Manuscript revised

Click here to view linked References

Click here to access/download;Manuscript;Hoetal_NitrogenHK_Revision2.d This is the Pre-Published Version. ±

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature's AM terms of use (https://www.springernature.com/gp/openresearch/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s11869-018-0654-5 Seasonal behavior of water-soluble organic nitrogen in fine particulate matter (PM2.5) at urban coastal environments in Hong Kong Steven Sai Hang Ho^{1,2,3}, Lijuan Li^{1,2}, Linli Qu⁴, Junji Cao^{1,2}, Ka Hei Lui⁵, Xinyi Niu⁵, б Shun-Cheng Lee⁶, Kin Fai Ho^{5,*} ¹ Key Laboratory of Aerosol Chemistry & Physics (KLACP), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China ² State Key Laboratory of Loess and Quaternary Geology (SKLLOG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China ³Division of Atmospheric Sciences, Desert Research Institute, Reno, NV 89512, United States ⁴Hong Kong Premium Services and Research Company, Lai Chi Kok, Kowloon, Hong Kong ⁵ The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China ⁶ Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China *Corresponding author. Tel.: +852-22528763; fax: +852-26063500. E-mail address: kfho@cuhk.edu.hk.

29 Abstract

Water-soluble organic nitrogen (WSON) in fine particulate matter (PM_{2.5}) were determined at urban coastal environments in China based on one-year measurement. The WSON concentrations were in a range of 14.3-257.6 nmol N m⁻³ and accounted for 22.0-61.2% of the water-soluble nitrogen (WSN) in composition. The average total concentration of free amino acid (FAA) was 1,264.5±393.0 pmol m⁻³, which was lower than those in continental urban cities but nevertheless comparable to rural area of Pearl River Delta (PRD) in China. The total quantified amines and amino compounds ranged from 223.8 to 806.0 pmol m⁻³ in which methylamine, ethylamine and ethanolamine were the most abundant compounds. The average concentration of urea was 7.8 ± 3.0 nmol m⁻³ and at least one order of magnitude higher than those in marine and rural areas but comparable to other continental cities in China during non-dust period. Summer showed the highest average concentration of WSON (95.0±66.6 nmol N m⁻³) and composition in WSN (49.3%) compared to other seasons (27.9-37.0%). The results were consistent with previous findings that the inorganics can contribute more than the organics in secondary aerosol formation. There was no distinctive seasonal variations of organic compositions of FAA, amine and amino compounds, and urea. This observation was possibly attributed to mix of original sources in urban and different prevailing wind directions. Fair correlations (r < 0.4) between WSON compounds and atmospheric oxidants [ozone (O₃)] and nitrogen oxides (NO_x) suggest that biogenic oxidation is possibly not a major contributing factor in atmospheric coastal urban location.

52 Keywords:

53 Water-soluble organic nitrogen; Amino acids; Amines; Urea; Coastal area; PM_{2.5}

1. Introduction

Organic forms of nitrogen are widespread components in the atmosphere and their deposition can constitute a substantive input of atmospheric nitrogen to terrestrial and aquatic ecosystems (Neff et al. 2002). Organic nitrogen (ON) contributes ~10-50% of the total nitrogen in the atmospheric deposition (Bencs et al. 2009; Benítez et al. 2009; Zhang et al. 2008). In between, bioavailable nitrogen greatly affects our environments and human health. (Aber et al. 1989; Choi et al., 2018; Delfino et al., 2011; Samy et al. 2013). Water-soluble organic nitrogen (WSON), composited of major fraction of bioavailable nitrogen, could influence physical and chemical properties of aerosols and water droplets by altering their buffering capacity and basicity (Zhang et al. 2002). A past study showed that participation of ON compounds could participate secondary organic aerosol formation (SOA) in atmosphere (Facchini et al. 2008). WSON can be emitted from either natural or anthropogenic sources. The common natural inputs comprise mineral dust, bacteria, algal blooms, degraded proteins, sea salt, organic debris and marine emissions (Luo et al. 2015b; Mace et al. 2003a; Violaki et al. 2015). In addition, anthropogenic sources include high-temperature fossil fuel combustion, vehicle exhaust, industrial activities, biomass burning, cooking, agricultural activities and atmospheric reactions (Jiang et al., 2018; Ho et al. 2015; Rastogi et al. 2011; Violaki and Mihalopoulos 2010). In some extent, ON was accounted for ~10-20% of the total fine particulate matter (PM) (Rastogi et al. 2011; Zhang et al. 2002), while WSON was contributed >40% of ON for the samples collected in Amazon Basin in dry season while biomass burning activities frequently occurred (Mace et al. 2003b). In China, WSON was accounted for ~30% of the total nitrogen in Beijing and ~40% of water-soluble nitrogen (WSN) in Xi'an, China (Duan et al. 2009; Ho et al. 2015). Few studies have been conducted in Guangzhou, China. Li et al. (2012) found that WSON had a composition of 17–21% of total nitrogen in precipitation samples. Besides, the compositions of WSON were also found to be higher in rural (20–34%) than urban (12–13%) in this southern

Chines megacity (Yu et al. 2017). In marine environment, WSON could contribute ~84% of the total dissolved nitrogen (TDN) in the aerosols (Violaki et al. 2015). The emissions of ON species could be linked with high biological activities in surface ocean (Altieri et al. 2012). The correlations between WSON in marine biogeochemical cycles and the roles in atmosphere were well interpreted (Violaki et al. 2015). However, the investigation on the origins and chemical compositions of WSON in PM were still restricted to marine environment (Kanakidou et al. 2012; Lesworth et al. 2010; Luo et al. 2015a).

The aims of this study are to: 1) investigate the compositions of free amino acids (FAAs), primary amines, amino compounds and urea in atmospheric aerosols collected from urban coastal environments in Hong Kong, China; 2) identify seasonal variations of those WSON species in one-year samples; 3) identify correlations between the temporal variations and meteorological conditions and other air oxidants.

