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Abstract: 

A real-time evaluation of fire severity inside a building could facilitate decision-making in firefighting 

and rescue operations. This work explores the real-time prediction of transient fire scenarios by using 

external smoke images and deep learning algorithms. A big database of 1,845 simulated compartment 

fire scenarios is formed. Three input parameters (constant fire heat release rate, opening size, and fuel 

type) are paired with the external smoke images, and then trained by Convolutional Neural Network 

(CNN) model. Results show that by training either the front-view or side-view smoke images, the AI 

method can well identify the transient fire heat release rate inside the building, even without knowing 

the burning fuels, and the error is no more than 20%. This work demonstrates that the deep learning 

algorithms can be trained with simulated smoke images to determine the hidden fire information in real-

time and shows great potential in smart firefighting applications. 
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Nomenclature 

Symbols FDS Fire dynamics simulator 

A area of the opening (m2) FFT Fast Fourier Transform 

H height of the opening (m) HRR Heat release rate 

Abbreviation LES Large Eddy Simulation 

AI Artificial intelligence MSE Mean squared error 

ANN Artificial neural network ReLU Rectified linear units 

CFD Computational fluid dynamics SYR Soot yield rate 

CNN Convolution neural network VGG Visual Geometry Group 
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1. Introduction 

For a building fire, the heat release rate (HRR) is one of the most critical parameters in 

characterizing the fire behavior and hazard [1]. Inside a room or compartment, the fire HRR is a key 

parameter for judging critical events, such as the flashover and burning duration [2,3], conducting fire 

suppression operations, and making fire rescue decisions [4]. Although the state-of-the-art numerical 

models can predict fire development and smoke motion, these models rely on the temperature data from 

sensor networks that are not available in most buildings [5–9]. For firefighting and rescuing in a real 

building fire, firemen can only judge or guess the fire scenario inside based on experiences and external 

information, such as the smoke plume size and color. The lack of accurate fire information inside the 

building can lead to misjudgment of fire scenarios and critical events, e.g., flashover and backdraft, the 

delay in firefighting and rescue, and many injuries and fatalities. Therefore, an accurate and real-time 

fire prediction system, based on external fire information, is needed to protect firefighters and support 

decision-making. 

So far, many efforts have been made to determine the internal fire HRR inside the building. The 

most direct way to measure the HRR is a full-scale room oxygen calorimeter, but this method can only 

be used in the controlled lab environment [10–12]. To achieve an effective and fast determination of 

fire HRR, the installation of sensor networks inside the building and applying the data-driven methods 

became a new approach [5–9]. By using the sensor data as the input, the compartment fire can be 

predicted and corrected through numerical models. The optimization methods are also used to compare 

modeled data with the real sensor data to help determine the fire HRR. Different optimization 

algorithms have been used in fire detection and prediction, such as exhaustive search [13,14], genetic 

algorithm [15], and gradient-based algorithms [16–19]. Nevertheless, these in-situ computational 

approaches can hardly predict the transient fire in real-time due to the long computation time. 

More recently, artificial intelligence (AI) methods, particularly machine learning, have been 

applied to reveal hidden fire information and forecast fire development. For example, Kim and Lattimer 

[20] established a classification model to identify fire and smoke in real-time to support autonomous 

navigation for smart firefighting robots. Wu et al. [21–23] applied the deep learning method to forecast 

the tunnel fire development and smoke transportation 60 s in advance and demonstrated the smart 

firefighting system in a laboratory-scale tunnel model. Innovative AI tools have also been developed to 

assist the fire engineering performance-based design for complex buildings [24,25]. For compartment 

fires, Dexters et al. [26] adopted a machine learning method to determine the occurrence of flashover 

under given fire scenarios. Wang et al. [27] proposed a data recovery algorithm, ‘P-flash’, which can 

recover the missing data in case of a sensor was destroyed in a multi-room fire. Zhang et al. [28] 

proposed a deep learning algorithm to forecast flashover in advance based on the temperature sensor 

data. Different machine-learning algorithms [29–39] have been proposed to train databases and pre-

establish the complex relationship between sensor data and fire, so the real-time fire forecast can be 

achieved. Nevertheless, existing data-driven methods highly depend on the sensor data and IoT 
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networks inside buildings that are rarely available today or can be destroyed in fire [27,40]. 

