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Abstract 

Collision cross section (CCS) values generated from ion mobility mass spectrometry (IM-MS) 

have been commonly employed to facilitate lipid identification. However, this is hindered by 

the limited available lipid standards. Though recently CCS values were predicted by means of 

computational calculation, the prediction precision was generally not good and the predicted 

CCS values of lipid isomers were almost identical. To address this challenge, a least absolute 

shrinkage and selection operator (LASSO)-based prediction method was developed for the 

prediction of lipids’ CCS values in this study. In this method, an array of molecular descriptors 

were screened and optimized to reflect the subtle difference in structures among different lipid 

isomers. The use of molecular descriptors together with a wealth of standard CCS values for 

lipids (365 in total) significantly improved the accuracy and precision of the LASSO model. 

Its accuracy was externally validated with median relative errors (MRE) of <1.1% using an 

independent data set. This approach was demonstrated to allow differentiation of cis/trans and 

sn-positional isomers. The results also indicated that the LASSO-based prediction method 

could practically reduce false-positive identification in IM-MS-based lipidomics. 

 

Keywords: Lipid; Lipidomics; LASSO; Collision cross section; Ion mobility; Mass 

spectrometry. 
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1. Introduction 

The field of lipidomics aims to detect and characterize lipids present in biological samples. The 

full characterization of lipids is beneficial for understanding their biological roles such as 

serving as energy source and signaling molecules for a wide variety of biological functions [1-

4]. Currently, mass spectrometry (MS)-based lipidomics approaches are prevalent in providing 

detailed information on lipidome. However, the full characterization of lipids is still a 

challenging task due to the vast number of possible isomers that may exist [5, 6]. It is difficult 

to distinguish so many structural isomers due to the distinct lipid acyl chain positions, double 

bond locations and specific glycan types, which hinders the delineation and annotation of their 

biological roles [7-9].   

 

Plenty of literature indicated that the positional distribution of saturated fatty acid on the 

glycerol backbone of triacylglyceride (TG) molecules, especially in the sn-2 fatty acyl chain, 

might result in atherosclerosis [10]. In addition, trans isomers of fatty acid increase the risk of 

sudden cardiac death induced by coronary artery disease while cis isomers are good for health 

[11]. Thus, the differentiation of lipids is of great significance. Although many structural 

isomers of lipids can be distinguished by LC/MS-based approaches using retention time and 

characteristic fragment ions, potential pitfalls arise when cis/trans (Z/E) and sn-2 positional 

isobaric lipid species yield the same fragment ions [7]. More recently, ion mobility mass 

spectrometry (IM-MS) has shown to be a powerful tool for lipidomics study [12, 13]. As a gas-

phase technique, IM-MS separates ions according to their shapes and sizes [14-16]. A number 

of collisions occur between ions and inert buffer gas under an electric field, resulting in the 

differences in drift time, which can be used to calculate the collision cross section (CCS) [17]. 

The measurement of an ion’s CCS value using IM-MS provides specific structural information 
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of the ion, especially when coupled with a high-resolution MS such as time-of-flight (TOF), 

Orbitrap [7]. The CCS value together with characteristic fragment ions facilitate the separation 

of structural isomers, stereoisomers, and tautomers. 

 

However, in the current metabolite libraries, only a small number of standard CCS values are 

available for lipids due to the limited availability of lipid standards. More recently, theoretical 

CCS values calculated by computational chemistry tools are being employed in IM-MS-based 

lipidomics studies [18, 19]. Machine learning is also a splendid method for forecasting CCS 

values of lipids [20, 21], and has been demonstrated to be very effective in our previous study 

in combining MALDI-MS analysis with the established spectral database for rapid 

classification of edible oils [22]. More recently, Zhu et al. have utilized a support vector 

regression (SVR) model to predict the CCS values of lipids [23]. The high prediction accuracy 

of this method was externally validated using an independent set of lipids, indicating that 

machine learning models should be of promising perspectives in the prediction of theoretical 

CCS values of lipids. However, these methods cannot accurately predict the CCS values of 

isomeric lipids that differ in position or geometry (cis/trans) yet. Lack of isomeric lipid 

standards in the training data set should be the main reason; in addition, insufficient molecular 

descriptors (MDs) closely related to isomeric lipid should be another reason. Generally, the 

MDs of a target molecule can be acquired from databases (lipidmaps or HMDB) or be produced 

with lipids’ SMILES formats using softwares (e.g. E-dragon software, R project and 

ChemAxon).  

