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Abstract 26 

      Neural entrainment of acoustic envelopes is important for speech intelligibility in spoken 27 

language processing. However, it is unclear how it contributes to processing at different 28 

linguistic hierarchical levels. The present EEG study investigated this issue when participants 29 

responded to stimuli that dissociated phonological and semantic processing (real-word, 30 

pseudo-word and backward utterances). Multivariate Temporal Response Function (mTRF) 31 

model was adopted to map speech envelopes from multiple spectral bands onto EEG signals, 32 

providing a direct approach to measure neural entrainment. We tested the hypothesis that 33 

entrainment at delta (supra-syllabic) and theta (syllabic and sub-syllabic) bands take distinct 34 

roles at different hierarchical levels. Results showed that both types of entrainment involve 35 

speech-specific processing, but their underlying mechanisms were different. Theta-band 36 

entrainment was modulated by phonological but not semantic contents, reflecting the possible 37 

mechanism of tracking syllabic- and sub-syllabic patterns during phonological processing. 38 

Delta-band entrainment, on the other hand, was modulated by semantic information, indexing 39 

more attention-demanding, effortful phonological encoding when higher-level (semantic) 40 

information is deficient. Interestingly, we further demonstrated that the statistical capacity of 41 

mTRFs at the delta band and theta band to classify utterances is affected by their semantic 42 

(real-word vs. pseudo-word) and phonological (real-word and pseudo-word vs. backward) 43 

contents, respectively. Moreover, analyses on the response weighting of mTRFs showed that 44 

delta-band entrainment sustained across neural processing stages up to higher-order timescales 45 

(~ 300 ms), while theta-band entrainment occurred mainly at early, perceptual processing 46 

stages (< 160 ms). This indicates that, compared to theta-band entrainment, delta-band 47 

entrainment may reflect increased involvement of higher-order cognitive functions during 48 

interactions between phonological and semantic processing. As such, we conclude that neural 49 

entrainment is not only associated with speech intelligibility, but also with the hierarchy of 50 

linguistic (phonological and semantic) content. The present study thus provide a new insight 51 

into cognitive mechanisms of neural entrainment for spoken language processing. 52 

Keywords: Delta- and theta-band neural entrainment, EEG, mTRF, speech envelopes, 53 

phonological processing, semantic processing 54 

 55 

Abbreviations: EEG, electroencephalography; MEG, magnetoencephalography; TRF, 56 

temporal response function; mTRF, multivariate temporal response function; tACS, 57 

transcranial alternative current stimulation; SUS, semantically unpredictable sentences; AM, 58 

amplitude-modulated 59 

 60 

 61 
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Highlights 64 

 Low-frequency neural entrainment was examined via mTRF models in EEG during 65 

phonological and semantic processing. 66 

 Delta entrainment take roles in effortful listening for phonological recognition 67 

 Theta entrainment take roles in tracking syllabic and subsyllabic patterns for 68 

phonological processing 69 

 Delta and theta entrainment sustain at different timescales of neural processing 70 

 71 

1. Introduction 72 

      Research into how speech acoustic properties are processed by the human brain is key to 73 

understanding neural mechanisms of speech and language perception. An important topic that 74 

recent research has focused on is to examine how speech temporal modulations are tracked and 75 

encoded through brain oscillatory activity (i.e., neural entrainment; see reviews: Giraud and 76 

Poeppel, 2012; Ding and Simon, 2014). This is because low-frequency envelope modulations 77 

(typically < 10 Hz) are critical acoustic contributors to human speech recognition (Drullman et 78 

al., 1994; Shannon et al., 1995; Arai et al., 1999; Swaminathan and Heinz, 2012). Neural 79 

entrainment of low-frequency envelopes has been suggested to serve as one of the neural 80 

mechanisms of sustaining speech comprehension (Ahissar et al., 2001; Ding and Simon, 2014).  81 

      Recent neurophysiological studies using magnetoencephalography (MEG) and 82 

electroencephalography (EEG) have shown that entrainment of low-frequency neural 83 

oscillations to speech envelopes at the corresponding modulation rates is associated with 84 

speech intelligibility (MEG: Peelle et al., 2013; Doelling et al., 2014; EEG: Vanthornhout et 85 

al., 2018). Specifically, Peelle et al. (2013) manipulated speech intelligibility by changing the 86 

spectral resolution (i.e., number of frequency bands) of noise-vocoded sentences. They found 87 

that phase coherence between MEG and acoustic envelopes at 4 ~ 7 Hz was statistically greater 88 

during participants listening to 16-band (intelligible) than single-band (unintelligible) noise-89 

vocoded sentences. In the study by Doelling et al. (2014), acoustic envelopes at 2 ~ 9 Hz of 90 

noise-vocoded sentences were artificially removed in various spectral bands. As a result, MEG-91 

envelope entrainment at the corresponding rates was found to be decreased accompanied by 92 

reductions in speech intelligibility. Vanthornhout et al. (2018) used a neural reconstruction 93 

method that decodes the acoustic envelopes from EEG responses (Crosse et al., 2016) during 94 

participants recognizing speech in noisy environments. They found that the reconstruction 95 

accuracy of envelopes at 0.5 ~ 8 Hz, which reflects the degree of neural-envelope entrainment, 96 

was significantly correlated with the speech recognition performance. Moreover, association 97 

between neural entrainment and speech perception may be causally controlled by a higher-98 

order cognitive neural network. For example, Park et al. (2015) used causal connectivity 99 

analysis in MEG showing that neural entrainment of envelopes at 1 ~ 7 Hz in intelligible 100 

(unprocessed), but not unintelligible (backward), speech, was associated with a top-down 101 

process occurring between left frontal and auditory cortices. 102 

      There have also been studies using brain stimulation, such as transcranial alternative current 103 

stimulation (tACS) that manipulated the degree of neural entrainment in order to study the 104 
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causal relationship between the entrainment and speech intelligibility (Zoefel et al., 2018; 105 

Riecke et al., 2018; Wilsch et al., 2018).  Zoefel et al. (2018) used tACS to manipulate phase 106 

lags between neural oscillations and the acoustic rhythm at the sentence syllable rate (~ 3 Hz). 107 

They showed that the manipulation on intelligible vocoded sentences can modulate 108 

haemodynamic responses in the superior temporal gyrus, while such findings were absent for 109 

unintelligible vocoded sentences. Riecke et al. (2018) and Wilsch et al. (2018) used similar 110 

paradigms to manipulate the neural-envelope phase lags as in Zoefel et al. (2018) (at syllable 111 

rate of 4 Hz in Riecke et al. (2018) and at the envelope rate < 10 Hz in Wilsch et al. (2018)) 112 

and found that tACS can causally modulate speech intelligibility in noisy environments. 113 

      Results of the above-mentioned studies (Peelle et al., 2013; Doelling et al., 2014; Park et 114 

al. 2015; Zoefel et al., 2018; Riecke et al., 2018; Wilsch et al., 2018; Vanthornhout et al., 2018) 115 

showed the importance of neural entrainment at the low frequencies, including delta (< 4 Hz) 116 

and theta (4 ~ 8 Hz) bands. It has been argued that entrainment at these two bands may involve 117 

different functional mechanisms (Ding and Simon, 2014). Theta-band entrainment is argued to 118 

reflect processing syllabic- and sub-syllabic-level features (Giraud and Poeppel, 2012) and it 119 

was found to covary with speech intelligibility (increased theta-band entrainment 120 

corresponding to better speech intelligibility) (Peelle et al., 2013; Ding et al., 2014). Delta-121 

band entrainment, on the other hand, is argued to reflect processing supra-syllabic patterns such 122 

as prosodic information (Bourguignon et al., 2013; Ghitza, 2017). In contrast to theta-band 123 

entrainment, increased delta-band entrainment was found in some attention-demanding speech 124 

recognition conditions (i.e., with decreased speech intelligibility), such as recognition of speech 125 

with reduced spectral resolution (Ding et al., 2014) or with increasingly noisy backgrounds 126 

(Vander Ghinst et al., 2016). Using MEG, Molinaro and Lizarazu (2018) recently showed that 127 

delta-band, but not theta-band, entrainment is greater during processing speech than non-128 

speech signals in the right superior temporal and left inferior frontal regions, arguing that delta-129 

band entrainment involves higher-order computations while theta-band entrainment is 130 

responsible for lower-level, perceptual auditory perception. 131 

      In spite of the abundant findings on the roles of neural entrainment of speech envelopes as 132 

well as distinctions between delta- and theta-band entrainment, there are still gaps with respect 133 

to linguistic and methodological concerns within these findings. First, speech intelligibility 134 

includes understanding of linguistic information at different hierarchical levels (e.g., 135 

phonology and semantics; Nahum et al., 2008). Simply seen from the relationship between 136 

neural entrainment and speech intelligibility, some critical questions still remain unanswered, 137 

e.g.: (i) What linguistic hierarchical levels are involved during the interaction between neural 138 

entrainment and speech perception?  (ii) What is the role of neural entrainment and how would 139 

it subserve speech intelligibility at different hierarchical levels respectively? Second, most 140 

