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Abstract: The performance-based design (PBD) has been widely adopted for building fire safety over 

the last three decades, but it requires a laborious and costly process of design and approval. This work 

presents a smart framework for fire-engineering PBD to predict the smoke motion and the Available 

Safe Egress Time (ASET) in the atrium by Artificial Intelligence (AI). A CFD database of visibility 

profile in atrium fires is established, including various fire scenarios, atrium volumes, and ventilation 

conditions. After the database is trained with the transposed convolutional neural network (TCNN), the 

AI model can accurately predict the smoke visibility profile and ASET in the atrium fire. Compared to 

conventional CFD-based PBD by professional fire engineers, AI method provides more consistent and 

reliable results within a much shorter time. This research verified the feasibility of using AI in fire-

engineering PBD, which may reduce the time and cost in creating a fire-safety built environment.  
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Abbreviations 

AI artificial intelligence HRR heat release rate 

AFFL above finished floor level LSTM long short-term memory 

AHJ authority having jurisdiction MSE mean squared error 

ANN artificial neural networks PBD performance-based design 

ASET available Safe Egress Time RNN recurrent neural network 

CFD computational fluid dynamics RSET required Safe Egress Time 

CNN convolutional neural network SURF super real-time forecast  

FDS fire dynamics simulator TCNN transposed convolutional neural network 
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1. Introduction 

1.1. Background of Performance-based design 

Performance-based design (PBD), as an engineering approach, goes beyond prescriptive code 

requirements and has been widely adopted globally [1–6]. In the domain of building and environment, 

the performance-based option brings design flexibility to the building by introducing acceptable 

methodologies, analysis tool, and performance criteria. Then, the built environment can meet specified 

design goals and objectives of fire and life safety, property protection, business continuity, and 

environmental protection. PBD for fire safety was initiated from the 1970s to the early 1990s. After 

years of development, building codes and regulators have gradually adopted the performance-based 

design as compensation for prescriptive code design [4,7,8]. 

From the Great Fire of London in 1666 to the recent Grenfell Tower fire in 2017, devastating fire 

events have always been the primary driving factor for the establishment of building fire code [9,10]. 

Along with the development of building fire safety research and insurance policy since the 1950s, more 

sophisticated prescriptive fire-safety standards, codes, and regulations have promogulated and enforced 

(Fig. 1). Nevertheless, for the past three decades, the emerging innovative architectural design features 

and the invention of new materials [3,4] incentivizes new fire research and engineering tools, such as 

the computational fluid dynamics (CFD) and evacuation model. The framework of performance-based 

engineering design has been developed and incorporated in the design handbook, code, and regulation 

[11–14]. Subject to the design objective, various approaches could be adopted to achieve the equivalent 

level of fire safety or attain the stated performance, such as structural fire analysis, or external fire 

spread prevention analysis. More flexible concepts and acceptance criteria of PBD, like the available 

safe egress time (ASET) and the required safe egress time (RSET), have been proposed to justify the 

safety of the occupants’ evacuation in the fire event from the life and safety perspective [12,15–17].  

 

Fig. 1. The evolution of building fire safety code and design. 

For a typical fire-engineering PBD, the authorized person or the engineering-consulting company 

needs to submit the developed fire strategy and documentation to the authority having jurisdiction 

(AHJ), e.g., the local fire services department or buildings department, for the final approval. Many 

design variables affect the analysis, and results differ on a case-by-case basis, so both designers and 

AHJ need to have extensive experiences and scientific knowledge to evaluate the PBD [18]. Despite 
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that PBD has been widely applied for building fire safety since the 21st century, it is far from perfect, 

and there are three significant issues.  

(1) Enormous time and human resources are needed for each PBD case in the design, documenting, 

review, and approval processes. Sometimes, these processes for challenging architectural and 

functional designs can repeat for several rounds and last for years [8,19].  

(2) Many criteria used in PBD were established in limited amounts of early fire tests and numerical 

simulations, so that their reliability and feasibility for the new built environment are questionable 

[20,21]. Like the prescriptive code, once the paradigm of PBD is established, there is often little 

motivation to further investigate the validation of PBD unless another devastating fire occurs.  

(3) Professional fire engineers and designers develop “tricks,” e.g., tunning fire modeling parameters 

and hide poor-performance cases, to bypass the scrutiny of AHJ, which increases the chance of 

disastrous fire events.  

To solve these issues, the emerging development of big data and artificial intelligence (AI) may provide 

new design approaches and solutions for both designers and AHJ. Potentially, the powerful pattern 

matching capacity of deep learning could reduce the unnecessarily repeated workload, improve the 

building fire safety, and reduce the construction cost.  

1.2. AI-based fire engineering 

The concept of artificial intelligence (AI) was arguably first proposed in a workshop held in 

Dartmouth College in 1956 to handle computer-based language understanding, storage of data, and 

pattern matching [22]. The emerging deep-learning models imitate the human brain, including 

convolutional neural networks (CNNs) and recurrent neural networks (RNNs) [23,24]. Compared with 

conventional AI models, such as machine learning models, deep learning models require more data to 

learn hidden features from the massive data automatically.  

Over the past decade, smart-firefighting techniques of AI algorithm, IoT, and sensors are gradually 

adopted [25,26], particularly in the fire behaviors and risk assessments [27–29], compartment fire 

[23,30–36] and tunnel fire [37,38]. Hodges et al. [30,31] used a transpose convolutional neural network 

(TCNN) and simulating results conducted by FDS to predict the temperature distribution inside 

compartment rooms. Lee et al. [39] compared the performance of various models and demonstrated the 

feasibility of their faster regional CNNs in detecting fire, meanwhile reducing false positives. In nature, 

all existing AI models need to be fine-tuned before being applied to solve problems in practice. Often 

this is realized through a large number of training iterations on a big database. Thus, a well-structured 

fire database is also a pre-requirement of AI applications in fire engineering. For example, Naser et al. 