 

Fig. 1. Smoke and fire behaviors outside the building from different views [41–43]. 

Comparatively, the fire and smoke images outside the room and building are more direct 

information that can be easily observed by people and cameras (Fig. 1). For compartment fires, the 

smoke is an early signal for the fire occurrence that can leak outside in the ignition and growth stages. 

When the fire becomes fully developed, the external smoke also has many unique behaviors and 

characteristics, such as the smoke velocity and color, spilled flame, and oscillation frequency. In-depth 

analysis of external smoke images via deep learning methods can deliver valuable information about 

the state and development of compartment fires. 

This work explores the feasibility of using simulated external smoke images to predict the transient 

HRR inside the building in real-time. The fire inside a room with different growth rates, opening sizes, 

and fuel types are simulated to form a big database. The external smoke images rendered by CFD 

software are labeled with HRRs to train the deep-learning model. Finally, the proposed smoke-image-

based fire forecast system is demonstrated by arbitrary dependent fire scenarios.  

2. Methods 

The fire HRR (or the fire size/power) is the key parameter to reflect the building fire scenarios, 

and it changes with time because of the fire spread and the burning of different fuels. The value of real-

time HRR cannot be directly measured in real fire incidences to support firefighting operations. 

Nevertheless, there is a strong correlation between the fire size and the smoke generated. Although the 

internal fire and smoke are invisible in real fires, the visible external smoke can be easily observed and 

recorded to train the AI algorithm and predict the total fire HRR. 

To train the deep learning algorithm, a large number of external smoke images are needed. As the 

first demonstration, external smoke images generated by the CFD fire simulations are used to form a 

relatively clean database. Compared with the photos and videos of smokes taken from fire tests, the 

numerical images are independent of background light, camera settings, and experimental interferences. 

Thus, they are applied to demonstrate the smoke-image-based prediction of fire HRR. 
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2.1 CFD fire model and database formation 

Similar to the previous research [18,36,44], the CFD model is established firstly to generate a big 

database of compartment fires. In this study, a full-scale ISO 9705 compartment [45] is chosen. and 

established in FDS 6.7.5 [46] to simulate different fire scenarios. The default Large Eddy Simulation 

(LES) with a single-step and mixing-controlled combustion model is adopted to solve the smoke and 

heat transport from fires and the soot is modeled as C0.9H0.1 to show the smoke behavior. As shown in 

Fig. 2a, the compartment model consists of a 3.6 m (length) by 2.4 m (width) by 2.4 m (height) room 

and a 2.4 m (length) by 2.4 m (width) by 4.8 m (height) open area. The window is set at the center of 

the wall between the room and the open area to allow the transportation of fresh air and smoke. The 

open area extended outside the building resolves the flow field outside and captures the external smoke 

characteristics. The thermal properties of building walls and other components specified in the CFD 

model are recommended by NIST [47,48] that has been validated by many full-scale experiments [49] 

and showed that the CFD model can simulate full-scale compartment fires well. 

 

Fig. 2. Illustration of (a) the CFD model for a room and the outside open area, and (b) numerically 

generated smoke images. 

A large number of numerical fire tests are designed to obtain one-to-one correspondences between 

HRRs and external smoke images (side and front views in Fig. 2b) under different fire scenarios. Three 

key parameters are varied in these simulations, including the fire HRR, window size, and soot yield. 

(1) HRR. For the training database, the constant HRR is used by applying a constant fuel mass flux. 

The maximum HRR is set as 1500𝐴𝐻1/2 kW [50,51] for each opening condition. Above this 

critical HRR, the fire inside transforms from fuel control to ventilation control, and the spilled 

flame is observed. In total, 41 values of HRR from 0 to 1500𝐴𝐻1/2  kW are selected, and 

selected HRRs are evenly distributed within the range. 

(2) Window size. The window serves as the main and only opening for the smoke outlet, and its size 

controls the ventilation factor (𝐴𝐻1/2) and the maximum fire HRR. Nine different window sizes 

are selected based on the common designs, where its widths and heights are from 0.6 m to 1.0 m. 
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(3) Soot yield. The soot yield affects the intensity and color of the smoke plume outside the building. 