 

In this work, using MDs closely related to subtle structural differences of lipid isomers, we 

described a novel least absolute shrinkage and selection operator (LASSO)-based approach for 

predicting CCS values of lipids. As a machine learning model, LASSO is generally utilized in 
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regression analysis which is performed with variable selection and regularization to enhance 

the prediction accuracy and interpretability of the produced statistical model [24-26]. Firstly, a 

combination of MDs was screened to precisely describe the subtle structural differences for 

lipids. Especially, MDs related to isomeric subtle structure were specifically optimized by 

targeted comparative analysis. Subsequently, the screened combination of MDs together with 

the published experimentally measured lipids’ CCS values (365 in total) were used to build and 

internally validate the LASSO-based prediction model. Then, our new prediction approach was 

externally validated using the CCS values produced by other laboratories (CCS values for the 

81 lipids), which have a high precision with MRE <1.16%. The prediction accuracy of our 

LASSO-based prediction model was also validated in our laboratory using 19 lipid standards 

with MRE <0.51%. The established LASSO-based prediction method was further 

demonstrated to allow the prediction of CCS values for lipids and the differentiation of lipid 

isomers, and effectively reduced false positives identification of lipid in the IM-MS-based 

lipidomics study.  

 

2. Experimental 

2.1. Chemicals and materials 

Lipid standards (Table S1) used in the external validation were purchased from Avanti polar 

lipid Co., Ltd (Sweden). LC-MS grade acetonitrile (ACN), isopropyl alcohol (IPA) and 

methanol (MeOH) were purchased from Thermo Fisher Scientific Ltd. Co (Boston, USA). 

Ultrapure water was obtained using an 18 Ω m Milli-Q system (Millipore Corporation, Billerica, 

MA). Poly-DL-alanine was purchased from Sigma-Aldrich (U.K.). Male zebrafish were 

purchased from Model Animal Research Center of Nanjing University (Nanjing, China). All 

animal procedures were performed in accordance with the Guidelines for Care and Use of 
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Laboratory Animals of Shenzhen Research Institute of The Hong Kong Polytechnic University 

and approved by the Animal Ethics Committee of Shenzhen Research Institute of The Hong 

Kong Polytechnic University. 

 

2.2.  Sample preparation 

Standard mixtures. Phospholipids and triacylglycerides were prepared in MeOH and 

dichloromethane (DCM)/MeOH (50:50, v: v), respectively, before MS analysis. 

 

Biological samples. Lipid extraction protocol was modified from the previously reported 

protocol [27]. Fresh liver samples were rapidly homogenized for 2 min in 1 mL ice-cold 

solvents mixture (DCM/MeOH, 2:1, v/v), then centrifuged at 13000 rpm for 10 min after 800 

μL pure water was added. The lower organic phase was collected in a new vial and evaporated 

to dryness under nitrogen. Immediately prior to analysis the lipid extract was diluted with 

isopropanol/acetonitrile (2:1, 100 μL ). 

 

2.3. LC-IM-MS analysis 

All experiments were conducted using a Synapt G2 HDMS traveling wave ion mobility mass 

spectrometer (TWIM-MS) coupled with a UHPLC system (Waters, Manchester, UK). UHPLC 

separation was performed on a BEH C18 column (particle size:1.7 µm; length: 50 mm; i.d.: 

2.1 mm) maintained at 55 °C. The solvent A was H2O / ACN (6:4, v/v) with 10 mM ammonium 

formate, and solvent B was IPA / ACN (9:1, v/v). The linear gradient condition was as follows: 

0 min, 70% B; 10 min, 100% B; 10-20 min, 100% B; 20.5 min, 70% B; 30 min, 70% B. The 

total gradient time was 30 minutes for each analysis. The flow rate was 0.2 mL min-1 and the 

injection volume was 2 µL. All CCS values were measured using the single electric field 
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method with nitrogen as the drift gas. The wave velocity and wave height were 600 m s-1 and 

40 V, respectively. The source parameters were set as follows: source temperature, 90 °C; 

desolvation temperature, 400 °C; core gas flow, 20 L h-1; cone voltage, 40 V; capillary voltage, 

3 kV and 2.5 kV in positive or negative ion modes, respectively. The TOF mass range was set 

as m/z 50 – 1200 Da. The collision energy was set as 40 V. 