2. Materials and methods

2.1 Sampling locations and meteorological conditions

Hong Kong is located on the eastern side of the Pearl River Estuary and characterized by a subtropical climate dominated by the East Asian monsoon. The prevailing synoptic winds are the northerlies and northeasterlies in winter, the easterlies in spring and autumn, and the southwesterlies in summer. PM_{2.5} samples were collected at Tung Chung (TC, 22.289 °N, 113.943 °E), where the location is a residential town in southwest of Hong Kong (Figure 1). TC is a new town and the Hong Kong International Airport is located ~3 km to the north of the sampling location. At TC, major pollution sources include vehicular emissions from the upwind urban areas to the east and the northeast, emissions from marine vessels in the water channel to the north, and the power plants at Tap Shek Kok to the north and at Lamma Island

to the east. The air sampler is located on the rooftop of a four-floor building, ~16 m above the
ground level, in proximity of the heavily used North Lantau Highway (~60 m away).

106 2.2 Sample collection

Sampling campaign was conducted in four non-consecutive months: August-September 2011 in late summer; November–December 2011 in late autumn; February–March 2012 in late winter and May 2012 in late spring. PM_{2.5} samples were collected on pre-fired (900 °C for 4 h) quartz-fiber filters (20.3 cm × 25.4 cm, Whatman Inc., UK) using high volume (hi-vol) samplers manufactured by Graseby Andersen (Palatine, IL, USA). The hi-vol sampler was operated at flow rates of 1.13–1.41 m³ min⁻¹. Background contamination was monitored by processing operational blanks (unexposed filters) simultaneously with field samples. The field blanks were collected at the sampling location by mounting filters in the samplers without purging through the air. The PM_{2.5} mass loadings were determined by gravimetric method for which all filters were equilibrated in a controlled chamber at a temperature of 22±2 °C and relative humidity (RH) of 35-45% for 24 hours. Each sample was weighed in triplicate (weighing differences were <15 and $<20 \mu g$ before and after sampling, respectively) using a MC5 electronic microbalance (±1 mg sensitivity, Sartorius, Gottingen, Germany). All samples were stored in freezer (<-10 °C) prior the analysis.

122 2.3 Free amino acid and primary amine analysis

123 Detailed sample treatment and analytical procedures for measurement of free amino acids 124 and primary amines were shown in our previous publication (Ho et al., 2015). In brief, each 125 filter sample was extracted with Milli-Q water (resistivity:18.2 M Ω -cm) twice in an ultrasonic 126 water bath. The water extracts were then combined, filtered and concentrated to a volume of 127 0.5 mL by rotary evaporator before analysis (Yang et al. 2005). The extracts were then derivatized with 6-aminoquinolyl-*N*-hydroxysuccinimidyl carbamate [AccQ-Fluor reagent
(AQC)] and AccQ.Tag borate buffer (WAT052880, Waters Corporation, Milford, MA, USA).
The derivatization step used for the calibration standards was identical compared with the
samples. The extraction recovery for the target organic nitrogen species ranged from 79.6 to
96.8 %.

The derivatized sample extracts or standards were injected into a high performance liquid chromatography (HPLC, 1200 Series, Agilent Technology) equipped with a fluorescence detector. The column used for separation was a 3.9×150 mm AccQ.Tag Amino Acid Analysis Silica base bonded with 4 µm C-18 reversed-phase column (Waters Corporation) at 37 °C in operation. The calibrations were demonstrated to be linear [correlation coefficient (r^2) >0.999]. The minimum detection limit (MDL) was obtained by analyzing ten replicates of the lowest concentrations of standard solution, ranging from 0.036 to 0.086 nmol mL⁻¹ (equivalent to 0.262-0.626 pmol m⁻³). The measurement precision was in a range of 3.6-8.5 %. The measurement uncertainties ranged from ± 3.2 to $\pm 9.1\%$ for the target amino acids.

2.4 Urea and non-primary amines analysis

For urea, identification and quantification were performed by direct injection of the extract to the HPLC coupled with a photodiode array detector (DAD) (1200 Series; Agilent Technology). The target compound was separated with an C18 column (Cogent Bidentate, 4.6×150 mm, 4 µm particles size; Microsolv Technology, Leland, NC, USA) and detected at an absorption wavelength of 210 nm. The MDL was 0.05 ng mL⁻¹ and measurement precision was 3%.

Detailed sample preparation, derivatization steps, and instrumental parameters for measurement of non-primary amines were shown in Ruiz-Jimenez et al. (2012). Dansyl chloride in acetone (Sigma-Aldrich, St. Louis, MO, USA) was served as a derivatizing agent.

The derivatized products were then introduced to the HPLC (Series 1200; Agilent Technology) was furnished with an Waters Sunfire C18 column (2.1×150 mm, 3.5μ m particle size) coupled with an ion-trap mass spectrometer (Esquire 3000; Bruker Daltonics, Billerica, MA, USA). The MDL for the non-primary amines ranged from 0.005-0.019 ng mL⁻¹. The precisions were <6.9% by replicate analyses of standards.

2.5 Other nitrogen analysis

WSN [i.e., sum of water-soluble organic nitrogen (WSON) and water-soluble inorganic nitrogen (WSIN)] was quantified in the analysis. The extraction procedures were referred to our previous study (Ho et al., 2015). Total nitrogen (TN) in the filtrates was measured by thermo-catalytic oxidation approach using a total organic carbon (TOC)/TN analyzer (TOC-L, Shimadzu, Kyoto, Japan). The nitrogen content was analyzed by measuring the oxides of nitrogen with using chemiluminescence detector. The detection limit was 5 μ g L⁻¹ with a precision of ± 8.8 %. The measurement uncertainties ranged from ± 4.4 to ± 9.7 %. The results reported in this study were all corrected by the field blanks of 60 μ g L⁻¹.

