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ABSTRACT
Sentiment analysis is helpful to bestow ability of understanding human’s attitude in texts on artificial
intelligence systems. In this area, text sentiment is usually signaled by a few indicative words that
convey affective meanings and arouse readers’ collective emotions. However, most existing senti-
ment analysis models have predominantly featured through neural network architectures with end-to-
end training manner and limited awareness of affective knowledge, which, as a result, often fails to
pinpoint the essential features for sentiment prediction. In this work, we present a novel approach for
sentiment analysis by fusing external affective knowledge into neural networks. The affective knowl-
edge is distilled from two sentiment lexicons grounded by two psychological theories, e.g., the Affect
Control Theory and word affections in terms of Valence, Arousal, and Dominance. To examine the
effects of affective knowledge over sentiment analysis, we conduct cross-dataset and cross-model ex-
periments along with a detailed ablation analysis. Results show that our proposedmethod outperforms
trendy neural networks in all the five benchmarks with consistent and significant improvement (1.4%
Accuracy in average). Further discussions demonstrate that all affective attributes exhibit positive
effects to model enhancement and our model is robust to the change of lexicon size.

1. Introduction
Sentiment plays a crucial role in shaping people’s life de-

cisions, and affects a series of subsequent life choices. Hu-
mans tend to act in response to other people’s viewpoints in
various aspects of life, e.g., where to celebrate Christmas,
and whether to get COVID-19 vaccine shot or not, and so
forth. To efficiently access people’s thoughts and attitudes, a
growing number of researchers in Artificial Intelligence (AI)
have conducted sentiment analysis based on texts with the
hope to help the individuals navigate their decision-making
processes. Technically, the task of sentiment analysis is to
automatically parse a piece of text and figure out the senti-
ment polarity of the authors: whether they hold a positive,
negative, or neutral attitude towards a particular topic. Senti-
ment analysis has been regarded as one of the most challeng-
ing and essential tasks in artificial intelligence, which strives
to help the machines to understand, infer, or even respond
to human’s emotions [18, 7, 59, 8, 19]. Meanwhile, it will
further benefit diverse streams of natural language process-
ing research via providing opinionated features to facilitate
downstream tasks [12, 20, 27].

The current research paradigm of sentiment analysis is
mainly centering around the use of neural networks to learn
features in an automatic manner. This includes the build-
ing of various model structure, such as Convolutional Neural
Network (CNN) [26], Recursive Auto-Encoders [48], Long-
Short Term Memory Network (LSTM) [49], and advanc-
ing model training strategies, such as the trendy pre-train
and fine-tune paradigm based on transformers [10, 28]. The
above models, though achieving promising results, present
obvious drawbacks in terms of interpretability — they are
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unable to explicitly pinpoint the salient words or phrases
that link to the sentiment polarity and thus contribute less
to reflect human-understandable sentiment components [1,
4, 39]. Moreover, features are learned automatically from
large-scale raw data while devaluing a myriad of existing
handcrafted external resources, such as linguistic knowledge,
cognition-grounded data, and sentiment lexicon, which wh-
ereas showed the usefulness in traditional practice [17, 25,
37, 51, 55, 58] and might complement the automatic senti-
ment features for the AI machines to nurture human senses.

In light of these points, we propose to loan the affec-
tive meanings of sentiment words from external resources
into neural sentiment analysis frameworks. This allows the
model to takes the joint effects of bi-directional feeling be-
tween the reader and the writer [44, 53] to make sense of hu-
man sentiment. In our intuition, to understand the writers’
viewpoints, it is potentially helpful to examine what words
they use to voice opinions and how thesewords resonatewith
readers’ emotions, Figure 1 exemplifies the concepts using
two sentences from amovie review collection [41], whereSprefers to the positive sentiment and Sn negative. As can be
seen, words with strong affective polarity (“faith”, “sump-
tuous” and “stultifying”) are strong indicators of the senti-
ment of the examples. Other affective words, such as “tale”,
“love”, “betrayal” and “revenge”, as well as some signal
words e.g. “above all” and “but” can be collectively evalu-
ated to determine the overall attitude of the writer.

In this article, we propose to incorporate external senti-
ment lexicons in neural networks for sentiment analysis with
human-assigned affective values of various psycho-linguistic
aspects (henceforth affective vectors). They are manually
annotated to reflect how readers’ word-level responsive emo-
tions vary along different affective dimensions; for example,
“love”, usually arousing positive, exciting, and controlling
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Sp: a swashbuckling tale of love , betrayal , revenge and
above all , faith .
Sn: visually sumptuous but intellectually stultifying.

Figure 1: Two examples from a movie review collection. Sp
exhibits the positive sentiment while Sn negative. Sentiment
words are in italic, where red color refers to positive affection
while blue negative.

emotions in readers, is likely to be a strong signal of positive
sentiment. In previous studies, the helpfulness of leveraging
sentiment lexicon has been demonstrated in sentiment anal-
ysis task [43, 54, 63]. Nevertheless, most prior efforts focus
on leveraging coarse-grained knowledge (i.e., positive and
negative words) limited attempts have been made to marry
the fine-grained handcrafted affective attributes with the au-
tomatic features learned in deep sentiment analysis networks.
To fill in the gap, we propose a novel affective fusion neu-
ral network (AFNN) capable of encoding affective knowl-
edge and highlighting the indicative word patterns with af-
fective attentions. Built upon the success of attention-based
neural sentiment analysis [50, 9, 61, 2, 30], we inject affec-
tive words as the knowledge seeds into the attention mecha-
nism to capture sentiment indicators, which may enable bet-
ter interpretability compared with existing attention mech-
anisms whose features are usually hard to be analyzed by
humans [6, 14, 56]. Furthermore, we investigate two alter-
native training methods to examine how handcrafted affec-
tive vectors and automatic semantic representations interact
with each other in separate and joint training settings.

To the best of our knowledge, this study is the first to
explore the coupled effects of manually-annotated affective
vectors and advanced neural networks for sentiment analy-
sis, which somehow involves the implicit engagement of hu-
man readers to help sentiment prediction.