Even under the same HRR, burning different materials will produce different spilled smoke 

plumes. Considered all the fuel inside the building is composed of natural material (i.e., wood) 

and synthetic materials (i.e., polyurethane) [24], the soot yield rate (SYR) is set from 0.015 kg/kg 

to 0.1 kg/kg [52]. 

Table 1 provides a summary of these parameters in the fire models. In total, 1,845 building fire 

scenarios are simulated to build the fire database. According to the different sizes of windows, the 

selected HRR in the room ranges from 10 kW to 1500 kW, representing the peak HRR from a 

wastebasket to a mattress fire [53]. It is worth noting that the HRR in the model is set by the mass flow 

rate of gases fuel, which is not necessarily burnt instantaneously inside the room. The simulation time 

was set as 600 s for each fire scenario, which is sufficient to display the filling process of the fire smoke 

and a quasi-steady-state process with a relatively stable HRR. 

Table 1. Parameters of compartment and fire in the CFD model. 

Parameter Range Number 

HRR (kW) 0 − 1500𝐴𝐻1/2 41 

Soot yield (kg/kg) 0.015, 0.04, 0.06, 0.08, 0.1 5 

Window width (m) 0.6, 0.8, 1.0 3 

Window height (m) 0.6, 0.8, 1.0 3 

Total  1845 

 

For all simulations, the fire source is placed at the center of the room. During the fire process, the 

smoke fills the entire room and overflows through the window, which can be the most easily accessible 

indicator for determining the fire HRR. For fast identification of internal fire scenarios, the external 

smoke images, both the side view (Fig. 2-b) and the front view (Fig. 2-c), are used as the indicators for 

determining the time-dependent fire HRR. All smoke images from front and side views rendered by 

Smokeview [54] are extracted to form a large database. 

The grid size not only determines the accuracy of the simulation results [55,56] but also affects the 

quality of the exported smoke images. A grid sensitivity analysis was conducted for a base case, where 

the compartment fire has an opening of 0.8 m × 1.0 m, an HRR of 600 kW, and a soot yield rate of 0.1 

kg/kg. Four different grid resolutions were considered, including 0.2 m, 0.1 m, 0.05 m, and 0.04 m. In 

all simulations, a semi-steady condition is reached in a few minutes and the average temperature and 

horizontal velocity from 400 s to 600 s (semi-steady condition) at the middle of the opening plane are 

shown in Fig. 3. Based on the grid sensitivity analysis, the temperature and horizontal velocity 

distribution at the middle of the opening plane, as well as the image grayscale (see Fig. A1), no longer 

change when using the grid size of 0.05 m or smaller. Thus, the grid size of 0.05 m is sufficient to 

guarantee the grid independence of the computational results. 

https://doi.org/10.1016/j.jobe.2021.103823


Z. Wang, T. Zhang, X. Wu, X Huang (2022) Predicting Transient Building Fire Based on External Smoke Images and 

Deep Learning, Journal of Building Engineering, 103823. https://doi.org/10.1016/j.jobe.2021.103823  

6 

 

 

Fig. 3 Grid resolution effect on the distribution of (a) temperature and (b) horizontal velocity at the middle 

of the opening (0.8 m × 1.0 m), where the fire HRR is 600 kW. 

2.2 External smoke images and behaviors 

In this work, the smoke images rendered by the software of Smokeview are used for training the 

deep learning model. Before training, we should first confirm whether the rendered smoke images have 

different features at different HRRs and different soot yields (or fuel types). The tested fire scenario 

consists of ISO 9705 compartment with an opening of 0.8 m × 1.0 m under different fire HRRs and fuel 

soot yield rates. Fig. 4a shows the smoke images rendered by Smokeview are randomly selected, and 

with the same fuel and soot yield rates, the smoke becomes denser as the HRR increases (see Video S1). 

 

Fig. 4. Rendered smoke images (side view) (a) under different HRRs while the same soot yield rate (SYR) 

of 0.015 kg/kg, and (b) with different SYRs while the same fire HRR of 600 kW (see Video S1). 