[40] built up a database of fire tests on timber structures and predicted the fire resistance of timber 

structures via AI model. The recently established tunnel-fire database not only predicted the location 

and size of fire source [37] and critical fire events (e.g., critical ventilation velocity) [38], but also 

enabled the super real-time forecast (SURF) of the future evolution of fire fields [41]. So far, most of 

the AI application in fire engineering focused on the fire detection and forecast. Arjan et al. [33] adopted 

a logistic regression model to predict the occurrence of flashover in a compartment using the 

information of fuel thickness, burning intensity and duration. The probabilistic methods have also been 

applied  in evaluating the current fire safety design using [42–44]. Naser et al. [45–48] applied AI 

methods in the prediction of structural fire performance. They also developed machine learning 

algorithms to forecast the spalling of concrete components and degradation of steel properties under 
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fire incidents. To the best of the authors’ knowledge, very few studies have explored the use of AI 

methods, especially the deep-learning methods, for the building fire safety at the design stage.  

This paper aims to explore the feasibility of AI methods in the fire safety design of the atrium. A 

database of 280 numerical atrium-fire cases is developed for different atrium dimensions, as well as fire 

sizes and ventilation conditions. The PBD concept of ASET with the corresponding acceptance criteria, 

e.g., visibility and smoke-layer height, is adopted to train the AI model and predict the validity of ASET 

in randomly selected cases. In addition, six professional fire engineers are invited to conduct case 

studies with both their intuition and the PBD with CFD tools as a regular consultancy task. Finally, 

comparisons of performance are made between human professionals and AI agents to demonstrate the 

proposed AI approaches.  

2. Framework for smart ASET assessment 

2.1. Conventional PBD for ASET and RSET 

One acceptable PBD concept of building fire safety involves the occupants’ evacuation in the fire 

event is the evacuation time analysis, that is, comparing the ASET versus the RSET. The ASET is the 

time reaching the onset of untenable criteria for occupants, so it is often derived based on the prediction 

of fire and smoke behavior in a built compartment [15]. The RSET is the time that allows occupants to 

leave the fire-affected area to a safe place [12]. To ensure that occupants can safely egress before 

reaching untenable conditions, ASET > RSET is the minimum requirement. In general, a reasonable 

safety margin, i.e., the difference between ASET and RSET, is also required, which could be considered 

as a safety factor in fire-engineering design. 

For the design of large and complex buildings, it is neither possible to conduct real-scale tests nor 

reliable to use simple empirical correlation for obtaining the ASET and RSET. Thus, the ASET can only 

be determined by the numerical fire simulations (e.g., via the zone model or CFD model), and the RSET 

can be simulated by the evacuation modeling. Today, commercial software has been widely used in fire 

engineering consultancy tasks to obtain ASET and RSET. To determine the ASET, acceptance criteria 

have to be quantified, for example, considering the smoke filling progress in a typical compartment fire 

and the level of exposure to untenable conditions [19]. Table 1 lists the acceptance criteria for tenable 

conditions in Hong Kong [16], which also refers to the handbook, standard, and code in other countries 

and regions, e.g., PD 7974-6 [15,16]. Note that the analysis can vary subject to the complexity of 

geometry and the design of fire size, ventilation system, and plume entrainment with openings [49]. 

Table 1. Acceptance Criteria for tenable conditions [16]. 

Life Safety Parameter  Tenability Acceptance Limit  

Design Smoke Clear Height  2.0 m AFFL of occupied level  

Visibility  ≥ 10 m of visibility 

Radiant Heat Exposure  2.5 kW/m2 

Air Temperature  ≤ 60 °C 

Carbon Monoxide Concentration  ≤ 1000 ppm 

 

Usually, modeling results of smoke motion and height profile should be presented to AHJ to 

illustrate the assessment of ASET. It is well known that different engineers and consulting teams can 
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provide very different values of ASET. Such a variation of ASET is unavoidable, because fire engineers 

can conduct personalized fire modeling and make their own judgment and interpretation on the results 

considering the rationale of life and safety. On the other hand, AHJ may question the adopted 

performance design criteria and technical issues, such as the validation of the designed fire size, fuel 

type and arrangement, smoke properties, or the approach for quantifying the proposed objectives [8]. 

For complex and challenging cases, AHJ sometimes requests the source code or input files or a third 

party to double-check the validity and reliability of modeled ASET.  

Fig. 2(a) illustrates the flow diagram of the design and approval processes of ASET in a 

conventional PBD. In general, it includes three stages, (1) problem identification and modeling design, 

(2) CFD-based fire modeling to evaluate results and justify performance, and (3) authority approval. In 

many cases, the conventional design process could be repeated for several rounds and last for years due 

to design changes or addressing AHJ comments, resulting in the uncertainty of the construction program.  

 

Fig. 2. (a) Conventional performance-based design (PBD), and (b) AI framework for the PBD for ASET 

and RSET assessment. 

2.2. AI method for ASET 

Fig. 2(b) illustrates the framework of the proposed AI-based PBD. The foundation of the AI 

methods is the pre-establishment of a big database and pre-training of the AI model. Using the ASET 
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in the atrium fire as the example, it would be influenced by multiple factors, including the volume and 

geometry of the atrium, fire size in terms of HRR, and the ventilation condition of the atrium design. 

All these parameters are considered in constructing a fire scenario library representing the potential 

atrium fire scenarios. The evolvement of the smoke visibility with time inside the atriums are then 

examined via numerical simulations. The simulated results of all fire scenarios are collected to form a 

large database for the training of the AI model, which is optimized to achieve the best performance. 

Although it takes a long time to form a big database of fires in large open spaces and train the AI model, 

once accomplished, the trained AI model can be packed into a software tool for direct use by designers 

and AHJ. Moreover, the AI tool can be further updated with more data and more advanced algorithms. 

Such a process is similar to the development and verification of CFD fire-modeling tools, which have 

been commercialized after many years of developments and updates.  

The application of AI tools in the PBD also includes three stages, which is further explained with 

the example of ASET in the atrium fire. 

(1) Preprocessing and input. Key input factors, such as fire HRR, atrium, and smoke-ventilation 

designs, are chosen. Like the conventional PBD, some approximations could be made, e.g., the 

shape of the atrium and fire growth rate. 

(2) AI Prediction. Given the input information, the fine-tuned AI model is capable of predicting the 

development of smoke motion and visibility profile for the atrium fire. Ideally, the option of the AI 

model is in the time scale of seconds. 