To obtain empirical evidence, we carry out a series of
experiments based on five benchmark datasets with compre-
hensive comparisons on different models. The results show
that ourmodels outperform the state-of-the-art (SOTA) coun-
terparts by wide margins. For example, RoBERTa with af-
fective attentions achieves 94.2% accuracy on SST-2 movie
review dataset which is 1.2% higher than the one without
modeling affective knowledge. We also find that a fusion de-
sign of both affective vectors and attention mechanism out-
performs the alternative that separately train the simple af-
fective augment via feature concatenation and attentionmech-
anism. Next, we analyze the sub-component effects of both
the affective vectors EPA and VAD in sentiment prediction
and observe that using all factors jointly can achieve the best
results. In addition, we test the model’s robustness to the
change of sentiment lexicon size and find our model consis-
tently outperforms other methods upon various degrees of
knowledge contraction. Finally, case studies on the atten-
tion weights show the auto-learning capability of our affec-
tion fusion networks, where the attention can highlight the
key words indicative of the sentiment polarity.

The rest of this article is organized as follows. Section

2 reviews the previous studies in deep learning based and
sentiment lexicon driven sentiment analysis. Section 3 de-
scribes the detailed design of our proposed AFNN. Section
4 introduces the experimental setup and the data analysis for
the empirical studies, followed by experimental results and
discussions in Section 5. Finally, Section 6 concludes this
article with some wrapup remarks and look out for some fu-
ture research directions.

2. Related work
Our work is positioned at the inter-sectional frontiers of

sentiment analysis coupling the advances in deep learning
and knowledge engineering. In the following, we discuss
the previous studies in the respective lines.
2.1. Neural sentiment analysis

The recent decade has witnessed the increasing popular-
ity of neural networks in many language applications includ-
ing sentiment analysis. We refer to neural sentiment analy-
sis as such a technology focuses on designing and applying
deep learning methods to predict the underlying sentiment
in texts. In this area of studies, many neural architectures
have been proposed and utilized, such as CNN [47], Recur-
sive Neural Networks (ReNN) [48], and Recurrent Neural
Networks (RNN) [23]. Among these methods, LSTM (Long
short-term memory [49] is one of the most popular designs,
which is well-known for its effectiveness in language rep-
resentation learning. The gated mechanism in the sequence
encoder enables LSTM to exhibit the capability of capturing
long-term memory and long-distance dependency for sen-
timent understanding, especially in large-span texts. Based
on the aforementioned neural frameworks, attention mech-
anism is further introduced, which allows models to attend
the salient word patterns that may signal sentiment polarity
through attention weights [6, 29, 30, 61].

In addition to the advances of model architecture, there
exists growing attentions over the development of new train-
ing methods — the “pre-train and fine-tune” paradigm has
become increasingly popular. Deep language models (e.g.,
BERT [10], XLNet [60] and RoBERTa [28]) have been pro-
posed to further advance models’ language understanding
capability [11, 24]. By pre-training on large-scale unsuper-
vised texts, these models can capture automatic representa-
tions, which have advanced forward the cutting-edge results
of various tasks, including sentiment analysis [10]. Nev-
ertheless, pre-trained embeddings are in high dimensional
space, where it is unclear how the learned feature vectors
contribute to the identification of sentiment, not to mention
the component effects of different dimensions. We are thus
in need of a ‘sensible’ model which is likely to approach the
human senses of natural language ‘understanding’ in terms
of sentiment ‘analysis’. we propose to employ the affective
knowledge captured from human-annotated vectors that re-
flects dimensional perspectives to words, which can poten-
tially complement the automatic features and provide attri-
butional clues of how to feel like humans. This line of at-
tempts has been under-researched in previous work and will
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be comprehensively studied in this article.
2.2. Lexicon-driven sentiment analysis

Another line of research in sentiment analysis has at-
tempted to utilize lexicon-driven approaches by incorporat-
ing sentiment lexicon as the prior knowledge through two
main strategies. The first way is to craft rules to incorporate
sentiment lexicon into the learning results. Wilson et al. [57]
and Melville et al. [35] construct a sentiment dictionary for
general purposes and demonstrate their helpfulness to lin-
ear classifiers. Hutto and Gilbert [22] present a rule-based
approach to predict the sentiment scores of the words in lex-
icon. Andreevskaia and Bergler [5] propose an ensemble
system with precision-based weighting for words from the
lexicon, which exhibits better accuracy and recall compared
with both corpus-based classifiers and lexicon-based sys-
tems. Loria [31] presents TextBlob — a well-known python
library which uses factorized sentiment terms to infer the
sentiment score of the given sentences. Alfrjani et al. [3]
exploits DBpedia to calculate the domain specific sentiment
polarity, which results in considerable performance gain even
to baseline models like Naive Bayes and SVM. These rule-
based methods, although easy to use, rely on expertise to
customize so that the rules can present obvious constrains in
model generalization to new data and domains.

The second way of incorporating sentiment knowledge
is to employ vectors or sentiment prior scores to carry lexi-
con knowledge, which is further injected into the sentiment
learning processes. For instance, Teng et al. [54] adopt neu-
ral networks to predict the sentiment score of a sentence via
exploiting the weighted sum of previously labeled scores of
negation words and sentiment words. Qian et al. [43] pro-
pose to apply linguistic regularization to sentiment classi-
fication based on parse trees, topics, and hierarchical word
clusters. Zou et al. [63] adopt a mixed attention mechanism
to highlight the roles of sentiment lexicon in the attention
layer.

