1 Title

2 AL	S-FTLD-linked mutations	of SQSTM1/p62 disrupt selective
------	-------------------------	---------------------------------

3 autophagy and NFE2L2/Nrf2 anti-oxidative stress pathway

- 4
- 5 Zhiqiang Deng¹, Junghyun Lim^{1,4}, Qian Wang¹, Kerry Purtell¹, Shuai Wu⁵, Mitchell
- 6 S. Wold¹, Gloria M. Palomo Carrasco⁶, Haiyan Tan⁷, Giovanni Manfredi⁶, Yanxiang

7 Zhao⁵, Junmin Peng⁷, Bo Hu⁸, Shi Chen^{2,3*} and Zhenyu Yue^{1*}

- 8
- ¹Department of Neurology, The Friedman Brain Institute, Icahn School of Medicine at
 Mount Sinai, New York, New York 10029, USA
- ²Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
- 12 ³Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of
- 13 Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei
- 14 430072, China
- ⁴Current Address: Genentech, Inc. 1 DNA Way, South San Francisco, CA 94080, USA
- ⁵Department of Applied Biology and Chemical Technology, State Key Laboratory of
- 17 Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung
- 18 Hom, Kowloon, Hong Kong, China
- 19 ⁶Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York,
- 20 NY 10065, USA
- ²¹ ⁷Departments of Structural Biology and Developmental Neurobiology, Center for
- 22 Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny
- 23 Thomas Place, Memphis, Tennessee 38105, USA
- ⁸Department of Neurology, Union Hospital, Tongji Medical College, Huazhong
- 25 University of Science and Technology, Wuhan, China
- 26 *Correspondence: zhenyu.yue@mssm.edu (Z. Yue); shichen@whu.edu.cn (S. Chen).
- 27
- 28
- 29
- 30
- 31
- 32

33 Abstract

Macroautophagy (autophagy) is a key catabolic pathway for the maintenance of 34 proteostasis through constant digestion of selective cargoes. The selectivity of autophagy 35 is mediated by autophagy receptors that recognize and recruit cargoes to 36 autophagosomes. SQSTM1/p62 is a prototype autophagy receptor, which is commonly 37 found in protein aggregates associated with major neurodegenerative diseases. While 38 accumulation of SQSTM1 implicates a disturbance of selective autophagy pathway, the 39 pathogenic mechanism that contributes to impaired autophagy degradation remains 40 poorly characterized. Herein we show that amyotrophic lateral sclerosis (ALS) and 41 frontotemporal lobar degeneration (FTLD)-linked mutations of TBK1 and SOSTM1 42 disrupt selective autophagy and cause neurotoxicity. Our data demonstrates that 43 proteotoxic stress activates serine/threonine kinase TBK1, which coordinates with 44 autophagy kinase ULK1 to promote concerted phosphorylation of autophagy receptor 45 SQSTM1 at the UBA domain and activation of selective autophagy. In contrast, ALS-46 FTLD-linked mutations of TBK1 or SQSTM1 reduce SQSTM1 phosphorylation and 47 compromise ubiquitinated cargo binding and clearance. Moreover, disease mutation 48 SQSTM1^{G427R} abolishes phosphorylation of Ser351 and impairs KEAP1-SQSTM1 49 interaction, thus diminishing NFE2L2/Nrf2-targeted gene expression and increasing 50 TARDBP/TDP-43 associated stress granule formation under oxidative stress. 51 Furthermore, expression of SQSTM1^{G427R} in neurons impairs dendrite morphology and 52 KEAP1-NFE2L2 signaling. Therefore, our results reveal a mechanism whereby 53 pathogenic SQSTM1 mutants inhibit selective autophagy and disrupt NFE2L2 anti-54 oxidative stress response underlying the neurotoxicity in ALS-FTLD. 55

56

```
57 Key words:
```

```
58 ALS-FTLD; SQSTM1/p62; phosphorylation; selective autophagy; TBK1.
```

- 59
- 60
- 61

62 Abbreviations

- 63 ALS: amyotrophic lateral sclerosis; FTLD: frontotemporal lobar degeneration; G3BP1:
- Ras GTPase-activating protein-binding protein 1; GSTM1: Glutathione S-Transferase
- 65 Mu 1; HO-1: Heme oxygenase 1; KEAP1: Kelch-like ECH associated protein1; KI:
- 66 kinase inactive; KIR: KEAP1 interaction region; KO: knockout out; NFE2L2/Nrf2:
- 67 NFE2-related factor2; NQO1: NAD(P)H quinone dehydrogenase 1; SQSTM1/p62:
- 68 sequestosome 1; SOD1: superoxide dismutase 1; TARDBP/TDP-43: transactive
- response DNA binding protein 43 kDa; TBK1: TANK-binding kinase 1; UBA:
- *ub*iquitin *association*; ULK1: Unc-51 like autophagy activating kinase 1; WT: wild
- 71 type.
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83

- 84
- 85

86

87 Introduction

Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are 88 89 closely related neurodegenerative disorders that are considered part of the same disease spectrum [1-3]. A common feature of ALS and FTLD is the presence of protein and 90 91 protein-RNA aggregates in affected motor neurons, implicating impairment of protein 92 degradation in the disease process [4]. More than 30 different genes are associated with ALS-FTLD, including SOD1, C9ORF72, TARDBP/TDP-43, OPTN (optineurin), 93 SOSTM1/p62 and TBK1 (TANK-binding kinase 1). TARDBP is an RNA binding 94 95 protein linked to RNA metabolism that harbors prion-like domains allowing it relocate to cytosol stress granules upon stress condition [5]. SQSTM1 and OPTN are autophagy 96 receptors that mediate selective autophagy, which is a critical pathway for the removal 97 98 of aggregation-prone proteins and damaged organelles [6-8]. Autophagy receptors recognize specific cargoes and recruit them to the autophagosome for degradation via 99 the lysosome. TBK1, a kinase known to phosphorylate both SQSTM1 and OPTN [8-100 10], was recently identified as an ALS causal gene [11, 12]. Recent studies showed that 101 reduced TBK1 expression in mice promotes TARDBP aggregation, axonal degeneration 102 and neuronal loss [13]. Specific mutations of TBK1, e.g. TBK1^{E696K}, disrupt OPTN-103 TBK1 interaction and block efficient autophagosome formation [12, 14]. Thus, the 104 evidence raises the possibility that aberrant phosphorylation of autophagy receptors by 105 TBK1 affects the recognition of autophagic cargoes, leading to a defect in clearance of 106 107 protein aggregates.

109	amino acid sensing, oxidative stress and DNA damage response [15, 16]. SQSTM1
110	harbors different types of protein - protein interaction domains, including PB1 (Phox
111	and Bem1), LIR (LC3 interaction region) and UBA (ubiquitin association) domains.
112	Multiple kinases have been shown to phosphorylate SQSTM1. Both CK2 and TBK1
113	phosphorylate SQSTM1 at Ser403 (equivalent to Ser405 in mice) in the UBA domain,
114	which increases the affinity of SQSTM1 for ubiquitinated cargo [9, 17]. Autophagy
115	kinase ULK1 phosphorylates neighboring Ser407 (equivalent to Ser409 in mice),
116	leading to the destabilization of the UBA dimer of SQSTM1 and promotion of Ser403
117	phosphorylation, and thus enhancing selective autophagy degradation [6]. The evidence
118	suggests a concerted action of multiple kinases for regulating SQSTM1 functions
119	during selective autophagy.
120	SQSTM1 associated neuronal inclusions are common in ALS-FTLD brains [18-20].
121	The prevalence of SQSTM1 inclusions in ALS-FTLD patients suggests that ALS-FTLD
122	is a proteinopathy in which aggregation and phosphorylation of SQSTM1 represents a
123	stress response that invokes selective autophagy [21, 22]. Recent reports showed that
124	SQSTM1 promotes the clearance of stress granule, a hallmark of ALS-FTLD via
125	selective autophagy [23, 24]. Knockdown of SQSTM1 in zebra fish caused an
126	abnormal locomotor phenotype, which was ameliorated by an mTOR inhibitor
127	(rapamycin, an autophagy activator) and could also be rescued by wild-type (WT)
128	human SQSTM1 but not the ALS-FTLD-associated SQSTM1 ^{P394L} mutant [25]. In
129	addition, the ALS-FTLD-associated mutation $SQSTM1^{L341V}$ mutant was shown to
130	occur in LIR motifs that were defective for recognizing LC3B and ubiquitinated cargo

131 delivery [26].

132	Emerging evidence suggests that oxidative stress is an important contributing factor in
133	ALS [27]. A central regulator of the antioxidant response in cells is the NFE2L2/Nrf2
134	(NFE2-related factor2)-KEAP1 (Kelch-like ECH associated protein1) signal. NFE2L2
135	is a basic region leucine zipper transcription factor, which is negatively regulated by
136	KEAP1 under normal condition. When the cell is insulted by oxidative stress, NFE2L2
137	dissociates from KEAP1, translocates into the nucleus and promotes the transcription of
138	antioxidant response genes [28-30]. Notably, the impairment of NFE2L2 antioxidant
139	pathway has been linked to ALS [31, 32]. SQSTM1 is a pivotal regulator of the
140	NFE2L2 antioxidative stress response through KEAP1 binding (via SQSTM1 motif
141	KIR, KEAP1 interacting region) [33]. Interestingly, biochemical analysis of the ALS-
142	linked mutations of SQSTM1 (SQSTM1 ^{P348L} and SQSTM1 ^{G351A}) show a loss of
143	KEAP1 binding and reduced ability to activate NFE2L2 signaling [34]; however, the
144	pathogenic role for mutant SQSTM1 in neurotoxicity relevant to ALS-FTLD remains
145	poorly understood.
146	Here, we investigated the potential pathogenic mechanism for TBK1 and SQSTM1
147	linked ALS-FTLD. We show that ALS-FTLD-associated mutations of TBK1 and
148	SQSTM1 disrupt selective autophagy. Our results reveal a mechanism whereby
149	pathogenic SQSTM1 mutant impairs selective autophagy and causes neurotoxicity by
150	disrupting NFE2L2 anti-oxidative stress response underlying the cause of ALS-FTLD.
151	

152 **Results**

153 Proteotoxic stress activates TBK1 activity and ALS-FTLD-linked mutations of TBK1

154 *impair SQSTM1 phosphorylation at UBA*

155 Our previous study showed that ULK1 phosphorylation of SQSTM1 regulated

156 SQSTM1-mediated selective autophagy in response to proteotoxic stress [6]. Here we

asked if TBK1 can be activated under the similar stress conditions such as proteasome

inhibition and expression of disease protein aggregates [6]. Our results showed that

159 MG132 treatment, which increases ubiquitinated proteins by inhibiting proteasome,

160 causes an increase of phosphorylation of TBK1 at Ser172, an autophosphorylation site

161 indicative of TBK1 activity [35, 36], as shown in western blot and immunostaining

analysis (Fig. 1 A and B, and Fig. S1A). Cell fractionation assay indicated that pSer172

163 TBK1 primarily localizes in the insoluble fraction upon MG132 treatment (Fig. S1B).

164 In addition, expression of poly-103Q-mCFP (carrying polyQ expansion) in HeLa cells

also increased pSer172 TBK1 levels. We also assessed TBK1 autophosphorylation in

166 cells expressing SOD1^{G93A} or WT SOD1. SOD1^{G93A} is associated with familial form of

167 ALS and prone to aggregate formation [37]. We found that phosphorylation of TBK1 at

168 Ser172 was increased upon the expression of SOD1^{G93A} but not WT SOD1 (Fig. 1 E

and F). Thus, the above evidence suggests that TBK1, similar to ULK1, is activated

170 upon proteotoxic stress.

