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Abstract 

Motivated by the worldwide promotion of green transportation, this study aims to determine the optimal 

location of multi-type electric vehicle (EV) charging stations, e.g., fast and slow charging stations, for 

maximizing the covered traffic flows under a limited budget while considering EV users’ partial 

charging behavior and elastic demand. A two-phase approach is proposed to efficiently solve this 

problem. The efficacy of the proposed two-phase approach is demonstrated by numerical experiments 

on the highway network of Zhejiang Province, China, and policies towards promoting transport 

electrification are discussed from various aspects. In particular, our policy suggestions are fivefold: (a) 

how to save investment in station construction by understanding EV users’ tolerance for travel cost 

deviation; (b) how to determine the budget policy to ensure an efficient utilization of the investment; 

(c) how to optimally select the location and type of charging stations; (d) how to devise the operation 

regulations based on the workload of each station; as well as (e) how to plan the station construction in 

a mid- or long- term implementation. We also discuss some prospective challenges and opportunities 

regarding charging station construction and operations in the context of continuous innovation in energy 

and communication technologies such as the Internet of Things (IoT). 
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1. Introduction 

As a green transport mode, electric vehicles (EVs) have become increasingly popular over the 

past decade thanks to their high energy efficiency and zero tail-pipe emissions. Due to their limited 

driving ranges, EV users often need to refuel energy during trips, especially on a long trip such as an 

inter-city journey. However, the lack of charging resources could prevent travelers from completing 

their travels as the battery is possibly depleted en-route. As a matter of fact, the deployment of charging 

facilities has been recognized as a crucial factor for the wide adoption of EVs (Franke and Krems, 2013; 

Lebeau et al., 2013; She et al., 2017; Sun et al., 2018). To promote the use of EVs, many governments 

over the world have substantially invested in building charging infrastructures (IEA, 2017). For 

example, respecting the environmentally friendly initiative, the Chinese government has allocated 

billions dedicated to constructing EV plants and charging facilities billions domestically and overseas 

to promote green transportation under the Belt-and-Road Initiative (BRI) (Araya, 2018). One of the 

prominent decision-making problems for the governments when building charging infrastructures is to 

determine their locations. Without careful planning, early deployment of charging stations often results 

in a poor fulfillment of charging demands and a low rate of facility utilization. To achieve a good 

demand fulfilling level under a limited budget, optimization model and algorithm design are imperative 

to obtain an intelligent deployment plan of charging stations. 

The public charging facilities can be classified into two main types according to their charging 

efficiency, i.e., fast and slow charging stations (Morrow et al., 2008). A fast charging station is often 

equipped with DC chargers with a power larger than 50 kWh, while a slow charging station usually 

adopts AC chargers with a power smaller than 20 kWh (Yilmaz and Krein, 2012). Fast charging stations 

deliver a more efficient charging service to the EV users while it generally requires a high cost of 

procurement, installation, and operation; in contrast, slow charging stations are much more economical 

whereas their low charging efficiency could be less attractive to the travelers (Globisch et al., 2019; 

Liao et al., 2019; Wee et al., 2020). However, even ignoring the charging efficiency drawback, building 

a slow charging station still needs a huge investment. As reported by NREL (2012), the construction 

cost of a fast and a slow charging station is around $8.5 million and $4.25 million, respectively. The 

huge construction costs and the distinct charging efficiency of these two kinds of stations motivate the 

investigation of the multi-type charging station location problem. 

 

1.1. Literature review 

Extensive efforts have been made to determine the optimal location of EV charging stations 

and other alternative fuel vehicle refueling stations. Examples include Hodgson (1990), Kim and Kuby 

(2012), Kuby and Lim (2005), Owen and Daskin (1998), Revelle (1993), and Upchurch et al. (2009). 

Among the existing studies, Hodgson (1990) formulated users’ travel demand as a path flow between 

an origin and destination (OD) pair for the first time. A flow was assumed to be covered if at least one 

refueling facility stationed along its travel path. A flow capture location model (FCLM) was developed 

to allocate a given number of facilities for flow coverage maximization. The FCLM was then extended 

by Kuby and Lim (2005) through relaxing the assumption that one refueling station along the travel 

path was sufficient for the entire trip. They proposed a flow refueling location model (FRLM) where 
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the travelers may need to refuel energy many times to sustain their journeys. The travelers in both the 

FCLM and the FRLM were assumed to travel on the shortest path, whereas they could make a detour 

for energy refueling in reality (Caulfield et al., 2010). The detour behavior was then considered by Kim 

and Kuby (2012) in a deviation flow refueling location model (DFRLM). They assumed that any 

deviation path with the travel distance within a pre-specified threshold was feasible for the travelers. 

Since then, many other practical features were considered in charging station location and charging 

system designing problems, such as limited station capacity (Hosseini et al., 2017; Upchurch et al., 

2009), driving range anxiety (Guo et al., 2018; Xu et al., 2020), stochastic travel demand (Hosseini and 

MirHassani, 2015), user equilibrium (He et al., 2018, 2020; Zheng et al., 2017), automated vehicles 

(Zhang et al., 2021), mobile charging (Zhang et al., 2020b), daily charging (Zhang et al., 2020a), and 

hybrid energy charging (Abbasi et al., 2019; Wang et al., 2019), etc. Notably, Liu and Wang (2017) 

investigated a cutting-edge charging mode, i.e., wireless dynamic charging. They aimed to 

simultaneously locate wireless dynamic charging facilities and conventional charging stations for a 

hierarchical objective of three levels. 