Our model is mostly related with methods leveraging af-
fective knowledge, which usefully boosts sentiment analy-
sis results in previous work. Ma et al. [32] propose Sentic
LSTM to incorporate external affective knowledge to a uni-
fied hybrid LSTM, exhibiting more than 1% improvement in
accuracy. Meškelė and Frasincar [36] present ALDONAr for
aspect-based sentiment analysis, where neural attention net-
work is enhanced by incorporating fine-grained knowledge
from ontology lexicon. Huang et al. [21] show that senti-
ment lexicons can be integrated into CNN to allow neural
networks to learn both contextual and sentiment represen-
tations. Among these methods, attention weights are most
widely adopted, attributed to its capability to capture indica-
tive patterns in the local contexts. However, the computation
to weigh each word by previous attention requires compli-
cated manipulation over matrices in network layers, which is
hence challenging to train from scratch, especially for long
sentences. Being different from previous approaches, we
employ affective lexicons and their quantitative affective val-
ues to guide the attention learning and improve the training

efficiency. Moreover, the affective knowledge in existing
models is often coarse-grained, i.e. indicating only binary
sentiment polarity, which might not comprehensively reflect
people’s understanding of affective meanings.

To mitigate those problems, Xiang et al. [58] examine
the effects of fine-grained knowledge by taking annotated
sentiment vectors from ACT as the attention weights and
demonstrate their helpfulness in neural sentiment analysis.
Nevertheless, that work focused on the affective words with
annotations and may lead to over-fitting while training. On
the contrary, our proposed model explores the interactions
between words with affective annotation and others captured
by automatic feature learning, which can lower the sensitiv-
ity to affective lexicon and exhibit better generalization abil-
ity. The details will be further discussed in Section 5.

3. Methodology
In this section, we describe how our AFNN takes the ad-

vantage of affective awareness from the handcrafted senti-
ment lexicons in the neural sentiment classification frame-
work. Specifically, the affective values are integrated into
the neural networks using affective attentionmechanism. Fur-
thermore, the canonical and affective representation learning
branches are fused in a unified loss function to allow joint
training. Our intuition is that employing external knowl-
edge may explicitly highlight those words with cognition
grounded dimensional information, which may offer the po-
tential benefits to the learning of sentiment representations
in neural networks. Detail of AFNN is elaborated in follow-
ing subsections.
3.1. Preliminaries

We first describe the external resources we employ to
capture affective knowledge, followed by the description for
input and output.
Affective knowledge. In this article, we consider two ex-
ternal affective knowledge resources, one covers the word
annotations in EPA (Evaluation, Potency, and Activity) from
Affective Control Theory (ACT) [46] and the other is la-
beled inValence,Arousal, andDominance (VAD) [40, 45].
In both of them, annotators manually curate affective vectors
reflecting readers’ collective emotions to a word over three
distinguishing dimensions.

In ACT, people are assumed to maintain common per-
ceptions, where the shared “fundamental” sentiments over
a word are separately measured in Evaluation (sentiment
polarity), Potency (affective power), and Activity (active
degree) (henceforth EPA). For instance, the EPA vector of
the word “mother” is [2.74, 2.04, 0.67], corresponding to
{quite positive}, {quite powerful}, and {slightly active}, re-
spectively. EPA collection adopted in our method is pro-
vided by Heise [15] which covers the annotations for the
most commonly-used 5,000 English sentiment words.1

1http://www.indiana.edu/∼socpsy/public_files/EnglishWords_EPAs.xlsx
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Figure 2: The architecture of AFNN. Blue box shows a typical learning process of deep
learning while red box describes how affective learning part grants the capability of affective
awareness. They separately handle the task, whose training losses are added with penalty
weights for hybrid learning, exhibited in purple box).

VAD lexicon exhibits similar essence, where the affec-
tive values are labeled in valence (sentiment polarity), arousal
(active degree), and dominance (affective power). For ex-
ample, the VAD vector of “mother” is [0.931, 0.408, 0.725].
These VAD values are provided as a collection with more
than 20K English words [38].2

Despite of the slight difference in the values of EPA and
VAD in terms of scale (the former ranges from -5.00 to 5.00
while the latter from 0.00 to 1.00), both knowledge resources
are measured in three separate dimensions of numerical val-
ues in the continuous space. Therefore, we introduce a map-
ping function to unify the range of EPA and VAD and ex-
plore their marriage in affective representation. Concretely,
we concatenate the word-level affective vectors from EPA
and VAD into a 6-dimensional affective vector, where the
value of each dimension is denoted as vj , j ∈ [1, 6] corre-
sponding to Evaluation, Potency, Activity, Valence, Arousal,
and Dominance, respectively.
Input and output. The goal of sentiment analysis is to as-
sign an affective label for a piece of input texts, reflecting the
writers’ attitude. The label types can either be binary for po-
larity indication or numerical for both polarity and strength.
Let D denote a collection of documents for sentiment classi-
fication. Each document d ∈ D is first tokenized into a word
sequence with maximum length n, then the word embed-
dings wi of the sequence are jointly employed to represent
the document d = {w1,w2, ...,wi, ...,wn}(i ∈ 1, 2, ..., n).
3.2. Affective fusion neural network

The previous work [58] has attested the usefulness to ex-
plicitly encode EPA attentive vectors in attention weights.
Nevertheless, it only focuses on affective terms with annota-
tions and ignore the potential sentiment reflection ability of
other words, which may weaken the generalization ability of
the model and result in the overfitting problem. Taken ad-

2https://saifmohammad.com/WebPages/nrc-vad.html

vantages of deep neural networks in learning latent seman-
tics in texts, our proposed model AFNN is derived to fuse
explicit affective vectors from human annotations and im-
plicit text embeddings from automatic feature learning. As
indicated in its architecture in Figure 2, the joint effects are
explored with a novel affective attention mechanism, which
can be generally applied to many alternatives of neural net-
work models, such as CNN, LSTM, and transformers.
Affective attention weights. To leverage affective annota-
tions, we first mark the affective terms in a dataset before
feeding them into deep neural networks. For each recog-
nized affective term, the affective values are indexed from
EPA and VAD resources through a linear transformation,
which is defined as follows:

waj = 1 + �j ∗ |vj| (1)
Where �j stands for a non-negative parameter as the amplifi-
cation to reflect the influence of the j-th affective dimension
for sentiment prediction. Then, waj is taken as the atten-
tion weights, in aware of the affective knowledge, which will
later contribute to the learning of the word-level representa-
tions. For those words absent in the affective lexicon, we
set waj = 1, ignoring the effects from affective knowledge
and remaining their semantics from word embeddings. Af-
terwards, we represent the concatenated affective weights in
a vector wa = {wa1, wa2, ..., wa6}, which carries word-levelaffection awareness over various dimensions.
Incorporating automatic features. To inject the affective
knowledge into the neural framework, we apply a word em-
bedding layer and a pre-trained languagemodel (e.g., BERT)
to encode the input document d. The encoded word vec-
tors are then separately fed into two main branches — regu-
lar representation learning and affective learning, which are
shown in the blue box and red box in Figure 2, respectively.
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In the regular representation learning branch, the doc-
ument representation vector r is directly generated through
the pooling operation over the involved word embeddings
in d. For affective learning, each word embedding wi ∈ d
is first factorized into 6 embedding factors, each is initial-
ized by wi yet will be adapted to capture affective semantics
over each affective dimension (E,P,A,V,A,D) through train-
ing. Their weighted sum with affective attention weights
(defined in Eq. 1) will hence be used to represent the affective-
aware word semantics. Concretely, supposing H is the ma-
trix holding the concatenated factorization results ofwi, then
the representation captured by the affective attention is com-
puted in the following formula:

H′ = wa ∗ H (2)
Recall that wa is the concatenation of the affective attentionweights. As can be seen, besides the potential benefits in
effectiveness, our attention design can also exhibit theoreti-
cally better efficiency in training and inference. This is be-
cause wa is captured in lexicon-level rather than document-
level and generated through a linear transformation unrelated
with the document size, so it can run in constant time. On
the contrary, regular attention handles the weights via matrix
operations on document level, which requires O(n) costing
time given n length documents.

After obtaining the attended representations onword level
(H′), we adopt the average pooling for them to produce doc-
ument representation ra, which integrates both the affective
knowledge and the automatic learned embeddings for senti-
ment prediction, which is presented in the following.
Hybrid learning. In the final classification layer, we should
fuse the features from both the regular representations learn-
ing branch and affective learning branch. To that end, the
two branches first handle the sentiment classification tasks
separately; in other words, the learned document represen-
tations (i.e., the average pooling results) from each branch
are first fed into the dense layers with softmax activation to
yield the sentiment prediction. The branch training are both
based on the cross-entropy loss, where  is the loss to train
representation learning branch while a is that for affectivelearning branch.

To further allow the collaborations of two branches, we
produce the final loss ′ by trading off the individual effects
of regular representation learning () and affective learning
(a) with the following formula:

′ =  +
∑

(pj ∗ aj) (3)
where aj indicates loss derived from the j-th dimension of
affective attributes and pj is the penalty weight to balance thecontributions from each constituent of the cumulative loss.

4. Datasets and baseline systems
Experiments are conducted on five datasets. The perfor-

mance of the proposed method is compared against a series

of commonly used baseline methods as well as SOTA trans-
former based methods.
4.1. Benchmark datasets

For experiments, themodels are investigated on five pub-
licly available andwidely adopted benchmark datasets in En-
glish: three are from movie review domains while two from
social media. The movie review datasets are SST-2 [48],
MR [41], and IMDB [33], where each review is associated
with a binary sentiment label indicating the polarity of posi-
tive or negative. In particular, for IMDB dataset, the reviews
are collected from IMDb website, where the texts are rela-
tively long and the polarity labels are fully balanced with
the ratio of 1:1.3 For the social media datasets, they are both
collected from Twitter, where one (named as Twitter4) con-
cerns diverse range of topics, such as news, public events and
daily life, and the other contains customer conversation mes-
sages from Twitter in February 2015 from six major Ameri-
can airlines, which is therefore named as AirRecord5. Air-
Record dataset is annotated with three labels (positive, neg-
ative, and neutral), which is different from the other four
datasets with binary labels.

Table 1
Statistics of the five benchmark datasets. Ntrain: number
of training instances. Ntest: number of testing instances.
L: average instance length. Nvoc : size of vocabulary. C:
number of labels.

Dataset Ntrain Ntest L Nvoc C

SST-2 6,920 1,821 19 16,185 2
MR 9,595 1,067 20 18,765 2
IMDB 22,500 2,500 260 184,885 2
Twitter 89,989 9,999 14 183,645 2
AirRecord 13,172 1.464 18 30,166 3

Table 1 shows the statistics of the five datasets for exper-
iments. They exhibit different characteristics, allowing the
model evaluations in various scenarios. For example, Twit-
ter dataset has the largest scale while each instance therein
shows the shortest length on average, which may possibly
result in data sparsity using feature learning. In comparison,
texts in IMDB are very long, showing another challenge to
encode rich contexts with complicated structure.

For model evaluations, we follow the practice of original
papers to segment the train/test data. For the other datasets
without clear instructions from the data suppliers, 10% of
the total instances are randomly sampled to for test.
4.2. Affective lexicon analysis

Before experimental investigation, we conducted a pre-
liminary analysis of the affective lexicons (ACT and VAD)
employed for affective learning. Figure 3 shows the his-
tograms of three affective measures for both EPA and VAD

3https://www.kaggle.com/iarunava/imdb-movie-reviews-dataset
4https://www.kaggle.com/c/twitter-sentiment-analysis2
5https://www.kaggle.com/crowdflower/twitter-airline-

sentiment/home/
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Figure 3: Histograms showing the distribution EPA and VAD values over words. X-axis
shows the value in an affective dimension while y-axis displays the probability density of
words.

over words from the two affective lexicons. As shown in
the figure, none of the three measures exhibits a balanced
distribution in EPA and VAD. EPA components are over-
all right-skewed while Arousal and Domination are slightly
left-skewed. Evaluation of EPA and Valence of VAD are
the most evenly distributed amongst all, and their distribu-
tions are quite similar. Notably, they both have two peaks
scattered at the positive axis and the negative axis, which
are apparently different from other components. One possi-
ble reason is that they both reflect polarity-related attributes
in word affection. Potency, Activity, Arousal, and Domina-
tion generally follow Gaussian distribution. Since the ma-
jority of these four affective values fall near the central area,
the affective evidence they provide might be less significant
compared with Evaluation and Valance.