 

2.4. Optimization and development of LASSO-based prediction method 

All data processes and calculations were performed in an open-source R programming 

environment. MDs are a series of numeric values that characterize the structural and 

physicochemical properties of molecules. To produce MDs that can reflect the difference 

between lipid isomers, the optimization and selection of MDs were conducted in the following 

steps. First, we downloaded SMILES formats of lipids from LIPID MAPS and then 256 MDs 

were obtained with the assistance of those SMILES structures utilizing the R package “rcdk” 

[23, 28]. Especially, another 15 MDs, produced by MarvinSketch from ChemAxon, were 

specifically selected by targeted comparative analysis manually for 15 MDs of many lipid 

isomers downloaded from LIPIDMAPS, these 15 MDs should be closely related to subtle 

structures of isomeric lipids. Subsequently, 95 out of 271 MDs were indiscriminate among the 

lipids in the training data set and thereby were removed. The remaining 176 MDs were 

stepwisely optimized using the training data set. Briefly, 80% of the CCS values of lipids for 

the modeling were randomly chosen as training data set to build a regression model using the 

176 MDs. The MDs with the least contribution to the regression model were subsequently 

removed. As a result, 52 and 63 molecular descriptors were screened for the prediction of lipids’ 

CCS values in the positive and negative ion modes, respectively (Tables S2, S3). Finally, the 

training data set and MDs were used to develop the LASSO prediction model, and 20% of the 

CCS values for the modeling were employed as internal validation dataset, followed by the 
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external validation including inter-lab validation and intra-lab validation. Same workflow 

(Figure 1) was employed for the prediction method in different ion modes.  

 

A total of 314 and 132 experimental CCS values of lipid species acquired from other 

laboratories in positive and negative modes [12, 23, 29-32], respectively, were obtained and 

separated into two datasets, including dataset A (365 lipids) and dataset B (81 lipids). It should 

be noted that only those lipids annotated into the level of sn-1_sn-2 position, instead of those 

annotated as total carbon: total double bond, in the references mentioned above were recruited. 

80% of dataset A was used for model building and the remaining 20% was for the internal 

validation, and dataset B, in which the CCS values were obtained from the laboratories different 

from that of dataset A, was employed for the external inter-lab validation. In dataset A, CCS 

values from 255 lipids consisting of 94 sphingolipids ([M-H2O+H]+/[M+H]+), 98 protonated 

phospholipids and 62 glycerolipids ([M+NH4]+) were collected in positive ion mode; and 110 

lipid CCS values composing of deprotonated fatty acids, phospholipids and sphingolipids were 

collected in negative ion mode. Firstly, using the training data set and the screened MDs, the 

LASSO-based prediction model was optimized and trained. Least-Angle Regression (LARS) 

was utilized to calculate the regularization parameter (Lambda). An appropriate Lambda was 

crucial in building a convincing model. Here, cross-validation of the lattice point of Lambda 

was proceeded to choose a Lambda with the smallest root mean square error (RMSE) (Figure 

S1). To validate the performance of the model, around 20% of lipids in the data set were then 

used for internal validation. Finally, a total of 100 lipids were utilized for external validation, 

including inter-lab validation (81 lipids) and intra-lab validation (19 lipids, calculated in our 

lab) to observe the accuracy and differentiation ability of this method. 
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2.5. Calculation of experimental CCS values of lipids 

In the intra-lab validation, CCS values of lipid standards were measured. CCS values obtained 

in nitrogen were experimentally determined with poly-DL-alanine at a concentration of 10 mg 

L-1 in H2O/ACN (50:50, v:v) as the calibrant species in both positive and negative ion modes. 

CCS values were derived using a procedure previously reported [33].  