MEG/EEG studies reviewed above (Peelle et al., 2013; Doelling et al., 2014; Park et al. 2015; 141 

Vander Ghinst et al., 2016; Molinaro and Lizarazu, 2018; Vanthornhout et al., 2018) reported 142 

the effects of neural entrainment to single broadband acoustic envelopes. While intelligibility 143 

is achieved via human extracting acoustic components (including low-frequency envelopes) 144 

from multiple spectral bands at the cochlear output, speech with only broadband envelopes is 145 

barely intelligible (e.g., Shannon et al., 1995; Xu et al., 2005). Although speech envelopes in 146 

different spectral bands can be highly correlated with each other, such correlations reduce 147 

significantly with increased spectral distance between bands (Crouzet and Ainsworth, 2001). 148 

By applying a linear transformation algorithm on EEGs in response to speech, Di Liberto et al. 149 
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(2015) provided evidence that neural encoding of envelopes from multiple spectral bands is 150 

greater than encoding of broadband envelopes. Therefore, it is important to consider that 151 

encoding multi-narrowband, rather than broadband, envelopes, could be a more appropriate 152 

form of neural entrainment. Third, although phase coherence between neural responses and 153 

acoustic envelopes (Peelle et al., 2013; Doelling et al., 2014; Vander Ghinst et al., 2016; 154 

Vanthornhout et al., 2018) provide insights into how speech acoustic features are processed, it 155 

does not characterize response functions of the brain and thus is an indirect measure of neural 156 

entrainment (Crosse et al., 2016). 157 

      By addressing these concerns from previous studies, the present study aims at 158 

characterizing the distinctions between delta- and theta-band neural entrainment at different 159 

linguistic hierarchical levels during speech perception. The present study is based on 160 

experiments and data of our previous paper which investigated the EEG oscillatory indices for 161 

different levels of auditory sentence processing (Mai et al., 2016). We used three types of 162 

continuous Mandarin utterances in order to dissociate the levels of phonology and semantics: 163 

(1) sentences consisting of meaningful disyllabic words assembled with a valid syntactic 164 

structure (‘real-word’); (2) utterances with morphologically valid syllables, but no valid 165 

disyllabic words (‘pseudo-word’); and (3) backward (time-reversed) versions of the real-word 166 

and pseudo-word utterances (for detailed descriptions, see Stimuli and tasks and Mai et al., 167 

2016). Participants completed a sound-matching task when they heard an utterance in each trial 168 

and scalp-EEGs were recorded simultaneously. The types of stimuli resembled those used in 169 

previous functional imaging studies that tested the neural processing at different hierarchical 170 

levels in speech (Binder et al., 2000; Londei et al., 2010; Saur et al., 2010). Real-word and 171 

pseudo-word utterances can be distinguished by their differences in semantic contents, whilst 172 

pseudo-word and backward utterances can be distinguished by their differences in phonological 173 

contents1. The backward utterances were used as baselines because they are closely matched 174 

in terms of acoustic complexity to the original utterances whilst distorted phonological 175 

information (Binder et al., 2000; Londei et al., 2010; Saur et al., 2010; Gross et al., 2013). In 176 

Mai et al. (2016), we showed that several EEG signatures (band power, neural entrainment of 177 

speech envelopes, cross-frequency coupling and inter-electrode coherence) at a wide range of 178 

frequencies (delta, theta, beta and gamma) can separately index phonological and higher-level 179 

(semantic) processing. Particularly, we showed the different roles delta- and theta-band neural 180 

entrainment, where the theta-band entrainment indexes greater phonological processing for 181 

speech (real-word and pseudo-word) than for non-speech (backward) while delta-band 182 

entrainment indexes greater effortful phonological recognition for pseudo-word utterances. 183 

However, similar to previous studies (e.g., Peelle et al., 2013; Doelling et al., 2014; Vander 184 

Ghinst et al., 2016), phase coherence between EEGs and the speech broadband envelopes, an 185 

indirect measure of neural entrainment, was calculated. In the present study, neural entrainment 186 

was quantified using a linear transformation algorithm via multivariate Temporal Response 187 

Functions (mTRF) (Di Liberto et al. 2015; Crosse et al., 2016). Such approach characterizes 188 

the brain’s response function that maps acoustic features onto neural responses, providing a 189 

more direct measure of neural entrainment. It can also reflect EEG encoding of multi-190 

narrowband envelopes (see details in Crosse et al., 2016, and Methods), outweighing measures 191 

                                                           
1 Although in Mandarin, a morphological valid syllable could convey certain semantic information,  concatenating 

syllables without forming valid dyllabic words disrupts the semantic validity (c.f., Xiao et al., 2005), as in the 

pseudo-word utterances in the present study. All participants reported that they considered pseudo-word utterances 

as semantically invalid. 
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of neural entrainment to broadband envelopes in many other studies. With the syllable rate of 192 

all utterances being controlled at around 4 Hz, delta- and theta-band were defined as 1.5 ~ 3 193 

Hz (average cycle at 500 ms corresponding to 2 Hz) and 3 ~ 6 Hz (average cycle at 250 ms 194 

corresponding to 4 Hz), respectively. Delta- and theta-band thus respectively corresponded to 195 

rhythms at supra-syllable and syllable/sub-syllable rates.  196 

      We hypothesize that, due to delta- and theta-band neural entrainment reflecting processing 197 

of speech at different cognitive stages (Ding and Simon, 2014), they should also take distinct 198 

roles at different linguistic hierarchical levels. Particularly, as theta rhythms were argued to 199 

reflect the tracking of syllabic and sub-syllabic information (Peña and Melloni, 2012; Giraud 200 

and Poeppel, 2012) that convey phonological contents (Rimol et al., 2005), we predict that 201 

theta-band entrainment should be involved in phonological processing. On the other hand, as 202 

delta-band entrainment may be related to higher-order cognitive processing (Ding et al., 2014; 203 

Vander Ghinst et al., 2016; Molinaro and Lizarazu, 2018), we predict that delta-band 204 

entrainment is involved in semantic-level processing. To test such hypotheses, delta- and theta-205 

band entrainment were measured and compared statistically across the stimulus types (real-206 

word, pseudo-word and backward utterances). Subsequently, capacities of mTRFs on 207 

classifying EEG trials into correct stimulus types were further tested to determine the 208 

specificity of neural entrainment at different hierarchical levels. Temporal properties of mTRFs 209 

were finally examined to study how the degrees of delta- and theta-band entrainment vary 210 

across the timescales of neural processing for different stimulus types. We suggest that testing 211 

our hypotheses will consolidate our understanding on neural entrainment of low-frequency 212 

envelopes during speech perception. 213 

 214 

2. Methods 215 

      The present study used the EEG data collected from our previous study that investigated 216 
the relationship between brain oscillations and auditory sentence processing (Mai et al., 2016). 217 
Participants, stimuli and experiment paradigms had all been previously described in this study. 218 

2.1 Participants 219 

      Twenty normal-hearing, native Mandarin speakers from mainland China (8 male; aged 19 220 
~ 25 years old) were recruited and paid for participating the experiment. No history of 221 
neurological disorders were reported for any participant. All participants were either right-222 

handed (18 participants with handedness indices (HI) > 40) or towards right-handed (2 223 
participants with HIs = 33.3) according to the Edinburgh Handedness Inventory (Oldfield, 224 

1971). 225 

2.2 Stimuli and tasks 226 

      Stimuli consisted of three types of continuous Mandarin utterances: (1) real-word, (2) 227 

pseudo-word, and (3) backward utterances. (1) and (2) were naturally produced by a male 228 

native Mandarin speaker recorded at a sampling rate of 22,050 Hz. All were produced with 229 

syllable rates between 3.5 and 4.5 Hz, and some were adjusted by slightly lengthening or 230 

shortening in time via software PRAAT (University of Amsterdam, The Netherlands) in order 231 
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to keep all utterances at ~ 4 Hz syllable rate. The real-word utterances were semantically 232 

unpredictable sentences (SUSs) (Benoit et al., 1996). Each SUS here was comprised of four 233 

semantically valid disyllabic (two-character) words with a syntactic structure of ‘Subject + 234 

Verb + Attribute + 的 + Object’. Character ‘的’ is a grammatical particle without lexical 235 

meaning. The words within a sentence were not contextually related to each other and it was 236 

impossible to predict a word from the sentence it is in. A sample SUS was ‘网络喜欢坚强的237 

空气’, in which the disyllabic words were ‘网络’ (‘Internet’), ‘喜欢’ (‘enjoy’), ‘坚强’ 238 