Determination of cations [i.e., potassium (K⁺), sodium (Na⁺), ammonium (NH₄⁺), calcium (Ca^{2+}) and magnesium (Mg^{2+})] and anions [nitrate (NO_3^{-}), sulfate (SO_4^{2-}) and chloride (Cl⁻)] were followed the steps shown in Ho et al., (2015). The target ions were determined by a Dionex-600 Ion Chromatograph (Dionex Inc., Sunnyvale, CA, USA). An IonPac AS14A column (8 mM Na₂CO₃/1 mM NaHCO₃ as an eluent) was used for the anions analyses. For the cation analyses, an IonPac CS12A column was used for separation (20 mM methanesulfonic acid as an eluent) purpose. The MDL were 0.5 μ g L⁻¹ for Na⁺, 1.0 μ g L⁻¹ for NH₄⁺, 1.1 μ g L⁻¹ for K⁺, 8.7 μ g L⁻¹ for Cl⁻, 25 μ g L⁻¹ for NO₃⁻, 5.0 μ g L⁻¹ for NO₂⁻ and 27 μ g L⁻¹ for SO₄²⁻ in the analysis. The certified values (within ±4 %) of reference materials (National Research Center for Certified Reference Materials, China) were in good agreement for the five cations and three

anions. The measurement uncertainties ranged from ± 2.2 to $\pm 5.1\%$ for the targeted ions.

 NH_4^+ , NO_2^- and NO_3^- were the major WSIN species in the aerosols, and WSON was 180 defined as the difference between WSN and WSIN. The concentrations of NO_2^- in all samples 181 were below the detection limit and thus considered as negligible. The calculation of WSIN and 182 WSON (nmol N m⁻³) can be referred to the following equations:

$$[WSIN] = [NH_4^+ - N] + [NO_2^- - N] + [NO_3^- - N]$$
(1)

[WSON] = [WSN] - [WSIN](2)

3. Results and discussion

3.1 Concentrations of nitrogen fractions and other compounds

The abundances of major nitrogen fractions (i.e., WSN, WSIN and WSON) and quantified individual compounds are tabulated on Table 1. The molar concentrations of WSN ranged from 33.3 to 513.5 nmol N m⁻³, with an average of 178.7±128.4 nmol N m⁻³. The molar concentrations of WSON and WSIN were in a range of 14.3-257.6 nmol N m⁻³ and 12.9-310.4 nmol N m⁻³, respectively. The compositions of WSON in WSN were between 22.0 to 61.2%. The average WSON in this study was >50% lower than in Qingdao (China) (Shi et al., 2010), but higher than in Hawaii (U.S.), Keelung (Taiwan) and Tasmania (Australia) (Chen and Chen 2010; Mace et al. 2003a; Cornell et al. 2001). Although the levels in TC were lower than in continental cities such as Xi'an and Beijing (China) (Shi et al. 2010; Duan et al., 2009; Wang et al., 2013; Ho et al. 2015), they still exceeded those observed in Atlanta and Chapel Hill (U.S.) (Rastogi et al. 2011; Lin et al. 2010). The average concentration of WSON in TC was consistent with a study at East China Sea (Nakamura et al. 2006). The total concentrations of FAA ranged from 779.7 to 2199.2 pmol m⁻³, and its average of $1,264.5\pm393.0$ pmol m⁻³ was ~40% lower than continental area in Xi'an (Zhang and Anastasio 2003; Ho et al. 2015), but ~4.0 times higher than in Venice (Barbaro et al. 2011). The results in this study were consistent with

findings in rural area of Guangzhou (China) (Song et al. 2017). Previous studies showed that FAA could be separated as protein-type and non-protein-type amino acid (AA). The average molar concentrations of total protein-type AA (1147.5 ± 358.6 pmol m⁻³) were ~9.8 times higher than the total non-protein AA (117.0 pmol m⁻³). Glycine (Gly, 434.3±154.6 pmol m⁻³) was the most abundant component, followed by alanine (Ala, 169.0±57.0 pmol m⁻³), cysteine (Cys, 161.1±55.9 pmol m⁻³) and valine (Val, 117.6±37.1 pmol m⁻³). These protein-type AA accounted for ~70% of the total quantified FAAs. The results are consistent other studies that Gly and Ala are the two most abundant FAAs (Barbaro et al. 2011; Violaki and Mihalopoulos 2010). Gly is a fundamental component in fibrous proteins in animals and intermediates in products (Voet et al. 2008). However, Song et al. (2017) reported the four most abundant FAA was in descending order: Gly > Val > methionine (Met) > phenylalanine (Phe) in rural area of Guangzhou. Met is a unique constituent in protein for all living organism and potentially attributed to biological origins (Song et al. 2017). The composition differences of FAA can be used to distinguish source of origin (urban or rural area). β -alanine (β -Ala) (97.7 pmol m⁻³) was the most abundant non-protein AA component.

The total concentrations of amine compounds ranged from 223.8-806.0 pmol m⁻³. Methylamine, ethylamine, and ethanolamine were the most abundant primary amines with average concentrations of 263.6±97.3, 108.4±28.2, and 42.0±13.6 pmol m⁻³, respectively. The concentrations were lower than other studies in Xi'an and Guangzhou (China) (Ho et al. 2015; Liu et al. 2017). The concentration of N-methylformamide was in a range of 13.6-57.1 pmol m⁻³ and N-methylformamide was an abundant compound in TC. This compound can be identified in solvents used in oil refineries and as precursor in amidation reactions (Sahoo and Sit 2017). The concentration of urea ranged from 2.8 to 14.5 nmol m⁻³. A previous study showed that urea could be originated from natural and anthropogenic sources. The compound is a commonly-used nitrogen fertilizer (Glibert et al. 2005). Further applications can be found

in different industrial processes such as manufacture of resins, glues, solvents, medicines, cleaning products and cosmetics (Francis et al. 2002). The natural occurrence of urea could be identified in marine and land environments as the compound is considered as final metabolite of nitrogenous matter in mammals and marine species (Song et al. 2017). The levels in TC were at least one order of magnitude higher than samples collected from marine environments at Crete (Greece) and Tasmania (Australia) (Mace et al. 2003a; Violaki and Mihalopoulos, 2011) and rural areas such as Rondonia (Brazil) (Mace et al. 2003b). Nevertheless, the results in this study were close to Qingdao (China) during non-dust period (Shi et al. 2010).