The majority of these studies assumed that an EV user would fully charge the battery at the 

visited station regardless of the remaining state-of-charge (SOC) before charging. Fully charging a 

battery could be time-consuming at a slow charging station and expensive at a fast charging station. In 

the real world, travelers often partially charge their vehicles for the sake of cost or time savings (Schiffer 

and Walther, 2017; Xu et al., 2017). However, the users’ partial charging behavior is rarely considered 

in the context of charging station location problems. In fact, formulating fully charging is already 

nontrivial – generally needs subtle modeling techniques and a large number of constraints. It can be 

imagined that incorporating partial charging in the location model can be much more demanding. Hence, 

how to model the partial charging behavior effectively and efficiently deserves further investigation. 

Another critical observation is that, due to the limited charging resources, the EV users could 

suffer additional travel costs resulting from the detour behavior for battery charging. It has been found 

that the traffic flow would decline if the travel cost increased (Souche, 2010), which is often referred to 

as elastic demand in the literature (Chu et al., 2019; Commins and Nolan, 2011; Gao et al., 2021; Lu et 

al., 2015; Masoumi, 2019; Soltani-Sobh et al., 2017). Regarding battery charging, it is closely related 

to EV’s energy consumption and users’ charging behavior, which are largely affected by EV’s own 

properties (Liao et al., 2021). In particular, Liao et al. (2021) used longitudinal dynamics model to study 

how the battery thermal impacts the battery charging and discharging, and then derive several energy-

efficient EV driving strategies based on the model. The results were further tested and verified by 

extensive simulation. Though cost and charging behavior are critical, only Kim and Kuby (2012) and 

Xu and Meng (2020) have ever investigated the impact of the travel cost on EV users’ travel demands 

in facility location problems and a logit-based form function was proposed to depict the demand 

elasticity. However, both of them assumed for simplicity that the EVs will be fully charged at the visited 

stations. A location model of multi-type charging stations considering users’ partial charging behavior 

and the elastic demand is expected. To address this problem, Ouyang et al. (2020) recently developed 

a mixed-integer nonlinear programming model and obtained the -optimal solution by piece-wise linear 

approximation method. The resultant mixed-integer linear programming model was solved by MIP 

solvers. However, their model required a long time to be solved even for a mid-sized network. A 

computationally efficient approach that is applicable to large-scale problems is thus anticipated. 
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1.2 Objective and contributions 

In this study, we aim to optimally locate multiple types of charging stations (DMCS) under a 

limited budget considering various practical characteristics of EV users’ behavior. In particular, users 

can partially recharge EVs at any visited stations, and additionally, if users have to detour for recharging, 

the increased travel costs will nonlinearly decrease the number of users willing to choose EVs for 

traveling, namely, nonlinear elastic travel demand. The DMCS problem can be formulated by a mixed-

integer nonlinear program. However, solving such a model, especially for real-world large-scale 

instances, is computationally challenging. We thus propose an efficient two-phase approach to the 

DMCS problem. Specifically, the first phase employs a tailored two-layer simulated annealing (TSA) 

algorithm to quickly find good-quality station deployment, while the second phase adopts the best 

deployment found in the first phase as the initial solution to the DMCS model to accelerate the 

procedure to find the optimal solution. It is worth noting that in the course of TSA, constructing and 

improving station deployment can be very time-consuming because of the nonlinear demand elasticity. 

Fortunately, after examining the property of the elastic demand function, we can use a simple linear 

mixed-integer linear model to obtain the demand quickly given a station deployment quickly. This 

problem-specific auxiliary model significantly saves the runtime of TSA and thus the entire two-phase 

approach. 

The contributions of this study can be summarized by the following four perspectives: 

a) Practical problem features: Compared with existing charging station location studies that also 

consider user behavior features, we investigate two practical features: partial recharging 

behavior and nonlinear elastic demand. To the best of our knowledge, this research pioneers in 

modeling the above two behaviors simultaneously in the context of EV charging station 

location problems. 

b) Tailored solution approach: Modeling partial recharging and nonlinear elastic demand create 

difficulty in finding the optimal station deployment. By examining problem-specific properties, 

we propose an auxiliary mixed-integer linear model together with a two-phase solution 

approach. It can quickly find good station deployment and also helps accelerate the procedure 

to find the optimal deployment. 

c) Real-world case validation: We use the real-world highway network, i.e., Zhejiang Province, 

China, to conduct substantial numerical experiments. The results show that our two-phase 

approach largely outperforms the state-of-the-art solver CPLEX. 

d) Important managerial implications: The ultimate goal of this study is to provide meaningful 

insights to real-world operators and help them wisely locate and operate charging stations by 

the proposed model. To this end, we propose a five-fold policy analysis, respectively with 

respect to advertising green transport modes, seeking rational construction investment, 

prioritizing large cities in investment, differentiating operations policy for each station, and 

using Internet-of-Things (IoT) and Big Data technologies to enhance operations.  

The remainder of this paper is organized as follows. Section 2 illustrates the assumptions and 

notations of the DMCS problem. Section 3 describes the two-phase approach in detail. Section 4 
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conducts a case study of a real-world highway network. Section 5 concludes the paper and discusses 

future research directions. 

 

2. Assumptions, notations, and problem statement 

Consider an EV charging service provider who has a budget B  to deploy public charging 

stations on a highway network  ,G N A , where N  and A  are the location set and link set, 

respectively. Fast and slow charging stations can be located at some pre-specified candidate locations 

on the network, denoted by set S N . The cost of deploying a type q  charging station at location 

s S  is denoted by 
q

sb . For simplicity, we assume that the charging stations are incapacitated, and a 

candidate location can accommodate either a fast or a slow charging station. The EVs are assumed to 

be homogeneous in terms of the battery capacity  E , measured in kWh. All OD pairs are grouped into 

a set W , which is assumed to be known in advance. The origin and destination of a particular OD pair 

w W  are denoted by  o w  and  d w N , respectively. The EVs will depart from location  o w  

with the SOC 
OE  at least and arrive at location  d w  with the SOC above a given threshold 

DE . The 

electricity consumption and the travel time of link  , , ,i j A i j N   are represented by ije  and ijt  

respectively. In the next three subsections, we will illustrate EV users’ partial charging behavior, the 

generalized travel cost, and the elastic demand in detail. The notations used throughout this paper are 

summarized in Appendix 1 for readability. 