(‘tough’), and ‘空气’ (‘air’). The purpose of using SUSs was to prevent participants from 239 

identifying sentence contents from contextual information and to guarantee that they attended 240 

to the entire utterance. Pseudo-word utterances were sentences consisting of the same number 241 

of morphologically valid syllables as in each real-word utterance, but with no two adjacent 242 

syllables forming a semantically valid word. All participants confirmed that all pseudo-word 243 

utterances were semantically invalid for them after the experiment. Backward utterances were 244 

time-reversed versions of the real-word and pseudo-word utterances, which caused substantial 245 

phonological distortion but retain similar acoustic complexity of the speech (temporal 246 

fluctuations, formant distributions, and harmonic structures) (Binder et al., 2000; Londei et al., 247 

2010; Saur et al., 2010; Gross et al., 2013).  248 

      There were 80 utterances for each of the three stimulus types without repetition of any 249 

utterance. Half of the backward utterances were generated from randomly selected real-word 250 

utterances with the other half from randomly selected pseudo-word utterances. All stimuli had 251 

a similar duration (2.2 ~ 2.3 seconds) and were adjusted to the same average RMS intensity. 252 

      During the experiments, participants were seated in front of a computer screen and listened 253 

to the stimuli via EARTONE 3A inserted earphones (Etymotic Research, USA) with a fixed 254 

loudness at ~ 70 dB for all utterances. All stimuli (three types with 80 trials for each type) were 255 

presented in a random order using EPrime 2.0 (Psychology Software Tools, USA). The 256 

paradigm of each trial is shown in Fig. 1. At the start of each trial, there was a 3-second silence 257 

allowing participants to blink, followed by another 1.5-second silence with a white cross 258 

centred on the screen. A cue sound (200 ~ 300 ms; a naturally produced syllable for the real-259 

word and pseudo-word utterances, or a backward syllable for the backward utterances) was 260 

then presented. These were then followed by a 2-second silence and the target utterance. 261 

Participants were required to complete a sound-matching task. They were instructed to make a 262 

forced-choice judgement whether the cue sound was present in the target utterance or not by 263 

pressing a button representing ‘Yes’ or ‘No’ (on the left or right side of the keyboard) when a 264 

question mark appeared on the screen after the utterance. They were instructed to sit still, keep 265 

their eyes on the white cross and avoid any eye blink or body movement after the cue sound 266 

was played. They were also asked to press the button only after the question mark appeared, in 267 

order to avoid motor artefacts during the target period. Feedback of accuracies was given every 268 

30 trials and participants were encouraged to respond as accurately as possible. Overall, the 269 

aim of the sound-matching task was to keep participants actively attending to the target 270 

utterances. 271 
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 272 

Fig. 1. Time course of each trial in the experiment. Visual presentations were shown as the top panels 273 
and texts at the bottom describe the corresponding time course of the audio presentation and the sound-274 
matching task (button-press). The figure is adopted from Mai et al. (2016) with permission. 275 

      Out of all 80 trials in each stimulus type, 20% of the trials in which the cue sounds were 276 

actually present in the target utterances (16 utterances). In the present study, only the trials 277 

where the cue sounds were not present in the target utterances (64 utterances) were included in 278 

the subsequent analyses. This was to preclude the possibility of participants not attending to 279 

the entire utterance period and to avoid auditory repetition effects when the cue sound was 280 

present in the target utterance. This could also minimize possible effects of motor preparation 281 

of button press due to judgments made before the end of the utterance when the cue sound was 282 

present. 283 

      30 practice trials (utterances all different from the formal test) were run prior to the formal 284 
test. Breaks were taken every 30 trials during the formal test. 285 

2.3 EEG recording and preprocessing 286 

      Scalp-EEGs were recorded via a 32-electrode ActiveTwo system (Biosemi, The 287 

Netherlands) sampled at 1024 Hz. Bilateral mastoids were used as the reference. Eye artefacts 288 

were detected via vertical (vEOG; electrodes above and below the left eye) and horizontal 289 

EOGs (hEOG; electrodes on the lateral sides of the left and right eyes).  290 

      Signals of all electrodes (including EOGs) were first re-referenced to the bilateral mastoids 291 
and then bandpass filtered at 0.5 ~ 8 Hz using a zero-phase, 2nd-order Butterworth filter. 292 
Signals for detecting eye artefacts were then obtained by subtracting between signals in 293 

corresponding EOG electrodes (vEOGs and hEOGs for vertical and horizontal artefacts, 294 

respectively). Trials where the filtered EEGs in the target period (target utterances with a fixed 295 

length of 2.25 seconds for all trials) exceeded ± 40 µV in any electrode (including vEOG and 296 
hEOG) were treated as being contaminated by eye or body movement artefacts and were 297 
rejected from subsequent analyses. 298 

2.4 Extraction of delta- and theta-band EEGs and stimulus envelopes 299 

      Delta- and theta-band neural entrainment were calculated via a linear transformation 300 

algorithm based on multivariate Temporal Response Functions (mTRF) (Di Liberto et al., 301 

2015; Crosse et al., 2016). The algorithm calculates the extent of mapping speech envelope 302 

information onto corresponding EEG responses. The algorithm was applied on delta- and theta-303 
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band entrainment separately for the three stimulus types (real-word, pseudo-word and 304 

backward) in each participant. Delta-band entrainment was quantified based on the delta-band 305 

EEGs and stimulus envelopes, whilst theta-band entrainment was quantified based on the theta-306 

band EEGs and stimulus envelopes. 307 

      EEGs were bandpass filtered at 1.5 ~ 3 Hz (delta) and 3 ~ 6 Hz (theta) using a zero-phase, 308 
2nd-order Butterworth filter. The signals were then decimated to 128 Hz via a 30th-order 309 
Hamming-windowed FIR filter. The delta- and theta-band EEG signals within the artefact-free 310 
target periods were then respectively used for quantifying delta- and theta-band entrainment. 311 

      The stimulus acoustic envelopes of the artefact-free trials were obtained as follows. First, 312 
each corresponding utterance was bandpass filtered between 100 and 5000 Hz and then 313 
resampled to 16384 Hz (an integer multiple of 128 Hz) using PRAAT. Second, delta- and theta-314 
band envelopes of each utterance was extracted based on either a single broadband (‘BROAD’) 315 

or multiple narrowbands (‘MULTI’). For the BROAD condition, delta- and theta-band 316 
envelopes were obtained by bandpass filtering the broadband Hilbert envelope of the utterance 317 
at 1.5 ~ 3 Hz and at 3 ~ 6 Hz (using the same filter as in EEGs), respectively. For the ‘MULTI’ 318 
condition, the utterance were bandpass filtered into 16 logarithmic-spaced acoustic spectral 319 
bands between 100 and 5000 Hz. The delta- and theta-band envelopes were then extracted from 320 
each spectral band following the same way as in the ‘BROAD’ condition. All acoustic 321 
envelopes were finally decimated to 128 Hz as in EEGs. In this way, for both delta- and theta-322 
band envelopes, there was only one envelope time series in the ‘BROAD’ condition, but 16 323 
envelope time series in the ‘MULTI’ condition. 324 

2.5 Calculations of TRFs  325 

      Temporal Response Functions (TRFs) (Di Liberto et al., 2015; Crosse et al., 2016) for all 326 
artefact-free trials were then estimated using a linear transformation algorithm: 327 

𝑟𝑖(𝑡) = ∑ ∑ 𝑇𝑅𝐹𝑖𝑗(𝜏)𝑠𝑗(𝑡 − 𝜏)

𝜏𝑚𝑎𝑥

𝜏=0𝑗

+ 𝜖𝑖(𝑡)  328 

Where i and j refer to the ith electrode and the jth spectral band of the acoustic stimulus, 329 

respectively; 𝑟𝑖(𝑡) is the EEG time series; 𝑇𝑅𝐹𝑖𝑗(𝑡) is the time series of the TRF; 𝑠𝑗(𝑡) is the 330 

time series of the stimulus envelopes; 𝜖𝑖(𝑡) is the normally-distributed error term; τmax is the 331 
maximum time lag between the EEG series and the stimulus series, which was set at 300 ms in 332 

the present study. The 𝑇𝑅𝐹𝑖𝑗(𝑡) was estimated by minimizing the mean squares of 𝜖𝑖(𝑡). As 333 

such, TRF can be obtained via the following matrix formula: 334 

𝑻𝑹𝑭𝒊,𝜆 = (𝑺𝑇𝑺 +  𝜆𝑴)−1𝑺𝑇𝒓𝒊 335 

where i refers to the ith electrode; S is a matrix comprised of lagged time series of the stimulus 336 
envelopes in all spectral bands; ri is the vector of EEG series; λ and M denote the ridge 337 
regression parameter and a quadratic matrix, respectively, during the regularization that 338 

avoided the ill-posed estimation and overfitting (see Crosse et al., 2016). The ridge regression 339 
parameter λ was chosen among a range of values (2-15, 2-14, …, 214, 215) and the optimal λ was 340 
obtained according to the cross-validation during the training stage (see Training and testing).  341 
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2.6 Training and testing 342 

      Artefact-free trials were divided into a training set and a testing set during the procedure of 343 

training and testing. Here, for each stimulus type (real-word, pseudo-word or backward) and 344 

each participant, we randomly assigned 50 trials to the training set and randomly selected one 345 

of the remaining trials as the testing trial. We replicated the training and testing procedure for 346 