 

3. Results and discussion 

3.1. Development of the LASSO-based method for prediction of CCS values with high 

accuracy 

LASSO algorithm was used to develop the CCS prediction method due to its powerful 

capability to perform both variable selection and regularization, which could improve the 

prediction accuracy. Ultimately, 52 and 63 MDs that were concerned with subtle structural 

variation of lipid species and isomers were particularly optimized for prediction in positive and 

negative ion modes, respectively. It should be noted that MDs calculated from MarvinSketch 

were of great variation for lipid isomers (Table S3). The experimental CCS values of 255 and 

110 lipids in positive and negative ion modes, respectively, were then collected as dataset A for 

predictive method development and internal validation. Besides, as shown in Figure S1, 

Lambda of LASSO was first optimized to achieve the best prediction performance. Then, the 

development of the LASSO-based prediction model was carried out using 80% lipids in the 

dataset A, the remaining 20% were randomly selected for internal validation. For both positive 

and negative ion modes, excellent fits with R2 values more than 0.99 were obtained (Figure 2a, 

b). MREs of the comparison were 0.928% and 0.867%, for data sets of positive and negative 

ion modes, respectively. The result proved that the optimized Lambda value for the LASSO-

based model performed well for CCS value prediction. Finally, using the optimized Lambda, 
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the LASSO prediction method was built based on the training data set. For all the lipids in 

positive ion mode, median relative error was 0.691%, and the R2 value was 0.9914 (Figure 2c). 

In addition, 100-fold cross-validation was performed during method development to avoid 

overfitting. Similar parameter optimization and method development were performed in 

negative ion mode using MDs and CCS values from lipids, with a MRE of 0.796% and an R2 

value of 0.9970 (Figure 2d). These results supported the high prediction accuracy of the 

LASSO prediction method. 

 

3.2. External validation 

The wave velocity and wave height were optimized at the initial stages, and when the wave 

velocity was adjusted between 450 m s-1 and 600 m s-1 with wave height changed between 30 

V and 40 V, the CCS error was around 2%, which was acceptable. Finally, when the wave 

velocity and the wave height were set at 600 m s-1 and 40 V, respectively, a best separation of 

isomer was obtained. We further evaluated the performance of the LASSO prediction method 

using an independent set of lipids (59 and 22 lipids in positive and negative ion modes, 

respectively) to serve as an external inter-lab validation data set. The CCS values of these lipids 

were measured in the labs different from that of training and internal validation dataset. As 

shown in Figure 3a and Figure 3b, the predicted CCS values from the LASSO method matched 

very well with the experimentally measured CCS values for these tested lipids. The R2 values 

of the regression curves were 0.9925 and 0.9983 in positive and negative ion modes, 

respectively. MREs were 1.159% and 0.532%, respectively. This performance was similar to 

our intra-lab validation conducted using the same instrument (Figure 3c, d). The MREs of our 

intra-lab validation were 0.569% and 0.529% in positive and negative ion mode, respectively. 

To summarize the performance of the LASSO prediction method, in terms of external 

validation results, we discovered that about 96% of lipids had predicted CCS values within 1.8% 
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of relative errors, while more than 70% of lipids had predicted CCS values within 1% of 

relative errors (Figure 3e). Meanwhile, with the use of the present LASSO-based prediction 

method, we also compared the predicted CCS values of glycerolipids, phospholipids and 

sphingolipids, and we found that phospholipids generated the smallest predicted CCS values 

(205-338 Å2), followed by sphingolipids (286-319 Å2) and glycerolipids (287-332 Å2) (Figure 

3f). This trend was consistent with that of some experimental CCS values reported previously 

[33]. Besides, our result demonstrated that the prediction accuracy of the predicted CCS values 

for different lipid classes were distinct. Phosphate acid (PA), phosphoserine (PS) and 

phosphoinositol (PI) had the highest prediction accuracy with MREs of smaller than 0.5%, 

followed by sphingomyelin (SM), GL, phosphocholine (PC), phosphoglycerol (PG), 

phosphoethanolamine (PE) and ceramide with MREs of ∼0.7%.  