171 Since TBK1 phosphorylates SQSTM1 at Ser403 (equivalent to mouse SQSTM1

Ser405) [9], we next examined if TBK1 pathogenic mutants affect SQSTM1 Ser405

173 phosphorylation. Multiple variants of TBK1 have been reported as risk factors for ALS-

174 FTLD [12, 38, 39]. We then co-expressed SQSTM1 and different TBK1 mutants in

175	HEK293T cells. The results showed that three TBK1 variants, TBK1 ^{R47H} , TBK1 ^{R357Q}
176	and TBK1 ^{M559R} , lost their abilities to phosphorylate Ser405 or Ser409, while two other
177	mutants, TBK1 ^{E696K} and TBK1 690-713del, displayed no significant change in
178	SQSTM1 phosphorylation (Fig. 1 H and I). As controls, TBK1K38D (kinase-dead
179	mutant) or TBK1 ^{S172A} (autophosphorylation null) failed to induce SQSTM1
180	phosphorylation at Ser405 or Ser409 (Fig. S1C). We verified the kinase activity of the
181	above TBK1 mutants by assaying p- Ser172 (Fig. 1 J and K).
182	

183 TBK1 phosphorylation of SQSTM1 depends on ULK1 activity and ALS-FTLD-linked

184 SQSTM1 mutations reduce phosphorylation of SQSTM1 mediated by ULK1

185 Our previous study suggested a concerted phosphorylation of Ser409 and Ser405 of

186 SQSTM1 upon proteotoxic stress including expression of disease related proteins and

187 proteasome inhibition through MG132 treatment [6]. We next asked if ULK1 and

188 TBK1 coordinated the phosphorylation of Ser409 and Ser405. First, we performed

189 phosphorylation assays with purified recombinant SQSTM1 and ULK1-Atg13 or

190 TBK1. ULK1 phosphorylated SQSTM1 at Ser409 but not Ser405, whereas TBK1

191 modestly phosphorylated SQSTM1 at Ser405 but not at Ser409. However, combining

192 ULK1-Atg13 and TBK1 in the same assay with SQSTM1 caused a marked increase in

the p-Ser405 but not p-Ser409 of SQSTM1 (Fig. 2A). Second, we observed that TBK1

overexpression induced the phosphorylation of SQSTM1 at both Ser405 and Ser409 in

the cells (Fig. S1C). However, the phosphorylation of Ser409 and Ser405 diminished

196 when TBK1 was co-expressed with the ULK1 mutant with kinase inhibition (KI), a

dominant negative mutant of ULK1 kinase activity [40] (Fig. S2). Furthermore, we
found that, under proteasome inhibition condition, treatment of an ULK1 kinase

specific inhibitor (SBI0206965) reduced the levels of p-Ser409 as well as p-Ser405

200 (Fig. 2 B and D), consistent with the idea that the p-Ser405 depends on p-Ser409 [6].

201 The above results suggest that TBK1-mediated p-Ser405 depends on ULK1 mediated

202 p-Ser409 in SQSTM1 UBA (Fig. 2E).

203 Moreover, we determined if disease-associated *SQSTM1* mutants affect SQSTM1

204 phosphorylation at the UBA domain by ULK1 and TBK1. We selected three UBA

domain mutants of SQSTM1, SQSTM1^{P394L}, SQSTM1^{G413S}, and SQSTM1^{G427R}, for the

test (Fig. 2F). We used purified SQSTM1 mutant proteins in a phosphorylation assay in

the presence of ULK1-Atg13 kinase complex. Our results showed that p-Ser409 or p-

208 Ser405 levels are diminished in the above SQSTM1 mutants (Fig 2 G-J). In HEK293T

cells co-transfected with the ULK1 and SQSTM1 variant plasmids, the p-Ser409 and p-

210 Ser405 are both reduced in the SQSTM1^{P394L} and SQSTM1^{G427R} mutants. As controls,

SQSTM1^{S409A} mutant displayed impaired p-Ser405, but the S405A retains normal

levels of p-Ser409 (Fig. 2 K-M), in agreement with the idea that the p-Ser409 is

required for the p-Ser405 [6].

214

ALS-FTLD-linked mutation in SQSTM1 reduces the binding of ubiquitinated proteins and ULK1.

217 Phosphorylation of SQSTM1 at the UBA domain enhances its binding affinity to

ubiquitinated (Ub) cargoes, promoting their delivery to autophagosome for degradation

219	[6, 17]. We then determined whether the Ub binding was altered in the SQSTM1
220	disease mutants. Purified fusion MBP-SQSTM1 mutants were incubated with K63
221	poly-Ub chains, followed by MBP-SQSTM1 pull down. The results showed reduced
222	binding affinity of the SQSTM1 ^{P394L} , SQSTM1 ^{G413S} , and SQSTM1 ^{G427R} mutants to K63
223	poly-Ub chains compared to WT. As controls, SQSTM1 ^{S409E} exhibited an increased
224	binding, whereas SQSTM1 ^{S409A} displayed a decreased binding, to K63 poly-Ub chains
225	(Fig. 3 A and B), consistent with our previous report [6]. We next examined the binding
226	between SQSTM1 mutants and poly-Ub proteins in the cells by following a previously
227	established procedure that distinguishes SQSTM1-associated poly-Ub proteins from
228	SQSTM1 self-ubiquitination [6]. The results again indicated that the SQSTM1 ^{P394L} ,
229	SQSTM1 ^{G413S} , and SQSTM1 ^{G427R} variants have reduced binding to poly-Ub proteins.
230	Similarly, SQSTM1 ^{S405A} or SQSTM1 ^{S409A} diminished the binding, while SQSTM1 ^{S409E}
231	enhanced the binding to poly-Ub proteins (Fig 3 C and D). Proteasome inhibition
232	through MG132 treatment induces the interaction of ULK1 and SQSTM1, which
233	contributes to the ULK1-mediated SQSTM1 phosphorylation [6]. We then tested the
234	interaction of ULK1 with SQSTM1 variants. The results demonstrated a reduced ULK1
235	binding to SQSTM1 ^{P394L} , SQSTM1 ^{G413S} , and SQSTM1 ^{G427R} , compared to WT (Fig. 3 E
236	and F).
237	To understand the molecular mechanism for how these ALS-FTLD-linked mutations
238	affect the interaction of SQSTM1 and ubiquitinated protein, we applied structural
239	modeling of SQSTM1 UBA domain in complex with mono ubiquitin (mono-Ub) by
240	docking the SQSTM1 UBA structure (PDB ID 3B0F) onto the structure of the NBR1

241	UBA domain in complex with mono-Ub (PDB ID 2MJ5). The SQSTM1 ^{P394L} ,
242	SQSTM1 ^{G413S} and SQSTM1 ^{G427R} mutations were then mapped onto the model
243	accordingly (Fig 3G and S3A). Similar to a previous report, the SQSTM1 ^{P394L} mutation
244	is located far away from either the ubiquitin binding site or the dimer interface of the
245	UBA domain (Fig. 3G) [41]. Thus, the impact of this mutation on SQSTM1-ubiquitin
246	interaction cannot be readily derived from the modeling. On the other hand, residue
247	G427 is located in the vicinity of ubiquitin binding area and the $SQSTM1^{G427R}$
248	mutation, with its extended side chain, is predicted to lead to direct steric clash with Ub
249	and thus weakening the SQSTM1-Ub interaction (Fig. 3G). Furthermore, the
250	SQSTM1 ^{G413S} mutation is located at the dimer interface of the UBA domain and has
251	been predicted to form an additional hydrogen bond with R415 of another UBA
252	molecule (Fig. S3A). This interaction may modestly stabilize the dimeric form of the
253	UBA domain, which would negatively affect its interaction with Ub as shown in our
254	previous study [6].
255	To validate our moduling predictions on SOSTM1G4138 and SOSTM1G4278, wa

To validate our modeling predictions on SQSTM1^{G413S} and SQSTM1^o , we 255 measured the binding affinity of these UBA domain mutants to mono-Ub by Isothermal 256 Titration Calorimetry (ITC) assays. Our data confirms that the SQSTM1^{G427R} mutation 257 completely abolishes the interaction between the UBA domain and mono-Ub, whereas 258 the SQSTM1^{G413S} mutation shows little difference in binding of mono-Ub as compared 259 to WT (Kd of 40.7 µM vs 45.3 µM (Fig. 3H and S3B). This ITC result is largely 260 consistent with the previous report, in which NMR titration experiments were used to 261 measure the impact of these mutations on UBA dimer formation and interaction with 262

263 mono-Ub [41]. One notable difference is the measured value of K_d . While the NMR study 264 estimated 5-10 fold reduction for the SQSTM1^{G427R} mutant, our ITC data showed 265 complete abolishment of interaction. Moreover, our data suggests that SQSTM1^{G413S} 266 may affect SQSTM1 binding of poly-Ub proteins through a different mechanism (in 267 contrast to SQSTM1^{G427R}) that has yet to be determined.

268

ALS-FTLD-linked mutation SQSTM1^{G427R} impairs SQSTM1-mediated sequestration and clearance of ubiquitinated proteins under proteotoxic stress.

We then focused on characterization of the mutant SQSTM1^{G427R}, which showed a 271 significant impairment in Ub binding in the ITC analysis. We established a stable 272 mouse embryonic fibroblast (MEF) cell line expressing SQSTM1^{G427R} in SQSTM1 273 274 knockout (KO) background. Under normal conditions, immunofluorescence analysis showed that the SQSTM1^{G427R} cells displayed no difference in localization from the 275 control WT SQSTM1. However, upon MG132 treatment, SQSTM1 formed large 276 inclusions in the WT SQSTM1 MEFs, whereas the MEF expressing the SQSTM1^{G427R} 277 mutant showed reduced inclusion body formation (Fig. 4 A and B). Immunoblot 278 analysis showed that the insoluble fraction of the SQSTM1^{G427R} was markedly reduced 279 compared to WT SQSTM1 upon MG132 treatment (Fig. 4 C and D), consistent with 280 the cell imaging result. These results demonstrate the defective sequestration in the 281 SQSTM1^{G427R} mutant. Furthermore, we treated WT SQSTM1 and SQSTM1^{G427R} MEF 282 with MG132 and then induced autophagy through serum starvation (S.S.) to examine 283 the clearance of ubiquitinated proteins. In WT SQSTM1 cells, accumulated 284

ubiquitinated proteins were efficiently cleared upon serum starvation, whereas serum
starvation has little effect in the clearance of ubiquitinated proteins in SQSTM1^{G427R}
MEF. Thus the SQSTM1^{G427R} mutation blocks the degradation of ubiquitinated proteins
under proteotoxic stress (Fig. 4 E and F).