3.2 Seasonal variations of WSON

Figure 2 illustrates seasonal variations of WS fractions. The highest average concentrations of WSN (234.4±103.8 nmol N m⁻³) and WSIN (164.9±73.6 nmol N m⁻³) were observed in winter, coupled with highest average $PM_{2.5}$ concentration (47.0±11.0 ug m⁻³). However, WSON showed highest average concentration (95.0 nmol N m⁻³) in summer and WSN composition (49.3%) compared to other seasons (27.9-37.0%). The results were consistent with other studies that inorganic species (e.g., nitrate) could have more contributions to secondary aerosol formation compared to organic compounds (Cheng et al. 2016). This observation could possibly be attributed to prevailing northerly winds transport the air pollutants from mainland China in winter. The origins of WSON were due to dominant southwesterly winds from marine in summer (Matsumoto et al. 2017). Seasonal emission sources and meteorological factors (i.e., temperature, relative humidity, radiation and mixing layer height) could influence formation and fate of organic nitrogen in atmospheric reactions (Zhang et al. 2002). The total FAA concentration was 1548.3±331.5 pmol m⁻³ in winter and in a range of 19.3-42.4% higher than other seasons. The trend is, in descending order: winter>autumn>spring> summer. No distinct variations of organic profiles (protein and non-

protein types) were observed in FAA. These could be attributed to complexity of marine Song et al. (2017)reported the sources in urban areas. seasonal trend (autumn>winter>summer>spring) on proteinaceous matters in PRD in China. A previous study showed that biomass burning can be a major contributing source for FAA enrichment (Ho et al. 2014). However, prevailing easterly wind in autumn could deter regional transport of biomass burning products such as FAAs to TC sampling location. The highest concentrations of amine (564.1±124.9 pmol m⁻³) and urea (10.7±2.4 nmol m⁻³) were observed in winter and both compounds showed similar seasonal trends compared to FAA. Urea can be transferred from sea surface via bubble-bursting processes and also evaporated from soil as part of windblown materials. This compound can further be emitted from industrial activities (Violaki and Mihalopoulos 2011). The above trends suggest that anthropogenic sources due to regional transport could be a dominant factor under northerlies and north easterlies winds during winter.

3.3. Correlation between FAAs and oxidants

Figure 3 shows the correlations between FAAs and atmospheric oxidants (O_3, O_3) NO and NO_x). Only a fair correlation (r = 0.38, p < 0.01) was observed between total FAAs and O₃. Ozone can promote release of FAAs from vegetation and enhance rate of chemical oxidation, nitration and oligomerization of protein in atmosphere (Shiaiwa et al. 2012; Kampf et al. 2015). In addition, second-order rate of reaction mechanism was identified between protein and atmospheric oxidants. This observation could be due to reaction was dependent on the abundances of precursor and O₃ (Liu et al. 2017; Shiraiwa et al. 2012; Kampf et al. 2015). The results in this study are different from the rural area of PRD in China (Song et al. 2017). This observation points to possibly high local contribution for FAAs from plant materials and living organisms. Fair correlations (r = 0.32, p < 0.01 and r = 0.33, p < 0.01, respectively) were identified between Gly/Met and O₃ (Figure 3). The results imply that

biomass emissions and bioactivities were not the dominant sources for urban atmosphere under different wind directions. Fair correlations (r < 0.32, p < 0.01 and r < 0.25, p < 0.01, respectively) were also observed between total quantified amine/urea and O₃ (Figure 3). The observations suggest non-significant association between amine/urea compounds and the atmospheric oxidants in urban area. Aliphatic amines can be oxidized in the atmosphere by hydroxyl radicals (•OH), nitrate radicals (•NO₃) and O₃, leading to the formation of secondary aerosol formation (Murphy et al. 2007). Highest concentration of total quantified amines was observed in TC during winter, and this can be used to explain higher potential contribution to the SOA formation (Huang et al. 2014).

The molar compositions of ON groups in WSON are shown in Figure 4. Highest contribution of FAAs (4.7%) and amines (1.7%) were identified in spring. The result is consistent with previous findings in urban area of Xi'an in China. The results could be due to higher proteinaceous matter emissions from spores and pollens, and further lead to possibly higher FAA formations from hydrolysis of combined amino acids (Ho et al. 2015). Moderate correlation (r = 0.64) was identified between urea and FAA (Figure 5). Shi et al. (2010) reported that ~50% of urea existed in fine particulate matter (<2.1 μ m) composition. These particles can undergo gas-particle conversion processes (Cornell et al. 1998). Agricultural activities and particles from crustal origins were identified as major contributors for urea (Chen and Chen 2008). The above-mentioned correlation suggests that these groups of ON compounds can possibly be originated from the same sources in TC sampling location.

3.4. Potential health impacts of WSON species

Referred to our previous work (Chuang et al 2015), we found that the increases of inflammatory response in mice evidently related to particulate OC and free amino acids.

The non-protein type amino acids could be among the environmental determinants of the inflammatory allergic potency of PM2.5 on human respiratory system. Even though the average concentrations of amino acids in TC were lower than those heavy-polluted cities such as Xi'an, the widespread sources from urban and marine may have a mix of contribution on the toxicity. In addition, the effects of the physicochemistry of amines (e.g., nitroamines) on bioreactivity should be further investigated in such coastal urban environments.

4. Conclusion

Characteristics of water-soluble organic nitrogen in PM2.5 at a coastal urban environment (TC) were investigated. The origins of WSN were demonstrated to be from a mix of natural and anthropogenic sources. The prevailing winds were shown to have implications towards the concentrations of WSON compounds. Biomass emissions and bioactivities from marine environments were not the dominant sources at this coastal sampling location. Further investigation on the emission sources determination in urban areas will be necessary to elucidate the roles of SOA formation in future analysis.

Acknowledgement

This study was supported under the Research Grants Council of the Hong Kong Special Administrative Region China (Project No. CRF/C5022-14G).

