002).

Theorem 1. (Oracle Inequality for LASSO) Assume compatibility condition holds for all

S ⊂ {1, 2, . . . , p} . Assume margin condition holds.
∑n

t=1 (
∑p

i=1 (wi − w0
i )Rit)

2 ≤ η for all

λ0
∑p

i=1 |wi − w∗i | ≤ ε∗ and
∑n

t=1 (
∑p

i=1 (w∗i − w0
i )Rit)

2 ≤ η. Suppose λ > 8λ0, then on T ,

we have

E (ŵ) + λ

p∑
i=1

|ŵi − w∗i | ≤ 4ε∗. (3.1)

Note that if all assumptions hold and w∗i = w0
i , then ε∗ = H

(
4λ
√
|S∗|/ϕ (S∗)

)
, with

proper λ0 having the order
√

ln p/n , when n → ∞, ε∗ → 0. In other words, our LASSO

estimator ŵi → w0
i . This is the asymptotic consistency property of LASSO.

The above theorem guarantees that w∗ are the best sparse linear approximation if the
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relation between Y and Ri is linear. In our application, the weights of stocks ŵ we obtain

using LASSO penalty will approach the best sparse linear weights w∗ when our estimation

(training) sample is large enough, even if the underlying relation between Y and Ri is not

linear. This justifies the use of the CVAR objective and the LASSO method for selecting

the stocks and their weights to include in the index.

3.4 Computational Technique

We use the techniques outlines by Rockefellar and Uryasev (2002) to transform the stochastic

programming problem into a linear programming problem. The standard CVaR minimiza-

tion problem can be converted to a LP problem by introducing slack variables zt, for t =

1, . . . , n , where n is the length of time. The resulting LP problem is,

min
ζ,w,z

ζ +
1

1− α

n∑
t=1

1

n
zt,

subject to constraints, 
zt ≥ Yt −

∑p
i=1wiRit − ζ, t = 1, . . . , n,

zt ≥ 0, t = 1, . . . , n,∑p
i=1 |wi| ≤ s,∑p
i=1wi = 1.

Note that |wi| = max {wi,−wi}, hence we can change the LASSO type penalty constraint

with absolute values for the weights into several linear constraints by introducing dummy

variables ui, i = 1, . . . , p , 
∑p

i=1 ui ≤ s,

ui ≥ wi, i = 1, . . . , p,

ui ≥ −wi, i = 1, . . . , p.

So the stochastic programming can be written as a LP problem;

min
ζ,w,z,u

ζ +
1

n (1− α)

n∑
t=1

zt,
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subject to constraints, 

zt ≥ Yt −
∑p

i=1wiRit − ζ, t = 1, . . . , n,

zt ≥ 0, t = 1, . . . , n,∑p
i=1 ui ≤ s,

ui ≥ −wi, i = 1, . . . , p,

ui ≥ wi, i = 1, . . . , p,∑p
i=1wi = 1.
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4 Empirical Analysis

4.1 Data and Performance Measures

To assess the performance of CLEIR replication methodology, we conducted an out-of-sample

analysis of the strategy using the “rolling horizon approach”. The data are assembled from

several sources including Ken French’s website, the Center for Research in Security Prices

(CRSP) and other stock / portfolio return databases. Following Kan and Zhou (2007),

DeMiguel, Garlappi and Uppal (2009), Goel et. al. (2018), we consider the following well-

diversified portfolio universes: (1) 25 portfolios formed on size and book-to-market ratios,

(2) 100 portfolios formed on size and book-to-market ratios, (3) Fama and French (1997)

49 industry portfolios, (4) 100 portfolios formed on size and book-to-market ratios and 49

industry portfolios, (5) simulated 300 individual stocks (using the equal weighted portfolio

returns as the benchmark).4 The benchmark is the value-weighted index return of all CRSP

firms incorporated in the US and listed on the NYSE, AMEX, or NASDAQ.

The data sample is from November 1988 to October 2018. For each year t, we first

estimated the weighted for the portfolios/stocks to include in the index using the daily stock

return data from year t − 1. Then we used the estimated stock weights to calculate the

enhanced index return and its properties and at year t compare it to the benchmark index.

Following Rockafellar and Uryasev (2002) and Bamberg and Wagner (2000), we use risk-

tolerance level ω = 0.95 in the CVaR constraint. The LASSO penalty equals to 1.5, which

keeps the number of negative weights low (less short selling). The LASSO penalty s can be

alternatively selected by cross-validation.