289

A critical role for SQSTM1 in the regulation of KEAP1-NFE2L2 pathway that is disrupted by SQSTM1^{G427R}

Despite the role of SQSTM1 as an autophagy receptor that co-aggregates with disease 292 293 related proteins in affected neurons, its physiological function in the brain remains poorly understood. SQSTM1 controls ubiquitinated protein aggregate formation; 294 however, it does not contribute to neurodegeneration caused by inactivation of 295 296 autophagy [42]. To identify potential cargoes that are degraded by SQSTM1-mediated selective autophagy, we performed quantitative proteomic analysis of sqstml knockout 297 (KO) mouse brains with triplication through a multiplex isobaric labeling mass 298 spectrometry (MS) pipeline with extensive separation power and high mass resolution 299 [43] (Fig. S4 A and B). Approximately 14,000 unique proteins were screened in the 300 analysis. To our surprise only a few showed differentiated expression in sqstm1 KO 301 brains (e.g. KEAP1) with adjusted p<0.05 (Fig. S4B and Datasate1). By western-blot 302 analysis, we were able to validate the increased KEAP1 protein levels and the reduction 303 of GSTM1, which is a target gene of NFE2L2 and controlled by KEAP1 (Fig. 5 A and 304 B). As reported, we did not find the accumulation of ubiquitinated protein [44] or 305 altered LC3 II level (Fig. S4 C and D) in sqstm1 KO brain. In addition, we did not 306

307	observe any changes in SQSTM1 related autophagy receptor such as NPD52 and NBR1
308	in sqstm1 KO brains, suggesting no possible compensatory mechanism for loss of
309	SQSTM1 expression. Thus, the results revealed a primary function of SQSTM1 in
310	regulating the KEAP1-NFE2L2 pathway at basal level in mouse brain.
311	Previous study showed that SQSTM1 regulated KEAP1-NFE2L2 interaction through
312	SQSTM1 phosphorylation at Ser351 (in the KIR motif), thus controlling NFE2L2 anti-
313	oxidative stress response [45]. We next asked whether SQSTM1 ^{G427R} also alters p-
314	Ser351 under oxidative stress. We treated WT SQSTM1 and SQSTM1 ^{G427R} MEF with
315	sodium arsenite (AS), which induces p-Ser351 and oxidative stress [45] and then
316	assayed p-Ser351 in SQSTM1. The results showed that the ratio p-Ser351:total
317	SQSTM1 were significantly lower in SQSTM1 ^{G427R} cells than that in WT cells (Fig. 5
318	C and D). As p-Ser351 markedly enhanced the interaction of SQSTM1 and KEAP1
319	[45], we next questioned whether the SQSTM1-KEAP1 interaction was altered by
320	G427R mutation. Co-IP experiment result indicated that SQSTM1 ^{G427R} displayed
321	reduced binding to KEAP1 (Fig. 5 C and E). We next examined the localization of
322	SQSTM1 ^{G427R} and KEAP1 in cells by immunofluorescence staining. AS treatment
323	causes WT SQSTM1 to form prominent puncta, which co-localizes with KEAP1 foci;
324	however, in SQSTM1 ^{G427R} cells, SQSTM1 and KEAP1 failed to form foci (Fig. 5F).
325	Immunoblot analysis showed that the insoluble fraction of SQSTM1 and KEAP1 was
326	markedly reduced in SQSTM1 ^{G427R} cells when compared to WT SQSTM1 cells upon
327	AS treatment (Fig. 5 G-I), consistent with the imaging result. The result also supports
328	the idea that SQSTM1 ^{G427R} fails to sequester cargo under oxidative stress.

329	As SQSTM1-KEAP1 interactions regulate NFE2L2 activity, which transcribes
330	antioxidative gene expression, we next assayed NFE2L2 target gene expression in
331	SQSTM1 ^{G427R} cells. While the KEAP1 levels are decreased (correlated with the
332	increase of p-Ser351), two NFE2L2 target genes HO-1 and Nqo1 are increased in a
333	time-dependent manner in WT SQSTM1 cells upon treatment of AS (Fig. 5 J-K).
334	Interestingly, HO-1 and Nqo1 expression levels are either significantly reduced or
335	nearly abolished in SQSTM1 ^{G427R} cells compared to sqstm1 WT or KO cells (Fig. 5 J-
336	K). The results suggest that SQSTM1 ^{G427R} disrupts NFE2L2 antioxidant response
337	resulted from impaired KEAP1- SQSTM1 binding. It is surprising to see a further
338	reduction of HO-1 and Nqo1 levels in SQSTM1 ^{G427R} cells compared to KO cells. The
339	result implies that SQSTM1 ^{G427R} does not simply cause a loss of function in SQSTM1;
340	it may trigger a gain of toxic function to further impair NFE2L2 response.
341	
342	Disease mutation SQSTM1 ^{G427R} enhances TARDBP associated stress granule
343	formation upon oxidative stress.
344	Previous reports showed that oxidative stress, e.g., AS, induces the formation of cytosol
345	foci of TARDBP, which co-localizes to stress granules [46]. Given our results that

- 346 SQSTM1^{G427R} inhibits NFE2L2-mediated antioxidant response, we asked if the
- 347 SQSTM1^{G427R} mutation affects the cytosol foci formation (or stress granule) of
- 348 TARDBP induced by oxidative stress. There is no significant change in the fraction of
- cells containing TARDBP positive stress granules (marked by G3BP1) in
- 350 SQSTM1^{G427R} MEFs compared to WT SQSTM1 or KO MEFs [47] (Fig. 6 A and B).

351	However, the fraction of cells with TARDBP stress granules is markedly increased in
352	SQSTM1 ^{G427R} cells compared with WT SQSTM1 or KO cells upon AS treatment (Fig.
353	6 A and B). Immunoblot analysis showed that the insoluble TARDBP protein levels
354	were also increased in SQSTM1 ^{G427R} cells, when compared to WT SQSTM1 or KO
355	cells upon AS treatment. In contrast, there is no significant difference between WT
356	SQSTM1 and KO cells (Fig. 6 C and D), consistent with the imaging results. The result
357	suggests that SQSTM1 ^{G427R} mutation disrupts cell stress response that handles stress
358	granule; this dysfunction of SQSTM1 ^{G427R} is not caused by a loss of function in
359	SQSTM1, as sqstm1 KO cells show little change in the fraction of cells containing
360	TARDBP stress granules.

362 SQSTM1^{G427R} reduces the dendritic complexity and impairs NFE2L2 signaling in 363 neurons

364	We next examined the effect of SQSTM1 ^{G427R} mutation in neuron morphology and
365	NFE2L2 signaling [48-50]. We transfected primary cortical neurons with mCherry,
366	mCherry-SQSTM1-WT or mCherry- SQSTM1 ^{G427R} plasmids. We found that the
367	number of primary branches and the average intersection per neuron is significantly
368	reduced in neurons expressing mCherry- SQSTM1 ^{G427R} compared to those producing
369	mCherry- SQSTM1-WT (Fig. 7 A and B). To determine whether the effects of
370	SQSTM1 ^{G427R} result from altered KEAP1-NFE2L2 signaling, we detect the protein
371	level of KEAP1 and GSTM1 in neurons infected with AAV-mCherry, -mCherry-
372	SQSTM1-WT or -mCherry- SQSTM1 ^{G427R} . The results showed that the KEAP1 level is

increased, while GSTM1 is reduced, in neurons infected by AAV-mCherry-

374 SQSTM1^{G427R}, compared to neurons infected by AAV-mCherry-SQSTM1-WT. The

above results indicate that expression of SQSTM1^{G427R} disrupts dendrite morphology

and KEAP1-NFE2L2 pathway in neurons, further supporting a gain of toxic function in

377 SQSTM1^{G427R} mutant, given that *sqstm1* KO brain displays little neuronal phenotypes

378 [42] or alteration in whole proteomics (Fig. S4B).

379

380 **Discussion**

381 Here we report that proteotoxic stress stimulates TBK1 kinase activity, which is

impaired by ALS-FTLD mutations in TBK1; TBK phosphorylation of SQSTM1 in

383 UBA domain depends on ULK1 activity. ALS-FTLD associated mutations of *SQSTM1*

prevent ULK1 or TBK1 mediated phosphorylation of SQSTM1 and impede SQSTM1

binding of ubiquitinated cargo. Thus, our results suggest that TBK1 and SQSTM1

pathogenic ways in ALS-FTLD merge at the deregulation of selective autophagy in

387 ALS-FTLD. Moreover, we demonstrate an ALS-FTLD mutation G427R of SQSTM1

blocks KEAP1-SQSTM1 interaction, impairing the expression of NFE2L2 targeted

389 genes and increasing TARDBP associated stress granule formation under oxidative

390 stress. Therefore, our results reveal a mechanism by which pathogenic SQSTM1

mutants in ALS-FTLD inhibit selective autophagy and disrupt NFE2L2 anti-oxidative

392 stress response.

Modifications of SQSTM1 play a critical role for selective degradation of
autophagy cargoes, which is implicated in multiple neurodegenerative diseases [22, 51].