References

- Aber JD, Nadelhoffer KJ, Steudler P, Melillo JM (1989) Nitrogen Saturation in Northern Forest
 Ecosystems. Bioscience 39: 378-386
- Altieri KE, Hastings MG, Peters AJ, Sigman DM (2012) Molecular characterization of water soluble
 organic nitrogen in marine rainwater by ultra-high resolution electrospray ionization mass
 spectrometry. Atmos. Chem. Phys. 12: 3557-3571
- Barbaro E, Zangrando R, Moret I, Barbante C, Cescon P, Gambaro A (2011) Free amino acids in
 atmospheric particulate matter of Venice, Italy. Atmos. Environ. 45: 5050-5057
- Bencs L, Krata A, Horemans B, Buczyn Ska AJ, Dirtu AC, Godoi AFL, Godoi RHM, Potgietervermaak
 S, Grieken RV (2009) Atmospheric nitrogen fluxes at the Belgian coast: 2004-2006. Atmos.
 Environ. 43: 3786-3798
- Benítez JMG, Cape JN, Heal MR, Dijk Nv, Díez AV (2009) Atmospheric nitrogen deposition in southeast Scotland: quantification of the organic nitrogen fraction in wet, dry and bulk deposition.
 Atmos. Environ. 43, 4087-4094
- Chen HY, Chen LD (2008) Importance of anthropogenic inputs and continental-derived dust for the
 distribution and flux of water- soluble nitrogen and phosphorus species in aerosol within the
 atmosphere over the East China Sea. J. Geophys. Res. 113(D11), doi:10.1029/2007JD009491
- 340 Chen HY, Chen LD (2010) Occurrence of water soluble organic nitrogen in aerosols at a coastal area.
 341 J. Atmos. Chem. 64: 49-71
- Cheng Y, Zheng G, Wei C, Mu Q, Zheng B, Wang Z, Gao M, Zhang Q, He K, Carmichael G, Poschl
 U, Su H (2016) Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze
 events in China. Sci. Adv. 2: e1601530
- Choi NR, Ahn YG, Lim HB, Lee JY, Jung CH, Kim YP (2018) Particulate nitrosamines in the
 atmosphere at Seoul and their major sources. Air Qual. Atmos. & Health 11(7): 855–865
- 347 Cornell S, Mace K, Coeppicus S, Duce R, Huebert B, Jickells T, Zhuang L-Z (2001) Organic nitrogen
 348 in Hawaiian rain and aerosol. J. Geophys. Res. 106: 7973-7983.
- 349 Cornell SE, Jickells TD, Thornton CA (1998) Urea in rainwater and atmospheric aerosol. Atmos.
 350 Environ. 32: 1903–1910
- 351 Delfino RJ, Staimer N, Vaziri ND (2011). Air pollution and circulating biomarkers of oxidative stress.
 352 Air Qual. Atmos. & Health 4(1): 37–52
- 353 Duan FK, Liu XD, He KB, Dong SP (2009) Measurements and characteristics of nitrogen-containing
 354 compounds in atmospheric particulate matter in Beijing, China. Bull. Environ. Contam. Toxicol.
 355 82: 332-337
- Facchini MC, Decesari S, Rinaldi M, Carbone C, Finessi E, Mircea M, Fuzzi S, Moretti F, Tagliavini
 E, Ceburnis D (2008) Important source of marine secondary organic aerosol from biogenic amines.
 Environ. Sci. Technol. 42: 9116-9121

Francis PS, Lewis SW, Lim KF (2002) Analytical methodology for the determination of urea: current
practice and future trends. Trends in Anal. Chem. 21: 389–400

Glibert PM, Trice TM, Michael B, Lane L (2005) Urea in the tributaries of the Chesapeake and coastal
bays of Maryland. Water Air Soil Pollut. 160: 229–43

⁶ 363 Huang RJ, Zhang YL, Bozzetti C, Ho KF, Cao JJ, Han YM, Dällenbach KR, Slowik JG, Platt SM,
 ⁸ 364 Canonaco F, Zotter P, Wolf R, Pieber SM, Bruns EA, Crippa M, Ciarelli G, Piazzalunga A,
 ¹⁰ 365 Schwikowski M, Abbaszade G, Schnelle-Kreis J, Zimmermann R, An ZS, Szidat S, Baltensperger
 ¹¹ U, EI Haddad I, Prévôt ASH (2014) High secondary aerosol contribution to particulate pollution
 ¹³ 367 during haze events in China. Nature 514: 218-222

- Ho KF, Ho SSH, Huang RJ, Liu SX, Cao JJ, Zhang T, Chuang HC, Chan CS, Hu D, Tian L (2015)
 Characteristics of water-soluble organic nitrogen in fine particulate matter in the continental area
 of China. Atmos. Environ. 106: 252-261
- Ho KF, Engling G, Ho SSH, Huang R, Lai S, Cao J, Lee SC (2014) Seasonal variations of
 anhydrosugars in PM2.5 in the Pearl River Delta Regio, China. Tellus, Ser. B 66: 22577
- Jiang Y, Zhuang G, Wang Q, Huang K, Deng C, Yu G, Xu C, Fu Q, Lin Y., Fu, JS, Li M, Zhou Z (20
 374 18) Impact of mixed anthropogenic and natural emissions on air quality and eco-environment —
 27 375 the major water
 - soluble components in aerosols from northwest to offshore isle. Air Qual. Atmos. & Health 11(5)
 : 521 534
 - Kanakidou M, Duce RA, Prospero JM, Baker AR, Benitez-Nelson C, Dentener FJ, Hunter KA, Liss PS,
 Mahowald N, Okin GS (2012) Atmospheric fluxes of organic N and P to the global ocean. Global
 Biogeochem. Cycles 26: 184-190
 - Kampf CJ, Liu F, Reinmuthselzle K, Berkemeier T, Meusel H, Shirawa M, Poschl U (2015) Protein
 cross-linking and oligomerization through dityrosine formation upon exposure to ozone. Environ.
 Sci. Technol. 49(18): 10859-10866
 - Lesworth T, Baker AR, Jickells T (2010) Aerosol organic nitrogen over the remote Atlantic Ocean.
 Atmos. Environ. 44: 1887-1893
 - Li J, Fang Y, Yoh M, Wang X, Wu Z, Kuang Y, Wen D (2012) Organic nitrogen deposition in
 precipitation in metropolitan Guangzhou city of southern China. Atmos. Res. 113: 57-67
 - Lin M, Walker J, Geron C, Khlystov A (2010) Organic nitrogen in PM2.5 aerosol at a forest site in the
 Southeast US. Atmos. Chem. Phys. 10: 2145-2157
- Liu F, Bi X, Zhang G, Peng L, Lian X, Lu H, Fu Y, Wang X, Peng P, Sheng G (2017) Concentration,
 size distribution and dry deposition of amines in atmospheric particles of urban Huangzhou, China.
 Atmos. Environ. 171: 279-288
 - Luo L, Yao XH, Gao HW, Hsu SC, Li JW, Kao SJ (2015a) Nitrogen speciation in various types of
 aerosol in spring over the northwestern Pacific Ocean. Atmos. Chem. Phys. 15: 25583-25625