Table 2
Proportion of sentiment lexicon in benchmark datasets.
EPA and VAD indicate proportion of affection lexicon
over all words in the benchmark dataset.

Dataset EPA(%) VAD(%)

SST-2 20.0 30.8
MR 20.2 30.5
IMDB 21.2 24.1
Twitter 20.2 20.8
AirRecord 18.1 22.2

To further examine the possible effects of the affective
lexicons over the experimental datasets, Table 2 shows the
proportion of words from benchmark datasets that have af-
fective annotations in either EPA or VAD lexicon. In gen-
eral, VADvalues are available for higher proportion ofwords,
whereas over 2/3 words lack annotations in prior knowledge
and their affection has to be determined via training. We also
observe that movie reviews (SST-2, MR, and IMDB) exhibit
larger proportion of overlapping words while the percent-
age in Twitter and AirRecord is relatively lower. This possi-

bly because movie review writers might tend to express their
sentiment in an explicit way (using words to clearly indicate
their altitude) while the opinions on social media might be
more implicit owing to the informal language styles therein.

Thenwe analyzemore on the affection lexicon via demon-
strating the proportion of annotated tokens in terms of their
part-of-speech (POS) tags in Figure 4. StanfordCoreNLP
[34] is adopted for POS tagging. As can be seen, movie re-
view and social media texts exhibit different statistics. The
former presents consistent distributions in SST-2, MR, and
IMDB, where noun lexicons are most frequently used in all
five benchmarks while adjective/adverb terms are least uti-
lized. For the latter, the patterns are hard to be summarized,
which again indicates the noisiness of social media texts and
the challenges to capture affective senses from them.
4.3. Baseline systems and comparison settings

To examine the effects of affective knowledge in experi-
mental comparisons, three groups of methods are evaluated.
The first group includes baseline methods without affective
knowledge in both training and test. The baseline systems in
this group and their main settings are described as follows:

• SVM takes the average of word embeddings of Glove
[42] to represent the document vectors.

• CNN uses a convolution layer to capture features for
adjacent words [26].

• LSTM is a popular RNN architecture with a gated
mechanism [16] to encode longer contexts.

• BiLSTM concatenates the bidirectional encoding re-
sults from LSTM to model the word semantics from
both left and right neighboring words [13].

• BiLSTM+AT is BiLSTM with attention mechanism,
designed to combine strengths of both BiLSTM and
attention mechanism [62].

• BERT is a bidirectional transformer encoder thatmod-
els contexts through pre-trained languagemodels. [10].

• RoBERTa is an refined version of BERT with new
self-training tasks for better context modeling [28].
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Figure 4: POS proportions of sentiment lexicons over all words in the benchmark datasets.

For models without pre-trained language models, we set
the size of word embeddings to 300 and initialized them
with pre-trained Glove vectors [42], while the dimension for
BERT and RoBERTa embedding is 768. The learning rate
is set to 1e-5 to fine-tune BERT and RoBERTa compared
with 5e-4 for others with pre-trained word embeddings. All
the models are trained for 3 epochs with dropout set to 0.1
and batch size 32.6. In the evaluation, we report the average
accuracy over 5 random seeds for model initialization.

The second group includes a number of methods using
affection lexicon which is coarse-grained knowledge, e.g.,
positive and negative sentiment words. The baseline systems
in affection driven group are re-implemented and tested on
all benchmark datasets.

• SSWE is an SVM-based model using sentiment spe-
cific word embedding [52].

• VADER (Valence Aware Dictionary and sEntiment
Reasoner) is a lexicon and rule-based sentiment anal-
ysis tool [22].

• TextBlob is a Python library for processing textual
data which provides API for sentiment analysis [31].

• BiLSTM+SL incorporates sentiment scores of lexi-
con into BiLSTM with loss function bias [54].

• BiLSTM+LBSA highlights sentiment lexicon with a
gold attention mapping in training processes [63].

To further examine the modules of AFNN, we consider
its two variant approaches in comparison and form the third
group, which incorporates affective knowledge from EPA
and VAD. Since both EPA and VAD values are vectors with
multiple dimensions, it is straightforward to directly employ
them as the sentiment prediction features. This one simple
yet effective solution is to use the affective values as aug-
mented lexical features and we hence design the compari-

6The batch size for IMDB is set to 6 (instead of 32 done in other
datasets) due to the limitation of GPU memory for handling very long doc-
uments (as shown in Table 1)

son framework of Affective Augmented Neural Network
(AugNN), as shown in Figure 5.

In addition, we include an previous model to the group
Affective Attention Neural Network (AANN) [58], which
adopts EPA andVADvalues as the affective attentionweight,
without the hybrid learning processes with automatic em-
beddings. Its workflow is shown in Figure 6, where EPA
or VAD are projected to a unified value before integrating it
into a deep learning model.

To compare various strategies to incorporate EPA and
VAD affective vectors, we test AugNN (by simple concate-
nation), AANN (as attention weights), and AFNN (via af-
fective learning and hybrid learning) based on a number of
neural networks, including SOTA models with pre-trained
BERT and RoBERTa, and BiLSTM baseline with word em-
beddings. In implementation, we reproduced the results and
adopted the best reported parameters for all benchmarks to
allow comparable results. For AFNN, the penalty weights
pj are set to [0.2, 0.3, 0.3, 0.2, 0.3, 0.3] for EPA and VAD
dimensions, respectively.

5. Experimental results and discussions
In this section, we first systematically evaluate the per-

formance of our approach on the benchmark corpora, fol-
lowed by the substantial analyses over the effects of affective
knowledge. Specifically, we present the comparison results
with the baselines and SOTA models in Section 5.1. Then,
we compare AFNN with other alternatives to encode affec-
tive knowledge in Section 5.2. Next, the effects of varying
affective dimensions in ACT and VAD are analyzed in Sec-
tion 5.3. Afterwards, the sensitivity of AFNN towards affec-
tive lexicon is discussed in Section 5.4. Lastly, two example
cases are discussed in Section 5.5 to qualitatively analyze the
outputs and interpret the advantages of AFNN.
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Figure 5: Framework of the comparison model AugNN. Affective vectors are directly
adopted as the features and concatenated with automatic features for sentiment prediction.