395	We previously showed that ULK1 phosphorylation of SQSTM1 at Ser409 is required
396	for phosphorylation of Ser405 [6]. Here our data demonstrates that TBK1 mediated p-
397	Ser405 in SQSTM1 depends on ULK1, as block of ULK1 activity either by genetic or
398	pharmacological inhibition prevents p-Ser405 mediated by TBK1. Our data together
399	with the previous report shows the concerted phosphorylation of SQSTM1 by ULK1
400	and TBK1 in regulating SQSTM1 ubiquitinated cargo binding and recruitment: ULK1
401	phosphorylation of Ser409 destabilizes UBA dimer formation and allows the exposure
402	of Ser405 for TBK1 phosphorylation to occur [6]. The p-Ser405 significantly enhances
403	the binding affinity of SQSTM1 and ubiquitinated cargo [17]. The significance of the
404	dual phosphorylation of SQSTM1 by both ULK1 and TBK1 may reflect an intrinsic
405	mechanism that cells develop to tightly control the formation of large ubiquitinated
406	aggregates in coordination with induction of autophagy through ULK1 to clear the
407	ubiquitinated cargo in a timely fashion.
408	The phosphorylation and activation of TBK1 are critical for antiviral innate
409	immunity [52]. TBK1 may regulate immunological autophagy through the
410	phosphorylation of SQSTM1 [9]. TBK1 was shown to phosphorylate SQSTM1 and
411	autophagy receptor OPTN in the regulation of selective autophagy including mitophagy
412	[8-10, 53]. Recent studies also demonstrated a role for TBK1 phosphorylation of
413	SQSTM1 in large aggregate formation in hepatocyte induced by lipotoxicity [54].
414	Interestingly, phosphorylation of SQSTM1 by TBK1 also promotes degradation of
415	STING to attenuate DNA stimulated type I IFN response [55]. In addition,
416	overexpression of WT TBK1, but not kinase dead variant, facilitates mutant SOD1 ^{G93A}

417	clearance [56]. It would be interesting to test if TBK1 variants of ALS-FTLD affect
418	SQSTM1 phosphorylation by TBK1. Our data demonstrates that inhibition of
419	proteasomes and expression of aggregate-prone disease proteins, including mutant
420	SOD1 (SOD1 ^{G93A}) and mutant Htt related protein (polyQ-expansion), activates TBK1,
421	suggesting that the activation of TBK1 is a general response to proteotoxic stress that
422	induces SQSTM1 mediated selective autophagy, while ALS-FTLD mutations of TBK1
423	reduce TBK1 activity and SQSTM1 phosphorylation thus blocking selective autophagy.
424	Our data further suggests that ULK1 and TBK1 synergistically promote selective
425	autophagy in response to proteotoxic stress.
426	Our whole proteome analysis of sqstml KO mice reveals that only few proteins are
427	altered in the brains despite the large coverage of the proteome - a surprising finding for
428	a common ubiquitinated cargo receptor of autophagy, suggesting a primary function of
429	SQSTM1 at basal level in mediating autophagy degradation of KEAP1 in the brain. We
430	further show that KEAP1-NFE2L2 signaling pathway is impaired in sqstm1 KO brain.
431	Our observation is consistent with the previous reports that sqstm1 KO brain do not
432	accumulate poly-ubiquitinated proteins [42, 44]. Therefore, we propose that a key
433	physiological function for SQSTM1 in the CNS is the control of homeostatic levels of
434	KEAP1-NFE2L2 anti-oxidative signaling pathways. It is likely that the degradation of
435	KEAP1 is mediated through poly-ubiquitination independent manner as reported for
436	other SQSTM1 binding protein SOD1 [57].
437	Multiple variants of SQSTM1 have been identified in ALS-FTLD, but the impact

438 of these mutations in selective autophagy has yet to be determined. Our data reveal that

439	ALS-FTLD-linked mutations of <i>SQSTM1</i> in the UBA domain, including SQSTM1 ^{P394L} ,
440	SQSTM1 ^{G413S} and SQSTM1 ^{G427R} mutations, significantly reduce SQSTM1
441	phosphorylation at Ser405 and Ser409, impair SQSTM1 binding of ubiquitinated
442	proteins, and impede ubiquitinated proteins clearance [6, 17]. Our biochemical and cell-
443	based assays further show that the SQSTM1 ^{G427R} mutant suffers a complete loss of
444	UBA-Ub interaction and inability to sequester ubiquitinated cargo under proteasome
445	inhibition. The loss of Ub binding in the SQSTM1 ^{G427R} variant is consistent with a
446	previous report [41]. In addition, our results also showed that the SQSTM1 ^{G427R} mutant
447	abolished SQSTM1 phosphorylation at Ser351 in the KIR motif and reduced the
448	sequestration of KEAP1, thus preventing NFE2L2 target gene expression, which
449	functions as one of the critical cellular defense mechanisms against oxidative stress
450	[33].

Oxidative stress causes an increase of SQSTM1 levels over the 16 hours of arsenite 451 treatment; it is interesting, however, to notice the reduction of SQSTM1^{G427R} and 452 KEAP1 levels under the same condition (Fig 5J). While the mechanism underlying this 453 change is unclear, the result could be due to reduced protein stability in the SQSTM1 454 variant and KEAP1 induced by certain protein modifications or enhanced proteasome 455 or lysosome degradation. It is also puzzling that the levels of HO-1 and Nqo1 fail to 456 increase when KEAP1 is reduced in SQSTM1^{G427R} cells. The observation suggests 457 additional unknown mechanism for SQSTM1^{G427R} regulation of KEAP1 levels or 458 NFE2L2 downstream signaling. Therefore, SQSTM1^{G427R} may not act as a simple loss 459 of function mutant. Despite the unclear mechanism, it is clear that NFE2L2-mediated 460

461	anti-oxidative response is compromised in SQSTM1 ^{G427R} cells. Future experiments
462	should investigate the details for the additional mechanism for SQSTM1 ^{G427R} toxicity.
463	Moreover, our results showed that under oxidative stress, ALS-FTLD-linked mutation
464	SQSTM1 ^{G427R} impairs cellular response to TARDBP stress granule formation, which is
465	relevant to pathogenesis of ALS-FTLD [5]. The increased stress granules in
466	SQSTM1 ^{G427R} cells under oxidative stress may result from the reduced NFE2L2
467	activity, which leads to compromised anti-oxidative response and thus sensitizes cells
468	to oxidative stress. Furthermore, SQSTM1 ^{G427R} is unable to effectively promote the
469	degradation of stress granules under oxidative stress [23].
470	Finally, our results showed that SQSTM1 ^{G427R} affects the dendritic morphology of
471	neurons accompanied by aberrant levels of KEAP1-NFE2L2 target gene expression,
472	providing supportive evidence for neurotoxicity of SQSTM1 ^{G427R} mutant in disrupting
473	KEAP1-NFE2L2 signaling as underlying molecular mechanism for ALS-FTLD.
474	In summary, our study suggests a model that ALS/FTLD-linked variants of TBK1
475	and SQSTM1 share a common disease mechanism whereby they cause dysfunctional
476	selective autophagy and disruption of NFE2L2 anti-oxidative response in neurons.
477	

478 Materials and Methods

479 *Cell culture*

480 HeLa cells, HEK 293T cells and MEFs were maintained in Dulbecco's modified

481 Eagle's medium (Thermo Fisher Scientific, 11965-092) supplemented with 50 μg/ml

482 penicillin and streptomycin (Thermo Fisher Scientific, 25300-054) and 10% fetal

483	bovine serum (Atlanta Biologicals, S11550). Sqstm1 WT and KO mouse embryonic
484	fibroblasts (MEFs) were provided by Dr. Masaaki Komatsu (Niigata University) [45].
485	Mock, WT SOD1 and SOD1 ^{G93A} NSC34 stable cell lines were provided by Giovanni
486	Manfredi (Weill Cornell Medicine) [58], HeLa/polyQ-mCFP cells were provided by
487	Dr. Ai Yamamoto (Columbia University) [59], and were maintained as previously
488	described. Transient transfection was performed using Lipofectamine 2000 or 3000 as
489	per the manufacturer's instruction.
490	Plasmids and reagents
491	FLAG-SQSTM1-WT and MBP-SQSTM1-WT constructs were provided by Dr.
492	Masaaki Komatsu (Niigata University). Flag and MBP tagged SQSTM1 ^{S409A} ,

SQSTM1^{S409E}, SQSTM1^{P394L}, SQSTM1^{G413S} and SQSTM1^{G427R}, as well as LPC-Flag-493

SQSTM1^{G427R} were constructed using a Quik-Change Lightning Site-Directed 494

Mutagenesis Kit. Myc-ULK1 WT and kinase inactivated (KI) mutant Myc-ULK1^{KI} 495

were provided by Dr. Sharon Tooze (London Research Institute). MG132 496

- (Calbiochem, 474791), sodium arsenate (Sigma-Aldrich, 35000), polybrene (Sigma-497
- Aldrich, H9268), puromycin (Thermo Fisher Scientific, A11138-03), Lipofectamine 498
- 2000/3000 (Thermo Fisher Scientific, 11668-019/L3000-015), Protease and 499
- phosphatase inhibitor cocktail (Thermo Fisher Scientific, 1861281), IPTG (isopropyl-500
- β-D-thiogalactopyranoside, Sigma-Aldrich, 367-93-1), Factor Xa (New England 501
- Biolabs, P8010S), Dynabeads protein G (Thermo Fisher Scientific, 10004D), Quik-502
- Change Lightning Site-Directed Mutagenesis Kits (Agilent Technologies, 210518), 503
- PVDF membrane (Millipore, IPFL00010), and BCA Protein Assay Reagent Kit 504

505 (Thermo Fisher Scientific, 23228) were also utilized.

506 *Antibodies*

- 507 The following antibodies were used: SQSTM1 (Progen Biotechnik, GP62-C-WBC), p-
- 508 SQSTM1 Ser403 (Millipore, MABC186-I), p-SQSTM1 Ser409 (constructed by our
- lab), p-SQSTM1 Ser351 (MBL, PM074), ULK1 (Sigma-Aldrich, A7481), Flag-M2
- 510 (Sigma-Aldrich, F1804), anti-ACTB/β-Actin (Cell Signaling Technology, 3700), Myc
- 511 (Cell Signaling Technology, 2278), Ubiquitin (Dako, Z0458), GFP (Thermo Fisher
- 512 Scientific, A11122), TBK1 (Abcam, ab40676), p-TBK1 Ser172 (Cell Signaling
- 513 Technology, 5483), SOD1 (Santa Cruz Biotechnology, SC11407), KEAP1
- 514 (Proteintech, Cosmo Bio, 10503-2-AP), NDP52 (Proteintech, Cosmo Bio, 12229-1-
- AP), NBR1 (Proteintech, Cosmo Bio, 16004-1-AP), Nqo1 (Proteintech, Cosmo Bio,
- 516 11451-1-AP), HO-1 (Santa Cruz Biotechnology, sc-10789), GSTM1 (Proteintech,
- 517 Cosmo Bio, 12412-1-AP), TARDBP (Proteintech Cosmo Bio, 12892-1-AP), G3BP1
- 518 (Sigma-Aldrich, HPA004052), LC3B (MBL, PM036) and MAP2 (Sigma-Aldrich,
- 519 M4403).
- 520 Immunoblot and immunoprecipitation
- 521 Total cellular lysates were prepared using cell lysates buffer (1% Triton X-100, 20 mM
- 522 Tris- HCl pH 7.5, 120 mM NaCl, 1 mM EDTA, 1% SDS, complete protease inhibitor
- 523 cocktail, phosphatase inhibitor cocktail). Cells were lysed on ice for 30 min, and then
- 524 centrifuged at 13,000 g for 30 min at 4°C. Supernatants were collected after
- 525 centrifugation and subjected to BCA assay and then were resolved by SDS PAGE.
- 526 For IP, cells were lysed in IP buffer (50 mM Tris-HCl pH 7.4, 1% NP-40, 0.25% Na

527	deoxycholate, 150 mM NaCl, 1 mM EDTA, complete protease inhibitor cocktail,
528	phosphatase inhibitor cocktail) for 30 min on ice, and then centrifuged at 13,000 g for
529	30 min at 4°C. Supernatants were collected after centrifugation and subjected to BCA
530	assay. Supernatants were incubated with indicated antibodies overnight at 4°C. Lysates
531	were further incubated with Dynabeads protein G for 1.5 h at 4°C, and then washed
532	with PBS (0.1% Triton x100) 5 times and subjected to immunoblot assay. Membranes
533	were detected by either LI-COR Odyssey or Medical film Processor. In LI-COR
534	Odyssey system, the linear range of band intensities was set and the blots in the ranges
535	were analyzed using Image Studio. In Medical film Processor system, membranes were
536	developed by Super Chemiluminescent ECL detection system (Thermo Fisher
537	Scientific, 34580) and imaged in Medical film Processor. To get the unsaturated bands
538	with the intensities in the linear range, a short pre-exposure was performed to calculate
539	the signal intensity. According to this information, the exposure time to get the highest
540	possible signal under saturation was determined. The images were analyzed with
541	ImageJ software.