1000 times and the final testing result was treated as the average over the corresponding 1000 347 

testing estimates (‘predictive powers’ or PredPowers, see below). We followed this procedure 348 

due to the different numbers of artefact-free trials across stimulus types and across participants 349 

(recall that there were 64 trials for each stimulus type prior to artefact rejection). We considered 350 

that this procedure could keep the number of training and testing trials (50 and 1, respectively) 351 

the same for all stimulus types and participants, and at the same time all trials had similar 352 

chances to be either trained or tested. 353 

      During the training stage, a ‘leave-one-out’ cross-validation procedure was followed in 354 

order to obtain the optimal ridge parameter λ and the trained TRF (Crosse et al., 2016). First, 355 

in the training set, one trial was chosen to be ‘left out’ as a validator, while the remaining trials 356 

were treated as a ‘sub-training’ set. A predictive EEG series was generated for the validator 357 

using the temporal average of the TRFs across the trials in the sub-training set: 358 

𝑟𝑖,�̂�(𝑡) = ∑ ∑ 𝑇𝑅𝐹𝑖𝑗,𝜆
̅̅ ̅̅ ̅̅ ̅̅ ̅(𝜏)𝑠𝑗(𝑡 − 𝜏)

𝜏𝑚𝑎𝑥

𝜏=0𝑗

  359 

where 𝑟𝑖,�̂�(𝑡) is the predictive EEG series; 𝑇𝑅𝐹𝑖𝑗,𝜆
̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑡) is the average TRF series across the trials 360 

in the sub-training set; and 𝑠𝑗(𝑡) is the stimulus envelope of the validator. The Pearson 361 

correlation (Fisher-transformed) and the mean-squared error (MSE) between 𝑟𝑖,�̂�(𝑡) and the 362 

actual EEG series of the validator were calculated. Second, a different trial was then selected 363 
as the validator in the next round of validation. The validation procedure was repeated until all 364 
trials in the training set were assigned as validators. The correlation values and MSEs were 365 
then averaged across all validators. The optimal λ value was identified as the one which yielded 366 
the highest correlation value or the lowest MSE. In the present study, we used λ which yielded 367 
the highest correlation value but not the lowest MSE, as we found that the predictive powers 368 

were significantly greater based on the former than on the later (see Results). The trained TRF 369 
was finally obtained by averaging the TRFs with the optimal λ value across all trials in the 370 
training set. 371 

      During the testing stage, the predictive EEG series was obtained based on the trained TRF 372 

and the stimulus envelope series of the testing trial, following the same procedure as in each 373 
round of validation in the training stage. Then the Pearson correlation was calculated between 374 
the predictive EEG series and the actual EEG series of the testing trial. The ‘predictive power’ 375 

(PredPower) was quantified as the Fisher-transform of the correlation value. The final 376 
PredPower was obtained as the average across the 1000 times of training and testing. 377 

2.7 Surrogate and random predictive powers (PredPowers) 378 

      Surrogate and random PredPowers were calculated as baselines to prove the fidelity of the 379 
results obtained from our data. Surrogate PredPowers were obtained as follows. During each 380 
round of training and testing, the testing trial selected for each given stimulus type was assigned 381 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/556837doi: bioRxiv preprint first posted online Feb. 21, 2019; 

http://dx.doi.org/10.1101/556837
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

to the other two stimulus types as a testing ‘surrogate’. The surrogate PredPowers for a given 382 

stimulus type were then defined as the predictive powers that were obtained using testing trials 383 
from different stimulus types. The results were finally averaged across all stimulus types and 384 
across the 1000 times of training and testing. To obtain random PredPowers, 51 random ‘trials’ 385 
(50 for the training set and one for testing) were created, each of which consisted of an ‘EEG’ 386 
series and a corresponding ‘stimulus’ series, both being pseudo-randomly generated Gaussian 387 
noises with the same length of each target period in the experiment (2.25 seconds). PredPowers 388 
were calculated in the same way as in the real data. Such procedure was replicated 1000 times 389 
and the random PredPowers were finally grand-averaged. 390 

      We predicted that, if PredPowers are valid measurements and TRFs can specifically encode 391 
envelope information of the respective stimulus types, the ‘congruent’ PredPowers (those 392 
based on testing trials from the same stimulus type) should be statistically greater than both 393 
surrogate and random PredPowers. We also predicted that, as some acoustic features (such as 394 

acoustic rhythms and spectrotemporal complexity) are commonly shared between stimulus 395 
types, surrogate PredPowers could also be above random level. 396 

2.8 Classification of EEG trials using mTRFs 397 

      Classification capacity was tested for multivariate TRFs (mTRFs). If PredPowers can 398 
index the neural entrainment at different linguistic hierarchical levels, mTRFs should have the 399 
capacity to classify EEGs between different stimulus types. Similar to the calculation of 400 
surrogate PredPowers, the testing trial in each stimulus type was assigned to the other two 401 
stimulus types as a testing surrogate during each round of training and testing. As such, the 402 
mTRF in each given stimulus type generated one congruent PredPower and two surrogate 403 
PredPowers. The capacity of mTRF was estimated by whether it could accurately identify the 404 

congruent testing trial (the trial from the same stimulus type). We considered that the 405 
classification of mTRF was ‘accurate’ if the congruent PredPower was greater than the 406 
surrogate PredPowers. The accuracies were finally averaged over the 1000 times of training 407 
and testing.  408 

      Furthermore, the classification capacity in each stimulus type was estimated in two 409 
scenarios: (1) classification among all stimulus types, i.e., when mTRF of each given stimulus 410 
type was tested by trials from all three stimulus types (Scenario_1); (2) classification between 411 
two stimulus types, i.e., when mTRF of each given stimulus type trials was tested by trials from 412 

two stimulus types, one from the same stimulus type of the given mTRF and the other from a 413 
different stimulus type (e.g., mTRFreal-word with testing trials from real-word and pseudo-word 414 
utterances) (Scenario_2). 415 

2.9 Temporal properties of mTRFs 416 

      Time series of mTRF were obtained by averaging over the 1000 trained mTRFs for each 417 
stimulus type and each participant. Absolute values of the time series were then obtained as the 418 
absolute weighting series in each spectral band. Absolute values were used here because they 419 
could reflect the extent of mTRF contributions to the neural entrainment regardless of the sign 420 

of the weighting. The absolute series were averaged across all spectral bands (i.e., 16 bands).  421 

      Temporal properties of the absolute weighting were then examined to study how the 422 
degrees of neural entrainment vary across time lags. Recall that the range of time lags was set 423 

as 0 ~ 300 ms (see Calculations of TRFs). The time lags were divided into ‘early’ (20 ~ 160 424 
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ms) and ‘later’ (160 ~ 300 ms) stages (each covered 140 ms). The absolute weighting were 425 

compared across the time ranges (‘early’ vs. ‘later’) and stimulus types.  426 

2.10 Sequences of statistical analyses 427 

      Calculations of PredPowers and TRFs were all electrode-wise and separately conducted 428 

for delta- and theta-band entrainment, based on the delta- and theta-band EEGs and stimulus 429 

envelopes, respectively (see Extraction of delta- and theta-band EEGs and stimulus 430 

envelopes). Statistical analyses were also conducted for delta- and theta-band entrainment 431 

separately. Also, the analyses were conducted based on PredPowers and TRFs averaged over 432 

the centro-frontal electrodes. This is because the neural entrainment measured with EEGs is 433 

dominant over centro-frontal (compared to parieto-occipital) region for the auditory modality 434 

(Crosse et al., 2015, 2016). The centro-frontal electrodes were defined as the 22 electrodes 435 

shown in Fig. 2 (indicated by the shaded trapezoid). All statistical analyses were within-subject 436 

analyses (Repeated Measures ANOVAs followed by post-hoc pairwise t-tests). 437 

 438 

Fig. 2. Channel configuration. Statistical analyses were based on the centro-frontal electrodes (indicated 439 
by the shaded trapezoid). 440 

      PredPowers were first compared between the ‘BROAD’ condition (using TRFs based on 441 

the broadband envelopes of the stimuli, or univariate TRFs) and the ‘MULTI’ condition (using 442 

TRFs based on stimulus envelopes extracted from 16 spectral bands, or multivariate TRFs 443 

(mTRFs)) (see Extraction of delta- and theta-band EEGs and stimulus envelopes). Results 444 

showed that PredPowers were significantly greater in the ‘MULTI’ than in the ‘BROAD’ 445 

condition at both delta and theta bands (see Results). This is consistent with previous findings 446 

showing that mTRF models are superior to univariate TRF models for predicting low-447 

frequency EEG responses during speech perception (Di Liberto et al., 2015). Accordingly, we 448 

used the mTRF, but not univariate TRF model, during the subsequent signal processing and 449 

statistical analyses.  450 

      Fidelity of PredPowers were then tested by comparing those with the surrogate and random 451 