Figure 6: Framework of the comparison model AANN. It directly takes the affective values
as the attention weights without the hybrid learning process.

5.1. Main comparison results
In this section, the overall performance is evaluated on

the five benchmark datasets. Table 3 reports the classifica-
tion accuracy grouped in none-affective (NAFF) methods,
affective driven models (ADRV), and our variants with af-
fective awareness (AAWR), including propose framework
AFNN. The methods using AugNN, AANN and AFNN are
suffixed as +Aug, +AA and +AF for better display.

In theNAFF group (on the top), SVMperforms theworst,
indicating the limitations of using shallow features of aver-
age embeddings to capture context information to predict the
document-level sentiment. In contrast, neural models ex-
hibit much better accuracy, among which, CNN performs
the worst for long texts (e.g., IMDB). A possible explana-
tion is that introducing a convolution window may focus on
exploring local contexts with neighboring word occurrence
patterns, whereas the fixedwindow sizemaymistakenly seg-
ment the consistent semantics and thus result in the incorrect
understanding of the global context. LSTM-based models,
on the other hand, can manage to track long-term depen-
dency and partially solve the vanishing gradient problem.
Therefore, they present better results than CNN and SVM in
IMDB. However, interestingly, BiLSTM and BiLSTM+AT
cannot provide much performance gain over LSTM, espe-
cially in SST-2 and MR, which is probably owing to the rel-
atively smaller training sets (as shown in Table 1) to learn
a large set of parameters. In addition, we observe the much
better accuracy achieved by BERT and RoBERTa, possibly
benefited from their language understanding ability gained
from the pre-training on large-scale corpora.

In the group ADRV (in the middle), SSWE, which uti-
lizes SVM and affective lexicon, results with 1% accuracy
improvement over SVM, which shows the usefulness to in-
corporate external sentiment lexicon. For VADER and Text-
Blob (both taking sentiment lexicon as the dictionary), they

Table 3
Sentiment classification accuracy. Models from top to
bottom are grouped in NAFF (w/o affective modeling),
ADRV (existing affective-driven models), and AAWR
(our variants with affective awareness). Boldface scores
indicate the best results for each group.

SST-2 MR IMDB Twitter AirRecord
SVM 71.8 70.2 69.5 61.4 70.5
CNN 81.4 79.1 76.1 70.3 76.8
LSTM 80.2 77.0 80.3 74.7 80.5
BiLSTM 80.7 77.6 79.7 75.6 80.7
BiLSTM+AT 79.5 77.9 80.5 75.9 81.3
BERT 91.3 87.1 88.1 82.0 83.2
RoBERTa 93.0 90.3 89.1 83.3 84.3
SSWE 73.2 71.1 70.3 62.8 71.1
VADER 83.6 82.5 75.4 73.5 78.3
TextBlob 84.0 82.7 75.9 73.6 78.3
BiLSTM+SL 82.1 78.9 81.8 76.1 81.4
BiLSTM+LBSA 81.8 79.1 81.3 76.7 81.8
BiLSTM+Aug 80.9 77.8 80.0 75.9 80.8
BiLSTM+AA 81.1 78.6 82.2 76.6 82.2
BiLSTM+AF 81.7 79.2 82.4 76.9 82.4
BERT+AF 92.2 88.4 89.5 83.2 84.2
RoBERTa+AF 94.2 91.4 90.8 84.5 85.4

achieve fine results in SST-2 and MR while we observe the
opposite for the rest three datasets, whose data is more com-
plicated or noisier and hence are more likely to render the
appearance of multiple sentiment words indicating conflict-
ing polarities. BiLSTM+SL and BiLSTM+LBSA achieve
the best performance in this group, probably owing to the
involvement of sentiment lexicons in training, either as ad-
ditional sentiment prior or pre-defined attention weights. As
the result, the lexicon knowledge is jointly explored with
other neuralmodules, whichmay help transfer the prior knowl-
edge to learn semantics of the words absent in the sentiment
lexicon.
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For Group AAWR (on the bottom), we compare its three
modules (Aug, AA, and AF) over BiLSTM baseline and fur-
ther incorporate AF module into BERT and RoBERTa to
examine its collaboration results with varying deep seman-
tic representations. It can be observed that BiLSTM+Aug
exhibits very limited improvement over BiLSTM, implying
that feature concatenation cannot guarantee good affective
modeling. One possible reason is the unbalanced feature
dimensions: Glove word embeddings are 300-dimensional
vectors, which ismuch larger than the affective vectors, which
is up to 6 considering both EPA andVAD. For BiLSTM+AA,
its results are close to BiLSTM+SL and BiLSTM+LBSA,
which shows that attention can be a good alternative to ex-
ploit affective knowledge, though better designmay be needed
to further surpass the previous SOTA. Moreover, better ac-
curacy is presented by BiLSTM+AF than BiLSTM+AA; it
suggests the effectiveness of affective fusion mechanism to
model the interactions between affective knowledge (from
EPA and VAD) and automatic features (captured by deep
learning). Likewise, the design of affective fusion boosts
BERT and RoBERTa based classifiers, which suggests that
the handcrafted affective knowledge can provide further ben-
efits to the representations learned by the BERT family.
5.2. Further discussions on AFNN variants

The preliminary results in Table 3 has shown the poten-
tial superiority of AFNN in exploiting affective knowledge.
Furthermore, the comprehensive results of AugNN, AANN,
and AFNN are discussed based on four popular neural net-
works: two LSTM variants (LSTM [16] and bidirectional
LSTM (BiLSTM) [62]) and two classifiers based on pre-
trained language models (BERT [10] and RoBERTa [28]).
All these models are first implemented individually and then
extended with the AugNN, AANN and AFNN modules cor-
respondingly. They are associated with the most effective
affective values, where the selection of values will be further
discussed in Section 5.3. Table 4 reports the accuracy of the
vanilla models in comparison to their counterparts gaining
affective awareness with the three alternatives in AAWR.