(3) Output and application. The output of the AI model could be the time evolution of smoke/visibility 

profiles or a specific value of ASET based on the selected PBD code.  

Moreover, the AI engine can determine the possible range of each design parameter, e.g., the maximum 

fire size under the given ventilation, and provide optimal design options. Then, the laborious and costly 

trial-and-error process of CFD modeling for every consulting cases can be avoided. On the other hand, 

the AHJ can also apply the proposed AI tool to quickly check the reliability of the conventional PBD 

without conducting similar CFD fire modeling processes. Thus, the design and review process can be 

reduced from months for convection PBD to hours and minutes for AI-based PBD. 

3. Case study of atrium fire 

In this work, the fire scenario in the large-space atrium, probably the most common fire engineering 

consultancy case, is chosen to demonstrate the AI-based PBD design for ASET. So far, extensive fire 

tests and numerical research have been conducted to understand the fire growth and smoke movement, 

as well as the effectiveness of the smoke ventilation system [13–17]. Once a fire occurs, the smoke-

layer height descends inside the atrium along with the increase of time, which can be observed in both 

fire tests and numerical simulations. Thus, the ASET can be determined by the height profile of the 

smoke layer and visibility. 

In general, occupants inside an enclosure should evacuate from the fire-affected zone to a relatively 

safe place or adjacent unaffected zone. Thus, at least 10-30 min (RSET) are needed to ensure a safe 

egress, subject to practice approval by AHJ, and ASET > RSET should be satisfied. In this work, the 

Hong Kong Building code (Table 1 [16]) and the ASET of 20 min are adopted to assess the performance 

requirement at each scenario. Based on the practical experiences, the strictest tenability criterion is that 
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the occupied region up to 2.0 m above the finished floor level (AFFL) with visibility above 10 m, because 

it fails first before reaching the other criteria of temperature, heat flux, and CO level. Thus, such a 

visibility criterion will be used to define the ASET.  

3.1. Numerical fire model  

Like a typical consultancy task, the CFD fire model is established to simulate the atrium fire and 

smoke motion. Fire Dynamics Simulation (FDS) version 6.7 developed by NIST [50] was used to 

conduct the fire modeling and generate the numerical database. FDS, as a widely used CFD tool by fire 

researchers and engineers, is particularly reliable in predicting the smoke movement after it has been 

extensively validated by real-scale fire tests [51–55]. 

A simplified cuboid large open space (e.g., for a commercial building, hotel lobby, and convention 

hall) is chosen for the atrium model, and the floor layout is a square, as illustrated in Fig. 3. Such a 

simplification reduces the unnecessary variation of structure parameters and enables an easier 

comparison and analysis. To form a big numerical fire database and cover more possible PBD scenarios, 

four key parameters are varied, and their range are determined from previous studies and fire 

engineering practices in the performance-based design. Specifically, 

(1) Height of atrium. As specified in the Hong Kong fire code [16], this value should not exceed 15 m, 

according. To make the artificial intelligence (AI) algorithm to be applicable in a wider range after 

training, a typical height of 10 m and an extreme height of 20 m is considered in simulations. 

(2) Fire size (peak HRR). Past studies showed that the peak HRR of a significant fire in an atrium is 

between 0.56 MW and 10 MW [53,56–59], so seven values from 0.5 MW to 10 MW are selected. 

(3) Length of the floor. Four values from 30 m to 90 m are determined based on the common size of 

real atrium designs. 

(4) Smoke extraction rate: After the ranges of the above three parameters are determined, the upper 

limit of the ventilation of 40 m3/s is selected by preliminary simulations that under such a high 

extraction rate, all the scenarios could satisfy the RSET requirement. The lower limit of the 

ventilation is set as 0 m3/s, indicating that no mechanical or natural ventilation is provided. Five 

values from 0 m3/s (no ventilation) to 40 m3/s are set for different ventilation conditions.  

The values of these parameters are listed in Table 2. In total, 280 fire simulation cases were conducted 

to form the database. Both the floor area and atrium height can change the atrium volume, which ranges 

from 9,000 m3 to 162,000 m3. According to the HK building regulation (C10.3 [16]), the fire-

engineering PBD is required if the atrium volume exceeds 28,000 m3 or the maximum height from the 

floor to the ceiling exceeds 15 m. 

Table 2. Parameters of simulation cases. 

Parameters Range  

HRR (MW) 0.5, 1, 2, 3, 5, 8, 10 

Atrium side length (m) 30, 50, 70, 90 

Atrium height (m) 10, 20  

Smoke extraction rate (m3/s) 0, 10, 20, 30, 40 
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The fire source is placed in the center of the atrium model. The burning materials are assumed to 

be a mixture of natural material (50%) and plastic compound (50%), so the soot yield is set to 0.043 g/g 

[60]. The heat release rate per unit area (HRRPUA) of a sprinklered fire is set as 500 kW/m2 for typical 

solid fuels [59]. The fire HRR is designed with a fast growth fire rate of 0.0469 kW/s2 as suggested by 

CIBSE Guide E, which reaches the peak and remains a constant value thereafter [12]. The visibility 

factor is defined as 8 and 3 for light-emitting and light-reflecting signs, respectively [12]. The extraction 

velocity on the ceiling vent is controlled by changing the mechanical smoke extraction rate. Several 

door openings with a height of 2 m are set on two side walls to ensure an adequate air supply to fire 

(see Fig. 3). The thermal boundary of domain surfaces is set as the default wall with an ambient 

temperature of 25 ℃, which takes the heat transfer between walls and surrounding air into account. The 

minimum simulation time of all cases is set as 1,200 s. Multiple Z-plane and Y-plane slices are set to 

record the temperature or visibility contours.  

 

Fig. 3. Illustration of the numerical model of atrium fire and key parameters. 

The mesh resolution in FDS simulation can be described in terms of the non-dimensional expression 

(D*/δx), where D* is a characteristic fire diameter and δx is the control volume size. The recommended 

value for involving buoyant plumes suggested by the FDS user’s guide is to be within the range from 

D*/4 to D*/16, which considered the accurate prediction of temperature and the smoke movement [61]. 