When the fire HRR rises and approaches the critical value of a ventilation-control fire, the spilled 

flame and smoke appear at the same time. These rendered smoke images with different features can be 

used as a basis for HRR prediction. Fig. 4b show that under the same fire HRR, burning different fuels 

with different soot yield rates shows very different smoke color and dynamic behaviors (also see Video 

S1). Burning a sooty fuel can produce denser and darker smoke, so that smoke images rendered by 

https://doi.org/10.1016/j.jobe.2021.103823


Z. Wang, T. Zhang, X. Wu, X Huang (2022) Predicting Transient Building Fire Based on External Smoke Images and 

Deep Learning, Journal of Building Engineering, 103823. https://doi.org/10.1016/j.jobe.2021.103823  

7 

 

software can represent the real smoke characteristics, despite certain simplifications. During the training 

stage of the AI model, external smoke images in over-ventilated and under ventilated stage as well as 

with different fuel type were considered. If the AI model can predict the pre-set fire HRR based on the 

rendered smoke image, it has a great potential for using real external smoke images to identify fire 

inside the building. 

2.3 Dataset pre-processing 

As the external smoke behavior is a dynamic process, and even if the same HRR is set, the actual 

HRR and smoke behavior can be different due to the smoke flow oscillation or the breathing effect [57] 

of the compartment fire, 50 frames of smoke images from a quasi-steady fire process are randomly 

selected in each fire scenario, whose purpose is to collect as many different characteristics of smoke as 

possible at the same heat release rate. Finally, a database with a total of 184,500 smoke images is formed, 

where each fire scenario is described by using 50 front-view images and 50 side-view images. Each 

smoke image in the database corresponds one-to-one with the transient HRR. 

After the image database was prepared, the data pre-processing (Fig. 5) is required to make the 

data better adapt for training the AI model to identify the fire information. First, image clips are needed 

to keep only the smoke image near the window. When the smoke fills the room, the excess smoke spills 

out of the building through the opening. The characteristics of the smoke near the window strongly 

depend on the HRR inside the building. Comparatively, the smoke farther away from the window is 

free to diffuse, which is controlled by the external flow, rather than in-building fires. Therefore, a region 

of about 1.1 m × 1.1 m from the front view and side view of the external smoke image, including the 

upper half of the opening, is selected as the target area for the training of the deep learning model.  

 

Fig. 5. Dataset pre-processing and classification for training, validation, and test. 
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Afterward, the clipped RGB image needs to go through a grey scaling process to reduce the data 

volume and effects of the background. The converted grayscale image still provides a good 

representation of the smoke characteristics, including the concentration and behavior of the smoke. 

Finally, all these images and their corresponding HRRs form the training set for the AI model. These 

data are further divided into two parts, the training set (80%) for training the model and the validation 

set (20%) for evaluating the performance of the model while training. The same process was also carried 

out for arbitrary fire scenarios to test the performance of the model after training. Because both front 

and side views of the external smoke are acquired, there are three different inputs of the AI model, i.e., 

only the front view, only the side view, and both views of the smoke. The performance of models trained 

using different views of the external smoke is discussed in Section 3. 

2.4 Deep learning algorithm 

Although the external smoke image can reflect the change of HRRs, it is hard for our eyes to 

recognize different external smoke behaviors. Thus, convolutional neural network (CNN) is introduced 

to process these images and differentiate one from the other. Compared with primitive image processing 

algorithms that require manual feature extraction, CNN has the ability to capture the spatial and 

temporal dependencies in an image automatically after enough training. VGG [58] is a very classical 

CNN architecture for image classification, which was proposed in 2014 by the Visual Geometry Group. 

While it has been widely used in object detection [59], face recognition [60], and traffic sign recognition 

[61], it is the first time that VGG is applied to evaluate the fire size in building fire quantitatively. The 

performance of the VGG architecture of predicting fire inside the building based on external smoke 

images is explored. In this paper, VGG16 is used to extract characteristics of smoke under different 

building fire scenarios and obtain the relationship between smoke characteristics and HRRs. 

 

Fig. 6. The architecture of VGG16 in AI-driven fire prediction based on external smoke images. 
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The detailed architecture of VGG16 is depicted in Fig.6, consisting of 13 convolutional layers, 

five max pooling layers, and three fully-connected layers. Several consecutive 3×3 convolutional 

kernels are adopted in VGG instead of the larger convolutional kernels in previous work [62,63]. The 

continuous use of these small convolutional kernels can reduce the parameters of the convolutional 

kernel and increase the network depth to enhance the learning ability of the CNN for image features. 