 

2.1 Partial charging behavior 

In contrast to the existing studies assuming that EVs are fully refueled at charging stations 

regardless of the remaining SOC, we assume the EVs can be partially replenished in each charging 

activity. Considering the partial charging behavior more aligns with the context of locating multi-type 

charging stations because the charging efficiency and prices could affect users’ charging amount. By 

allowing partial charging, the users could refuel the energy as much as needed rather than extensively. 

Besides, the charging amount and cost in the fully charging behavior are generally assumed to be a pre-

specified constant (Kuby and Lim, 2005). On the contrary, the charging amount is a decision variable 

in this study and both the charging cost and charging time will be linearly proportional to the charging 

amount. To formulate the charging amount and the change of SOC, for each OD pair w W , we define 

a binary variable ,w

sr s S   denoting whether the travelers of OD pair w  charge at location s , a 

continuous variable  ,w

sp s S   representing the charging amount at location s , and a continuous 

variable 
w

ie  expressing the SOC upon leaving location ,i i N  . 

 

2.2 Generalized travel costs 

The cost of a trip mainly consists of the time cost and monetary cost. The time cost depends on 

the travel time on highways and the charging time while the monetary cost comes from the charging 

fare. We define a generalized travel cost (GTC) comprised of the travel time on the path, the charging 

time, and the charging fare to measure the total cost of a trip. The travel time is the total time 

consumption of traversing links on the network. The charging time/cost is assumed to have a fixed part 

and a charging amount-dependent part. The fixed time/cost of charging at type q  station is denoted by 
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/q q   while the time/cost per kWh is expressed by /q q  . Both the travel time and the charging time 

are converted to the cost by a value-of-time denoted by  . 

 

2.3 Convex elastic demand function 

In this study, it is assumed that the travelers could detour for battery charging and they are 

willing to travel on a deviation path if the GTC of that path is within a given threshold. Specifically, let 
wC  denote the minimum GTC of OD pair w  and w  be the travelers’ tolerance for the travel cost 

deviation. Then any travel path with a GTC within  1 w wC  is acceptable for the travelers of OD 

pair w . We further assume that the additional travel cost will cause the reduction of the travel demand 

and the traffic flows between each OD pair decline nonlinearly as the GTC increases. Let 
wc  be the 

GTC of OD pair w . Based on the logit-based form function proposed by Kim and Kuby (2012), we 

adopt the following function to depict the inverse relationship of the traffic flows between OD pair w  

and the GTC. 

      , , 1
w w wc Cw w w w w w wf c F e w W C c C




 
       (1) 

where 
wF  is the flow volume between OD pair w  under the minimum travel cost wC  and w  denote 

travelers’ sensitivity to the deviation of cost. A large 
w  implies a fast flow decay with the rise of GTC. 

The proposed log-based elastic demand function is convex and due to its favorable applicability, has 

been adopted by many transportation studies, e.g., Xu et al. (2018) and Yang and Huang (1997). We 

use an illustrative example (see Figure 1) to visualize the proposed elastic demand function. It is easy 

to find that the function performs a convex shape and that the traffic flows tend to be zero as the GTC 

goes to positive infinity. 

 

 

Figure 1 Variation of the traffic flows between OD pair w  with the increase of GTC 

The goal of the DMCS problem is to determine the optimal deployment of multi-type charging 

stations under budget B  such that (i) the travelers drive along a cost acceptable travel path without 

battery depletion en-route and the final SOC is no less than 
DE ; (ii) the traffic flow between each OD 

pair follows the convex elastic demand function with respect to GTC; and (II) the total covered flows 

of all OD pairs are maximized. 
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3. A two-phase approach 

This section elaborates on the two-phase solution method for the DMCS problem. Specifically, 

Subsection 3.1 formulates a mixed integer programming model to determine the most cost-saving path 

given a certain station deployment plan. Subsection 3.2 describes the procedure of initializing the 

deployment of charging stations. Subsection 3.3 illustrates the two-layer simulated annealing (TSA) 

algorithm for improving the quality of the incumbent deployment plans. Subsection 3.4 shows the 

solution acceleration strategy exploiting the high-quality deployment plans found by TSA. 

 

3.1 Most cost-saving travel paths 

Let us first illustrate the process of finding the optimal station deployment plan by the following 

steps to propose our two-phase approach. The first step is to construct a feasible station deployment 

plan subject to the given budget. The quality of the deployment plan in terms of the total covered flows 

will then be evaluated. By enumerating all possible station deployment plans, we can eventually obtain 

the optimal one. However, two issues should be carefully addressed when applying the above idea to 

solve the DMCS problem. First, since the number of feasible station deployment could be very large, 

enumerating all possible deployment plans seems impractical. Second, due to the nonlinear relationship 

of the covered flows and the GTC, using a nonlinear programming model to assess the covered flows 

could be computationally intensive. To apply the above idea, we need to (i) devise an intelligent rule of 

generating “promising” station deployments, and (ii) develop an efficient method to assess the covered 

flows under a given deployment plan. We will answer the second question in this subsection and 

respond to the first one in the next subsections. 

Given the deployment of charging stations, intuitively, we should choose the most cost-saving 

travel path for the travelers in order to cover as many traffic flows as possible, which is in inverse 

proportion to the GTC. Herein, the most cost saving path of an OD pair refers to, under a given charging 

station deployment, the path that allows the drivers to complete their trips by the minimum travel cost. 