The same grid size of 0.4 m was adopted for the entire atrium to facilitates the subsequent extraction of 

simualtion reuslts from the postprocessing software and the construction of the training database. No 

extended domain was set to mitigate the impact of the openings for each model. The cell number of the 

model ranges from 140,625 for 9,000 m3 to 2,531,250 for 162,000 m3. Reducing the cell size by a factor 

of two gives no significant difference in results, as demonstrated in Fig. A1. Thus, numerical 

calculations are sufficiently resolved. With a 32-core server, the computational time varies from 15 h to 

48 h, subject to the atrium volume and fire scenario of each case.  

3.2. Database of smoke motion and ASET 

The time-dependent visibility profile (or smoke profile) of simulated atrium fires are then extracted 

to generate a big database and train the AI model (Fig. 4). The input parameters in the CFD model 

(building and fire information), including atrium floor area and height, fire size in terms of HRR and 

smoke extraction rate, are also taken as the input of the AI model. In view of the unsteady state nature 

of the smoke movement during a fire, the time after the ignition is regarded as another parameter of the 

input. Large datasheets shown at the lower left of Fig. 4 are then formed, with each column representing 

one parameter of the input and each row representing one input vector. 
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Fig. 4. Database generation from modeling results which is divided into input and output to train the AI model. 

The visibility data evolving with the time recorded by the defined vertical slice located at the middle 

of the atrium in the direction of the y-axis is exported from the modeling results. A middleware 

“fds2ascii” is used to dump the raw simulation data from the post-processing software Smokeview. To 

accelerate the simulation speed for scenarios of large atrium volume, the computational space is 

partitioned into multiple meshes for parallel computing, which causes the separate storage of slice data 

in multiple meshes. In these cases, the data on a slice from all the meshes are merged to a frame matrix 

in line with their spatial locations. The data matrix from all the simulations is then resized into the same 

dimensions of (50 × 50) cells in both directions. The matrix shaded for visualization at the lower right 

of Fig. 4 serves as the target output of the AI model. A fire duration of 1,200 s and an export frequency 

of 1 frame every 10 s produce 120 samples for one scenario. In total, there are 33,600 samples for all 

280 atrium fire scenarios. 

One input vector, together with one output matrix, corresponding to the given fire scenario and time, 

forms one training sample pair. Each column of the input sheet and each frame of the output matrix is 

normalized into the same range [0, 1] with the min-max normalization function [62]. This is to prevent 

the condition whose features have more extensive ranges from dominating the computation of similarity 

[48]. Afterward, the sample pairs are randomly disordered and divided into training, validation, and test 

datasets with a ratio of 0.6, 0.2, and 0.2, respectively. The training dataset is used to train the model, the 

validation dataset is to evaluate the fitted model while training, and the test dataset is to estimate the 

quality of the fitted model on unseen samples after training. 
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3.3. AI algorithm and training 

The AI model is assumed to have acquired zero expertise knowledge about the calculation of 

visibility inside an atrium at the time of establishment, while it will learn how to accomplish this specific 

task through a continuous training process. The capability of a transposed convolutional neural network 

(TCNN) in obtaining the spatially resolved temperature at a steady-state inside an enclosure has been 

demonstrated by previous researchers [31,37]. However, it is still unknown whether the AI algorithm 

can forecast the smoke visibility inside a large volume atrium with complex fire and ventilation 

scenarios. More significantly, there has been little study on the prediction of the time-dependent (or 

transient) smoke flow behavior of fire. Considering the similar target of obtaining an image, the ability 

of the TCNN model in tracking the development of visuality induced by atrium fire is explored. 

 

Fig. 5. The architecture of the proposed AI model. 

Fig. 5 shows the detailed architecture of the proposed deep-learning AI model, consisting of a total 

of 18 layers in total, among which 13 layers of coefficients can be updated through the training process. 

The five values of the input vector are read by the input layer in sequence, as shown in Fig. 4. The 

information hidden inside the input is then enriched by the following 4 dense layers. After being 

expanded into a dimension of 1024, the vector is reshaped into a box having a size of (4×4×64) while 
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keeping the values in the vector unchanged. Then, the data are upsampled through 8 TCNN layers and 

1 CNN layer to generate an image with 50 pixels in both dimensions. Note that the fixed structure of 

the AI model during training determines that all the generated images have all these dimensions, 

regardless of the height and the length of an atrium. The generated image can then be compared with 

the actual one of the outputs (Fig. 4), and then, the AI model is trained to minimize their difference. 

Various padding scheme and stride parameters are set for these layers to continuously enlarge the 

dimension of the image. Three dropout layers are used to alleviate over-fitting during training. 

Although a better performance can generally be achieved with a deeper learning model, the 

inherent large volume of layers, neurons, and weights can make it rather difficult to train and adjust a 

sophisticated model. The super parameters of the number of layers, the type of each layer, the 

dimensions of the input and output shown in Fig. 5 are determined by preliminary studies. The weights 

of each layer will be updated through the training process. The training efficiency and final performance 

depend much on the selected functions. In this study, the nonlinear activation function “tanh”    

tanh(𝑥) =  
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
                                                     (1) 

which is adopted for each training layer to map the input into a range (-1, 1). The loss function “mean 

squared error” (MSE) is chosen as the loss between actual and predicted values. MSE is defined as 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑌𝑖 − 𝑌̂𝑖)

2
𝑛

𝑖=1

                                                (2) 

where n is the dimension of the vector Y compared, and Yi and Ŷi are actual and AI predicted values of 

the i-th data point, respectively. “adam” is often a default setting for regressions and is assigned as the 

optimizer to find the path of minimizing the loss. It should be noted that alternative functions can also 

be adopted where applicable, while they are not thoroughly explored here considering the already 

achieved high training efficiency. The coefficient of determination R2 was adopted to evaluate the 

trained model. R2 is defined as  

𝑅2 =  1 −
𝑆𝑆𝑡𝑜𝑡

𝑆𝑆𝑟𝑒𝑠
                                                              (3) 

in which SStot is the total summary of the squares ∑ (𝑌𝑖 − 𝑌̅)2𝑛
𝑖=1   where 𝑌̅  is the mean of the actual 

values 
1

𝑛
∑ 𝑌𝑖

𝑛
𝑖=1 , and SSres is the summary of the squares of the residual ∑ (𝑌𝑖 − 𝑌̂𝑖)

2𝑛
𝑖=1 . In addition, R2 

is a scale-free parameter, meaning that it is independent of the exact differences of the predictions. The 

performance of various models can be directly compared by this value. A higher indicates a better 

performance of the model in prediction. The theoretically highest value of R2 is 1, when the predicted 

values perfectly match the actual values.  