We compare the CLEIR performance with the several alternative weighting schemes:

(1) CLEIR without LASSO constraint (CEIR) (2) value weighted index return (VW), (3)

equal weighted index return (EW), (4) plug-in mean variance portfolio (MV), (5) Global

Minimum Variance portfolio (GMV), (6) Equal Variance portfolio (EV), (7) Jin and Wang

(2016) method (JW). Besides traditional portfolio measures such as holding period returns

and Sharpe Ratios, we further implement the following two performance measures to evaluate

4Following Goto and Xu (2015), we randomly select 300 stocks with careful imputation of the missing data
using the value-weighted index returns, then calculate the mean vector and variance-covariance matrix as the
true parameters to generate 30 years return vectors under the multivariate normal distribution assumptions.
Next we still use the “rolling horizon approach” as the portfolio universes (1)-(4), and use the equal weighted
portfolio returns as the benchmark.
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the index tracking performance of the replicated index.

sSTD =

√√√√ 1

T − 1

T∑
t=1

(et − ē)2, (4.1)

and one robust alternative, standardized Median Absolute Deviation (MAD),

sMAD =
1

Φ−1(3/4)
medt′(|et′ −mediant(et)|), where, et is the TE. (4.2)

The measure sMAD is more robust because sSTD would be influenced when there aer some

large absolute tracking error due to extreme event, or outliers. Bamberg and Wagner (2000)

provide details on the components of the risk in the tracking index.

Table 1: Out-of-Sample Index Tracking Performance Measures from 1988 to 2018
Panel A: sSTD(%)

CLEIR CEIR VW EW MV GMV EV JW
SZBM25 1.000 1.000 0.000 5.628 234.982 13.939 5.692 6.277

IND49 1.893 1.894 0.000 4.313 125.160 15.290 4.344 7.848
SZBM100 1.249 1.533 0.000 5.863 403.277 15.481 5.853 6.546

IND49+SZBM100 1.587 102.559 0.000 4.926 210.839 16.806 4.961 6.605
Simulation (300 Stocks) 2.611 193.587 - 0.000 T < N T < N 0.935 4.563

Panel B: sMAD(%)
CLEIR CEIR VW EW MV GMV EV JW

SZBM25 0.476 0.475 0.000 4.525 21.546 10.408 4.466 3.114
IND49 0.569 0.575 0.000 3.022 41.068 11.029 2.560 5.386

SZBM100 0.848 0.888 0.000 4.739 30.495 11.032 4.631 3.995
IND49+SZBM100 0.963 84.805 0.000 3.895 40.083 12.435 3.730 4.031

Simulation (300 Stocks) 2.558 192.234 - 0.000 T < N T < N 0.936 4.632

Table 1 reports the tracking error performance measures (sSTD and sMAD) of different

weighting schemes in different portfolio universes. Value weighted portfolios have zero track-

ing error since they are full replication of the benchmark index, while CLEIR has very robust

performance with an annualized tracking error (sSTD) around 1.5%. Without the LASSO

constraint, the CEIR method performs well in the first three portfolio universes however

in the universe of “100 portfolios formed on size and book-to-market ratios and 49 indus-

try portfolios” and “simulated 300 stocks,” the tracking error becomes much larger and the

portfolio based on this method cannot track the index closely. The empirical evidence shows
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that the LASSO technique helps provide a more robust performance particularly when more

constituents are included in replicating the benchmark index. The remaining methods (EW,

MV, GMV, EV, JW) have much larger tracking errors than the CLEIR method. Table 1

Panel B reports the robustness check using the alternative measure sMAD performance, and

the findings are similar to Panel A.

Table 2: Out-of-Sample Sharpe Ratios from 1988 to 2018
Sharp Ratio

CLEIR CEIR VW EW MV GMV EV JW
SZBM25 0.630 0.630 0.629 0.673 0.082 1.319 0.700 0.858

IND49 0.621 0.621 0.629 0.680 0.009 0.758 0.702 0.763
SZBM100 0.651 0.656 0.629 0.678 -0.074 1.469 0.709 0.872

IND49+SZBM100 0.648 0.463 0.629 0.684 0.398 1.252 0.714 0.889
Simulation (300 Stocks) 1.127 1.066 - 0.985 T < N T < N 1.013 1.196

Table 3: Out-of-Sample Returns from 1988 to 2018
Return (%)

CLEIR CEIR VW EW MV GMV EV JW
SZBM25 10.956 10.957 10.950 12.196 19.188 15.642 12.414 13.462

IND49 10.992 11.000 10.950 11.560 1.060 8.484 11.345 10.001
SZBM100 11.342 11.370 10.950 12.292 -29.807 15.316 12.458 13.173

IND49+SZBM100 11.368 48.560 10.950 12.051 83.355 13.935 12.123 12.325
Simulation (300 Stocks) 18.140 207.732 - 15.528 T < N T < N 15.523 14.930

Table 2 reports the out-of-sample Sharpe Ratios of the different weighting schemes in dif-

ferent stock universes and Table 3 further reports the corresponding out-of-sample returns.