Such a kind of path is similar to the shortest path in some sense, except that we evaluate cost instead of 

path length. In other words, if we can find the most cost-saving path under the given deployment plan, 

the covered flows of each OD pair can be obtained by substituting the GTC into the convex elastic 

demand function. We formalize this idea by the following proposition: 

Proposition 1. For a given station deployment plan, we will choose the most cost-saving travel path of 

each OD pair, referred to as MCTP, for the travelers such that the traffic flows are covered as many as 

possible. 

Proof. We prove the proposition by contradiction. In particular, given a station deployment, suppose 

we have obtained the maximum covered flows under this deployment, while drivers of some OD pairs 

do not follow their most cost saving travel paths. Note that the elastic demand function is convex, and 

the covered flows monotonically decrease with the increase of travel cost. In this case, if the drivers, 

who originally travel on paths other than the most cost saving travel paths, now complete their trips by 

the most cost saving travel paths, their travel cost will decrease, and the covered flows will increase. 

This will contradict the assumption that we have found the maximum covered flows. Hence, all drivers 

will travel on the most cost saving paths to complete trips.  
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The above proposition formally specifies the tight link between the drivers’ optimal travel route 

and their minimum travel cost. With this finding ready, we are on the track of establishing the 

mechanism of our algorithm, that is iteratively generating deployment plans and meanwhile, improving 

the plan by assessing the covered flows. 

To determine the MCTP under the given station deployment, we define the following decision 

variables for each OD pair: a binary variable  , , ,w

ijx w W i j A    representing whether link  ,i j  is 

traversed by the path flow of OD pair w , and a binary variable ,wz w W   denoting whether OD pair 

w  is covered. Here, if an OD pair is covered, it means that the drivers of that OD pair are able to 

complete their travels under the given station deployment and importantly, the travel cost is within the 

prespecified threshold. The given station deployment is characterized by the station type at each 

candidate location. In this case, the charging cost-related parameters at a certain candidate location are 

known for us, allowing direct representation using index 𝑠 ∈ 𝑆. The fixed time/cost and time/cost per 

kWh at a particular location s  are denoted by /s s   and /s s  , respectively. With these variables, 

we propose a mixed-integer linear programming model, see Appendix 2, to determine the MCTP of OD 

pair w  under a certain station deployment, referred to as the model [OP-I] for short thereafter. 

If we maximize the covered flows between an OD pair under a given station deployment, we 

have to maximize the elastic demand function, leading to a nonlinear programming model. Instead, in 

Prop. 1 we find that the maximum covered flows are exactly the flows corresponding to the minimum 

travel cost. Hence, we can first find the minimum travel cost and then substitute this cost to the elastic 

demand function to obtain the covered flows. In this case, we directly minimize the travel cost and since 

the function of travel cost is linear, we are in fact solving MILP models. Specifically, the model [OP-I] 

minimizes GTC of OD pair w  under a given station deployment. It returns the MCTP if OD pair w  is 

covered under the available charging resources. We can then obtain the covered flows between OD pair 

w  by substituting 
wc  into Eq. (1). 

To conclude, leveraging the convexity of the elastic demand function and the inverse 

relationship of GTC and covered flows, we can obtain the covered flows by solving many small-scale 

mixed-integer linear programming models. Preliminary tests show that this model only needs, on 

average, about 0.01 s to find an MCTP on a mid-sized network. Its efficiency provides the potential of 

designing an iterative algorithm that gradually improves the quality of the station deployment plans 

according to the flow coverage. 

 

3.2 Station deployment initialization 

This subsection illustrates the station location initialization strategy according to the potential 

of each candidate location. The potential of each candidate location is obtained by solving the linear 

programming (LP) relaxation of the mixed-integer programming model proposed by Ouyang et al. 

(2020), see Appendix 3, which is referred to as the model [OP-II] for ease of representation.  

 

Step 1: Solve the LP relaxation of the model [OP-II] under budget B  and denote the solution value of 

the station location variables in the model [OP-II] by 
fast

sy  and ,slow

sy s S  , which originally 

represented whether a fast or a slow charging station is built at location s . 
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Step 2: Calculate the flows passing through each candidate location in the LP relaxation of the model 

[OP-II]. Denote the flows through location s  by 
sf . 

Step 3: Use the following equation to evaluate the potential of each candidate location: 

  ,slow fast

s s s s sf f y y s S     (2) 

where 
fast slow

s s sb b   is the cost ratio of building a fast and slow charging station at location s . 

Step 4: Order all candidate locations in the descending order of their potential ,sf s S   . Denote the 

resultant location sequence by list . 

Step 5: We construct different budget-feasible station deployment plans by adjusting the number of fast 

charging stations. Suppose we plan to allocate m  fast charging stations on the network. Then these fast 

charging stations will be located at the first m  locations in list . The remaining budget will be used 

to allocate slow charging stations from the 1m  location in list  one by one. 

Step 6: Use the model [OP-I] and the elastic demand function to assess the covered flows of all 

deployments obtained in Step 5. Denote the incumbent best deployment plan, the largest flow coverage, 

and the flows passing through each candidate location by 
*D , 

*f , and 
*,sv s S  , respectively. 

We supplement the following discussions as a remark. In Step 3, the potential of a candidate 

location is evaluated by Eq. (2). Imagine that we have known the optimal station deployment, then for 

a candidate location, its corresponding station type variable is either one or zero, meaning a type of 

station is located there or not. For a location chosen for building a station, there must be exactly one 

station type variable being one. “One” can be deemed that this location 100% contributes to the flows 

passing through it. In the LP relaxation model, a station type variable can be between zero and one. In 

this case, a location can be regarded to partially contribute to the flows passing through it. Let us look 

at Eq. (2) again. It represents the flows passing through a location weighted by the value of the station 

type variable. Since the construction costs of a slow and a fast charging station differ largely, we further 

introduce a cost ratio to strengthen the importance of the fast station type variable. 