- Luo P, Bao LJ, Li SM, Zeng EY (2015b) Size-dependent distribution and inhalation cancer risk of
 particle-bound polycyclic aromatic hydrocarbons at a typical e-waste recycling and an urban site.
 Environ. Pollut. 200: 10-15
- Mace KA, Duce RA, Tindale NW (2003a) Organic nitrogen in rain and aerosol at Cape Grim, Tasmania
 Australia. J. Geophys. Res.: Atmos. 108(D11): doi:10.1029/2002JD003051

Mace KA, Artaxo P, Duce RA (2003b) Water-soluble organic nitrogen in Amazon Basin aerosols during the dry (biomass burning) and wet seasons. J. Geophys. Res.: Atmos. 108(D16): doi:10.1029/2003JD003557

- 403 Matsumoto K, Yamamoto Y, Nishizawa K, Kaneyasu N, Irino T, Yoshikawa-Inoue H (2017) Origin of
 404 the water soluble organic nitrogen in the maritime aerosol. Atmos. Environ. 167: 97-103
- Murphy SM, Sorooshian A, Kroll JH, Ng NL, Chhabra C, Tong C, Surratt JD, Knipping E, Flagam RC,
 Seinfled (2007) Atmos. Chem. Phys. 7(9): 2313-2337
- 407 Nakamura T, Ogawa H, Maripi DK, Uematsu M (2006) Contribution of water soluble organic nitrogen
 408 to total nitrogen in marine aerosols over the East China Sea and western North Pacific. Atmos.
 409 Environ. 40: 7259-7264
- Rastogi N, Zhang X, Edgerton ES, Ingall E, Weber RJ (2011) Filterable water-soluble organic nitrogen
 in fine particles over the southeastern USA during summer. Atmos. Environ. 45: 6040-6047
- Ruiz-Jimenez, J., Hautala, S., Parshintsev, J., Laitinen, T., Hartonen, K., Petaja, T., Kulmala, M.,
 Riekkola, M.-L. (2012) Aliphatic and aromatic amines in atmospheric aerosol particles:
 Comparison of three ionization techniques in liquid chromatography-mass spectrometry and
 method development. Talanta 97: 55–62
- 416 Samy S, Robinson J, Rumsey IC, Walker JT, Hays MD (2013) Speciation and trends of organic nitrogen
 417 in southeastern U.S. fine particulate matter (PM2.5). J. Geophys. Res.: Atmos. 118: 1996-2006
- Sahoo S, Sit SK (2017) Dielectric relaxation of amides and tetrahydrofuran polar mixture in C6H6 from
 conductivity measurement under 9.90 GHz electric field Pramana 88: 11
- Shi JH, Gao HW, Qi JH, Zhang J, Yao XH (2010) Sources, compositions, and distributions of watersoluble organic nitrogen in aerosols over the China Sea. J. Geophys. Res.: Atmos. 115(D17)

422 Shiraiwa M, Selzle K, Yang H, Sosedova Y, Ammann M, Poschl U (2012) Multiphase chemical kinteics

- 423 of the nitration of aerosolized protein by ozone and nitrogen dioxide. Environ. Sci. Technol. 46(12):
 424 6672-6680
- Song T, Wang S, Zhang Y, Song J, Liu F, Fu P, Shiraiwa M, Xie Z, Yue D, Zheng J, Lai S (2017)
 Protein and amino acids in fine particulate matter in rural Guangzhou, southern China: Seasonal
 cycles, sources, and atmospheric processes. Environ. Sci. Technol. 51: 6773-6781
- Violaki K, Mihalopoulos N (2010) Water-soluble organic nitrogen (WSON) in size-segregated
 atmospheric particles over the Eastern Mediterranean. Atmos. Environ. 44: 4339-4345

- Violaki K, Mihalopoulos N (2011) Urea: An important piece of Water soluble organic nitrogen (WSON)
 over the Eastern Mediterranean. Sci. Total Environ. 409: 4796–4801
- Violaki K, Sciare J, Williams J, Baker AR, Martino M, Mihalopoulos N (2015) Atmospheric water
 soluble organic nitrogen (WSON) over marine environments: a global perspective. Biogeosci. Disc.
 11: 11361
- 435 Voet D, Voet JG, Pratt CW (2008) Fundamentals of Biochemistry, John Wiley & Sons
- Wang GH, Zhou BH, Cheng CL, Cao JJ, Li JJ, Meng JJ, Tao J, Zhang RJ, Fu PQ (2013) Impact of
 Gobi desert dust on aerosol chemistry of Xi'an, inland China during spring 2009: differences in
 composition and size distribution between the urban ground surface and the mountain atmosphere.
 Atmos. Chem. Phys. 13: 819-835
- Yang H, Yu JZ, Ho SSH, Xu JH, Wu WS, Wan CH, Wang XD, Wang XR, Wang LS (2005) The
 chemical composition of inorganic and carbonaceous materials in PM2.5 in Nanjing, China. Atmos.
 Environ. 39: 3735-3749
- Yu X, Yu Q, Zhu M, Tang M, Li S, Yang W, Zhang Y, Deng W, Li G, Yu Y (2017) Water Soluble
 Organic Nitrogen (WSON) in Ambient Fine Particles Over a Megacity in South China:
 Spatiotemporal Variations and Source Apportionment. J. Geophys. Res.: Atmos. 122(23)
- Zhang Q, Anastasio C (2003) Free and combined amino compounds in atmospheric fine particles
 (PM2.5) and fog waters from Northern California. Atmos. Environ. 37: 2247-2258
- Zhang Q, Anastasio C, Jimemez-Cruz M (2002) Water-soluble organic nitrogen in atmospheric fine
 particles (PM2.5) from northern California. J. Geophys. Res.: Atmos. 107(D11)
- Zhang Y, Zheng L, Liu X, Jickells T, Cape J, Goulding K, Fangmeier A, Zhang F (2008) Evidence for
 organic N deposition and its anthropogenic sources in China. Atmos. Environ. 42: 1035-1041