When the number of constituents is not large, for example, 25 or 49 constituents shown in

first two rows, the Sharpe Ratios of CLEIR are very close to the benchmark. However, when

the number of the constituents is relatively large, for example, more than 100 constituents

in the latter three cases, the Sharpe Ratios are much improved compared to the bench-

mark. The CEIR, CLEIR without LASSO, has relatively poor performance in the universe

of “100 portfolios formed on size and book-to-market ratios and 49 industry portfolios”.

As DeMiguel, Garlappi and Uppal (2009) documented, the equal weighting strategy (EW)

has very good and robust performance, and the Equal Variance and Jin and Wang (2016)

methods also have good and robust performance though the tracking errors are relatively

large (see Jin and Wang, 2016). The plug-in mean variance (MV) and global minimum

variance (GMV) performances are not very consistent in different portfolio universes. MV

16



achieves low Sharpe ratios (in Table 2) and big variation in out-of-sample returns (in Table

3). In most of the cases, GMV performs well however the return in “49 industry portfo-

lios” (in Table 3) is relatively low though the whole portfolio based on GMV method has

reasonable out-of-sample Sharpe ratio (in Table 2).In the next section we provide additional

out-of-sample tests based on sampling replications in the S&P 500.

4.2 Additional Test on S&P 500 using 100 Largest Stocks

To further analyze the performance of CLEIR enhanced index replication, we conducted a

comprehensive out-of-sample examination over the period 2003 to 2012. The procedure is

described below.

1. Choose 100 largest stocks listed on the NYSE-AMEX by market value on the last

trading day of year t− 2.

2. Estimate CLEIR index stock weights using one year of daily data for the largest 100

market capitalization stocks in year t− 1, some weights could be zero.

3. Compare the performance of the index portfolio based on the weigts chosen in (i) with

the the benchmark S&P500 index for the year t.

4. Repeat (i), (ii) and (iii) for years t=2003 to 2012.

Table 4: Out-of-Sample Performance of CLEIR index from 2003 to 2012
Year No. Stocks CLEIR Ret S&P500 Ret (CLEIR-S&P500) Correlation

(Annual%) (Annual%) (Annual%) (%)
2003 76 23.34 22.32 1.02 99.1
2004 74 11.13 9.33 1.79 99.0
2005 72 4.10 3.84 0.25 98.6
2006 73 14.20 11.78 2.42 98.3
2007 70 3.25 3.65 -0.40 99.3
2008 83 -30.92 -37.59 6.67 98.3
2009 77 23.16 19.67 3.49 98.7
2010 54 13.52 11.00 2.52 99.3
2011 73 2.12 -1.12 3.24 99.4
2012 52 13.56 11.68 1.89 98.0

In Table 4 we report the out-of-sample performances for consecutive ten years from 2003-

2012. For nine out of ten years, the out-of-sample CLEIR return consistently beats the S&P
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500 return with a minimum of .25% per year to a maximum of 6.67% per year. The only

year it underperformed was in 2007 and the under-performance was only 0.4% per year.

More strikingly the CLEIR index outperformed the S&P500 index by 6.67% during the

2008 financial crisis when the market fell by 37.59%. This supports our contention that

by minimizing CVaR we can not only consistently ouperform the benchmark, but can also

minimize large negative returns. The average out-of-sample CLEIR excess return is 2.3%

(over the period 2003-2012) . Also we document that the average standard deviation is

close to the benchmark and the CLEIR index has a high correlation with the benchmark.

In the appendix we report the out-of-sample performance of the daily return and the level

of the index and the benchmark. From these figures, we can clearly see that our CLEIR

algorithm also passes the out-of-sample robustness check and consistently beats the S&P

500 benchmark.