The feature maps generated by the convolutional operation are passed layer by layer, and the max-

pooling layer after the convolutional layer is responsible for reducing the dimension of the feature map 

and extract dominant features. Finally, the original smoke image with the dimension of 100×100×1 

(front view and side view) or 100×100×2 (dual views) is reduced to 4× 4 × 512. These feature maps are 

flattened into a column vector to establish the non-linear relationship with the final output through the 

fully connected layer.  

The entire network structure contains a total of 19 million parameters, which is sufficient to extract 

minute features of each smoke image. ReLU is selected as the activation function in all convolutional 

layers and fully connected layers, and the loss function MSE is used to compare the difference between 

actual and predicted values. Dropout is applied after each max pooling layer and fully connected layer 

with a dropout rate of 0.3 to avoid overfitting. A server with 32 CPU cores and a Tesla P100 GPU card 

is adopted to run the model, and it takes about 4 h in total for 100-step training. 

3. Results and discussion 

The AI-driven prediction of fire HRR based on external smoke images was demonstrated in both 

constant HRR and transient HRR cases in this section. First, the AI model was trained by using all fire 

scenarios with a constant HRR, and then, its performance was judged by the validation set with constant 

HRR. In the model training process, the external smoke images extracted from fires with constant HRR 

were used to train the AI model. Two different fire scenarios were predicted, (1) the fuel type and soot 

yield are known and (2) neither the fuel type nor soot yield is known.  

 

Fig. 7. Three specified HRR ramps (slow, fast, and arbitrary) for testing the AI prediction of transient fires. 
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Afterward, the AI model was further tested by the time-dependent HRR in an actual fire. Three 

different prespecified HRR ramps were set with a peak HRR of 900 kW, as shown in Fig.7. Specifically, 

two standard t-squared fire HRR curves were tested, one with a growth factor of 0.0032 kW/s2 (slow 

fire) and one with a growth factor of 0.047 kW/s2 (fast fire) [51]. The third arbitrary ramp represents a 

random fire process with several HRR increasing and decreasing processes. These prespecified HRRs 

were set in fire scenarios with the opening size of 0.7 m (width) ×1.1 m (height) and two soot yields of 

0.015 kg/kg and 0.043 kg/kg.  

3.1 Validation with constant HRR  

First, the fire with known fuel types is studied, where the soot yield rate of 0.015 kg/kg (wood) is 

considered in the model training. The AI model only needs to be trained using external smoke images 

from fires with a smoke yield rate of 0015 kg/kg. Fig. 8a shows losses and determination coefficients 

(R2) of training and validation during the training process. After 100 steps of training, each model 

reaches convergence with a maximum MSE loss of 3580 and a minimum R2 of 0.962, which indicates 

that all three models can well predict the fire HRR inside the building. The R2 of the dual-view model 

even reached 0.97, so its prediction performance is the highest, compared to the other two models 

trained by the single-view smoke images. 

Predicting the transient fire HRR without known the type of burning fuel is more complex. Without 

the information of the fuel type and the soot yield, more external smoke images from the compartment 

fire with different soot yield rates are needed for AI model to identify more detailed patterns of smoke 

plumes. Thus, external smoke images from fires with different HRR and fuel types (soot-yield rates) 

are used to train the AI model. After the same steps of training, losses and R2 of training and validation 

in this case are shown in Fig. 8b. Although the loss of the training set decreases with iteration, the 

validation loss becomes stable in advance and cannot reach the same value as the training set, which is 

caused by the compensation effect between the fuel soot yield rate and fire HRR, for example, a small 

fire on a fuel of a large soot yield can produce a smoke plume that is similar to a large fire on a fuel of 

a small soot yield. 

The smoke images rendered by Smokeview are only related to the soot densities computed by FDS. 

However, both the increase of HRRs and SYRs can lead to an increase in soot density. As a result, fire 

scenarios with different SYRs and HRRs may produce similar external smoke images, leading to 

misjudgment of AI models trained by rendered smoke images. This situation can be significantly 

improved if the model is trained by real smoke images, as more color features exist in real smoke images 

from actual fires. Nevertheless, the coefficient of determination for all three models can achieve a 

minimum value of 0.890, which shows that the external smoke image still reflects the HRR of a room 

fire with unknown fuel types. Meanwhile, the dual-view model has excellent performance during the 

training with an R2 of 0.923. 
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Fig. 8. Losses and R2 of training and validation during the training process: (a) fire with a known fuel 

type; (b) fire with unknown fuel types. 