In Step 5, updating station deployments is rule-based. We can adjust the number of either fast 

or slow stations. In this study, we choose fast stations as the maximum number of building fast charging 

stations is smaller due to higher construction costs. In list , all candidate locations are sequenced in 

decreasing order of their potential. This suggests that the first location in the list could be the best choice 

to locate a fast charging station. Likewise, for the remaining location, their priorities of being chosen 

decline. Hence, we will choose the first m  locations to build fast charging stations. After we have sited 

fast charging stations at the first m  locations in the list , we will examine the remaining locations in 

decreasing order of their potential. In particular, if the left budget is sufficient to build a slow charging 

station at the examined location, then we build a slow charging station there; otherwise, we drop this 

location and examine the next location to see if we have enough money to build a slow charging station 

here. The above procedure will be conducted until we cannot build more stations. 

 

3.3 Phase I: A two-layer simulated annealing heuristic 

We find that once we fixed the station deployment, the total covered flows can be computed 

using the convexity of the objective function (as indicated in Prop. 1). We believe that there is no need 

to enumerate all possible station deployments as we could gradually improve the quality of the 
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constructed deployment when more information (e.g., covered flows under different deployments) is 

available. This is a process of two steps and according to it, we devise a two-layer framework to improve 

the constructed deployment plans.  

This subsection proposes a two-layer heuristic algorithm based on the simulated annealing (SA) 

framework to improve the quality of station deployment plans. The SA method is a well-known 

metaheuristic algorithm that iteratively generates feasible solutions and adjusts the solution generation 

rule based on the solution quality (Van Laarhoven and Aarts, 1987). A low-quality solution could be 

accepted to construct new solutions with some probability while the acceptance probability declines 

gradually, like an annealing process. This feature makes SA able to escape from the local optimum and 

possibly find the global optimum (Kirkpatrick et al., 1983). The SA has been extensively used in many 

transportation problems, e.g., Chiang and Russell (1996), Felipe et al. (2014), and Osman (1993).  

In our heuristic, the outer layer generates a new station deployment plan based on the incumbent 

plan, and the deployment generation rule is refined according to the flows passing through each 

candidate location. To prevent the repeated appearance of the same low-quality station deployment 

plans, a Tabu list is embedded to store all poor deployment plans. The new deployment plan is then 

delivered to the inner layer and its covered flows are obtained via the model [OP-I] and the elastic 

demand function. The new deployment plan will replace the incumbent plan if it covers more flows or 

the flow gap of two deployments is smaller than a probabilistic threshold. Otherwise, the new 

deployment plan will be deemed to be a poor solution and is added to the Tabu list. The above operation 

is conducted iteratively until reaching the maximum iteration number. The procedure of the two-layer 

heuristic is summarized as follows: 

 

Step 0: (Initialization) Set or initialize the annealing temperature T , the annealing ratio  0,1  , the 

poor location number k , the iteration index 0l  , the maximum iteration number L , the Tabu list 

TabuX  , the best deployment plan 
*D , the best flow coverage 

*f , the incumbent deployment plan
*D D , the incumbent flow coverage 

*f f , and the covered flows by each location ,sv s S  . 

Step 1: (Construct new deployment plan) Find the worst- k  candidate locations according to 
sv  and 

randomly select one among these k  locations. Denote the chosen location by s . Remove the station at 

location s  and use the construction cost of this station to allocate stations at other locations. Randomly 

select one of the following two strategies to locate new stations.  

 Strategy Fast: Locate as many fast charging stations as possible and use the remaining budget 

to locate slow charging stations.  

 Strategy Slow: Locate as many slow charging stations as possible and use the remaining budget 

to locate fast charging stations.  

In both strategies, the priority of a location being chosen to build a charging station follows the 

decreasing order of sv . Check whether the new deployment plan is out of the Tabu list. If not, generate 

another deployment plan until it is not in the Tabu list. Denote the new deployment plan by D . Note 

that since these two strategies aim to build as many fast/slow charging stations as possible, this could 

exhaust the budget and, in this case, we will not build slow/fast charging stations. 

Step 2: (Assess the quality of the deployment plan) Use the model [OP-I] and the elastic demand 

function to obtain the flow coverage under the deployment plan D , denoted by f  , and the flows 

through each location, denoted by ,sv s S   . 
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Step 3: (Update the incumbent deployment plan and annealing temperature) If f f  , update the 

incumbent deployment plan, current flow coverage, and the flows through each location by D D , 

f f  , and ,s sv v s S   , respectively. If f   satisfies    0,1
f f T

e Rand


 , where the RHS is a 

randomly generated number between 0 and 1, update D , f , and ,sv s S   as well. Meanwhile, we 

reduce the annealing temperature by T T   so that a low-quality deployment plan becomes 

increasingly harder to replace the incumbent deployment plan in future iterations. If f   cannot satisfy 

either of the above conditions, we add this deployment plan into the Tabu list to ensure that such a 

deployment plan will not be delivered to the inner layer for the sake of time savings. Finally, update the 

iteration number by 1l l  . 

Step 4: (Update the best deployment plan) If 
*f f , update the best deployment plan and the best 

flow coverage by 
*D D  and 

*f f , respectively. 

Step 5: (Repeat the above steps) Repeat Step 1 to Step 4 until reaching the maximum iteration number, 

i.e., l L . 

The pseudo-code of the proposed TSA algorithm is presented in Appendix 4. 

 

3.4 Phase II: Acceleration of solving the model [OP-II] 

The first stage has identified some good station deployment plans. Still, we hope to further 

improve the solution quality or even find the optimal station deployment. We would like to resort to 

state-of-art MIP solvers in the second stage. To obtain the optimal station deployment, we use the best 

deployment plan found by the TSA heuristic as the initial solution for solving the model [OP-II] by 

MIP solvers. Assigning initial solution, especially a high-quality one, could help state-of-the-art MIP 

solvers, e.g., Gurobi, accelerate branch-and-bound as well as cut generation, thereby expediting the 

solving process. According to our experiment experience, assigning a good initial solution always helps 

accelerate solving the model. Thus, we introduce Phase-II in this study. 