We implement the Fama and French (1993) three factor model and Carhart (1997) four-

factor Model to study the alpha after controlling for the market risk premium, Small-minus-

Big factor (SMB), High-minus-Low factor (HML) and momentum factor (MOM). The result

is reported in Table 5. The CLEIR method demonstrates a very robust performance in the

annual alpha, with an average 2.44%. The main exposure of CLEIR is from the market risk,

with a coefficient of Mkt − Rf 0.91, with t-statistic 24.31. The coefficients on SMB and

HML are insignificant, which shows the outperformance by CLEIR is not from SMB and

HML factors but the alpha generated by CLIER. The Fama and French (1993) and Carhart

(1997) verify the previous findings and a significant alpha is found by CLEIR.

Table 5: Fama and French (1993) and Carhart (1997) Model Risk Decomposition
α Mkt−Rf SMB HML MOM Adjust R2

S&P 500 0.00 1.00 0.00 0.00 0.00 1.00
(–)

CLEIR 2.55 0.93 0.99
(4.70) (28.34)

2.31 0.91 0.07 0.99
(4.15) (26.26) (1.25)

2.55 0.93 0.00 0.99
(4.29) (26.33) (0.06)

2.33 0.91 0.07 -0.01 0.99
(3.82) (24.31) (1.16) (-0.10)

2.35 0.88 0.03 0.02 -0.04 0.99
(4.90) (26.79) (0.66) (0.32) (-2.17)

Figure 1 shows the cumulative CLEIR index performance from 2003 to 2012. The starting
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point for the CLEIR index and S&P500 is normalized to 100 on Jan 1, 2003. After ten years,

our CLEIR index outperforms the S&P500 by 60%!

Figure 1: Out-of-sample CLEIR index performance from 2003 to 2012.

19



5 Conclusion

In this paper, we propose a new enhanced indexation method, which we call CVaR-LASSO

Enhanced Index Replication (CLEIR). This method of enhanced replication minimizes the

CVaR of the TE between the index and a benchmark using a LASSO-l1 minimization con-

straint. The CVaR objective function is a new way to track a benchmark portfolio compared

to the usual square error loss or other type of overall mean loss functions. CVaR has an

attractive property in that it minimizes the likelihood of the tracking portfolio under per-

forming the benchmark by a large amount, while most other loss functions penalize both

under-performance and over-performance. Although the traditional loss functions may effi-

ciently control the tracking errors, they also limit the ability to outperform the benchmark.

We implement a transformation similar to that developed by Rockafellar and Uryasev (2000)

and solve a linear programming problem along with the LASSO penalty and portfolio con-

straints. The CLEIR method has several nice properties: (a) sparsity in stock selection by

shrinking some of the weights to zero; (b) sampling with a subset of stocks to ensure liquidity

and low transactions costs; and (c) an automatic stock selection process l1 constraint. In

out-of-sample “rolling horizon approach,” our CLEIR method outperformed the benchmark

and other methods with low tracking error deviation (standard deviation or median absolute

deviation), and the effect is more pronounced when the number of assets in the portfolio is

large. Further over a ten year period (2003 - 2012) out-of-sample test, the CLEIR method

outperforms the benchmark (S&P500) by 2.3% per year while tracking the index closely.

More importantly, the CLEIR index had a much lower loss compared to the S&P500 index

during the financial crisis in 2008. We believe the methodology would also be very useful for

enhanced index fund managers engaged in tracking indices having large number of stocks .
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6 Proof

6.1 Proof of Lemma 1

Proof.

E (X | X ≥ ζ) = P (X ≥ ζ)−1
∫
{X≥ζ}

x
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
dx

= P (X ≥ ζ)−1
∫
{X≥ζ}

(x− µ+ µ)
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
dx

= P (X ≥ ζ)−1 µ

∫
{X≥ζ}

1√
2πσ

exp

(
−(x− µ)2

2σ2

)
dx

+P (X ≥ ζ)−1
(
−σ2

) ∫
{X≥ζ}

1√
2πσ

exp

(
−(x− µ)2

2σ2

)
d

[
−(x− µ)2

2σ2

]

= µ+ P (X ≥ ζ)−1
(
−
√
σ2

2π

)
exp

(
−(x− µ)2

2σ2

)∣∣∣∣∣
x=+∞

x=ζ

= µ+
1

P (X ≥ ζ)

√
σ2

2π
exp

(
−(ζ − µ)2

2σ2

)
.