PredPowers. Next, PredPowers were compared across the three stimulus types (real-word, 452 

pseudo-word and backward) to test how neural entrainment changes at different linguistic 453 

hierarchical levels. Classification capacity of mTFRs were then tested in order to examine the 454 
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specificity of neural entrainment for different stimulus types. Temporal properties of mTRFs 455 

were finally examined to study the degrees of neural entrainment across time lags. 456 

      The EEG signal processing was conducted using Matlab 2014a (MathWorks, USA). 457 
Statistical analyses were conducted using SPSS 23 (IBM, USA). 458 

 459 

3. Results 460 

      At least 51 trials were retained after artefact rejection in all stimulus types for all 461 
participants. The average numbers of retained trials were 59.1 (SE: 0.7), 58.3 (SE: 0.7) and 462 
58.9 (SE: 0.9) for real-word, pseudo-word and backward utterances, respectively. No 463 
significant difference for the number of trials was found between any two stimulus types (all p 464 

> 0.1, uncorrected). Behavioral results can be found in Mai et al (2016). Response accuracies 465 
were significantly higher than the 50% chance-level for all stimulus types (> 95% for real-word 466 
and pseudo-word utterances and > 70 % for the backward utterances; all p < 10-8, uncorrected), 467 
indicating that participants had complied with the instructions to actively attend to the stimuli. 468 

      All statistical analyses on EEGs were conducted based on the averages over the 22 centro-469 
frontal electrodes (see Methods). Repeated Measures ANOVAs were conducted with 470 
Greenhouse-Geisser correction. All p-values in the pairwise comparisons between any two 471 
stimulus types were Bonferroni corrected by the factor of 3 (due to the three stimulus types) 472 
unless specified as ‘uncorrected’. 473 

3.1 Univariate TRF vs. mTRF 474 

      PredPowers were compared between the univariate TRF and mTRF models. Before such 475 
comparisons were conducted, it was first determined that the optimal λ value (the ridge 476 
regression parameter, see Methods) was identified as the one which yielded the highest Pearson 477 
correlation value (Fisher-transformed) but not the lowest MSE during the cross-validation. This 478 
was because PredPowers were found to be significantly greater based on the former than on 479 

the latter in both univariate TRF and mTRF models (all p < 0.01). 480 

      Repeated Measures ANOVAs were then conducted for the delta- and theta-band 481 
PredPowers with factors of TRF Type (univariate TRF vs. mTRF) and Stimulus Type (real-482 
word vs. pseudo-word vs. backward). The results showed significant main effects of TRF Type 483 
and Stimulus Type, but no [TRF Type × Stimulus Type] interactions, for both delta- and theta-484 

band PredPowers (see Table 1 for detailed statistics). Specifically, both delta- and theta-band 485 
PredPowers were significantly greater when using mTRF compared to univariate TRF (see 486 

Fig. 3). As we only focused on the differences of the two TRF types in this section, post-hoc 487 
analyses following the main effects of Stimulus Type are not reported here. 488 

      The results thus showed the superiority of mTRF to univariate TRF, consistent with the 489 
previous finding (Di Liberto et al., 2015). The subsequent signal processing and statistical 490 
analyses were hence based on mTRF, but not on univariate TRF. 491 
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 492 

Fig. 3. Comparisons of PredPowers between univariate TRF (‘BROAD’) and mTRF (‘MULTI’) 493 
models. Scalp topographies for different stimulus types are shown on the left and PredPowers averaged 494 
across the centro-frontal electrodes were shown on the right. Errors bars denote standard errors of the 495 
mean (SEMs). * = significance at p < 0.05.  496 

Table 1. Statistical results of Repeated Measures ANOVAs for PredPowers averaged over the centro-497 
frontal electrodes. The effects of the TRF type (univariate TRF vs. mTRF) and Congruency (congruent 498 
vs. surrogate; for PredPowers based on mTRF) were tested, respectively. Df, F, p and ηp

2 refer to 499 
degrees of freedom, F-values, p-values and partial eta-squared, respectively. The statistics were 500 
Greenhouse-Geisser corrected. Numbers are all rounded to three decimal places, unless they are < 501 
0.001. Significant p-values are indicated in bold. * = significance at p < 0.05; ** = significance at p < 502 
0.01; *** = significance at p < 0.001. 503 

Dependent 

variables 
Band Factors df1 df2 F p ηp

2 

 

 

 

PredPower 

 

Delta 

 

TRF Type 1 19 5.369 0.032* 0.220 

Stimulus Type 1.710 32.494 5.429 0.012* 0.222 

TRF Type × Stimulus Type 1.369 26.003 1.196 0.302 0.059 

Theta 

 

TRF Type 1 19 6.650 0.018* 0.259 

Stimulus Type 1.539 29.233 7.543 0.004** 0.284 

TRF Type × Stimulus Type 1.759 33.424 1.290 0.286 0.064 

 

 

PredPower 

based on 

mTRF 

Delta 

 

Congruency 1 19 26.638 < 10-4*** 0.584 

Stimulus Type 1.950 37.056 7.510 0.002** 0.283 

Congruency × Stimulus Type 1.830 34.769 1.196 0.003** 0.282 

Theta 

 

Congruency 1 19 40.280 < 10-5*** 0.679 

Stimulus Type 1.313 24.944 7.602 0.007** 0.286 

Congruency × Stimulus Type 1.710 32.486 4.746 0.020* 0.200 

 504 
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3.2 Fidelity of PredPowers 505 

      Fidelity of PredPowers (based on mTRFs) were tested by comparing congruent 506 
PredPowers (training and testing trials from the same stimulus type) with surrogate (training 507 
and testing trials from different stimulus types) and random (pseudo-random noise) 508 
PredPowers. The results are illustrated in Fig. 4. 509 

      We first test whether PredPowers obtained from real data (congruent and surrogate) were 510 
statistically above random level. We found that all congruent PredPowers at delta and theta 511 
bands were significantly greater than random PredPowers for all stimulus types (all p < 10-4, 512 
uncorrected). Surrogate PredPowers were significantly greater than random PredPowers for 513 
all stimulus types (all p < 0.005, uncorrected), except that at the delta-band for the backward 514 
utterances (p = 0.052, uncorrected). We suggest it is reasonable that, not only congruent 515 
PredPowers, but also surrogate PredPowers were greater than the random level, possibly 516 

because some acoustic features (e.g., acoustic rhythms and spectrotemporal complexity) were 517 
commonly shared across different stimulus types, resulting in these features being encoded in 518 
mTRFs. 519 

      Next, the effects of Congruency (congruent vs. surrogate) were tested. Repeated Measures 520 
ANOVAs were conducted with factors of Congruency and Stimulus Type. Main effects of 521 
Congruency and Stimulus Type, and [Congruency × Stimulus Type] interactions were all found 522 
to be significant at both delta and theta bands (see Table 1). Post-hoc pairwise comparisons 523 
following the significant interactions showed that, at the delta band, congruent PredPower was 524 
significantly greater than surrogate PredPower only for pseudo-word utterances (t(19) = 7.984,  525 
p < 10-6), but not for real-word (t(19) = 2.449, p = 0.073) or backward utterances (t(19) = 2.056, 526 
p = 0.161) (see Fig. 4 upper panels). At the theta band, congruent PredPower was significantly 527 
greater than surrogate PredPower for real-word (t(19) = 5.769, p < 10-5) and pseudo-word 528 

utterances (t(19) = 5.733, p < 10-5), but not for backward utterances (t(19) = 1.162, p = 0.779) (see 529 
Fig. 4 lower panels). 530 
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 531 

Fig. 4. Comparisons between congruent and surrogate PredPowers. All PredPowers were calculated 532 
based on the mTRF model. Bar graphs illustrated the comparisons averaged over the centro-frontal 533 
electrodes for different stimulus types. Statistical significance were Bonferroni corrected by the factor 534 
of 3 (three stimulus types). Dashed lines indicate the values of random PredPowers. Errors bars denote 535 
SEMs. *** = significance at p < 0.001; ns = not significant.  536 

 537 

3.3 Comparisons of PredPowers between stimulus types 538 

      Results for comparisons of PredPowers between stimulus types are illustrated in Fig. 5. 539 
Repeated Measures ANOVAs were conducted with the factor of Stimulus Type. Significant 540 
main effects of Stimulus Type were found for both delta- and theta-band PredPowers (see 541 

Table 2). Post-hoc comparisons showed that, at the delta band, PredPower was significantly 542 
greater for pseudo-word than for real-word and backward utterances, while no significant 543 
difference was found between real-word and backward utterances (see Fig. 5 and Table 3, 544 

delta-band PredPowers). At the theta band, PredPower was significantly greater for real-word 545 
and pseudo-word than for backward utterances, while no significant difference was found 546 
between real-word and pseudo-word utterances (see Fig. 5 and Table 3, theta-band 547 
PredPowers). 548 