In this section, we use the best station deployment found in the first phase as the initial solution 

of the model [OP-II] to expedite solving the model [OP-II]. Note that at this stage, we are solving a 

MILP model. In Section 3.2, we solve the LP relaxation of the model [OP-II] to construct a station 

deployment. This deployment is then delivered to the two-layer heuristic algorithm to improve the 

deployment quality. Although Section 3.2 and 3.4 both use the model [OP-II], we are solving LP 

relaxation of [OP-II] and [OP-II], respectively. Likewise, although both introducing the notation 

“initialization”, in Section 3.2 it represents the input for the two-layer heuristic, while in Section 3.4 it 

refers to the initial solution to [OP-II]. 

 

4. Case study and policy discussions 

So far, an algorithm to find the optimal charging station deployment explicitly considering EV 

users’ charging behavior has been established. Further, we will investigate its computational efficiency 

and how users’ charging behavior, e.g., tolerance for travel cost deviation, and other external 

characteristics, e.g., total construction budget, impact the optimal station deployment. Moreover, to 

enhance promoting green transportation in the real world, we will derive various practical insights into 
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policymaking in the context of Belt-and-Road Initiative (BRI). Briefly, this section aims to answer the 

following questions on the perspectives of both computation and application: 

 Q1: Is the proposed two-phase approach able to solve the DMCS problem within a reasonable time? 

Which factors will affect the computational performance of the approach? 

 Q2: Does allowing travel cost deviation affect governments’ location planning and station operation? 

How about the influence of different tolerances for cost deviation on the station location? 

 Q3: Can we derive some insightful suggestions for the governments involved in the BRI to devise 

their policy towards charging station location optimization and green transportation promotion? 

To answer the above questions, we will use real-world data to perform extensive numerical 

experiments. The algorithm is coded in MATLAB 2020a calling GUROBI 9.0 and all tests are run on 

a personal desktop with a 3.2 GHz CUP and 16 GB memory. 

 

4.1 Data description and algorithm settings  

We use the real highway network of Zhejiang Province, China to perform the case study, which 

is a pioneering province to promote transport electrification promotion domestically. As of 2021, the 

provincial government plans to invest around RMB¥250 million in public charging facility construction 

(XinhuaNet, 2020). The highway network can be depicted by a directed graph consisting of 34 locations 

and 96 links (48 undirected links), see Figure 2. The length of each link is adopted from the database 

of the Zhejiang Provincial Department of Transportation. In the real world, the set of candidate locations 

is generally determined by the operator according to government policy and land availability. In our 

experiments, we assumed all 34 locations on the network can be chosen for building charging stations 

for simplicity. The EVs are assumed to be the second generation of NISSA LEAF that is equipped with 

a 40 kWh battery and a driving range of 243 km (Nissa, 2019). By assuming a constant speed of 120 

km/hr and a constant battery discharging rate of 0.165 kWh/km, we can obtain the travel time and 

electricity consumption of each link. Following the convention of the facility location literature, the 

initial/final SOC of all EVs at origin/destination is required to be no more/less than half of the available 

battery capacity, i.e., 20 kWh. The construction cost of a fast/slow charging station at each candidate 

location is assumed to be 1/0.5 unit cost for simplicity. As for the charging activity-related parameters, 

we make the following settings: (a) the fixed time and charging time per kWh at a fast/slow charging 

station are 5 min/5 min and 0.6 min/2.2 min, respectively; (b) the fixed fare and charging fare per kWh 

at a fast/slow charging station are $2/$2 and $1/$0.5, respectively. All travelers’ value-of-time is 

assumed to be $5/hr for convenience.  
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Figure 2 Highway network of Zhejiang Province, China. 

To generate OD pairs, we choose the largest twenty cities of Zhejiang Province as the origin 

and destination, each of which has a population of over 1 million, and then obtain a total of 190 OD 

pairs. The gravity model (Hodgson, 1990) using the city population as weights is adopted to simulate 

the traffic flows between each OD pair, producing a total of 76708 flows. We drop the OD pairs of very 

small flow volume and eventually have 100 OD pairs with 72873 flows, which accounts for over 95% 

of all traffic flows. Regarding travelers’ sensitivity to travel cost deviation, the parameters ,w w W    

are calculated by assuming that the traffic flows of each OD pair will decrease to 20% of the maximum 

flow volume as the travel cost increases to 150% of the minimum travel cost. 

Some preliminary tests are conducted to calibrate the parameters of the two-layer heuristic 

algorithm. The maximum number of iterations is limited to 25, which balances the time consumption 

and the solution quality. The number of low-quality locations that may be removed from the incumbent 

station deployment is set to be 3. This setting controls the number of possible new deployments in a 

suitable size. The initial annealing temperature and the annealing ratio are set to be 3000 and 0.98 

respectively, which makes the annealing process progresses at a moderate rate. We do not restrict the 

size of the Tabu list, suggesting that all station layout deemed as a low-quality result by the heuristic 

algorithm will be recorded and will not be delivered into the inner layer for the sake of time saving. The 

total runtime limitation of the heuristic is set to be 60 sec while the solver runtime in the second stage 

is limited to 10,800 sec. The time limit for directly solving the model [OP-II] by GUROBI is also limited 

to 10,800 sec. 

 

4.2 Algorithm performance analysis and comparative study 

One of the contributions of this study is the two-phase approach to the DMCS problem. In this 

section, we will assess the performance of the approach by extensive experiments and further compare 
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its efficiency with the existing method. To this end, we will compare the runtime of two methods 

consumed by finding the optimal solution. If we use less time, then we win. For large-scale test instances 

that the existing method is unable to find the optimal solution within an acceptable time (3 hours), we 

record the optimality gaps when given time is exhausted and then run our approach to attain the same 

gaps. If our approach uses much less time, we believe we outperform the existing method considerably. 