In general, affective awareness methods show better re-
sults than their ablations without affective knowledge mod-
eling, and AFNN consistently outperforms other compari-
son models when combined with different bases. AugNN
exhibits the smallest performance gain and sometimes even
results in worse results, which suggests that simple feature
concatenation (augmentation)may not allow themodel to ef-
fectively couple affective knowledge and deep learning fea-
tures, because of the different semantic spaces they are in.
For AANN, it can leverage affective vectors as the prior at-
tention amplification and results in better accuracy than the
straightforward AugNN schema, which may suggests an al-
ternative to merge affective vectors and latent word embed-
dings. Nonetheless, AFNNs obtain further performance gain
by effectively capture how affective knowledge and repre-
sentation learning interact with each other to work together
for sentiment indication.

In comparison of different datasets, AFNN obtains the

Table 4
Accuracy comparison of base neural models and its coun-
terparts with affective awareness from Aug, AA, and
our proposed method AF modules. AugNN, AANN,
AFNN exhibit 0.17%, 1.07% and 1.39%, respectively,
over all methods across the five benchmarks. AFNN
significantly outperforms base models with the absolute
performance gain of 1.54%, 1.66%, 1.16%, and 1.26%
over LSTM, BiLSTM, BERT, and RoBERTa (p-value <
0.001, paired t-test).

SST-2 MR IMDB Twitter AirRecord

LSTM 80.2 77.0 80.3 74.7 80.5
+Aug 80.5 77.2 80.5 74.9 80.8
+AA 81.1 77.8 81.8 75.9 82.3
+AF 81.3 78.1 82.2 76.3 82.5

BiLSTM 80.7 77.6 79.7 75.6 80.7
+Aug 80.9 77.8 80.0 75.9 80.8
+AA 81.1 78.6 82.2 76.6 82.2
+AF 81.7 79.2 82.4 76.9 82.4

BERT 91.3 87.1 88.1 82.0 83.2
+Aug 91.3 87.2 88.0 82.2 83.4
+AA 92.0 88.0 89.1 83.1 83.8
+AF 92.2 88.4 89.5 83.2 84.2

RoBERTa 93.0 90.3 89.1 83.3 84.3
+Aug 93.1 90.2 89.2 83.4 84.4
+AA 93.8 91.1 90.3 84.1 85.1
+AF 94.2 91.4 90.8 84.5 85.4

average performance gains of 0.63%, 0.75%, 1.20%, 0.85%,
and 0.93%, respectively, over SST-2, MR, IMDB, Twitter,
andAirRecord datasets, where the latter three exhibit slightly
larger boost. This could be attributed to the challenges to
automatically learn essential features from very long con-
texts with complicated structure (IMDB) or very short ones
with data sparsity (Twitter and AirRecord). In these cases,
human-annotated affective knowledge could be helpful to
guide the neural representation learning modules to produce
meaningful embeddings for sentiment analysis.
5.3. Feature analyses for affective knowledge

Previous discussions concern how affective knowledge
obtained from EPA and VAD helps to boost the overall per-
formance. In this section, we probe into the subordinate ef-
fects of the all 6 affective components and study the contri-
bution of each affective dimension.

The following feature analyses further investigates the
effect of affective fusion for enhancing four neural networks
through 6 compositional dimensions. InACT, the three com-
ponents {E, P, A} are used as affective information to char-
acterize an affective-related event while {V, A, D} is de-
signed to model affective factors for VAD lexicon. The per-
formance gain with respect to LSTM, BiLSTM, BERT and
RoBERTa are averaged across five datasets. Figure 7 de-
picts the average improvement for individual and combined
affective feature(s) for EPA and VAD, separately.

For single dimension application, Evaluation andValence
are more effective than other measures in EPA and VAD,
respectively. Evaluation seems to be the most dominant di-
mension, exhibiting consistently leading performance in com-
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Figure 7: Ablation studies of EPA (left) and VAD (right). The numbers present the
performance gain of BiLSTM and RoBERTa, in orange and yellow, respectively.

bination with either Potency, Activity or both; similar ob-
servations are drawn for Valence from the VAD radar graph.
This result is intuitive since these twomeasures indicateword-
level polarity by design, whereas the others are supplemental
and descriptive information. Although the improvements of
using Potency, Activity, Arousal and Dominance are quite
marginal, they can still potentially contribute as additional
knowledge for distributing attention weight. In addition, it
can be found that BERT and RoBERTa result with more
accuracy gain using Arousal and Dominance than Potency
and Activity, probably because VAD lexicon presents more
word annotations (as discussed in Section 3.1), hence en-
abling better marriage with the large-scale pre-trained lan-
guage model.

Performance gain from one single dimension is smaller
compared with its counterparts with any forms of dimension
combination, involving either 2 or 3 attributes. Furthermore,
using all three affective components result in the best perfor-
mance. This implies that introducing richer external knowl-
edge could provide more affective information for sentiment
identification.

In terms of different prototypes, LSTM-based classifiers
gain more benefit from affective knowledge than BERT and
RoBERTa. One possible reason is pre-trained languagemod-
els can gather more information from external language re-
sources. Nevertheless, in most scenarios, BiLSTM and Ro-
BERTa outperform LSTM and BERT respectively but the
gap in between are both marginal.
5.4. Sensitivity to affective lexicon

Affective-enhanced methods usually heavily rely on sen-
timent lexicon, causing problems of knowledge-biases and
domain-constrains. To examine AFNN’s capability against
such problems, four affective driven solutions are investi-
gated under three conditions: (i) scarce (instances contain-
ing no more than one sentiment lexicon); (ii) 10% instances
with least sentiment lexicons; (iii) 10% instances with most
sentiment lexicons. We first sample the test instances fitting
one of the above three conditions and examine the accuracy
of VADER, BiLSTM+LBSA, BiLSTM, and RoBERTa+AF

over them. The results are demonstrated in Figure 8.7
The overall performance rank is RoBERTa+AF, BiL-

STM+AF, BiLSTM+LBSA, andVADER, from best toworst.
All classifiers exhibit increasing trend given higher senti-
ment lexicon ratio. This means that test samples with more
words having affective annotations will better gain the affec-
tive awareness from prior knowledge. Across multiple clas-
sifiers, VADER is most sensitive to sentiment lexicon ratio,
indicating its heavy reliance on the availability of annotated
sentiment terms in test instances. In particular, for the scarce
instances containing merely no sentiment lexicon, VADER
performs rather poorly with the accuracy of around 50% to
60%, barely outperforming random guesses.