During the training process, samples are not read into the AI model to update the coefficients 

individually in sequence. Also, they will not be taken at the same time since the physical memory of 

the computer or server for training the AI model is often limited. Instead, to balance the training 

efficiency and solving stability, all the samples are preferably grouped into several mini-batches. For 

the current work, a server with 32 CPU cores and 124 GB physical memories is adopted to run the AI 

training. All the 20,160 (i.e., 60% of 33,600) samples are divided into 20 batches, with each batch 

having 1008 samples. With these settings, training of 400 epochs costs about 27 h. 
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4. Results and discussions 

4.1. Training loss and accuracy 

Fig. 6 shows the quality of training and validation, where the evolvements of the loss are defined 

in Eq. (2), and the coefficient of determination R2 is defined in Eq. (3). The loss decreases with the 

number of training epochs on the training dataset to a near-constant value of 0.0065. As expected, the 

training accuracy goes up to an extremely high level immediately after the starting of the training, while 

no apparent rise is observed after 200 epochs, indicating that the model has almost converged and it is 

rational to terminate the training process at epochs of 400. Finally, R2 on the training dataset converges 

to 95%. The high score approaching 100% indicates the high performance of the trained model on the 

forecasting of spatially resolved smoke visibility from the right start to 20 min after ignition. The 

phenomenon that both loss and accuracy on the validation dataset are comparable to those on the 

training dataset proves that the overfitting was not incurred. A close checking reveals that better 

performance on the validating dataset is observed, which is mainly due to the setting of the dropout 

layers. The slight fluctuations existing on all the curves are expected results of machine learning [65,66]. 

 

Fig. 6. The evolvements of training and validation (a) loss and (b) R2 with the training epochs. 

4.2. Spatially resolved smoke visibility 

The forecasting quality of the AI model is checked in this section. Fig. 7 compares the actual (CFD 

simulation) and predicted (AI model) distribution of smoke visibility inside the atrium at various time 

for the benchmark scenario, where the atrium length, atrium height, HRR, and ventilation condition are 

50 m, 20 m, 3 MW and 20 m3/s, respectively. Video S1 shows their comparisons for the whole 20-min 

fire duration. A pixel shaded in darker (lighter) color means a poorer (better) visibility at a location, and 

the pure black (white) indicates the visibility of 0 m (30 m). Here the default value of 30 m given in 

FDS is assigned for the best visibility, based on human’s sense of sight.  

Fig. 7 illustrates that the poor visibility of the column-shape area originating from the fire source 

due to the smoke can be easily predicted by the AI model. The overall dynamic characteristics of the 

smoke layer descending from the ceiling to the ground are well learned and predicted by the AI model. 

More detailed structures, such as the faster-moving boundary layer on the sidewall, is also accurately 

captured. On the other hand, some secondary structures of the smoke layer are not reproduced. For 

instance, the predicted boundary in irregular shape separating the areas having high and low visibilities 

is not as clear as the CFD simulation. Nevertheless, the overall AI prediction is excellent, because the 

(a) (b)

R2 = 95%

MSE = 0.0065
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goal of the current study is to explore the AI method in practical fire safety design, instead of exploring 

the inherent mechanism of the fire dynamics. In particular, the AI method can give an accurate 

prediction on the transient smoke-layer height and the ASET.  

 

Fig. 7. Actual (left) and predicted (middle) visibility and their difference distribution (right) at various 

time points: (a) 1 min; (b) 5 min; (c) 10 min and (d) 20 min and Video S1. 

To quantify the forecasting quality, the right column of Fig. 7 shows the calculated distribution of 

the difference between the simulated and forecasted field of visibility. The mean value (μ) and standard 

deviation (σ) of the visibility difference are roughly within 1.0 m and 2.0 m, respectively. μ > 0 (or μ < 

0) means the predicted visibility field is higher (or lower) than the simulated field. The larger σ could 

be mainly attributed to that the predicted visibility is more evenly distributed while the unsteady flow 

of the smoke cannot be well predicted. This sophisticated nature of convection and turbulent behavior 

is difficult for the AI model to learn without prior expertise knowledge. 

Fig. 8 further compares the actual and forecasting visibility for the two atrium lengths when atrium 

height, HRR, and ventilation condition are fixed at 20 m, 3 MW, and 20 m3/s, respectively. “Appendix 

A2” gives the comparison between the actual and forecasted visibility under scenarios of various atrium 
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heights, HRRs and ventilation conditions. For all the scenarios, the AI model demonstrates its 

outstanding performance in predicting the evolvement of smoke visibility. 

 

Fig. 8. Comparison of the actual (CFD simulation) and forecasted (AI model) visibility profiles at different 

moments after the ignition of the fire, where the atrium lengths are: (a) 30 m and (b) 70 m (not to scale). 

4.3. Prediction of smoke visibility 

The images showing the distribution of smoke visibility is intuitive and informative, while it is 

difficult to make a quick decision on ASET with these images. In this case, post-processing procedures 

can be conducted to facilitate the commands on emergency firefighting actions. Observations on the 

image sequences in Fig. 8 show that the area filling with smoke in low visibility expands from the top 

to the bottom of the atrium, and the bottom boundary of this area almost remains a moving horizontal 

plane. According to the recommended fire safety design criteria of the atrium in Hong Kong [14,16], 

the height of the 10-m visibility should be at least 2.0 m above the ground for 20 min to ensure a safe 

evacuation. The height where the visibility is 10 m can be calculated from the images. The central 1/3 

area of the atrium is excluded to eliminate the influence of the rising fire plume in the calculation. 