3.2 Predicting the transient HRR of fire with a known fuel 

Any real building fire will be transient and complex, and its HRR changes with time. To apply the 

deep learning model in a real building fire, identifying the time-dependent HRR by the external image 

is needed. Herein, with an opening of 0.7 m (width) ×1.1 m (height) and a known fuel type (wood, soot 

yield rate of 0.015 kg/kg), three different HRR ramps representing slow fire growth, fast fire growth, 

and arbitrary fire evolution in Fig.7 are predicted using the AI models trained by smoke images from 

different angles.  

The arbitrary fire evolution predicted by the dual-view model is taken as an example to show the 

real-time performance of the AI model. The detailed prediction process for the transient fire HRR using 
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the front view and side view of the external smoke image is demonstrated in Video S2. In general, the 

prediction of AI showed high accuracy throughout the fire development process. Fig. 9 compares the 

predicted fire HRRs at different stages of fire development, which shows that the evolution of AI’s 

prediction is well consistent with a real fire. 

 

Fig. 9. Real-time HRR prediction process using dual view external smoke images from a fire that 

burns a known fuel with a constant soot yield rate, (a) t = 200 s, and (b) t = 400 s (see Video S2). 

Fig. 10 summarizes the comparison between the true HRR and the predicted HRR. An FFT filter 

is used to reduce the impact of noise. Overall, all three models can achieve accurately determine the 

time-dependent fire HRRs, and among three, training the front view model shows the best performance. 

Although the side view and dual-view model tend to overestimate the real-time HRR, the overall error 

of all three approaches is no more than 20%. On the other hand, a moderate overestimation can provide 

some safety margin for firefighting activities and decision making.  

For the slow fire, since the low fire growth factor allows for adequate smoke development, the 

HRR growth can be well predicted by these AI models with a relative error of ±10%, as shown in Fig. 

10a. For the fast fire, rapid HRR growth often causes a delay in the AI prediction, but the error is still 

no more than 20%. Although both the side-view and dual-view models over-estimate the fire HRR, their 

prediction gradually approaches the actual value of HRR as the fire develops. For the 3rd arbitrary fire 

case, including several HRR growth and decay processes, the error of AI models is still within 20% in 

Fig.10c. When the fire HRR changes rapidly, the predicted HRR has some delay, which is caused by 

the delay in smoke propagation. In other words, the AI model underestimates the actual HRR when the 

HRR increases rapidly and overestimates it when the fire decays rapidly.  
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Fig. 10. Comparisons of the pre-set transient HRR in the CFD fire simulations and the AI prediction, (a) 

slow fire growth; (b) fast fire growth; (c) arbitrary fire evolution. 

In summary, all these results show that the proposed AI model can well capture the characteristics 

of external smoke images and predict transient fire HRR inside the building. The superior performance 

of VGG16 suggests that it could be used as a basic framework for identifying and predicting the hidden 

building fire scenarios. In terms of performance, using both front and side views of smoke can give a 

safer prediction because it always slightly overestimates the HRR. However, it also needs smoke images 

taken from two different angles, which may not be available in real fire scenes. If the smoke image from 

only one camera from either front or side view is available, the fire HRR can still be identified accurately 

with an error < 20%. 
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3.3 Predicting the transient HRR with unknown fuels 

In a real fire event, it is often difficult for firefighters to know what is burning inside the building. 

Various combustible items make the fire and burning process more complex, and different fuels will 

produce different smoke yields when they burn together. Therefore, to achieve accurate HRR prediction 

based on external smoke images, the AI model needs to adapt to fire scenarios with different smoke 

yields. Thus, external smoke images of fires with different soot yield rates from natural material and 

synthetic materials are used to train the AI model, and fires with SYR of 0.043 kg/kg are used to test 

the generalized performance of the AI model. 

The prediction of the arbitrary fire evolution was demonstrated at different moments in Fig. 11 by 

using the dual-view smoke images as an example. The detailed comparison of fire HRR evolution can 

be seen in Videos S3. Results showed that even for fires with unknown fuel types, using external smoke 

images could well identify the fire development hidden inside the building. 