6.2 Proof of Theorem 1

Proof. Since the inequality (3.1) in result is valid almost surely in T , we assume (Y,Ri) ∈ T
in the following proof. We first prove for some w̃ near w∗, the inequality (3.1) holds, and

then show ŵ is also near w∗. Let

t =
ε∗

ε∗ + λ0
∑p

i=1 |ŵi − w∗i |
,

and we define w̃i = tŵi + (1− t)w∗i , Ẽ = E (w̃), E∗ = E (w∗). Then

λ0

p∑
i=1

|w̃i − w∗i | = tλ0

p∑
i=1

|ŵi − w∗i | = ε∗
λ0
∑p

i=1 |ŵi − w∗i |
ε∗ + λ0

∑p
i=1 |ŵi − w∗i |

≤ ε∗,
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which means w̃ is around w∗. Then by definition,

Ẽ + λ

p∑
i=1

|w̃i| = Eρw̃,α − Eρw0,α + λ

p∑
i=1

|w̃i|

= [(Enρw̃,α − Eρw̃,α)− (Enρw∗,α − Eρw∗,α)] + (Enρw̃,α − Enρw∗,α)

+ (Eρw∗,α − Eρw0,α)

= − [νn (w̃)− νn (w∗)] +

[(
Enρw̃,α + λ

p∑
i=1

|w̃i|

)
−

(
Enρw∗,α + λ

p∑
i=1

|w∗i |

)]

+E∗ + λ

p∑
i=1

|w∗i | ,

= −P + L+ E,

where

P = νn (w̃)− νn (w∗) ,

is the empirical process,

L =

(
Enρw̃,α + λ

p∑
i=1

|w̃i|

)
−

(
Enρw∗,α + λ

p∑
i=1

|w∗i |

)
,

is the difference of objective function of CVaR-LASSO,

E = E∗ + λ

p∑
i=1

|w∗i | ,

is the error term evaluated at w∗. Because we assume (Y,Ri) ∈ T , and by the definition of

the set T ,

−P = − [νn (w̃)− νn (w∗)] ≤ sup
λ0

∑p
i=1|wi−w∗i |≤ε∗0

|νn (w)− νn (w∗)| ≤ ε∗.
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Because we assume ρ is convex, and ŵ is defined as the global minimum,

Enρw̃,α + λ

p∑
i=1

|w̃i| ≤ t

(
Enρŵi,α + λ

p∑
i=1

|ŵi|

)
+ (1− t)

(
Enρw∗,α + λ

p∑
i=1

|w∗i |

)

≤ t

(
Enρw∗,α + λ

p∑
i=1

|w∗i |

)
+ (1− t)

(
Enρw∗,α + λ

p∑
i=1

|w∗i |

)

= Enρw∗,α + λ

p∑
i=1

|w∗i | .

Hence L ≤ 0. Therefore, Ẽ+λ
∑p

i=1 |w̃i| ≤ −P+L+E ≤ ε∗+E∗+λ
∑p

i=1 |w∗i | . By definition

of ε∗, we know E∗ ≤ ε∗, then

Ẽ + λ

p∑
i=1

∣∣w̃S∗C ,i∣∣ = Ẽ + λ

p∑
i=1

|w̃i| − λ
p∑
i=1

|w̃S∗,i|

≤ ε∗ + E∗ +

(
λ

p∑
i=1

|w∗i | − λ
p∑
i=1

|w̃S∗,i|

)

≤ 2ε∗ + λ

p∑
i=1

|w̃S∗,i − w∗i | .

Hence

Ẽ + λ

p∑
i=1

|w̃i − w∗i |

= Ẽ + λ

p∑
i=1

∣∣w̃S∗C ,i∣∣+ λ

p∑
i=1

|w̃S∗,i − w∗i |

≤ 2ε∗ + λ

p∑
i=1

|w̃S∗,i − w∗i |+ λ

p∑
i=1

|w̃S∗,i − w∗i |

≤ 2ε∗ + 2λ

p∑
i=1

|w̃S∗,i − w∗i | . (6.1)

The inequality (3.1) will hold if 2λ
∑p

i=1 |w̃S∗,i − w∗i | is also bounded by ε∗. Now we consider

two cases: i) λ
∑p

i=1 |w̃S∗,i − w∗i | < ε∗ and ii) λ
∑p

i=1 |w̃S∗,i − w∗i | ≥ ε∗.
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In case i), λ
∑p

i=1 |w̃S∗,i − w∗i | < ε∗, by (7.1)

Ẽ + λ

p∑
i=1

|w̃i − w∗i | ≤ 4ε∗.

This will leads to

λ0

p∑
i=1

|w̃i − w∗i | =
λ0
λ

(
λ

p∑
i=1

|w̃i − w∗i |

)
≤ λ0

λ
4ε∗ ≤ ε∗

2
,

if λ ≥ 8λ0 and λ0
∑p

i=1 |ŵi − w∗i | ≤ ε∗.