Fig. 9 compares the 10-m visibility height obtained by CFD simulation and AI Model, which shows 

the influences of different building and fire parameters. For a clear comparison, selected visibility 

profiles are shown. In each curve, the initial height before the fire is the atrium height, because it takes 

some time for the smoke plume to reach the ceiling and form a smoke layer. After 5-10 min, this 

visibility height drops rapidly since the smoke exhaust capacity has been reached, and the smoke began 

to fill in the enclosure. After then, for cases with large fire HRR and low atrium height and ventilation, 

the height drops to a critically low value (see Fig. 9c-d), the descending speed of the smoke slows down 

when it gets closer to the floor because of the cooling effect and the additional smoke ventilation through 
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the lower opening (windows and the doors with a height of 2 m). The overall coincidence of the 

calculated curves from the predicted and simulated results once again proves the capacity of the AI 

method in forecasting the fire-induced visibility evolvement inside an atrium. 

 

Fig. 9. Height for 10-m visibility vs. time showing the effects of (a) atrium length, (b) atrium height, (c) 

fire HRR (25,000 m3, 10 m3/s), and (d) ventilation condition (25,000 m3, 8 MW, 10 m3/s), where solid line 

is CFD simulation and dashed line is AI prediction. 

4.4. Evaluation of ASET  

Practical performance-based fire safety design concerns more about the relative magnitude of ASET 

and RSET rather than the detailed information of the evolvement of visibility and smoke-layer heights. 

The design would pass (fail) if the ASET is smaller (larger) than RSET. Since the RSET is a specified 

value of 20 min, the judgment of the fire safety design only depends on the accurate prediction of the 

ASET. The design would pass (fail) when the visibility height is higher (lower) than the specified 2.0 

m at 20 min after ignition of the fire. Thus, as long as the visibility situations are still quite good at 20 

min (or ASET > 20 min), and specific values of large ASETs are unnecessary unless RSET changes.  

Fig. 10 compares the 10-m visibility height at 20 min calculated from the CFD simulation and 

predicted by the Al model. Ideally, all the data points would locate at the diagonal line if the results can 

be perfectly predicted by the AI model. The blue (red) points represent cases pass (fail) the requirements 

of performance-based fire safety design. The coefficient of determination R2 is calculated as 98.3%, 

indicating the excellent performance of the proposed AI-method on the prediction of the smoke 

visibility height and the ASET. Note that the deviation of AI prediction for cases having a higher value 

of visibility (smoke) height while not affecting the judgment of ASET and RSET, because these cases 

are fire safe (ASET >> 20 min), which definitely can pass the design requirement.   

https://doi.org/10.1016/j.jobe.2021.102529


L. Su, X. Wu, X. Zhang, X. Huang (2021) Smart Performance-Based Design for Building Fire Safety: Prediction of 

Smoke Motion via AI, Journal of Building Engineering, 102529. https://doi.org/10.1016/j.jobe.2021.102529  

16 

More attention should be paid to the data points where the critical visibility height is lower than 2 

m in CFD simulation, while it is higher than 2 m in AI prediction, that is, a false fire safety. However, 

such cases are rare and can be avoided by setting a reasonable safety margin. Moreover, the critical 

visibility height, as well as its evolvement with time, can also be predicted directly using suitable AI 

methods, such as the typical artificial neural network (ANN) and long short-term memory (LSTM) 

model adopted in our previous works [37,38]. While in this study, we obtain the information of visibility 

height by post-processing the predicted images of the 2D visibility contour. One advantage of the 

proposed method is its convenient adjusting and good generalization. The specifications in codes are 

not introduced in the AI training, meaning that re-training the AI model is not required if the post-

processing code or the requirement of RSET and visibility is revised afterward.  

 

Fig. 10. Comparison of the predicted and simulated 10 m-visibility height at 20 min, where blue (red) 

points represent cases pass (fail) the PBD requirements of ASET. 

Based on the prediction of 10 m-visibility height, the judgment on whether a fire safety design of 

an atrium pass or fail the specification in codes can be made by the established AI model. The 

performance of the AI model on the judgment can be evaluated by a confusion matrix [67,68] shown in 

Fig. 10, the four cells of the matrix represent 

• True positive (TP), cases “Pass” are correctly identified as “Pass”; 

• False positive (FP), cases “Pass” are wrongly identified as “Fail”; 

• False negative (FN), cases “Fail” are wrongly identified as “Pass”; and 

• True negative (TN), cases “Fail” are correctly identified as “Fail”. 

For the 280 cases considered in this study, almost all (98.9% = 80.7% + 18.2%) the cases are 

correctly forecasted. Only three cases are wrongly identified are those having 10-m visibility heights 

quite near the limit of 2 m. 
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5. Demonstration: Human vs. AI 

5.1. A Round Robin of conventional PBD by human professionals 

In this work, we invited six volunteer participants who have different levels of knowledge and 

experience from different fire engineering companies or research institutes. Similar round-robin 

approach and group efforts were adopted in simulating the Dalmarnock Fire Test One [69–71], 

warehouse and theatre [72]. Each participant is asked to evaluate the ASET of two atrium cases, as if it 

is a normal consultancy task or research project. All participants have some fundamental knowledge of 

fire dynamics and some experiences in conducting CFD fire modeling for PBD.  

Input parameters were not specified in the survey form, so participants are recommended to follow 

their normal practice when conducting ASET/RSET analysis and free to design FDS model based on 

their project and research experiences. Further amended questionnaire upon participants feedback is 

given for participants for second round revision.  Note that the extent of information (particularly the 

visibility factor and smoke yield) provided to participants exceeds the typical set of data available for a 

user when attempting to simulate a fire for the purpose of performance-based fire engineering design. 

Nevertheless, it is found to be necessary to reduce the large variation in the modeling results. The 

detailed survey form is provided below. 

Participant background 

▪ Professional background: _____________________________ 

▪ Affiliation (company/institute): ________________________ 

▪ Experience of numerical fire modeling: _________________ 

Objectives: The aim of this exercise is to understand if experienced fire engineers and scientists can  

(1) Judge if ASET last 20 min without doing the numerical simulation of smoke transport, and 

(2) Produce similar numerical results of ASET from their independent fire modeling work. 