1	452	List of Table	st of Tables							
2 3	453	Table 1	Concentrations of chemical compounds in sampling location (TC).							
4 5 6	454	Table 2	Seasonal variations of WSON compounds in sampling location (TC).							
6 7 8	455									
9 0	456	List of Figur	es and Figure Legends							
1 2 3	457	Figure 1	Map of sampling location at Tung Chung (TC), Hong Kong.							
4 5	458	Figure 2	Seasonal variations of WSON and WSIN fractions. The values denote							
6 7 9	459		molar concentration (nmol N m ⁻³) and molar composition (%).							
9 0	460	Figure 3	Relationships between concentrations of total FAA, total amines, urea,							
1 2	461		glycine (Gly) and methionine (Met) in relation to O ₃ , NO and NO _y .							
3 4 5	462	Figure 4	Molar compositions of total FAA and total quantified amines in WSON							
6 7	463		in different seasons.							
8 9 0	464	Figure 5	Relationships between concentrations of total FAAs and total quantified							
1 2	465		amines.							
3 4 5										
6 7										
8 9 0										
0 1 2										
3 4										
5 6 7										
, 8 9										
0 1										
2 3										
4 5										
6 7										
8 9										
0 1			18							
2			10							
5 4										
5										

Table 1. Concentrations of chemical compounds in sampling location (TC).

Species	Min	Max	Mean ± SD	Species	Min	Max	Mean ± SI
PM mass (µg m ⁻³)	8.47	68.7	33.1±16.2	WSON/WSN	22.0%	61.2%	36.4±8.7%
WSN (nmol N m ⁻³)	33.3	513.5	178.7±128.8	WSN/PM	2.7%	10.6%	6.8±3.5%
WSON (nmol N m ⁻³)	10.6	257.6	64.3±56.7	WSIN/PM	1.6%	6.7%	4.4±2.7%
WSIN (nmol N m ⁻³)	12.9	310.4	114.4±78.5	WSON/PM	0.9%	5.3%	2.5±1.2%
O ₃ (µg m ⁻³)	10.0	120.7	50.7±31.6				
NO (µg m ⁻³)	1.1	43.7	12.4±11.3				
NO _y (μg m ⁻³)	18.2	142.4	65.3±31.5				
Free Amino Acids (FAA) (pmol m ⁻³)				Amines (pmol m ⁻³)			
Protein type FAA							
Alanine (Ala)	78.7	311.3	169.0±57.0	Methanolamine	120.9	547.5	263.6±97.3
Arginine (Arg)	nd	nd	nd	Ethylamine	52.2	161.6	108.4±28.2
Aspartic acid (Asp)	9.7	39.1	23.0±8.2	Ethanolamine	18.3	68.1	42.0±13.6
Cysteine (Cys)	70.7	279.3	161.1±55.9	Dipropylamine	0.44	2.1	1.2±0.4
Gluramine (Gln)	7.5	33.2	20.3±7.4	Tripropylamine	0.52	2.7	1.3±0.5
Glutamic acid (Glu)	4.8	24.0	12.0±4.0	iso-Butylamine	0.14	1.0	0.43±0.23
Glycine (Gly)	176.5	842.6	434.3±154.6	sec-Butylamine	0.21	1.2	0.53±0.25
Histidine (His)	4.0	21.0	10.4±4.3	Dimethylamine	0.62	3.7	1.7±0.78
Isoleucine (Ile)	9.5	42.7	25.4±9.2	Diethylamine	0.38	1.8	0.84±0.35
Leucine (Leu)	12.6	41.8	26.6±8.7	Ethylenediamine	0.12	0.57	0.29±0.12
Lysine (Lys)	23.7	71.1	45.7±12.5	Phenylamine	0.94	5.3	2.6±1.1
Methionine (Met)	2.9	12.4	6.7±2.4	N-Methylphenylamine	0.14	0.58	0.35±0.14
Phenyalanine (Phe)	10.1	53.1	22.2±9.0	2-Methylphenylamine	0.05	0.23	0.12±0.05
Proline (Pro)	12.1	52.6	25.8±9.9	4-Methylphenylamine	0.05	0.25	0.14±0.07
Threonine (Thr)	16.3	77.0	40.0±14.7	4-Ethylphenylamine	0.05	0.23	0.14±0.05
Tyrosine (Tyr)	1.0	3.9	2.3±0.8	iso-Propylphenylamine	0.06	0.26	0.15±0.06
Serine (Ser)	12.3	36.2	25.5±7.0	3-Propylphenylamine	0.08	0.38	$0.19{\pm}0.08$
Valine (Val)	51.0	180.3	117.6±37.1	p-Aminophenol	0.16	1.1	0.46±0.25
Total Protein FAA	531.2	2000.4	1147.5	2-Amino-1-butanol	0.08	0.27	0.16±0.05
Non-protein type FAA				N-Methylformamide	13.6	57.1	31.8±11.3
β-alanine (β-Ala)	39.6	163.4	97.7±30.9	4-Aminobenzoic acid	0.07	0.33	0.17±0.07
γ-aminobutyric acid (γ-Aba)	3.4	19.6	8.1±3.5	Total Amines	223.8	806.0	456.6
Ornithine (Orn)	4.7	20.4	11.2±3.7				
Total Non-protein FAA	49.5	198.8	117.0	Urea (nmol m ⁻³)	2.8	14.5	7.8
Total FAA (Protein + Non-Protein)	580.8	2199.2	1264 5				