In case ii), note that w∗S∗C ,i = 0,

λ

p∑
i=1

∣∣w̃S∗C ,i − w∗S∗C ,i∣∣ = λ

p∑
i=1

∣∣w̃S∗C ,i∣∣ ≤ 2ε∗ + λ

p∑
i=1

|w̃S∗,i − w∗i | ≤ 3λ

p∑
i=1

|w̃S∗,i − w∗i | .

We apply the compatibility condition in Definition 2 for coefficients w̃ − w∗ and set S∗,(
p∑
i=1

|w̃S∗,i − w∗i |

)2

≤
n∑
t=1

[
p∑
i=1

(w̃S∗,i − w∗i )Rij

]2
|S∗|

ϕ2 (S∗)
.

Hence by (7.1),

Ẽ + λ

p∑
i=1

∣∣w̃S∗C ,i∣∣+ λ

p∑
i=1

|w̃S∗,i − w∗i | ≤ ε∗ + E∗ +


n∑
t=1

[
p∑
i=1

(w̃S∗,i − w∗i )Rij

]2
[

2λ |S∗|
ϕ2 (S∗)

]

By the definition of H (v), we have

uv ≤ H (v) +G (u) ,
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hence together with marginal condition,

1

2


n∑
t=1

[
p∑
i=1

(w̃S∗,i − w∗i )Rij

]2
[

4λ |S∗|
ϕ2 (S∗)

]

≤ 1

2


n∑
t=1

[
p∑
i=1

(
w̃S∗,i − w0

i

)
Rij

]2
+

n∑
t=1

[
p∑
i=1

(
w̃S∗,i − w0

i

)
Rij

]2
[

4λ |S∗|
ϕ2 (S∗)

]

≤ H

(
4λ |S∗|
ϕ2 (S∗)

)
+G

1

2


n∑
t=1

[
p∑
i=1

(
w̃S∗,i − w0

i

)
Rij

]2
+

n∑
t=1

[
p∑
i=1

(
w̃S∗,i − w0

i

)
Rij

]2


≤ H

(
4λ |S∗|
ϕ2 (S∗)

)
+

1

2
G

 n∑
t=1

[
p∑
i=1

(
w̃S∗,i − w0

i

)
Rij

]2+
1

2
G

 n∑
t=1

[
p∑
i=1

(
w̃S∗,i − w0

i

)
Rij

]2
≤ H

(
4λ |S∗|
ϕ2 (S∗)

)
+
Ẽ
2

+
E∗

2
.

Hence,

Ẽ + λ

p∑
i=1

|w̃i − w∗i |

= Ẽ + λ

p∑
i=1

∣∣w̃S∗C ,i∣∣+ λ

p∑
i=1

|w̃S∗,i − w∗i |

≤ ε∗ + E∗ +H

(
4λ |S∗|
ϕ2 (S∗)

)
+
Ẽ
2

+
E∗

2

= 2ε∗ +
Ẽ
2
,

or
Ẽ
2

+ λ

p∑
i=1

|w̃i − w∗i | ≤ 2ε∗,

Ẽ + λ

p∑
i=1

|w̃i − w∗i | ≤ Ẽ + 2λ

p∑
i=1

|w̃i − w∗i | ≤ 4ε∗.

By choosing λ ≥ 8λ0,

λ0

p∑
i=1

|w̃i − w∗i | =
λ0
λ

(
λ

p∑
i=1

|w̃i − w∗i |

)
≤ λ0

λ
2ε∗ ≤ ε∗

2
.
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By the definition of w̃,

ε∗

2
≥ λ0t

p∑
i=1

|ŵi − w∗i | =
ε∗ (λ0

∑p
i=1 |ŵi − w∗i |)

ε∗ + λ0
∑p

i=1 |ŵi − w∗i |
,

hence λ0
∑p

i=1 |ŵi − w∗i | ≤ ε∗

Until now, we prove two facts, a) λ0
∑p

i=1 |ŵi − w∗i | ≤ ε∗, and b) for any w̃ satisfying

λ0
∑p

i=1 |w̃i − w∗i | ≤ ε∗,

Ẽ + λ

p∑
i=1

|w̃i − w∗i | ≤ 4ε∗.

Hence

Ê + λ

p∑
i=1

|ŵi − w∗i | ≤ 4ε∗.

Theorem 1 holds.
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