To assess the algorithm performance under different parameter settings, we generate a total of 

80 test instances by varying the budget between  1, 2, 3, ... , 20  and letting tolerance for cost deviation 

equaling to  0, 0.1, 0.2, 0.3 . The variable budget and tolerance can be regarded as simulating different 

financial policies and green transportation acceptance. We report the computational time required by 

our approach and the model [OP-II] on these 80 instances in Table 1. The columns named by [OP-II], 

Phase I, and Phase II record the time of directly solving the model [OP-II] via GUROBI, the runtime of 

Phase I and Phase II, respectively. Kindly note that in 12 test instances, the model [OP-II] cannot be 

directly solved to optimality by the solver within 10,800 sec, which is highlighted by italics. We report 

the relative gap - (best upper bound – best objective value)/ best objective value - when the solver 

terminates for each instance in the column named by Gap. For comparison, the time required by our 

approach for achieving the same gap is presented in the column Phase II for these 12 instances. The 

saved time of the two-phase approach, i.e., Phase I + Phase II – [OP-II], is listed in the column Saving. 

Figure 3 shows the runtime of the heuristic algorithm under four different tolerance levels for 

travel cost deviation as budget increases from 1 to 20. It can be seen that under any budget and tolerance 

level, the algorithm can complete 25 iterations within 45 sec. In more than 60% of the test instances, 

the average runtime of an iteration does not exceed 1 sec. These results demonstrate the efficiency of 

the heuristic algorithm, which can be attributed to the merits of the model [OP-I] that can determine the 

MCTP for each OD pair quickly. Clearly, with more budget available, the runtime performs an upward 

trend no matter tolerance levels. This may be explained by that more open charging stations make the 

network more complex and thus the model [OP-I] needs a longer time to find the MCTP of an OD pair. 

In addition, allowing a larger value of tolerance could also call for more computational time. For 

example, the runtime under the tolerance of 0.3 surges after the budget exceeds 11. This observation is 

consistent with our expectation that a bigger tolerance would make finding the MCTP harder. It is, 

however, worthwhile to note that the exact impact of tolerance and budget on runtime is unclear since 

in fact, given a tolerance level, the runtime fluctuates with the growth of budget, and fixing the budget, 

the runtime under a higher tolerance could be smaller than that under a lower tolerance. 
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Table 1 Comparison of the computation time of the proposed two-phase approach and directly solving the model [OP-II]. 

B 
Tolerance 0 Tolerance 0.1 Tolerance 0.2 Tolerance 0.3 

[OP-II] Phase I Phase II Saving [OP-II] Phase I Phase II Saving [OP-II] Gap Phase I Phase II Saving [OP-II] Gap Phase I Phase II Saving 

2 7 14 5 -13 15 13 16 -14 32 / 15 21 -5 38 / 13 36 -11 

4 12 12 12 -12 28 15 25 -11 83 / 13 43 27 116 / 13 99 4 

6 38 13 33 -8 100 15 72 13 361 / 16 275 70 371 / 15 361 -5 

8 45 12 44 -11 179 14 160 5 1,498 / 14 636 848 1,232 / 17 1,112 103 

10 53 14 46 -7 817 17 645 155 2,089 / 20 1,703 366 10,800 0.003 21 9,359 1,420 

12 54 17 52 -16 434 17 236 181 3,602 / 18 1,879 1,705 10,800 0.006 18 4,602 6,180 

14 53 19 50 -16 714 20 618 75 4,450 / 18 3,666 766 10,800 0.005 19 7,905 2,876 

16 92 19 60 13 546 18 441 86 10,800 0.002 19 6,309 4,472 10,800 0.006 20 5,757 5,023 

18 156 23 105 28 720 21 520 178 9,045 / 23 5,528 3,495 10,800 0.012 20 9,631 1,149 

20 168 21 125 22 488 22 407 59 10,800 0.002 24 9,573 1,203 10,800 0.014 25 5,019 5,756 

22 107 22 81 4 685 25 644 16 10,800 0.003 25 4,418 6,357 10,800 0.008 24 8,248 2,528 

24 286 25 97 164 1,225 25 528 673 10,800 0.002 29 6,454 4,317 10,800 0.004 35 7,447 3,318 

26 189 27 65 97 395 26 206 162 3,120 / 28 2,214 879 2,509 / 38 1,665 806 

28 44 28 36 -20 226 27 113 85 1,097 / 28 322 747 1,250 / 41 1,203 6 

30 55 24 33 -2 192 28 61 103 397 / 31 222 144 975 / 37 956 -18 

32 60 26 50 -15 194 30 72 92 177 / 26 170 -19 344 / 41 305 -2 

34 76 26 65 -15 85 27 68 -11 144 / 29 123 -8 226 / 38 203 -15 

36 65 27 53 -15 89 25 12 53 140 / 29 14 97 74 / 41 16 17 

38 61 28 23 10 30 25 9 -4 65 / 28 8 29 62 / 42 19 1 

40 34 29 20 -15 21 25 8 -12 57 / 29 11 17 34 / 45 19 -30 

Remark: The elapsed time of each test instance is measured in sec. We cannot directly solve the model [OP-II] to optimality within 10,800 sec in 12 instances, 

which are marked in italics; the relative gap of 12 instances returned by the solver are reported. For comparison, we display the time required in Phase II to 

reach the same relative gap in these 12 instances. 
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Figure 3 Variations of the runtime of Phase I with the increase of budget under different tolerance. 

 

Figure 4 Variations of the runtime of the two-phase approach and the model [OP-II] with the increase 

of budget under different travel cost deviation tolerances. 