 549 
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 550 

Fig. 5. Comparisons of PredPowers across stimulus types. All PredPowers were calculated based on 551 
the mTRF model. Bar graphs illustrated the comparisons averaged over the centro-frontal electrodes. 552 
Statistical significance were Bonferroni corrected by the factor of 3. Errors bars denote SEMs. * = 553 
significance at p < 0.05; ** = significance at p < 0.01; *** = significance at p < 0.001. 554 

 555 

Table 2. Statistical results of Repeated Measures ANOVAs for PredPowers (based on mTRF) and the 556 
classification capacity of mTRFs across stimulus types. All were based on the centro-frontal electrodes. 557 
Note that ANOVAs for the mTRF classification were conducted only in Scenario_1 (when mTRFs were 558 
tested by trials from all three stimulus types), but not in Scenario_2 (when mTRFs were tested by trials 559 
from two stimulus types). Df, F, p and ηp

2 refer to degrees of freedom, F-values, p-values and partial 560 
eta-squared, respectively. The statistics were Greenhouse-Geisser corrected. Numbers are all rounded 561 
to three decimal places, unless they are < 0.001. Significant p-values are indicated in bold. * = 562 
significance at p < 0.05; ** = significance at p < 0.01; *** = significance at p < 0.001. 563 

Dependent 

variables 
Band Factors df1 df2 F p ηp

2 

PredPower 

based on mTRF 

Delta Stimulus Type 1.633 31.019 11.105 < 0.001*** 0.369 

Theta Stimulus Type 1.555 29.542 7.956 0.003** 0.295 

Classification 
accuracy of mTRF 

(Scenario_1) 

Delta Stimulus Type 1.823 31.019 6.793 0.004** 0.263 

Theta Stimulus Type 1.902 36.133 3.344 0.049* 0.150 

 564 

Table 3. Pairwise comparisons for PredPowers (based on mTRF) and the classification capacity of 565 
mTRFs between different stimulus types. The comparisons for PredPowers and classification 566 
accuracies of mTRFs in Scenario_1 were post-hoc analyses following the significant main effects of 567 
Stimulus Type (see Table 2). Df, t and p refer to degrees of freedom, t-values and p-values, respectively. 568 
All p-values were Bonferroni corrected by the factor of 3 (three stimulus types). Numbers are all 569 
rounded to three decimal places, unless they are < 0.001 or p > 1. Significant p-values are indicated in 570 
bold. * = significance at p < 0.05; ** = significance at p < 0.01; *** = significance at p < 0.001. 571 

Dependent 

variables 
Band Comparisons df t p 

Delta Real-word vs. pseudo-word 19 -2.693 0.043* 
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PredPower 

based on mTRF 

Real-word vs. backward 

Pseudo-word vs. backward  

19 

19 

1.417 

5.623 

0.518 

< 10-4*** 

Theta Real-word vs. pseudo-word 

Real-word vs. backward 

Pseudo-word vs. backward 

19 

19 

19 

0.703 

3.431 

2.718 

> 1 

0.008** 

0.041* 

 

Classification 
accuracy of mTRF 

(Scenario_1) 

Delta Real-word vs. pseudo-word 

Real-word vs. backward 

Pseudo-word vs. backward 

19 

19 

19 

-2.881 

-0.232 

3.425 

0.029* 

> 1 

0.009** 

Theta Real-word vs. pseudo-word 

Real-word vs. backward 

Pseudo-word vs. backward 

19 

19 

19 

0.112 

2.148 

2.094 

> 1 

0.134 

0.150 

 

Classification 
accuracy of mTRF 

(Scenario_2) 

Delta Real-word vs. pseudo-word 

Real-word vs. backward 

Pseudo-word vs. backward 

19 

19 

19 

-3.413 

2.148 

4.694 

0.009** 

> 1 

< 0.001*** 

Theta Real-word vs. pseudo-word 

Real-word vs. backward 

Pseudo-word vs. backward 

19 

19 

19 

0.448 

3.450 

3.112 

> 1 

0.008** 

0.017* 

3.4 Classification capacity of mTRFs 572 

      Fig. 6 and Fig. 7 show the results of classification capacity of mTRFs. 573 

      Fig. 6 shows the accuracies of classification among all stimulus types (Scenario_1). The 574 
mTRF of each given stimulus type was tested by trials from all three stimulus types. Repeated 575 
Measures ANOVAs were conducted with the factor of Stimulus Type. Main effects of Stimulus 576 
Type were found at both delta and theta bands (see Table 2, mTRF classification in 577 
Scenario_1). Post-hoc tests found that, at the delta band, accuracies were significantly higher 578 
for pseudo-word than for real-word and backward utterances, while no significant difference 579 

was found between those for real-word and backward utterances (see Fig. 6 and Table 3, delta-580 
band mTRF classification in Scenario_1). At the theta band, no significant differences of 581 
accuracies were found between any two stimulus types (see Fig. 6 and Table 3, theta-band 582 

mTRF classification in Scenario_1).  583 

      Fig. 7 shows the accuracies of classification between any two stimulus types (Scenario_2). 584 
The mTRF of each given stimulus type was tested by trials from two stimulus types, one from 585 

the same stimulus type and the other from a different stimulus type. We tested three pairs of 586 

comparisons: (1) real-word vs. pseudo-word (mTRFReal-word and mTRFPseudo-word tested by trials 587 
from both real-word and pseudo-word utterances); (2) real-word vs. pseudo-word (mTRFReal-588 

word and mTRFBackward tested by trials from both real-word and backward utterances); (3) 589 

pseudo-word vs. backward (mTRFPseudo-word and mTRFBackward tested by trials from both 590 
pseudo-word and backward utterances). At the delta band, the results resembled those in 591 

Scenario_1, where accuracies were significantly higher for pseudo-word than for real-word and 592 
backward utterances, and there was no significant difference between real-word and backward 593 
utterances (see Fig. 7 and Table 3, delta-band mTRF classification in Scenario_2). At the theta 594 
band, accuracies were significantly higher for real-word and pseudo-word than backward 595 
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utterances, and no significant difference was found between real-word and pseudo-word 596 

utterances (see Fig. 7 and Table 3, theta-band mTRF classification in Scenario_2). 597 

 598 

Fig. 6. Accuracies of mTRF classification among all stimulus types (Scenario_1). The mTRF of each 599 
given stimulus types were tested by trials from all three stimulus types. Accuracies were based on 600 
PredPowers averaged over the centro-frontal electrodes. Statistical significance were Bonferroni 601 
corrected by the factor of 3. Dashed lines indicate the chance level (33.33%). Errors bars denote SEMs. 602 
* = significance at p < 0.05; **  = significance at p < 0.01. 603 

 604 

Fig. 7. Accuracies of mTRF classification between any two stimulus types (Scenario_2). The mTRF of 605 
each given stimulus type was tested by trials from two stimulus types (one from the same stimulus type, 606 
the other from a different stimulus type). The accuracies were based on PredPowers averaged over the 607 
centro-frontal electrodes. Statistical significance were Bonferroni corrected by the factor of 3. Dashed 608 
lines indicate the chance level (50%). Errors bars denote SEMs. * = significance at p < 0.05; **  = 609 
significance at p < 0.01; *** = significance at p < 0.001. 610 

    3.5 Temporal properties of mTRFs 611 
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      Fig. 8 shows the spectrotemporal representations of mTRFs for different stimulus types 612 

averaged over the centro-frontal electrodes. Delta mTRFs (upper panels) showed temporal 613 
fluctuations that persisted across the entire 300-ms range for all stimulus types, while theta 614 
mTRFs (lower panels) showed N1-P1-N2-like complexes within the first 150 ms before the 615 
weighting reached a relatively low and stable level. Fig. 9 shows the absolute mTRF weighting 616 
averaged across the 16 spectral bands. To examine how the degrees of neural entrainment vary 617 
across time lags for different stimulus types, Repeated Measures ANOVAs were conducted for 618 
the absolute weighting with the factors of Time (‘early’ (20 ~ 160 ms) vs. ‘later’ (160 ~ 300 619 
ms)) and Stimulus Type. For delta-band absolute weighting, no significant main effects of Time 620 
or Stimulus Type, or [Time × Stimulus Type] interaction were found (see Table 4, delta-band). 621 
For theta-band absolute weighting, there was a significant main effect of Time, but no 622 
significant main effect of Stimulus Type or [Time × Stimulus Type] interaction (see Table 4, 623 
theta-band). Theta-band absolute weighting was significantly greater at the ‘early’ than at the 624 
‘later’ time lags (see Fig. 9). The statistical results are thus consistent with the features of mTRF 625 

series shown in Fig. 8.  626 

 627 

Fig. 8. Spectrotemoral representations of mTRFs averaged over the centro-frontal electrodes. Note that 628 
frequencies are in logarithmic scale divided into 16 spectral bands (see Methods). 629 
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 630 