542 *Fluorescence microscopy*

543 Cells were fixed in 4% PFA (paraformaldehyde) for 30 min at room temperature. After

washing four times with PBS (5 min each time), cells were permeabilized with 0.2%

545 Triton-X-100 for 15 min at room temperature. Cells were further blocked in blocking

- 546 buffer containing 5% goat serum and 0.2% Triton X-100 for 1 h. The cells were then
- 547 incubated with primary antibodies in blocking buffer containing 1% goat serum and
- 548 0.2% Triton X-100 overnight at 4°C. After washing four times with PBS, cells were

incubated with Alexa-conjugated secondary antibody for 1 h at room temperature. Goat 549 anti-rabbit Alexa Fluor 488 and goat anti-guinea pig Alexa Fluor 647 secondary 550 551 antibodies were used. Then cells were washed four times with PBS and mounted with mounting medium (ProLong Gold antifade mountant with DAPI, Invitrogen, P36962). 552 Cells were examined under Carl Zeiss upright or invert confocal microscopes (LSM780 553 system). Images were taken with 63X oil immersion objective lens at room temperature 554 and image acquisition was performed using Zen2012 software. Digitized images were 555 analyzed and processed by using ImageJ software. 556

557 Triton X-100-soluble and insoluble fraction

558 Cells were lysed on ice with 1% Triton X-100 (supplemented with complete protease

and phosphatase inhibitor cocktails) for 30 min. Then, cells were centrifuged at 15,000

560 g for 30 min at 4°C, and the supernatants (soluble fractions) were collected. The pellets

were washed four times with 1% Triton X-100 and then further solubilized with 1%

562 Triton X-100 containing 1% SDS for 1 h at 60°C. Subsequently, the insoluble fractions

were collected by centrifugation at 15,000 g for 30 min at 4°C and each fraction was

submitted to immunoblot assay.

565 Protein expression and purification

566 MBP-SQSTM1 WT, SQSTM1^{P394L} and SQSTM1^{G427R} were expressed in *E. Coli* BL21

567 (DE3) cells induced by IPTG. Cellular lysates were prepared with TNE buffer (10 mM

568 Tris-HCl pH 8.0, 150 mM NaCl, 1 mM EDTA, and 1% NP-40) on ice for 30 min and

then centrifuged for 20 min at 9,000 g at 4°C. The supernatants were incubated with

amylose resin at 4°C overnight, washed three times with TNE buffer, and then eluted

ΝT,
VΤ,

572 UBA^{G427R} and UBA^{G413S} in fusion with His*6 tag were expressed in *E. Coli* BL21

- 573 (DE3) cells induced by IPTG. Cellular lysates were prepared with His-binding buffer
- 574 (20 mM sodium phosphate, PH 7.4, 500 mM NaCl, 40mM imidazole, 10% glycerol)
- with additives (1 mM of PMSF as serine and cysteine protease inhibitor, 0.7% of β -
- 576 mercaptoethanol as antioxidant) by sonication on ice and then centrifuged for 2-hour at
- 577 20,000 g at 4°C. The supernatants were purified on His-Trap column (GE healthcare)
- 578 by following the instruction. The fused His*6 tag was removed by 3C protease
- cleavage and the untagged protein was further purified by size-exclusion
- chromatography (Superdex 75, GE Healthcare) in Tris-NaCl buffer (50 mM Tris. HCl,

581 PH 8.0, 150 mM NaCl).

582 In vitro kinase assay

583 Bacteria purified MBP-SQSTM1 proteins including SQSTM1 WT, SQSTM1^{P394L},

584 SQSTM1^{G413S} and SQSTM1^{G427R}, were cleaved with Factor Xa, and then the cleaved

- proteins were incubated with active kinase ULK1-Atg13 proteins, or TBK1 protein
- 586 (commercial in OriGene) in kinase buffer (20 mM HEPES at pH 7.4, 1 mM EGTA, 0.4
- 587 mM EDTA, 5 mM MgCl2 and 0.05 mM DTT (dithiothreitol) containing ATP at 37° C
- for 30 min. The reaction was terminated by adding SDS sample buffer and subjected to
- 589 SDS–PAGE.

590 Ub binding assay

591 Cell-based poly-Ub binding assays and in vitro K63 Ub binding assays were performed

as described in our previous report [6]. For cell-based poly-Ub binding assays, briefly,

613	Retroviral infection and generation of stable cell lines
612	cocktail, and then subjected to western blot assay.
611	mM EDTA, 1 mM EGTA, complete protease inhibitor cocktail, phosphatase inhibitor
610	containing 150 mM NaCl, 1% Triton X-100, 50 mM HEPES, pH7.5, 10% Glycerol, 1
609	Ub chains at 4°C for 2h. Amylose resin were washed 5 times with reaction buffer
608	inhibitor cocktail, and followed by incubation with equal amount of K63-linked poly-
607	10% Glycerol, 1 mM EDTA, 1 mM EGTA, complete protease and phosphatase
606	in reaction buffer containing 150 mM NaCl, 1% Triton X-100, 50 mM HEPES, pH7.5,
605	SQSTM1-WT and mutant variants were incubated with amylose resin at 4°C overnight
604	immunoblot assay. For in vitro K63 Ub binding assays, equal amount of purified MBP-
603	4°C, and then washed with PBS (0.1% Triton x100) 5 times and subjected to
602	overnight at 4°C. Lysates were further incubated with Dynabeads protein G for 1.5 h at
601	the supernatants from each pool were mixed and incubated with Flag antibody
600	for 30 min on ice, and then centrifuged at 13,000 g for 30 min at 4°C. Equal amount of
599	accumulate poly-Ub proteins. MG132 treated cells were lysed using the same IP buffer
598	4°C. Normal Sqstm1 KO MEFs were incubated with proteasome inhibitor (MG132) to
597	inhibitor cocktail) for 30 min on ice, and then centrifuged at 13,000 g for 30 min at
596	150 mM NaCl, 1 mM EDTA, complete protease inhibitor cocktail, phosphatase
595	lysed using IP buffer (50 mM Tris-HCl pH 7.4, 1% NP-40, 0.25% Na deoxycholate,
594	SQSTM1 ^{G427R} , SQSTM1 ^{S405A} , SQSTM1 ^{S409A} , SQSTM1 ^{S409E} and empty vector were
593	sqstm1 KO MEFs transfected with Flag-SQSTM1-WT, SQSTM1 ^{P394L} , SQSTM1 ^{G413S} ,

614 ALS-linked SQSTM1 stable cell lines (MEFs) (Flag-SQSTM1^{G427R}) were constructed

as described previously [60].

616 Isothermal Titration Calorimetry

- 617 Isothermal Titration Calorimetry (ITC) was performed using an iTC₂₀₀
- 618 microcalorimeter (Microcal Inc.) at 25°C. Protein samples were dialyzed against 50
- mM Tris, pH 8.0, and 150 mM NaCl, and thoroughly degassed before each experiment.
- 620 For UBA-Ub interactions, the injection syringe was loaded with 40 μl mono-Ub, and
- the cell was loaded with 220 μ l of the respective UBA domain sample including UBA

622 WT, UBA^{G413S} or UBA^{G427R}. Typically, each titration consisted of 24 injections

- 623 of 1.65 μ l mono-Ub, with 150 s intervals between injections. The resulting data were
- 624 processed using Origin 7.0 software provided by the manufacturer.

625 Preparation of brain lysates and Whole proteome analysis

All animal studies were performed in compliance with IACUC (Institutional Animal

- 627 Care and Use Committee) at Icahn School of Medicine at Mount Sinai. Cortices were
- dissected from three *sqstm1* WT and three *sqstm1* KO brains with 8 months old for
- proteomics analysis with a previously optimized procedure [43]. Briefly, the samples
- 630 were lysed, trypsinized in solution, followed by desalting and TMT labeling. The
- labeled samples were equally pooled, fractionated by offline basic pH reverse phase
- 632 liquid chromatography (LC) [61]. Each fraction was analyzed on a reverse phase
- 633 column (75 μm x 30 cm, 1.9 μm C18 resin (Dr. Maisch GmbH, Germany)) interfaced
- 634 with a Q-Exactive HF mass spectrometer (Thermo Fisher Scientific). The mass
- 635 spectrometer was operated in data-dependent mode with a survey scan in Orbitrap
- 636 (60,000 resolution, 1x 10⁶ AGC target and 50 ms maximal ion time) and 20 MS/MS

637	scans (60,000 resolution, 1 x 10 ⁵ AGC target, 105 ms maximal ion time, 35 normalized
638	collision energy in HCD, 1.0 m/z isolation window, and 20 s dynamic exclusion).
639	Computational processing was performed with the recently developed JUMP search
640	engine to improve the sensitivity and specificity [62], with the following settins: 10
641	ppm mass tolerance for both precursor ions and product ions, fully tryptic restriction,
642	two maximal missed cleavages and the assignment of a , b , and y ions, static
643	modifications of TMT tags on lysine residues and peptide N termini (+229.16293 Da)
644	and carbamidomethylation on cysteine residues (+57.02146 Da), and dynamic
645	modification of oxidation on methionine residues (+15.99491 Da). The assigned
646	peptides were filtered by mass accuracy, matching scores, and charge state to reduce
647	protein false discover rate to approximately 1%. Protein quantification analysis was
648	also performed by our JUMP software suite, and ratio compression was largely
649	alleviated by extensive fractionation, and interference-based correction [63]. The
650	proteomic expression was log2 transformed, quantile normalized and corrected for sex
651	as a covariate. Limma was used to identify differentially expressed protein between
652	sqstm1 WT and sqstm1 KO [64]. Benjamini-Hochberg (BH) adjusted p value<0.05 was
653	considered statistically significant. The proteomics pipeline has been used for deep
654	profiling of mammalian samples (e.g. >16,000 proteins in mice) [65].
655	Cultures of primary cortical neurons and image analysis
656	For immunostaining, primary cortical neurons were dissected from P0-1 mice pups

- with *sqstm1* KO mice of either sex and digested with trypsin (Sigma-Aldrich, D5025).
- 658 Appropriate number of cortical neurons were plated on coverslips in 24-well plates

659	coated with poly-D-lysine and grown in the MEM-based neuronal medium
660	supplemented with 10% fetal bovine serum (Atlanta Biologicals, S11510H), 24 ug/ml
661	insulin (Sigma- Aldrich, I6634) and 0.1mg/ml transferrin (Calbiochem, 616420), 2% B-
662	27 and 0.5 mM glutamax. Cortical neurons were transfected at DIV 6 using
663	Lipofectamine 2000. Transfected cortical neurons were subject to Sholl analysis using
664	ImageJ according to previous report [66]. For western blot, primary cortical neurons
665	were prepared from E15-18 embryos of sqstm1 KO mice and grown on poly-L-lysine-
666	coated 6-well plates in neurobasal medium supplemented with 2% B27 and 0.5 mM
667	glutamax. Neurons were infected at Day 6-8 with equal amount of AAV viruses. Post-
668	infection 12h, AAV viruses were removed and switched to fresh medium. After 7-9
669	days, neurons were harvested and analyzed by western blot.
670	Statistical analysis
671	The data in each figure are presented as the mean \pm SEM of at least three independent
672	experiments. Statistical analyses were performed using R 3.2.3 and GraphPad Prism
673	v5.0. One sample t-test, student's t-test and one-way or two way analysis of variance

674 (ANOVA) were used. A p value ≤ 0.05 was considered as statistically significant unless 675 otherwise stated.