If we compare BiLSTM+LBSA and BiLSTM+AF, it is
seen that the latter exhibits less error cases in the scarce
and least 10% group, and RoBERTa+AF further higher the
performance gain in these samples with sparse annotations.
This demonstrates the ability of our AFNN to handle inputs
with sparse sentiment lexicon, possibly because its hybrid
learning processes (leveraging both regular representation
learning and affective learning) may generalize the hand-
crafted knowledge to other words without annotations. On
the contrary, BiLSTM+LBSA uses sentiment lexicon alone
as the gold attention, which is therefore outperformed by
BiLSTM+AF. Another advantage of AFNN comes from the
capability to encode fine-grained affective annotations from
EPA and VAD, which provide richer senses in word affec-
tion compared with coarse-grained labels in binary polarity
only (as done in LBSA and VADER).
5.5. Case study

To providemore insights towhat can be learned byAFNN,
this subsection presents a case study to qualitatively com-
pare BiLSTM+AF and BiLSTM+LBSA, the current SOTA
affective-driven method. Although both methods have at-
tention mechanism to highlight sentiment lexicon convey-
ing commonly agreed affective information, BiLSTM+AF
models the interactions between automatic featureswith fine-
grained affective annotations, whereas BiLSTM+LBSA em-
ploys positive and negative lexicon to set the attentionweights.

7There is only one document under Scarce condition in IMDB due to
the long comments given in this dataset, so the bar shows 0 or 1 in accuracy.
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Figure 8: Accuracy over test samples with varying sentiment lexicon rates. The barplots
from left to right shows the results for scarce, least 10%, and most 10% sentiment lexicon.

Figure 9: Heatmaps showing the attention weights from BiLSTM+LBSA (upper bar) and
BiLSTM+AF (lower bar) for the cases in Figure 1. Darker reds indicate higher weights.
BiLSTM+AF make correct predictions in both cases while BiLSTM+LBSA make mistakes
owing to the heavy reliance on the sentiment lexicon.

We take the two examples in Figure 1 for the qualitative anal-
yses. Recall that they exhibit opposite polarity and will help
us understand what are learned for positive and negative sen-
timent. Figure 9 shows the heatmap visualizing the attention
weight distributions.

In case (a), there are five affective terms from the lexi-
con— ‘tale’, ‘love’, ‘betrayal’, ‘revenge’, and ‘faith’, which
are mostly emphasized with higher weights for both BiL-
STM+LBSA and BiLSTM+AF. It is hence challenging to
make sense of the overall sentiment given large proportion
of affective words. This is because the models may use the
explicit indicators (from human annotations) for prediction,
although some labels maybe helpful while others mislead-
ing. BiLSTM+LBSA largely rely on the lexicon to assign at-
tention weights, whereas the occurrences of negative words
(‘betrayal’ and ‘revenge’) may hinder its capability to cap-
ture the global senses for correct predictions. On the con-
trary, BiLSTM+AF can gain affective knowledge from mul-
tiple dimensions beyond polarity, which thereforeweigh ‘love’
over ‘betrayal’ and ‘revenge’, and successfully predict the

positive sentiment for the comment.
Case (b) demonstrates another trap possibly resulted from

sentiment lexicon. In this short comment, ‘sumptuous’ is the
only annotated lexicon available to the models, which is un-
surprisingly assigned higher weights by both BiLSTM+AF
and BiLSTM+LBSA. However, the uncommon word ‘stul-
tifying’, though absent in the lexicon, plays an crucial role to
indicate the overall sentiment polarity. Although both atten-
tions fail to signal its importance (BiLSTM+LBSA seems
to allocate some weights to it but very limited), our model
correct the mistake at the hybrid learning stage with the help
of automatic features. This proves potential benefits of cou-
pling automatic features and handcrafted affective knowl-
edge simultaneously, which may fix such errors.

6. Conclusion
This article has presented a novel AFNN for sentiment

analysis via coupling manual annotations of word-level af-
fective attributes and automatic semantic features learned by
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neural networks. We argue that the fusion of regular repre-
sentation learning and affective learning can benefit neural
network to gain awareness of semantics and emotions, which
are essential affective clues to identify the writers’ sentiment
from texts.

On the basis of the above hypothesis, we combine regular
representation and affective driven learning networks to ob-
tain both contextual semantics and affective awareness. We
adopt the sentiment knowledge of EPA and VAD as fine-
grained prior affective knowledge, which can be easily inte-
grated into neural networks with minimal modification. Per-
formance evaluations on various popular methods based on
LSTM and SOTA pre-trained language models across five
benchmark datasets indicate that AFNN can achieve 1.4%
accuracy gain on average. Furthermore, the analysis of af-
fective attributes demonstrates the salience of Evaluation and
Valence for sentiment prediction, while integrating more at-
tributes can further boost the overall performance. Next,
the investigation on model sensitivity to affective lexicon
rate shows that fusion mechanism can mitigate the over de-
pendency problem to sentiment lexicons observed in many
existing affective-driven models. Finally, the results from
case studies show our superiority to leverage richer affec-
tive knowledge and automatic features to predict the overall
sentiment.

Despite of the promising results, this workmay still pres-
ent some limitations in terms of 1) the diversity of the bench-
mark datasets, 2) the size andword coverage of the sentiment
lexicons, and 3) the availability of more sentiment lexicons.
Future work will continue to evaluate the proposed method
onmore corpora that text sources with richer annotations and
larger scales. Besides, efforts will also be made for adapting
our idea to the few shot learning settings. For example, we
may consider to expand the affective knowledge lexiconwith
automatic annotation mechanisms, which will further miti-
gate the reliance on sentiment lexicon.
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