 

3.3. Good differentiation ability of lipid isomers 

It is difficult to differentiate lipid isomers using the previously reported prediction methods or 

theoretical calculation methods [34, 35]. In order to test the separating capacity of the LASSO-

based prediction method in differentiating lipid isomers, we further compared the LASSO 

predicted CCS values of 3 pairs of lipid isomers (2 pairs of TG isomer in positive and of 1 pair 

of fatty acid isomers in negative ion modes, respectively) with their experimental CCS values 

measured in our laboratory. As shown in Figure 4a, a marked change in ion mobility behavior 

was observed between a pair of cis and trans fatty acids, including 9Z-octadecenoic acid and 

9E-octadecenoic acid with predicted CCS values of 183.3 Å2 and 186.2 Å2. Besides, a similar 

difference of predicted CCS values was found between a pair of sn-2 positional isomers, i.e. 

1,2-linolein-3-olein and 1,3-linolein-2-olein, with predicted CCS values of 310.3 Å2 and 312.8 

Å2 (Figure 4b). To test whether the LASSO prediction method can be used to distinguish ω-

3/ω -6 lipid isomers, we measured and predicted the CCS values of ω -3 and ω -6 
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docosapentaenoic acid (DPA). The result showed that not only their retention time, but also 

their experimental CCS values were identical, which means that they cannot be separated by 

means of LC and IMMS separation (Figure 4c and Figure S2). The prediction method also 

exhibited only 0.6 Å2 differences between two isomers, enabling them to be unclearly 

distinguished (Figure 4c).  

 

Compared with the previous prediction methods, a possible explanation for the improvement 

of our method in the differentiation of lipid isomers is that several isomeric lipid standards 

were imported into the training data set to reflect the subtle structures of isomers during the 

model establishment in the present study. Another novel aspect of our LASSO prediction 

approach is the selection of important MDs to effectively distinguish the structures of lipid 

isomers, especially for larger molecules. Taking dipole moment as an example, since the two 

substituents of the trans isomer are opposite in orientation and thus can be completely or 

partially offset, while the cis isomers generate dipole moment in the direction of the vector 

resultant force due to two symmetrically arranged groups. In general, the cis isomer has a larger 

dipole moment than the trans isomer. Therefore, the dipole moment should be one of the most 

dominant factors to discriminate cis/trans isomers [36, 37]. It was reported that differential 

mobility spectrometer system (DMS) (SelexIonTM, AB SCIEX, Concord, Ontario, Canada) 

with higher resolving power can be used to separate lipid isomers based on dipole moment [40, 

41], so we utilized DMS to analyze a pair of sn-positional isomers and cis/trans isomers 

separately. Ultimately, the results demonstrated that the dipole moments of PC(14:0/16:0) and 

PC(16:0/14:0) were distinct and different dipole moments were also obtained from PC (18:1△

6-cis) and PC (18:1△9-cis). (Figure S3). Therefore, the results suggested that dipole moment 

that used in our LASSO method should be one of important MDs to reflect the structural 

difference of isomer and then help to improve the separation of isomers in our method. 
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The energy of lipids varies with the alteration of conformation, therefore, some important MDs, 

such as Dreiding and MMFF94 [42], yielded by calculation of energy of molecule were chosen 

to allow differentiation of both cis/trans and sn-2 positional lipid isomers. Although this 

method cannot be utilized to differentiate all types of lipid isomers, our investigation indicated 

that if more topological MDs, e.g. molecular connectivity indices which are related to the three-

dimensional structures of isomers, are employed in the development of LASSO model, the 

structural difference will be amplified in CCS values [43]. However, this method can only be 

applied in the prediction of CCS values produced from the TWIM instrument since the training 

data set was mainly based on the TWIM-derived CCS values. Furthermore, although lipid 

calibrants could yield CCS values with higher accuracy, currently a variety of CCS values 

calibrated by lipid calibrant were mainly generated for lipid subclasses (e.g., PC(36:2)) instead 

of lipid species (e.g., PC(18:1/18:1) or PC(18:0/18:2)). Therefore, the number of CCS values 

for lipid species produced based on lipid calibrant was quite limited in our prediction model. 

This method is thus applicable in TW instrument when polyalanine was applied as calibrant.  

 

3.4. Application for identification of biomarkers in lipidomics 

The LASSO prediction method was employed to improve the confidence of lipid identification 

in our study for the profiling of lipid alterations occurred after obese zebrafish development. 