676

677 Acknowledgement:

This work was partially supported by NIH grant R01 NS060123 (ZY); Hubei Province's
Outstanding Medical Academic Leader Program (SC); R01AG047928 (J.P.); Research
Grants Council GRF grants PolyU 151052/16M (YZ).

682 **Conflict of interest**

- 683 None.
- 684

685 **References**

686 1. Achi, E.Y. and S.A. Rudnicki, ALS and Frontotemporal Dysfunction: A Review. Neurol Res Int, 687 2012. 2012: p. 806306. 688 2. Ling, S.C., M. Polymenidou, and D.W. Cleveland, Converging mechanisms in ALS and FTD: 689 disrupted RNA and protein homeostasis. Neuron, 2013. 79(3): p. 416-38. 690 3. Raffaele Ferrari, D.K., Edward D. Huey, and Parastoo Momeni,, FTD and ALS a tale of two 691 diseases. Curr Alzheimer Res., 2011 8(3)(273-294). 692 Blokhuis, A.M., et al., Protein aggregation in amyotrophic lateral sclerosis. Acta Neuropathol, 4. 693 2013. 125(6): p. 777-94. 694 5. Li, Y.R., et al., Stress granules as crucibles of ALS pathogenesis. J Cell Biol, 2013. 201(3): p. 361-695 72. 696 Lim, J., et al., Proteotoxic stress induces phosphorylation of SQSTM1/SQSTM1 by ULK1 to 6. 697 regulate selective autophagic clearance of protein aggregates. PLoS Genet, 2015. **11**(2): p. 698 e1004987. 699 7. Wong, Y.C. and E.L. Holzbaur, Optineurin is an autophagy receptor for damaged mitochondria in 700 parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proc Natl Acad Sci U S 701 A, 2014. 111(42): p. E4439-48. 702 8. Wild, P., et al., Phosphorylation of the autophagy receptor optineurin restricts Salmonella 703 growth. Science, 2011. 333(6039): p. 228-33. 704 Pilli, M., et al., TBK-1 promotes autophagy-mediated antimicrobial defense by controlling 9. 705 autophagosome maturation. Immunity, 2012. 37(2): p. 223-34. 706 10. Richter, B., et al., Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and 707 promotes selective autophagy of damaged mitochondria. Proc Natl Acad Sci U S A, 2016. 708 **113**(15): p. 4039-44. 709 E.T. Cirulli, B.N.L., S. Petrovski, P.C. Sapp, P.A. Dion, C.S. Leblond, J., et al., Exome sequencing in 11. 710 amyotrophic lateral sclerosis identifies risk genes and pathways,. Science 2015. 347 p. 1436– 711 1441. 712 12. Freischmidt, A., et al., Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal 713 dementia. Nat Neurosci, 2015. 18(5): p. 631-6. 714 13. Xu, D., et al., TBK1 Suppresses RIPK1-Driven Apoptosis and Inflammation during Development 715 and in Aging. Cell, 2018. 174(6): p. 1477-1491 e19. 716 Moore, A.S. and E.L. Holzbaur, Dynamic recruitment and activation of ALS-associated TBK1 with 14. 717 its target optineurin are required for efficient mitophagy. Proc Natl Acad Sci U S A, 2016. 718 113(24): p. E3349-58. 719 15. Kang, C., et al., The DNA damage response induces inflammation and senescence by inhibiting 720 autophagy of GATA4. Science, 2015. 349(6255): p. aaa5612. 721 16. Linares, J.F., et al., Amino Acid Activation of mTORC1 by a PB1-Domain-Driven Kinase Complex

722		<i>Cascade.</i> Cell Rep, 2015. 12 (8): p. 1339-52.
723	17.	Matsumoto, G., et al., Serine 403 phosphorylation of SQSTM1/SQSTM1 regulates selective
724		autophagic clearance of ubiquitinated proteins. Mol Cell, 2011. 44(2): p. 279-89.
725	18.	Mizuno, Y., et al., Immunoreactivities of SQSTM1, an ubiqutin-binding protein, in the spinal
726		anterior horn cells of patients with amyotrophic lateral sclerosis. J Neurol Sci, 2006. 249(1): p.
727		13-8.
728	19.	Arai, T., et al., Neuronal and glial inclusions in frontotemporal dementia with or without motor
729		neuron disease are immunopositive for SQSTM1. Neuroscience Letters, 2003. 342(1-2): p. 41-
730		44.
731	20.	Hiji, M., et al., White matter lesions in the brain with frontotemporal lobar degeneration with
732		motor neuron disease: TDP-43-immunopositive inclusions co-localize with SQSTM1, but not
733		<i>ubiquitin</i> . Acta Neuropathol, 2008. 116 (2): p. 183-91.
734	21.	Lim, J. and Z. Yue, Neuronal aggregates: formation, clearance, and spreading. Dev Cell, 2015.
735		32 (4): p. 491-501.
736	22.	Deng, Z., et al., Autophagy Receptors and Neurodegenerative Diseases. Trends Cell Biol, 2017.
737	23.	Guo, H., et al., Autophagy supports genomic stability by degrading retrotransposon RNA. Nat
738		Commun, 2014. 5 : p. 5276.
739	24.	Chitiprolu, M., et al., A complex of C9ORF72 and SQSTM1 uses arginine methylation to
740		eliminate stress granules by autophagy. Nat Commun, 2018. 9 (1): p. 2794.
741	25.	Lattante, S., et al., Sastm1 knock-down causes a locomotor phenotype ameliorated by
742		rapamycin in a zebrafish model of ALS/FTLD. Hum Mol Genet, 2015. 24 (6): p. 1682-90.
743	26.	Goode, A., et al., Defective recognition of LC3B by mutant SQSTM1/SQSTM1 implicates
744		impairment of autophaav as a pathogenic mechanism in ALS-FTLD. Autophagy, 2016; p. 1-11.
745	27.	Petri, S., S. Korner, and M. Kiaei, <i>NFE2L2/ARE Signaling Pathway: Key Mediator in Oxidative</i>
746		Stress and Potential Therapeutic Taraet in ALS. Neurol Res Int. 2012. 2012: p. 878030.
747	28.	Zhang, D.D., Mechanistic studies of the NFE2L2-Keap1 signaling pathway. Drug Metab Rev.
748		2006. 38 (4): p. 769-89.
749	29.	Taguchi, K., H. Motohashi, and M. Yamamoto, <i>Molecular mechanisms of the Keap1-NFF212</i>
750		pathway in stress response and cancer evolution. Genes Cells. 2011. 16 (2): p. 123-40.
751	30.	Tong, K.I., et al., Two-site substrate recognition model for the Keap1-NFE2L2 system; a hinge
752		and latch mechanism. Biol Chem. 2006. 387 (10-11): p. 1311-20.
753	31.	Mimoto, T., et al., Impaired antioxydative Kean1/NFF212 system and the downstream stress
754	01	protein responses in the motor neuron of ALS model mice Brain Res 2012 1446 : p 109-18
755	32	Petri S S Korper and M Kiaei NEE2/2/ARE Signaling Pathway: Key Mediator in Oxidative
756	52.	Stress and Potential Therapeutic Taraet in ALS. Neurol Res Int. 2012. 2012: p. 878030.
757	33	Komatsu M et al. The selective autonhagy substrate SOSTM1 activates the stress responsive
758	00.	transcription factor NEF2I 2 through inactivation of Kean1 Nat Cell Biol 2010 12 (3): p. 213-23
759	34	Goode A et al. ALS-ETID associated mutations of SOSTM1 impact on Kean1-NEE212
760	54.	signalling Mol Cell Neurosci 2016 76 : n 52-58
761	35	Zhan Z et al. Phosphatase PP4 Negatively Regulates Type LIEN Production and Antiviral
762	55.	Innate Immunity by Denhosnborylating and Deactivating TRK1 Ummunol 2015 105/21 n
763		3849-57
764	36	Clark K et al. Use of the pharmacological inhibitor BY705 to study the regulation and
765	50.	nhuciological roles of TRK1 and IkannaP bingso ansilons a distinct unstream bingso mediates
/05		physiological foles of fort and happab killase epsilon. a distillet apstream killase mediates