Case specifics: To reduce the randomness in performing the fire model, the simplest cuboid atrium is 

selected. The fire and structure parameters of the two cases, as well as the makeup air supply [52] and 

ventilation conditions, are provided in Table 3. This acceptance criterion of AEST in this exercise is 

defined as 1,200 s after the ignition of the fire and also considered one specific life safety parameters, 

i.e., visibility ≥ 10 m, which should be satisfied at 2.0 m above the ground level, based on the PD 

7974-6 and the Hong Kong local regulation [15,16].  

Table 3. Specifics of structure parameters and fire scenarios. 

Category  Parameter Case 1 Case 2 

Structure 

Geometry of Atrium, L×L×H (m) 70 × 70 × 20 50 × 50 × 10 

Volume of Atrium (m3) 98,000 25,000 

Smoke extraction, m3/s 0 (no ventilation) 10 (mech. ventilation) 

Natural air-inlet from door opening in a 

pair of wall, w × h (m)  

14 × 2 10 × 2 

Fire 

Fire size (MW) 5 MW 2 MW 

Soot yield (g/g) 0.043 0.043 

Fire growth rate fast growth fast growth 

Visibility factor (light-emitting signage) 8 8 
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Design criteria 
ASET (s) 1200 1200 

Visibility at 2 m above ground (m) 10 10 

Inquiry  

(without modeling) 

If ASET ≥ 20mins (✓ or ✕)   

Reason   

Inquiry  

(with modeling) 

If ASET ≥ 20mins (✓ or ✕)   

CFD code   

Time spend (h)   

Feedback    

 

Note that both selected cases are successful designs (✓), where the evaluated ASET is slightly larger 

than 20 min (i.e., the RSET), according to the authors’ CFD simulation results stated in Section 3. 

Therefore, it will be challenging for all participants to evaluate the magnitude of ASET and RSET via 

either intuition or CFD-based numerical simulations. 

5.2. Expert opinion by intuition  

To avoid a stressed environment, all participants could give their “intuition” answers for each case 

up to 10 min. Some participants used the pen and paper to do a hand calculation, while some just used 

mental calculation or guessed. Although all participants are considered as experts with years of practice 

and experience in PBD, their intuition gives very different judgment on the value of ASET, as 

summarized in Table 4. For Case 1 (98,000 m3 atrium + 5 MW fire), only Participants B and C thought 

ASET > 20 min based on their intuition or quick analysis. Participant B thought that the height of the 

compartment is larger enough for a 5 MW fire in terms of structural fire analysis, so the simulation 

result should be good. Participant C roughly estimated the smoke filling time expected to be around 

3,200 s assuming a smoke production rate of 30 m3/s for a 5 MW fire.  

Nevertheless, the other four participants gave the wrong judgment and believed that Case 1 would 

fail the fire safety requirement. Participant A believed that the cooling effect for such a large 

compartment should be important, and the smoke would descend quickly after flow along with the 

ceiling for 30 m. Thus, Case 1 must fail because of a large floor area. Participant D believed that the 

enclosure unlikely sustained a tenable condition without smoke ventilation, so Case 1 could not pass 

the fire safety requirement. Nevertheless, Participant D also commented that reducing the fire growth 

rate might make ASET exceeding 20 min. Participant E believed the large atrium heigh of 20 m might 

provide a relatively long ASET to some extent, but the fire HRR was also large, so that ASET > 20 min 

was not possible. 

For Case 2 (25,000 m3 atrium + 2 MW fire), the participants’ quick intuition also gave very different 

judgments. Nevertheless, unlike Case 1, most participants expressed their large uncertainty and became 

less confident in their judgment. They commented that the fire size, atrium volume, and provided smoke 

extraction system were smaller than the cases they met in practice, because in HK, only atrium 

volume >28,000 m3 or the ceiling height >15 m needs the PBD.  

Participants A and B considered the required air change rate per hour to calculate the required smoke 

extraction rate. However, they selected different air change rates; that is, A used the value recommended 

by the HK code, while B used the value from the mainland China code. Participant E examined if the 

given smoke extraction rate was sufficient by reviewing some empirical equations. Other participants 
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gave their judgment without conducting any mental or hand calculation. As a result, although 4 out of 

6 participants gave the correct judgment, most of them were not very sure about their judgment and 

took a long time to decide. Several participants later confessed that their guess was random in nature.  

Table 4. Comparison of participants’ judgments on ASET vs. RSET for atrium fire by human intuition, 

CFD simulation, and AI method, where * means the confidence of judgment is low. 

Participant Background 

Case 1 

If ASET ≥ RSET = 20 min 

Case 2 

If ASET ≥ RSET = 20 min 

Intuition 

(✓ or ✕) 

CFD simulation 

(✓ or ✕) 

Intuition 

(✓ or ✕) 

CFD simulation 

(✓ or ✕) 

A 
Fire engineer with 4-years PBD 

and fire-modeling experiences 
✕ ✓ ✕ ✓ 

B 
Fire scientist who used to be a 

professional fire engineer 
✓ ✕ ✓* ✕ 

C 
Senior fire engineer with rich 

PBD and fire-model experiences 
✓ ✓ ✕* ✓ 

D 
Junior fire engineer with some 

fire-modeling experiences 
✕ ✕ ✓* ✓ 

E 
Fire engineer with 2-years PBD 

and fire-modeling experiences 
✕ ✓ ✓* ✕ 

F 
Fire scientist with rich experience 

in different CFD codes 
✕ ✕ ✓ ✓ 

Authors 
A group of professional engineers 

and fire science researchers 
- ✓ - ✓ 

AI - ✓ ✓ 

✓ means the successful design ASET ≥ RSET = 20 min; ✕ means the failed design ASET < RSET = 20 min 

5.3. Expert opinion by CFD simulation  

After the initial judgment by the expert intuition, all participants conducted CFD-based simulation 

and submitted their own simulation results and judgments. The spent time ranged from several hours to 

a few days. Their judgments are also summarized and compared in Table 4. The input files for the CFD 

code were also collected for further analysis, as summarized in Table 5. Except that Participant F used 

the ANSYS Fluent, all other participants used FDS to conduct CFD simulations. Feedback regarding 

the level of instruction to be given to participants were discussed, in order to see engineering’s selection 

and judgment for each fire scenario.  