468	Table 2.	Seasonal	variations	of WSON	compounds in	sampling	location	(TC)).
-----	----------	----------	------------	---------	--------------	----------	----------	------	----

ON species	Spri	ng	Summer		Autu	mn	Winter		
	Mean	SD	Mean	SD	Mean	SD	Mean	5	
Free Amino Acids (FAA) (pmol m ⁻³)									
Protein type FAA									
Alanine (Ala)	169.2	48.3	166.6	96.9	152.6	47.1	189.8	4	
Arginine (Arg)	bd ^a	bd	bd	bd	bd	bd	bd		
Aspartic acid (Asp)	17.7	5.01	17.8	7.41	24.2	6.18	31.5		
Cysteine (Cys)	132.1	34.1	135.3	62.0	172.2	56.2	198.8		
Glutamine (Gln)	16.1	4.28	12.9	5.46	21.7	5.07	28.9		
Glutamic acid (Glu)	10.4	2.70	9.3	3.53	12.4	3.14	15.4		
Glycine (Gly)	341.4	107.9	339.8	142.9	469.5	117.3	564.8		
Histidine (His)	11.9	3.1	12.4	6.0	8.7	3.70	9.1		
Isoleucine (Ile)	21.3	6.4	21.4	14.2	26.5	7.53	31.4		
Leucine (Leu)	28.4	7.1	26.5	13.4	24.2	6.93	27.7		
Lysine (Lys)	49.8	10.9	46.6	18.1	39.3	9.75	48.2		
Methionine (Met)	5.28	1.67	5.88	3.04	7.00	2.04	8.44		
Phenyalanine (Phe)	19.3	5.71	16.1	6.17	23.7	6.68	28.3		
Proline (Pro)	22.9	5.47	24.1	12.5	27.2	10.2	28.6		
Threonine (Thr)	35.2	12.1	30.5	13.9	41.0	11.8	51.4		
Tyrosine (Tyr)	2.19	0.65	2.10	1.06	2.16	0.78	2.54		
Serine (Ser)	26.3	6.98	22.6	9.68	25.2	7.31	27.4		
Valine (Val)	89.4	26.5	111.8	49.2	124.0	33.1	143.4		
Total Protein FAA	982.8	263.7	988 7	450.9	1179.8	300.3	1406.8		
Non-protein type F4A	202.0	200.7	200.7	450.9	11/2.0	500.5	1400.0		
$\beta_{-a anine}(\beta_{-}A a)$	86.8	21.6	70 1	37.2	100.7	28.5	120.6		
y aminobutyric acid (y. Aba)	88	21.0	75	36	73	20.5	0.0		
Ornithing (Orn)	11.7	2.2	11.9	5.0	0.6	2.7	12.0		
Total Non-motoin EAA	107 4	2.9	08.4	16.8	9.0 117.6	22.2	1416		
Total FAA (Protein + Non Protein)	100.1	20.2	1087.2	407.0	1207.4	331.5	15/18/3		
Total FAA (Floteni + Non-Floteni)	1090.1	209.1	1007.2	497.0	1297.4	551.5	1546.5		
Amines (pmol m ⁻³)									
Methanolamine	229.3	61.8	228.8	109.8	267.2	89.8	322.7		
Ethylamine	98.5	25.6	97.5	36.8	105.7	23.7	130.4		
Ethanolamine	39.8	11.0	37.9	20.5	38.5	12.8	51.8		
Dipropylamine	0.95	0.21	1 30	0.45	1 11	0.42	1 / 8		
Tripropylamine	1.00	0.21	1.50	0.45	1.11	0.42	1.40		
ico Putulamino	0.25	0.27	0.24	0.74	0.40	0.38	0.70		
ISO-Dutylamine	0.23	0.00	0.34	0.20	0.40	0.19	0.70		
Sec-Butylamine	0.55	0.08	0.59	0.21	0.55	0.17	0.84		
	1.59	0.55	1.15	0.37	1.02	0.55	2.75		
	0.60	0.14	0.65	0.22	0.85	0.35	1.21		
Etnylenediamine	0.20	0.05	0.24	0.10	0.32	0.13	0.40		
Phenylamine	2.29	0.70	1.97	0.83	2.63	1.42	3.34		
N-Methylphenylamine	0.29	0.11	0.28	0.14	0.33	0.11	0.49		
2-Methylphenylamine	0.09	0.02	0.11	0.04	0.11	0.04	0.16		
4-Methylphenylamine	0.09	0.03	0.14	0.06	0.14	0.06	0.19		
4-Ethylphenylamine	0.13	0.04	0.11	0.05	0.13	0.06	0.19		
iso-Propylphenylamine	0.10	0.03	0.13	0.07	0.15	0.06	0.20		
3-Propylphenylamine	0.13	0.04	0.14	0.04	0.18	0.07	0.28		
p-Aminophenol	0.26	0.07	0.27	0.07	0.48	0.20	0.78		
2-Amino-1-butanol	0.15	0.06	0.13	0.06	0.15	0.04	0.20		
N-Methylformamide	22.48	6.29	27.01	6.40	32.66	9.60	44.14		
4-Aminobenzoic acid	0.11	0.02	0.14	0.06	0.18	0.06	0.24		
Total Amines	398.4	96.1	400.2	172.9	454.5	124.9	564.1		
	0,0								
	57011								

Figure 1. Map of sampling location at Tung Chung, Hong Kong.

Figure 3. Relationships between concentrations of total FAA, total amines, urea, glycine (Gly) and methionine (Met) in relation to O₃, NO and NOy.