766		Ser-172 phosphorylation and activation. J Biol Chem, 2009. 284(21): p. 14136-46.
767	37.	Rosen, D.R., et al., Mutations in Cu/Zn superoxide dismutase gene are associated with familial
768		amyotrophic lateral sclerosis. Nature, 1993. 362 : p. 59.
769	38.	Elizabeth T. Cirulli, B.N.L., David B. Goldstein, Exome sequencing in amyotrophic lateral sclerosis
770		identifies risk genes and pathways. science, 2015. VOL 347(ISSUE 6229).
771	39.	Pottier, C., et al., Whole-genome sequencing reveals important role for TBK1 and OPTN
772		mutations in frontotemporal lobar degeneration without motor neuron disease. Acta
773		Neuropathol, 2015. 130 (1): p. 77-92.
774	40.	Chan, E.Y., et al., Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-
775		terminal domains using an Atg13-independent mechanism. Mol Cell Biol, 2009. 29(1): p. 157-
776		71.
777	41.	Garner, T.P., et al., Impact of SQSTM1/SQSTM1 UBA domain mutations linked to Paget's disease
778		of bone on ubiquitin recognition. Biochemistry, 2011. 50 (21): p. 4665-74.
779	42.	Komatsu, M., et al., Homeostatic levels of SQSTM1 control cytoplasmic inclusion body
780		formation in autophagy-deficient mice. Cell, 2007. 131 (6): p. 1149-63.
781	43.	Bai, B., et al., Deep Profiling of Proteome and Phosphoproteome by Isobaric Labeling, Extensive
782		Liquid Chromatography, and Mass Spectrometry. Methods Enzymol, 2017. 585: p. 377-395.
783	44.	Riley, B.E., et al., Ubiquitin accumulation in autophagy-deficient mice is dependent on the
784		NFE2L2-mediated stress response pathway: a potential role for protein aggregation in
785		autophagic substrate selection. J Cell Biol, 2010. 191 (3): p. 537-52.
786	45.	Ichimura, Y., et al., Phosphorylation of SQSTM1 activates the Keap1-NFE2L2 pathway during
787		selective autophagy. Mol Cell, 2013. 51 (5): p. 618-31.
788	46.	Colombrita, C., et al., TDP-43 is recruited to stress granules in conditions of oxidative insult. J
789		Neurochem, 2009. 111 (4): p. 1051-61.
790	47.	Tourriere, H., et al., The RasGAP-associated endoribonuclease G3BP assembles stress granules.
791		J Cell Biol, 2003. 160 (6): p. 823-31.
792	48.	Kweon, J.H., S. Kim, and S.B. Lee, The cellular basis of dendrite pathology in neurodegenerative
793		diseases. BMB Reports, 2017. 50(1): p. 5-11.
794	49.	Kulkarni, V.A. and B.L. Firestein, <i>The dendritic tree and brain disorders</i> . Mol Cell Neurosci, 2012.
795		50 (1): p. 10-20.
796	50.	Lee, S.B., et al., Pathogenic polyglutamine proteins cause dendrite defects associated with
797		specific actin cytoskeletal alterations in Drosophila. Proc Natl Acad Sci U S A, 2011. 108 (40): p.
798		16795-800.
799	51.	Stolz, A., A. Ernst, and I. Dikic, Cargo recognition and trafficking in selective autophagy. Nat Cell
800		Biol, 2014. 16 (6): p. 495-501.
801	52.	Loo, Y.M. and M. Gale, Jr., Immune signaling by RIG-I-like receptors. Immunity, 2011. 34 (5): p.
802		680-92.
803	53.	Matsumoto, G., et al., TBK1 controls autophagosomal engulfment of polyubiquitinated
804		mitochondria through SQSTM1/SQSTM1 phosphorylation. Hum Mol Genet, 2015. 24(15): p.
805		4429-42.
806	54.	Cho, CS., et al., Lipotoxicity induces hepatic protein inclusions through TANK binding kinase 1–
807		mediated SQSTM1/sequestosome 1 phosphorylation. Hepatology. 0 (0).
808	55.	Prabakaran, T., et al., Attenuation of cGAS - STING signaling is mediated by a
809		SQSTM1/SQSTM1 - dependent autophagy pathway activated by TBK1. The EMBO Journal.

810		2018. 37 (8).
811	56.	Korac, J., et al., Ubiquitin-independent function of optineurin in autophagic clearance of protein
812		aggregates. J Cell Sci, 2013. 126 (Pt 2): p. 580-92.
813	57.	Gal, J., et al., Sequestosome 1/SQSTM1 links familial ALS mutant SOD1 to LC3 via an ubiquitin-
814		independent mechanism. J Neurochem, 2009. 111(4): p. 1062-73.
815	58.	Magrane, J., et al., Mutant SOD1 in neuronal mitochondria causes toxicity and mitochondrial
816		dynamics abnormalities. Hum Mol Genet, 2009. 18(23): p. 4552-64.
817	59.	Yamamoto A, C.M., Rothman JE, Autophagy-mediated clearance of huntingtin aggregates
818		triggered by the insulin-signaling pathway. J Cell Biol, 2006. 172: 719–731. PMID: 16505167 .
819	60.	Pan, J.A., et al., Inhibition of protein degradation induces apoptosis through a microtubule-
820		associated protein 1 light chain 3-mediated activation of caspase-8 at intracellular membranes.
821		Mol Cell Biol, 2011. 31 (15): p. 3158-70.
822	61.	Wang, H., et al., Systematic optimization of long gradient chromatography mass spectrometry
823		for deep analysis of brain proteome. J Proteome Res, 2015. 14(2): p. 829-38.
824	62.	Wang, X., et al., JUMP: a tag-based database search tool for peptide identification with high
825		sensitivity and accuracy. Molecular & cellular proteomics : MCP, 2014. 13(12): p. 3663-3673.
826	63.	Niu, M., et al., Extensive Peptide Fractionation and y(1) Ion-Based Interference Detection
827		Method for Enabling Accurate Quantification by Isobaric Labeling and Mass Spectrometry.
828		Analytical chemistry, 2017. 89 (5): p. 2956-2963.
829	64.	Ritchie, M.E., et al., limma powers differential expression analyses for RNA-sequencing and
830		microarray studies. Nucleic Acids Res, 2015. 43(7): p. e47.
831	65.	Stewart, E., et al., Identification of Therapeutic Targets in Rhabdomyosarcoma through
832		Integrated Genomic, Epigenomic, and Proteomic Analyses. Cancer Cell, 2018. 34(3): p. 411-
833		426.e19.
834	66.	Tiago A Ferreira, A.V.B., Julia Oyrer,, A.J.C. Sriram Jayabal, Alanna J Watt,, and P.J.S.D.J.v. Meyel,
835		Neuronal morphometry directly from bitmap images. nature methods, 2014. VOL.11 (NO.10):
836		p. 982-984.
007		
837		
020	Figur	a laganda
838	rigui	e legenus.
830	Figure	1 Protectoxic stresses activate TBK1 activity and AI S-FTI D-linked mutations
000	riguit	1. The otome successes activate TDECT activity and TED TIED mixed inductions
840	of TBk	(1) A mpair SOSTM1 phosphorylation. (A) WT MEFs were treated with or without
841	MG132	2 (2 μ M) for 16 h to induce proteotoxic stress. Cells were lysed, followed by

- immunoblot analysis with the indicated antibodies. (**B**) The ratio of p-TBK1 (S172) to
- total TBK1 in A was shown. One sample *t*-tests were used and values are presented as
- 844 the mean \pm SEM (n=4). ** p < 0.01. (C) HeLa/103QHtt-mCFP inducible stable cells
- 845 were treated with doxycycline to control the expression of polyQ-mCFP protein. Cells

846	were lysed, followed by immunoblot analysis with the indicated antibodies. GFP
847	antibody was used to indicate the induction of polyQ-mCFP proteins. (D) The ratio of
848	p-TBK1 (S172) to total TBK1 proteins in C was shown. One sample <i>t</i> -tests were used
849	and values are presented as the mean \pm SEM (n=4). ** p < 0.01. (E) NSC34 stable cells
850	including mock, SOD1 WT, and SOD1 ^{G93A} were lysed, followed by immunoblot
851	analysis with the indicated antibodies. (F) The ratio of p-TBK1 (S172) to total TBK1
852	protein in E was shown. Student <i>t</i> -tests were used and values are presented as the mean
853	\pm SEM (n=3). ** p < 0.01; ns, not significant. (G). Schematic view of TBK1 protein
854	functional domain. S/T, serine/threonine; Ub-like, ubiquitin like domain; CCD1/2, two
855	C-terminal coiled-coil domains. The positions for ALS-FTLD-linked mutations of
856	TBK1 are indicated. (H). HEK 293T cells were co-transfected with Flag-SQSTM1 and
857	different TBK1 variants. IP was performed with Flag antibody. Immunoblot analysis
858	was done with indicated antibodies. (I). The ratio of p-S409 and p-S405, to total Flag-
859	SQSTM1 in H was shown. One-way ANOVA test was used and followed by Tukey's
860	post hoc test, and values are presented as the mean \pm SEM (n=3). *** p < 0.001; ns, not
861	significant. (J). Expression of different TBK1 variants in HEK293T cells were
862	examined with the indicated antibodies. (K). The ratio of p-TBK1 (S172) to total Myc-
863	TBK1 in J was shown. One-way ANOVA test was used and followed by Tukey's post
864	hoc test, and values are presented as mean \pm SEM (n=3). *** p < 0.001; ns, not
865	significant.
866	

Figure 2. The effects of ULK1 in TBK1 mediated SQSTM1 phosphorylation and ALS-

868	FTLD-linked mutations of SQSTM1 in the phosphorylation of SQSTM1. (A).
869	Phosphorylation assay was performed with purified SQSTM1, TBK1 and ULK1
870	proteins. The immunoblot analysis was done with the indicated antibodies. (B). MEFs
871	were treated with MG132 (2 μ M) and/or SBI-0206965 (2 μ M), ULK1 inhibitor. Cells
872	were lysed, followed by immunoblot analysis with the indicated antibodies. (C-D). The
873	ratio of p-SQSTM1 (at Ser405 and Ser409) to total SQSTM1 protein in B was shown.
874	One sample <i>t</i> -tests were used and values are presented as the mean \pm SEM (n=3). ** p
875	< 0.01, * p < 0.05 . (E). Schematic depiction of the sequential phosphorylation of
876	SQSTM1 mediated by ULK1 and TBK1. (F). Schematic view of SQSTM1 protein
877	functional domains. PB1, Phox and Bem1 domain; ZZ, zinc finger motif; TRAF6, TNF
878	receptor associated factor 6; PEST, proline, glutamic acid, serine, and threonine
879	domain; LIR, LC3 interaction region; KIR, KEAP1 interaction region; UBA, ubiquitin
880	association domain. The amino acid number in red indicates the phosphorylation site
881	relevant to this study. The number in black indicates ALS-FTLD linked mutations in
882	the UBA domain. The number is based on the mouse SQSTM1 sequence, and those in
883	brackets indicate the corresponding position in human SQSTM1. (G-J). In vitro
884	phosphorylation assays were performed with ULK1-TBK1 and purified SQSTM1
885	variants proteins. Immunoblot analysis with the indicated antibodies was followed. The
886	ratio of p-S409 (H) or p-S405 (J) to total SQSTM1 protein was shown. One-way
887	ANOVA test was used and followed by Tukey's post hoc test, and values are presented
888	as the mean \pm SEM (H: n=5; J: n=3). * p < 0.05, *** p < 0.001. (K). HEK 293T cells
889	were co-transfected with Flag-SQSTM1 and Myc-ULK1-WT or ULK1 ^{KI} . Immunoblot

890	analysis was done with the indicated antibodies. (L-M). The ratio of p-SQSTM1,
891	including p-S409 (L) and p-S405 (M), to total Flag-SQSTM1 protein was shown. One-
892	way ANOVA test was used and followed by Tukey's post hoc test, and values are
893	presented as the mean \pm SEM (n=3). *** p < 0.001; ns, not significant.
894	
895	Figure 3. ALS-FTLD-linked mutations of SQSTM1 in the UBA domain affect its
896	binding to ubiquitin and ULK1. (A). MBP and MBP-SQSTM1 variants were subjected
897	to pull down in the presence of K63-linked ubiquitin peptides. Interaction of SQSTM1
898	variants and Ubs was detected by immunoblot analysis with Ub antibody. (B).
899	Ubiquitin levels pulled down by the MBP-SQSTM1 variants were normalized to
900	protein input and compared to that of MBP-SQSTM1 WT protein. One-way ANOVA
901	test was used and followed by Tukey's post hoc test, and values are presented as mean \pm
902	SEM (n=6). ** p < 0.01, *** p < 0.001. (C). Cellular lysates of <i>sqstm1</i> KO MEFs
903	transfected with Flag-SQSTM1 variants were incubated with sqstm1 KO MEFs lysates
904	treated with MG132, followed by IP with anti-Flag antibody. (D). Quantification of the
905	results from C was obtained by normalizing the levels of IP'ed Ub to each Flag-
906	SQSTM1 variant, and then variants were normalized to WT. One-way ANOVA test
907	was used and followed by Tukey's post hoc test, and values are presented as mean \pm
908	SEM (n=4). *** p < 0.001. (E). Cellular lysates of sqstm1 KO MEFs transfected with
909	Flag-SQSTM1 variants were IPed with anti-ULK1 antibody. Immunoblot analysis with
910	the indicated antibodies was followed. (F). Quantification of the results from E was
911	obtained by normalizing levels of IPed Flag to the level of input, then further

912	normalized to the level of IPed ULK1. One-way ANOVA test was used and followed
913	by Tukey's post hoc test, and values are presented as the mean \pm SEM (n=3). *** p <
914	0.001. (G). the SQSTM1 ^{P394L} and SQSTM1 ^{G427R} mutations are mapped onto the model
915	structure of the SQSTM1 UBA domain complexed with ubiquitin. The mutated
916	residues are shown as stick models. (H). Binding affinities of SQSTM1 UBA WT or
917	UBA ^{G427R} mutant to mono-Ub were measured by ITC. Representative ITC profiles are
918	shown.