Raw UPLC-ESI-MS data was directly imported to the Progenesis QI software (Waters-

Nonlinear) for data processing, which includes peak picking, alignment and data normalization. 

The processed data matrices were imported to the IBM SPSS Statistics software (Version 11.0, 

SPSS Inc., Chicago, IL, USA) for t-test. The m/z values of ions with p-value < 0.05 were further 

exported to the SIMCA 14.1 software for Orthogonal Partial Least Squares Discriminant 

Analysis (OPLS-DA). Ions with fold change ≥1.5 and Variable Importance for Projection 
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(VIP) ≥1 were considered as potential biomarkers and were subjected to identification. After 

the data analysis, searching with the accurate masses of lipids and mass error < 5 ppm against 

HMDB and LIPID MAPS resulted in 39 potential lipid ions. These 39 lipid ions have many 

candidates with the combinations of various isomers. Although MS/MS spectra are further used 

to confirm and rule out the searching results, the majority of these lipid candidates possessed 

several isomers that have identical m/z values and similar fragmentation patterns. Herein, a 

cutoff of 5 ppm and experimental CCS ± 2% search criteria was used to remove false positive 

identifications of the potential biomarkers [12]. By this way, we found 17 mismatched lipid 

identifications (false positives). The remaining 22 ions and their candidates were listed in Table 

S4. The use of our predicted CCS values could effectively remove the lipid candidates with 

lower confidences. For example, ion at m/z 806.7206 had three potential lipid candidates 

matched with parent ion and fragment ions, but one mismatch was found by applying CCS 

filter and it was ruled out, thus resulting in two candidates. (Table S4). Finally, a total of 22 

lipid ions including 78 lipid candidates were annotated in this study. These results indicated 

that the use of the predicted CCS values could effectively reduce false positive identifications 

and improve the identification confidence for untargeted lipidomics. 

 

4. Conclusions 

Lipids play crucial roles in biological processes such as energy storage and signaling. IM-MS 

can facilitate the identification of lipids, but this is restricted by the unavailability of lipid 

standards. In our study, a LASSO-based prediction method with good accuracy was developed, 

which could allow the prediction of CCS value for lipids, enable the differentiation of lipid 

isomers, including cis/trans and sn-2 lipid isomers. An application of this prediction method in 

untargeted lipidomics demonstrated that the method could be used to effectively reduce false 
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positive identifications of lipid biomarkers. Due to the important roles of lipids in health and 

diseases, this LASSO-based prediction method is expected to be used in a wide range of studies, 

including differentiation of important lipid isomers, exploration of the mechanism of diseases 

and drug development. But there were some limitations in this work, for example, some fatty 

acid species in the training dataset were collected from DTIMS instead of TWIMS, that might 

be responsible for the largest MRE (~2%) for fatty acid. In addition, CCS values calculated by 

different calibrants also contributed to the error of this prediction method. Although these errors 

were not larger than that of our method, this model should be improved in the future when 

more TWIMS-based CCS values calculated by lipid calibrant are published.  
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Figure captions 

Figure 1. Schematic diagram of CCS value prediction using LASSO. 

Figure 2. (a, b) Regression curves between LASSO-based predicted and measured CCS values 

in internal validation for positive (a) and negative (b) ion mode; (c, d) validation of the 

prediction performance for positive (c) and negative (d). 

Figure 3. External validations of the CCS prediction: (a, b) Regression curves between the 

predicted and measured CCS values in inter-lab validations in positive (a) and negative (b) ion 

modes; (c, d) regression curves between the predicted and measured CCS values in intra-lab 

validations in positive (c) and negative (d) ion modes; (e, f) the percentages of CCS values 

within certain relative errors in positive (e); and (f) ordering of the predicted CCS values among 

different lipid categories. 

Figure 4. Comparisons of the experimental and predicted CCS value of cis/trans isomers 9Z-

octadecenoic acid/9E-octadecenoic acid in negative ion mode (a), sn-positional isomers 1,2-

linolein-3-olein /1,3-linolein-2-olein (b) and ω-3/ω-6 DPA (c) in positive ion mode. 
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