 

Fig. 11. Real-time HRR prediction process by AI under transient fire with the unknown fuel and soot yield 

rate, (a) t = 200 s, and (b) t = 400 s (see Video S3). 

The detailed performance of each model for different fire scenarios are shown in Fig.12. The 

results demonstrated that the AI models still can well determine the fire development without knowing 

specific fuel types. Although external smoke images become more complex from a fire with unknown 

fuel types, the proposed model still shows acceptable predictions, with a relative error of less than 20% 

except for the fast fire scenario. For the fast fire scenario, the error is mainly caused by the delayed 

propagation of the smoke. Although the fire HRR increases a lot in a short period of time, it still takes 

some time for the smoke to escape from the openings. This will lead to an overall underestimation of 

the HRR and can be mitigated when the fire develops smoothly, as shown in Fig.12b.  
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Fig. 12. Comparisons of the model predictions to the FDS simulations: (a) slow fire growth; (b) fast fire 

growth; (c) arbitrary fire evolution. 

Comparing the performance of the three models in slow fire growth, fast fire growth, and arbitrary 

fire evolution scenarios, the dual view model always gives a relatively accurate prediction of fire HRR 

even in the decay stage of the compartment fire. This suggests that the increase of smoke images 

provided to the model is beneficial in improving the performance of the AI model to some extent. 

Besides, the front view model and side view model can achieve prediction accuracy comparable to that 

of the dual-view model with a relative error of 20%. These two models show large prediction errors in 

the low fire HRR stage, which are caused by the early-stage smoke filling and continuous smoke 
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spillage in the decay phase (see Fig.12c). However, the early fire stage and decay stage with a low HRR 

is not so important in firefighting operation, compared to the increasing stage with a high HRR, so the 

model trained by the front-view or side-view smoke images is also a competitive option. Thus, AI’s 

identification of the fire HRR inside the building based on external smoke images is also effective and 

accurate, if the external fire smoke is only taken by one camera and from one angle. 

4. Conclusions 

In this work, the prediction for building fire HRRs using smoke images outside the building and 

deep learning method is presented and demonstrated for the first time. A series of ISO 9705 

compartment fire cases are simulated by CFD code to form a fire database, and smoke images rendered 

by Smokeview are used to train the prediction model. VGG16 is demonstrated as an effective way to 

extract features from smoke images and achieve accurate HRR prediction, and it provides an effective 

framework for the prediction of building fire HRR and other information.  

Results show that when the fuel inside the building is known, the AI’s prediction of fire HRR is 

extremely accurately (R2 > 0.962) by using either single or dual smoke images. If the burning fuels are 

unknown, AI can still give a reasonable prediction of the fire HRR inside the building (R2 > 0.89). We 

also found that using dual-view smoke images can predict a more accurate fire HRR. Nevertheless, 

even if the smoke images are taken from only one angle, either the front view or the side view, the AI 

model can still predict the transient fire HRRs with an error of no more than 20%.  

The present work is validated by a relatively clean database of synthetic smoke images, which is 

independent of background light, camera settings, and experimental interferences. However, the 

situation in real fire scenarios could be very complicated. Thus, the numerical demonstration of the AI 

method is only the first step. In the future, we will continue to test the performance of the AI model 

through real experiments, in which the ventilation condition such as the number of openings, the layout 

of the building, and the background are complex. Overall, this work paves the way for using actual 

external smoke images to predict fire information inside the building, which will facilitate the 

development and application of AI-driven smart firefighting systems. 
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Appendix 

Fig. A1 presents the grayscale histograms [64] of the external smoke image under different grid 

resolutions. The external smoke image from 400 s to 600 s were averaged and converted to grayscale 

to compare the effect of grid resolutions on the rendered smoke image. There are two peaks in the 

grayscale smoke image, the peak close to 0 representing the characteristics of the smoke and the other 

peak representing the background pixels. Based on the grid sensitivity analysis of external smoke image, 

the histogram of the smoke image using the grid of 0.05 m is close to the results with a finer grid. 

Therefore, the grid of 0.05 m is also sufficient to guarantee the grid independence of the image results. 

 

Fig. A1 Grid resolution effect on the smoke image: (a) front view of the smoke and (b) side view of the smoke. 
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