920	Figure 4. ALS-FTLD mutant SQSTM1 ^{G427R} of SQSTM1 displays impaired
921	sequestration and clearance of uniquitinated proteins. (A). sqstml KO MEFs stably
922	expressing Flag-SQSTM1 WT or SQSTM1 ^{G427R} mutant were treated with MG132,
923	followed by immunofluorescent staining with anti-SQSTM1 antibody. Scale bar = 10
924	μ m. (B). Quantification of the results in A was performed by counting the number of
925	cells containing SQSTM1 inclusions. Then, the number of cells containing SQSTM1
926	inclusions was normalized to the total number of cells. Student <i>t</i> -test was used and
927	values are presented as the mean \pm SEM (n=3). *** p < 0.001. (C). sqstm1 KO MEFs
928	stably expressing Flag-SQSTM1 WT and SQSTM1 ^{G427R} mutant were treated with
929	MG132, followed by cell fractionation. Soluble and insoluble fractions were subjected
930	to immunoblot analysis with the indicated antibodies. (D). Quantification of the results
931	in C was performed by normalized the level of insoluble SQSTM1 to the level of
932	soluble SQSTM1. Student's <i>t</i> -tests were used and values are presented as the mean \pm
933	SEM (n=4). ** p < 0.01. (E). Flag-SQSTM1 WT and SQSTM1 ^{G427R} mutant stable cells

934	were treated with MG132 (μ M) for 16 h, as indicated, and then the medium was
935	switched to serum starvation (S.S.). (F). Quantification of the results from E was
936	obtained by normalizing the level of polyubiquitinated proteins to the level of ACTB,
937	and further to SQSTM1-WT without S.S. Student-t test was used and values are
938	presented as mean \pm SEM (n=3). * p < 0.05, ns, not significant.
939	

940	Figure 5 . A key role for brain SQSTM1 is the regulation of KEAP1-NFE2L2 pathway
941	that is disrupted by SQSTM1 ^{G427R} disease mutation. (A). Brain lysates of <i>sqstm1</i> WT
942	and KO mice were subject to immunoblot analysis with the indicated antibodies. (B).
943	Quantification analysis of A was shown. Student <i>t</i> -tests were used and values are
944	presented as mean \pm SEM (n=3 in each genotyping of mice). * p < 0.05, ** p < 0.01;
945	ns, not significant. (C). sqstm1 KO MEFs stably expressing Flag-SQSTM1 WT or
946	SQSTM1 ^{G427R} mutant were treated with sodium arsenite (10 μ M) and then cells were
947	harvested, followed by IP with Flag antibody. An immunoblotting assay was then
948	performed with the indicated antibodies. (D). The ratio of p-SQSTM1 (Ser351) to Flag-
949	SQSTM1 was shown. One sample t-tests were used, and values are presented as the
950	mean \pm SEM (n=3). *** p < 0.001. (E). The results were quantified by normalizing the
951	level of immunoprecipitated KEAP1 to the level of the input and the level of
952	immunoprecipitated Flag. One sample <i>t</i> -tests were used, and the values are presented as
953	the mean \pm SEM (n=3). * p < 0.05. (F). <i>sqstm1</i> KO MEFs stably expressing Flag-
954	SQSTM1 WT or SQSTM1 ^{G427R} mutant were treated with sodium arsenite (AS) (10
955	μ M), followed by immunofluorescent staining with anti-SQSTM1 (red) and anti-

956	KEAP1 (green) antibodies and visualizing via fluorescent microscope. Co-localization
957	of SQSTM1 and KEAP1 was illustrated by line profile. Red and green lines indicate
958	SQSTM1 and KEAP1 staining profiles, respectively. Scale bar = $10 \ \mu m.$ (G). sqstm1
959	KO MEFs stably expressing Flag-SQSTM1 WT and SQSTM1 ^{G427R} mutant were treated
960	with AS (10 μ M), followed by cell fractionation. The soluble and insoluble fractions
961	were subjected to immunoblot analysis with indicated antibodies. (H-I). Quantification
962	of the results in G was performed by normalizing the levels of insoluble SQSTM1 and
963	KEAP1 to the levels of soluble SQSTM1 and KEAP1, respectively. Student <i>t</i> -tests
964	were used and the values are presented as the mean \pm SEM (n=3). ** p < 0.01, * p <
965	0.01. (J). sqstm1 KO MEFs stably expressing Flag-SQSTM1 WT or SQSTM1 ^{G427R}
966	mutant were treated with AS (10 μ M) for the indicated times, and then cells were
967	assayed by immunoblotting analysis with the indicated antibodies. (K-L).
968	Quantification of the results from J was obtained by normalizing the level of proteins to
969	ACTB, respectively, and further to the respective control. Two way ANOVA analysis
970	were used and values are presented as mean \pm SEM (n \geq 3). *** p < 0.001, ** p < 0.01,
971	* p < 0.05.
972	
973	Figure 6. SQSTM1 mutation SQSTM1 ^{G427R} enhances TARDBP associated stress
974	granule formation upon oxidative stress. (A). sqstml KO MEFs stably expressing Flag-
975	SQSTM1 WT or SQSTM1 ^{G427R} mutant were treated with AS (10 μ M for 6h), followed
976	by immunofluorescent staining with anti-TARDBP (red) and anti-G3BP1 (green)
977	antibodies and visualizing with fluorescent microscope. Scale bar = $10 \ \mu m$. Arrows
978	indicate cytosol TARDBP foci co-localized to stress granule marker G3BP1. (B).

979	Quantification of the results in A was performed by counting the number of cells
980	containing TARDBP positive stress granules as the fraction of the total number of cells.
981	Student <i>t</i> -test was used and values are presented as the mean \pm SEM (n=3). ** p < 0.01;
982	ns, not significant. (C). sqstm1 KO MEFs stably expressing Flag-SQSTM1 WT or
983	SQSTM1 ^{G427R} mutant were treated with AS (10 μ M for 6h), followed by cell
984	fractionation. The soluble and insoluble fractions were subjected to immunoblot
985	analysis with the indicated antibodies. (D). Quantification of the results in C was
986	performed by normalizing the level of insoluble TARDBP to the level of soluble
987	TARDBP. Student's <i>t</i> -tests were used and values are presented as the mean \pm SEM
988	(n=4). * p < 0.05; ns, not significant.

Figure 7. SQSTM1^{G427R} mutation reduces the dendritic complexity and impairs 990 NFE2L2 signaling in neurons. (A). Primary cortical neurons from sqstm1 KO mice at 991 DIV 6 were transfected with mCherry tagged SQSTM1 variants. At DIV 14, neurons 992 were subject to immunostaining with MAP2. Scale bar = $40 \mu m$. (B). Quantification of 993 the results in A was performed with Sholl analysis comparing the number of primary 994 branches and intersection in transfected neurons. One way ANOVA analysis were used 995 and values are presented as the mean \pm SEM (mCherry, n=55; SQSTM1 WT, n=54; 996 SQSTM1^{G427R}, n=60 in four transfections). * p < 0.05, ** p < 0.01; ns, not significant. 997 (C-D). Primary cortical neurons from E15-18 embryos of sqstm1 KO mice were 998 infected with AAV viruses carrying indicated SQSTM1 variants. Infected neurons were 999 harvested and subjected to western blot analysis with indicated antibodies. Student t-1000

1001 test was used and values are presented as the mean \pm SEM (n= three infections). * p < 1002 0.05.

1003

1004	Figure S1. Proteotoxic stress activates TBK1 and the effect of TBK1 ^{S172A} , TBK1 ^{K38D}
1005	on SQSTM1 phosphorylation. (A). MEF cells were treated with MG132, followed by
1006	immunostaining with indicated antibodies. Error bar: 20 μ m. (B). MEF cells were
1007	treated with MG132. Cells were subjected to cell fractionation with 1% Triton X 100,
1008	each insoluble pellet was lysed with 1% Triton X 100 containing 1% SDS. Equal
1009	amount of proteins of soluble fraction and insoluble fraction were subjected to
1010	immunosblotting with indicated antibodies. (C). HEK 293T cells were co-transfected
1011	with Flag-SQSTM1 and Myc-TBK1 –WT, TBK1 ^{K38D} or TBK1 ^{S172A} . At 48h post-
1012	transfection, cells were harvested, followed by IP with Flag antibody. Immunoblot
1013	analysis was done with the indicated antibodies.
1014	
1015	Figure S2. HEK 293T cells were co-transfected with indicated plasmids and subjected
1016	to IP with FLAG antibody. Immunoblot analysis was done with the indicated antibodies.
1017	Figure S3. Structural and ITC analysis of the SQSTM1 ^{G413S} mutant. (A). the
1018	SQSTM1 ^{G413S} mutation is mapped onto the structure of the SQSTM1 UBA domain
1019	dimer (PDB ID 3B0F). The mutated residue is shown as stick model. (B). Binding
1020	affinities of the SQSTM1 UBA ^{G413S} mutant to mono-Ub were measured by ITC.
1021	Representative ITC profiles are shown.
1022	

1023 Figure S4. Whole proteomic analysis of brain in *sqstm1* KO mice shows *sqstm1* KO

1024	does not affect the level of ubiquitin proteins and LC3II in vivo. (A). Schematic
1025	approach of proteomic analysis of mice brain. (B). the heatmap of differential
1026	expressed proteins in <i>sqstm1</i> KO mice with adjusted p<0.05. (C). Brain lysates of
1027	sqstm1 WT and KO mice were subject to immunoblot analysis with the indicated
1028	antibodies. (D). Quantification analysis of the result in C was shown. Student <i>t</i> -tests
1029	were used and values are presented as mean \pm SEM (n=3 in each genotyping of mice).
1030	ns, not significant.
1031	
1032	