Fig. 9. Absolute weighting of mTRFs. Left panels show the time series of absolute weighting averaged 631 
over the 16 spectral bands and the centro-frontal electrodes (the line graphs) and the corresponding 632 
scalp topographies of the ‘early’ (20 ~ 160 ms) and ‘later’ (160 ~ 300 ms) time lags for different stimulus 633 
types. Right panels show the comparisons of the absolute weighting between time lags (‘early’ vs. 634 
‘later’). Errors bars denote SEMs. *** = significance at p < 0.001; ns = not significant.   635 

Table 4. Statistical results of Repeated Measures ANOVAs for absolute weighting of mTRFs (averaged 636 
over the centro-frontal electrodes) across Time (‘early’ vs. ‘later’) and stimulus types. Df, F, p and ηp

2 637 
refer to degrees of freedom, F-values, p-values and partial eta-squared, respectively. The statistics were 638 
Greenhouse-Geisser corrected. Numbers are all rounded to three decimal places, unless they are < 639 
0.001. Significant p-values are indicated in bold. *** = significance at p < 0.001. 640 

Dependent 

variables 
Band Factors df1 df2 F p ηp

2 

 

 

Absolute 

weighting of 

mTRFs 

 

Delta 

 

Time 1 19 0.811 0.379 0.041 

Stimulus Type 1.712 32.531 2.182 0.135 0.103 

Time × Stimulus Type 1.573 29.893 0.131 0.829 0.007 

Theta 

 

Time 1 19 43.675 10-5*** 0.697 

Stimulus Type 1.899 36.076 1.151 0.326 0.057 

Time × Stimulus Type 1.768 33.583 0.464 0.609 0.024 

3.6 Result summary 641 

      The results are summarized in Table 5. We first showed that PredPowers were statistically 642 
greater when using mTRFs compared to univariate TRFs, consistent with the pervious finding 643 

(Di Liberto et al., 2015). We then confirmed that PredPowers based on mTRFs were above 644 
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random level and tested the effectiveness of EEG encoding congruent stimulus envelope 645 

information. Congruent PredPowers were statistically greater than surrogate PredPowers for 646 
pseudo-word utterances at the delta band and for speech (real-word and pseudo-word) 647 
utterances at the theta band. 648 

      PredPowers and classification capacity of mTRFs were then compared across stimulus 649 
types. The results showed a consistent pattern that delta- and theta-band entrainment take 650 
differential roles at different linguistic hierarchical levels. Specifically, delta-band PredPower 651 
was significantly greater for pseudo-word than for real-word and backward utterances, while 652 
theta-band PredPower was significantly greater for speech than for non-speech (backward) 653 
utterances. Correspondingly, delta-band mTRF had significantly better performances for 654 
pseudo-word than for real-word and backward utterances, whilst theta-band mTRF had 655 
significantly better performances for speech than for non-speech utterances. 656 

      We finally examined the temporal properties of the mTRF series, showing that the absolute 657 
weighting of mTRF at the theta, but not delta band, was significantly greater at early time lags 658 
(20 ~ 160 ms) than at later time lags (160 ~ 300 ms). This indicated that delta-band entrainment 659 
is likely to maintain across neural processing stages up to 300 ms, while theta-band entrainment 660 
mainly occurs at early stages of neural processing (< 160 ms). 661 

 662 

Table 5. Brief summary of the results. ‘Speech’ refers to both real-word and pseudo-word utterances, 663 
while ‘non-speech’ refers to backward utterances.  664 

Band Testing effects Descriptions for statistically significant results 

Delta 

 

Univariate TRF vs. mTRF Greater PredPowers based on mTRFs than on univariate TRFs  

Congruency 
Greater congruent than surrogate PredPowers for pseudo-

word, but not for real-word or backward utterances 

PredPowers across 

stimulus types 

Greater PredPowers for pseudo-word than for real-word and 

backward utterances 

Classification capacity of 

mTRFs 

Better performances for pseudo-word than for real-word and 

backward utterances 

Temporal property of 

mTRFs (‘early’ vs. ‘later’) 

No difference of absolute weighting between early and later 

stages 

Theta 

 

Univariate TRF vs. mTRF Greater PredPowers based on mTRFs than on univariate TRFs  

Congruency 
Greater congruent than surrogate PredPowers for speech, but 

not for non-speech utterances 

PredPowers across 

stimulus types 

Greater PredPowers for speech than for non-speech 

Classification capacity of 

mTRFs 

Better performances for speech than for non-speech 
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Temporal property of 

mTRFs (‘early’ vs. ‘later’) 

Greater absolute weighting in early than in later stages 

 665 

4. Discussions 666 

4.1 Superiority of mTRFs to univariate TRFs 667 

      We used a multivariate linear transformation algorithm that quantifies the neural 668 
entrainment of speech envelopes in EEGs (Di Liberto et al., 2015; Crosse et al., 2016). We 669 
showed that both delta- and theta-band PredPowers were significantly greater based on the 670 

mTRF than on the univariate TRF model. This is consistent with Di Liberto et al. (2015) which 671 
showed superiority of mTRF to univariate TRF when studying the low-frequency (1 ~ 15 Hz) 672 
neural entrainment of acoustic envelopes during speech perception. This indicates that low-673 
frequency (both delta and theta) neural entrainment is achieved in a way that the brain encodes 674 
envelopes at multiple narrowbands at the cochlear output, rather than encodes the single 675 
broadband envelopes. While most previous MEG/EEG studies investigated the role of neural 676 
entrainment to single broadband acoustic envelopes for speech intelligibility (e.g., Peelle et al., 677 
2013; Doelling et al., 2014; Vander Ghinst et al., 2016; Molinaro and Lizarazu, 2018; 678 
Vanthornhout et al., 2018), we suggest that the mTRF model provides a more appropriate 679 
approach of quantifying neural entrainment of acoustic envelopes during speech perception. 680 

      Note that, however, despite the superiority, a potential drawback of the mTRF model is that 681 
the linear mapping between envelopes and EEGs could be insensitive to the characteristics of 682 

response nonlinearities in audition (e.g., Christianson et al., 2008; Ahrens et al., 2008; 683 
Sadagopan and Wang, 2009). That being said, linear mapping is still a good approximation, as 684 
more advanced non-linear approaches in MEG/EEGs may yield greater computational 685 
complications and only marginal and negligible improvements (see detailed discussions by 686 
Crosse et al., 2016). 687 

4.2 Distinctions between delta- and theta-band neural entrainment at different 688 

linguistic hierarchical levels 689 

4.2.1 Delta- and theta-band entrainment across stimulus types 690 

      Envelope modulations are critical acoustic cues for speech understanding (Drullman et al., 691 

1994; Shannon et al., 1995; Arai et al., 1999; Swaminathan and Heinz, 2012). Previous MEG 692 
and EEG studies have shown that low-frequency neural entrainment of speech envelopes is 693 

associated with speech intelligibility (Peelle et al., 2013; Doelling et al., 2014; Vanthornhout 694 
et al., 2018). Recent tACS studies further showed that manipulating the degree of neural 695 
entrainment to envelopes can alter speech intelligibility, arguing the causal effect of the 696 
entrainment during speech perception (Zoefel et al., 2017; Riecke et al., 2018; Wilsch et al., 697 
2018). Despite these findings, it is not clear, however, what is the role of neural entrainment at 698 

different linguistic hierarchical levels. Understanding speech should include processes of 699 
recognizing both phonological and semantic information (Nahum et al., 2008). Simply seen 700 
from the relationship between neural entrainment and speech intelligibility, how the 701 

entrainment subserves phonological and semantic processing during speech perception is still 702 
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obscure. The present study therefore tested the EEG entrainment to speech envelopes in 703 

response to stimuli of real-word, pseudo-word and backward utterances that were expected to 704 
successfully dissociate the phonological and semantic processing (Binder et al., 2000; Londei 705 
et al., 2010; Saur et al., 2010; Mai et al., 2016). We found that delta-band neural entrainment 706 
(PredPower) was significantly greater for pseudo-word than for real-word and backward 707 
utterances. Theta-band neural entrainment, on the other hand, was significantly greater for 708 
speech (real-word and pseudo-word) than for non-speech (backward) utterances, but did not 709 
differ statistically between real-word and pseudo-word.  710 

      The result thus indicates the different roles that delta- and theta-band entrainment take 711 
during phonological and semantic processing. Greater theta-band entrainment for speech than 712 
for non-speech indicate its role in speech-specific processing, even though it can also occur in 713 
non-speech stimuli (theta-band PredPower for backward utterances was also above random 714 
level; see Fig. 4). The speech-specificity was likely to be associated with phonological, but not 715 

higher-level (semantic) processing, as it did not differ between real-word and pseudo-word 716 
utterances. This could indicate the neural tracking of syllabic- and sub-syllabic pattern of the 717 
speech signals during phonological processing. The delta-band entrainment, on the other hand, 718 
showed a distinct pattern, where the speech-specific properties were exhibited for pseudo-word 719 
utterances but not for real-word utterances. Plausibly, this may be explained by interactions 720 
between phonological and semantic processing during tracking of supra-syllabic rhythms, i.e., 721 
richer semantic information in the real-word utterances assisted in recognition of phonological 722 
contents, thereby reducing the demands of phonological processing indexed by the delta-band 723 
entrainment (Mai et al., 2016). From the perspective of pseudo-word utterances, delta-band 724 
entrainment was stronger possibly because of greater listening effort for phonological 725 
recognition due to lack of assistance from semantic information. This is in line with the 726 
behavioral studies showing the importance of delta-band envelopes for recognition of 727 
semantically meaningless syllables (Arai et al., 1996; 1999). It is also compatible with findings 728 

showing increased delta-band entrainment in some attention-demanding conditions, such as 729 
recognition of speech with reduced spectral resolution (Ding et al., 2014) or with increasingly 730 
noisy backgrounds (Vander Ghinst et al., 2016). 731 