Similar to other round-robin fire modelling survey [69–71], different participants have their habits 

to form the fire model and conduct simulation, although the description of structure and fire is already 

in good detail. For example, Participants B, D, and E used the mesh size varied from 0.2 to 1.6 for 

different zones, where smaller mesh size was set around fire location, and the coarser mesh was used 

for spaces other than fire. On the other hand, Participant A and C, as well as authors, used a unified 

mesh size, but the selection of mesh size varies from 0.25 and 1.0. None of these six participants 

conducted a sensitivity analysis for the mesh size, because they all believed their selection was 

reasonable based on their years of practice.  

https://doi.org/10.1016/j.jobe.2021.102529


L. Su, X. Wu, X. Zhang, X. Huang (2021) Smart Performance-Based Design for Building Fire Safety: Prediction of 

Smoke Motion via AI, Journal of Building Engineering, 102529. https://doi.org/10.1016/j.jobe.2021.102529  

20 

Table 5. Selected input parameter in Case 2 for different participants. 

Participant HRRUA 

(kW/m2) 

Fire area 

(m) 

Grid size 

(m) 

Mesh 

No. 

Cell No. Vent rate 

(m3/s) 

Vent 

No. 

single vent 

size (m × m) 

A 500 2 × 2 0.25 28 1,799,490 2.5 4 3.5 × 2.75 

B 250 4 × 2 0.2/0.4/0.8/1.6 8 400,064 10 1 1.6 × 1.6 

C 1000 2 × 1 1 1 200,000 0.5 20 1 × 1 

D 500 2 × 2 0.2/0.4 5 806,589 10 1 2 × 2 

E 500 2 × 2 0.25/0.5 16 792,352 5 2 1 × 1 

F 1389 1.2 × 1.2 0.4 1 390,625 10 1 2 × 2  

Authors 500 2 × 2 0.4 3 390,625 10 1 1.5 × 1.5 

 

The selected heat release rate per unit area (HRRPUA) varied from 250 to 1250 kW/m2 among 

participants, but the influence should be negligible for the large atrium. The location of the natural 

makeup opening was also specified to reduce the variance. The smoke extraction was not specified in 

the survey form. Thus, participants set different numbers of smoke extraction points (1, 2, 4, and 20) 

and smoke extraction rates per grille (10, 5, 2.5, and 0.5 m3/s). Also, Participants D and E had specified 

the start time of smoke extract by either the time of activation of smoke detector setting nearby the fire 

or the control open after 60 s of fire start, which are standard practices in their daily consulting cases. 

One thing to notice is that Participant D turned off the radiation solver and set a radiative fraction of 

0.35 for fire, while all others turned on the radiation solver.  

The prediction results were aligned with the corresponding simulation results. Specifically, if the 

smoke layer descended below 2 m above the ground, the design was failed (✕). However, the simulation 

results for all participants were far away from consistency, although some of the input parameter settings 

were essentially the same as others, and no one made any clear mistake. It could be argued that these 

small differences in predicted ASET are reasonable and caused by human nature, but the outcomes of 

design (success/failure) and approval (pass/no pass) could be completely opposite. This is partially 

because the actual design is near the evaluation criterion. More importantly, every engineer has their 

own interpretation on the fire scenarios and modelling habits, which inevitably cause differences. 

On the other hand, although FDS and other CFD tools are recognized tools for simulating smoke 

movement and designing the fire engineering strategy, these tools required extensive knowledge and 

understanding of the rationale behind input parameters to avoid manipulating the results. Nevertheless, 

even for experienced professional fire engineers, it is challenging to get consistent modeling results and 

convince each other, as well as the AHJ.  

In contrast, the AI-based PBD has a great potential to avoid the laborious and costly process of CFD 

simulation and years of training of CFD modelers in convectional fire engineering PBD. Once trained 

by the big database of massive numerical fire simulations, the AI model can give quick and accurate 

predictions in a matter of seconds or minutes, and the results are consistent without any human tunning 

and manipulating. It can also help AHJ to quickly review PBD cases. More detailed results of the two 

cases predicted by the AI model are illustrated in Fig. A3. Although the construction of the database 

and the training of the AI model will take years, as the database and case number grow, the AI model 

could act as a large group of experienced professional fire engineers to provide a more reliable design. 

As the development of conventional PBD takes several decades, years of research and development are 

also needed before the AI-based PBD can be applied and accepted by the community. 
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6. Conclusions 

This study proposed a smart framework for fire engineering performance-based design (PBD) to 

predict the smoke motion and ASET in atrium fire by AI model. A numerical database of 280 cases, 

covering different atrium dimensions, fire HRRs, and ventilation conditions, was established for 

training the TCNN model. Results demonstrated that the proposed AI model could predict the evolution 

of the visibility (or smoke-layer) profile in the large enclosure, thus determining the ASET in the given 

design of atrium and fire. As a reference, six participants with a good knowledge of fire dynamics and 

modeling are invited to conduct case studies with both their intuition and the PBD with CFD tools as a 

regular consultancy task. Compared to conventional CFD-based PBD by professional fire engineers, AI 

method provides more consistent and reliable results in a much shorter time. 

This research verified the feasibility of using AI in fire-engineering PBD, which may reduce the 

time and cost in creating a fire-safety built environment. A better performance of the AI model could be 

achieved if the number of the layers and units in each layer are tunned, and if more fire scenarios (e.g., 

fire location, fire spread, and soot yield) and building parameters (e.g., shape and layout) are simulated 

to form a larger database. More importantly, the AI model is preferably to be verified by real- or large-

scale atrium fire tests once the target building is constructed. The future work should focus on these 

potential research areas to improve the smart fire engineering design. 
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Appendix 

 

Fig. A1. The grid sensitivity analysis for the CFD modeling of an atrium fire, (a) velocity profile, and (b-c) temperature 

profiles at two random locations, where the atrium dimension is 30 × 30 × 10 m3, and the fire HRR is 1 MW.  

 

Fig. A2. Comparison of the actual (CFD simulation) and forecasted (AI model) visibility profiles at 

different moments after the ignition of the fire, where (a) atrium height is 10 m; (b) ventilation is 0 m3/s 

and (c) HRR is 8 MW, differed from benchmark case. 
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Fig. A3. Predicted visibility profiles at different moments after fire ignition for: (a) Case 1 and (b) Case 2. 
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