4.2.2 Specificity of delta- and theta-band mTRFs for different stimulus types 732 

      PredPowers were compared between the ‘congruent’ and ‘surrogate’ conditions to test the 733 
specificity of mTRFs for different stimulus types. The congruency effect was found for pseudo-734 
word but not for real-word or backward utterances at the delta band, and for speech but not for 735 
non-speech at the theta-band. Correspondingly, classification capacity of mTRFs were tested 736 
to see how congruent testing trials were accurately identified. Performances of delta-band 737 

mTRFs were better for pseudo-word than for real-word and backward utterances, while 738 
performances of theta-band mTRFs were better for speech than non-speech. Same patterns 739 

were shown in Scenario_1 and Scenario_2, although no statistical significance between any 740 
two stimulus types was found at the theta band in Scenario_1 (Fig. 6 right panel). Lack of 741 
significance here may be because of the inability of theta-band mTRFs to distinguish testing 742 
trials between real-word and pseudo-word utterances, thereby decreasing the classification 743 
accuracies for both real-word and pseudo-word utterances when mTRFs were tested by trials 744 

from all stimulus types. These results are thus consistent with the findings which compared 745 
entrainment between stimulus types, showing the highest specificity of delta-band entrainment 746 
for pseudo-word utterances and higher specificity of theta-band entrainment for speech than 747 
for non-speech.  748 
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      Our results echo the recent MEG study showing that delta- and theta-band entrainment play 749 

different roles during speech perception (Molinaro and Lizarazu, 2018). Despite this, however, 750 
the roles of delta- and theta-band entrainment found in the present study were different from 751 
those in Molinaro and Lizarazu (2018). Molinaro and Lizarazu (2018) compared neural 752 
entrainment between speech and non-speech (2-Hz and 7-Hz AM white-noise, or spectrally-753 
rotated speech). They found that, delta-band entrainment was greater for speech than for non-754 
speech in the right superior temporal and left inferior frontal regions, while theta-band 755 
entrainment did not differ between speech and non-speech. It was therefore argued that delta-756 
entrainment involves higher-order computations for language processing, while theta-757 
entrainment involves perceptual processing of auditory inputs (Molinaro and Lizarazu, 2018). 758 
In contrast, our current results showed that greater delta-band entrainment for speech than for 759 
non-speech occurs only when semantic information are deficient (pseudo-word), while theta-760 
band entrainment is greater for speech than non-speech regardless of the semantic contents.  761 

      There could be several reasons for the distinctions between our results and the findings by 762 
Molinaro and Lizarazu (2018). First, the non-speech stimuli used in Molinaro and Lizarazu 763 
(2018) were AM white-noise and spectrally-rotated speech with the same RMS intensity as the 764 
speech stimuli. In this case, due to huge differences of spectral distributions between speech 765 
and non-speech, perceptual loudness across spectral bands was not controlled. It may worth 766 
pondering whether such uncontrolled factor could influence the differences of neural 767 
entrainment between speech and non-speech. Our present study, on the other hand, used 768 
backward utterances as non-speech stimuli which kept the long-term spectrum the same as 769 
speech, thereby controlling the perceptual loudness across spectral bands. Second, in our 770 
present study, we used Mandarin utterances with the syllable rate controlled at ~ 4 Hz for all 771 
trials (see Methods), while it is not clear whether the syllable rate of the Spanish utterances was 772 
relatively fixed or varied across trials in Molinaro and Lizarazu (2018). We argue that the effect 773 
of neural entrainment at frequencies in the neighbourhood of the syllable rate (i.e., theta band) 774 

could be enhanced as a consequence of fixing the syllable rate across stimuli. This may be a 775 
possible reason for a stronger effect of theta-band entrainment in our present study. Third, 776 
different methods of quantifying neural entrainment were used. Molinaro and Lizarazu (2018) 777 
measured cross-spectral density between MEG signals and the broadband speech envelopes. 778 
The present study used linear transformation algorithms that involve training and testing 779 
mTRFs that reflect the extent of mapping between EEGs and speech envelopes from multiple 780 
spectral bands (Di Liberto et al., 2015; Crosse et al., 2016). Future work would be needed to 781 
clarify whether results obtained from different methods are comparable and consistent. 782 

4.3 Different temporal properties between delta- and theta-band mTRFs 783 

      TRF can be seen as a fitting filter, through which acoustic features project to corresponding 784 

neural signals (Ding and Simon, 2012). TRFs can thus reflect the characteristics of how speech 785 
envelope information were encoded in the brain. Distinctions of temporal properties between 786 

delta- and theta-band mTRFs were found. Delta-band mTRFs showed persistent temporal 787 
fluctuations up to at least 300 ms, while early N1-P1-N2-like complexes were shown in theta-788 
band mTRFs followed by gradual attenuations. Statistically, the absolute weighting of theta-, 789 
but not delta-band, mTRFs were greater at early (20 ~ 160 ms) than at later time lags (160 ~ 790 
300 ms). It is likely that delta-band entrainment occurs not merely at early sensory processing 791 

stages, but also sustains during higher-order neural processing that take place later in time. 792 
Theta-band entrainment, on the other hand, has statistically higher probability to occur at early 793 
processing stages. Such properties are in line with the current finding that delta-, but not theta-794 

band entrainment was affected by higher-level linguistic (semantic) information. This is also 795 
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compatible with Molinaro and Lizarazu (2018) which argued that theta-band entrainment 796 

mainly reflects perceptual processing and delta-band entrainment involves additional higher-797 
order processing during speech perception. In addition, similar to PredPowers, topographies 798 
of mTRFs showed dominant distributions over centro-frontal regions (Fig. 9), consistent with 799 
the previous finding (Crosse et al., 2015). Although source localization was not conducted due 800 
to extremely limited spatial resolution (32 electrodes), the relevant neural processing stages 801 
may involve a temporal-frontal cortical network during speech processing (Park et al., 2015; 802 
Molinaro and Lizarazu, 2018). 803 

4.4 Possible effects of the behavioral tasks 804 

      Neural entrainment was tested when participants performed a forced-choice sound-805 
matching task (see Methods). Such task may force participants to focus their attention on lower-806 

level linguistic processing like phonological recognition. Previous studies have shown that 807 
behavioral tasks at different levels could alter the neural oscillatory activities. For example, 808 
Shahin et al. (2009) showed that EEG powers at theta to gamma bands were different between 809 
tasks of gender voice detection and semantic discrimination when participants listened to 810 
auditory words. McNab et al. (2012) showed that MEG powers at beta and gamma bands were 811 
modulated by tasks of phonological and semantic recognition in response to visual words. It is 812 
not clear whether neural entrainment is modulated by different behavioral tasks, which may 813 
needs to be studied further in the future. 814 

4.5 Summary 815 

      The present study investigated the distinctions between delta- and theta-band neural 816 
entrainment of speech envelopes at different linguistic hierarchical levels, using auditory 817 

stimuli that dissociated phonological and semantic contents. Neural entrainment was measured 818 
using the mTRF model that mapped speech envelopes at multiple spectral bands onto EEGs. 819 
We demonstrated that theta-band entrainment was modulated by phonological, but not 820 
semantic contents, indicating its role of tracking syllabic and sub-syllabic patterns for 821 
phonological processing. Delta-band entrainment, on the other hand, was greater with rich 822 

phonological but deficient semantic information (pseudo-word). This may reflect the 823 
mechanism of interactions between phonological and semantic processing during tracking of 824 
supra-syllabic rhythms, i.e., reduced demands for phonological recognition in real-word 825 
utterances, or greater listening effort in pseudo-word utterances. Furthermore, through 826 
analysing temporal properties of mTRFs, we demonstrated that, delta-band entrainment 827 

sustained across neural processing stages up to ~ 300 ms, while theta-band entrainment is more 828 
likely to occur at early stages (< 160 ms).  829 

      Taken together, we confirmed our hypothesis that delta- and theta-band entrainment take 830 
distinct roles at different linguistic hierarchical levels. We suggest the results could improve 831 
our understanding and new insights into the mechanisms of neural encoding of acoustic 832 
features during speech perception in general. Further studies may be needed to clarify how 833 
different quantification methods and experimental tasks modulate the effect of neural 834 

entrainment. 835 

 836 

 837 
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