We further visualize the total runtime of our two-phase approach under the tolerance of 0 and 

0.1 in comparison with the time required for directly solving the model [OP-II] in Figure 4. It is easy to 

find that allowing a higher tolerance level leads both our approach and the model [OP-II], by and large, 

to use more time. Regarding the impact of budget on the algorithm performance, the runtime shows a 

mountain shape. Specifically, take tolerance of 0.1 for example, first witnessing a constant rise as budget 

increases from 1 to 5, the runtime then performs a significant fluctuation when the budget varies 

between 6 and 12, followed by a jump after over 13 unit costs are available. Besides, for both tolerance 

levels, the most time-consuming cases always occur when the budget equals 12. Under tolerance of 0.1, 

almost in all test instances, our approach consumes less time, and the largest time saving is up to 673 

sec. However, when the cost deviation is forbidden, directly solving the model [OP-II] can be slightly 
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more efficient in some instances. This is because that the model [OP-II] is already readily solvable if 

tolerance equals zero, whereas our approach needs additional time in Phase I. Fortunately, our approach 

significantly outperforms when higher tolerance levels are considered because the rising tolerance 

results in the exponential increase of directly solving the model [OP-II] and the merits of adopting a 

high-quality initial solution becomes obvious. For instance, with a tolerance of 0.2 and 0.3, the 

maximum time savings are 6357 sec and 6180 sec, respectively. The above results suggest the efficacy 

of our two-phase approach, especially under hard parameter settings such as a high tolerance for cost 

deviation. 

 

4.3 Policy discussion 

4.3.1 Understanding travelers' travel cost deviation tolerance 

Table 2 tabulates the covered flow volume and the number of covered OD pairs under the 

tolerance of 0, 0.1, 0.2, and 0.3 as we increase the budget from 1 to 20 one by one. For ease of discussion, 

we further visualize the ratios of the covered flow volume and covered OD pairs as budget increases in 

Figure 5 and Figure 6, respectively. It can be seen that under any of the four tolerances, following a 

quick rise before budget exceeds 4, the ratio of the covered flow volume then increases with a near-

linear rate, followed by a slower and slower increase after more than 13 unit costs are available, making 

the entire increase curve have a near concave shape. It is worthwhile to note that no matter how much 

budget is given, the covered flow volume under a high tolerance is always greater than that under a low 

tolerance, which is in line with our expectation that a larger tolerance allows more flexible charging 

options, thereby attracting more travelers. 

 

Table 2 Comparison of the covered flows and covered OD pairs under different cost deviation tolerances. 

B 
Tolerance 0 Tolerance 0.1 Tolerance 0.2 Tolerance 0.3 

No. Flows No. Pairs No. Flows No. Pairs No. Flows No. Pairs No. Flows No. Pairs 

1 12,987 2 12,987 2 12,987 2 12,987 2 

2 20,914 6 22,459 10 22,685 11 22,685 11 

3 26,167 10 28,283 12 29,771 17 29,771 17 

4 30,959 13 33,618 15 35,928 27 36,630 30 

5 35,358 17 37,759 28 39,917 35 40,956 42 

6 39,736 19 43,023 28 45,411 45 46,282 49 

7 45,113 26 48,902 45 50,971 59 51,970 65 

8 49,352 34 53,609 55 56,322 68 57,030 71 

9 52,816 46 57,264 63 59,722 72 60,495 84 

10 56,928 57 61,008 71 62,830 83 64,134 93 

11 60,416 63 64,037 76 66,048 93 66,991 98 

12 63,393 71 67,320 90 68,537 94 69,487 99 

13 66,756 80 70,409 96 70,696 98 71,245 100 

14 69,640 87 72,096 99 72,176 100 72,357 100 

15 70,603 89 72,640 100 72,640 100 72,640 100 

16 71,280 92 72,727 100 72,727 100 72,727 100 

17 71,963 95 72,773 100 72,773 100 72,773 100 

18 72,389 98 72,801 100 72,807 100 72,807 100 

19 72,681 99 72,836 100 72,854 100 72,854 100 

20 72,873 100 72,873 100 72,873 100 72,873 100 
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Figure 5 Variations of the ratio of the covered flows with the increase of budget under different cost 

deviation tolerances. 

 

Figure 6 Variations of the ratio of the covered OD pairs with the increase of budget under different cost 

deviation tolerances. 

As shown in Fig. 7, similar to the impact of budget on the covered flow volume, the ratio of 

covered OD pairs generally rises with the increase of budget. However, the increase in the ratio is not 

stable. For example, the ratio hardly changes as the budget rises from 5 to 6 under the tolerance of 0.1. 

For another example, when the travelers accept an additional 20% of the minimum travel cost, 

increasing the budget from 11 to 12 does not contribute to the ratio increase. Also, like the influence of 

tolerance on the covered flow volume, a large tolerance leads to a higher ratio of the covered OD pairs. 

These observations motivate us to design the charging station location policy combing with the practical 

condition of a country. 
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Before devising a charging station location strategy, the government is expected to fully 

understand the user's tolerance for travel cost deviations. Through the above experimental results, we 

can find that if the user has a higher tolerance, the same level of the flow coverage can be achieved with 

less investment. To obtain consumers’ tolerance for travel cost deviation, the government can conduct 

questionnaires, surveys, and interviews with EV users and can also expand the surveyed travelers to 

potential buyers of EVs. Some state-of-art techniques, such as machine learning, can be adopted to 

analyze travelers’ feedbacks so as to obtain more reliable tolerance values. Accepting travel cost 

deviation means that the travelers are willing to adopt EVs as their transport modes even if they need 

to pay additional travel costs resulting from the scarce charging resources. The additional cost paid by 

the travelers can be regarded as a subsidiary to the local government’s limited budget. In the developed 

countries in the BRI, particularly where transportation is popularized such as European countries, the 

travelers may be more supportive of environmentally friendly and sustainable transport modes and are 

more willing to choose EVs. By contrast, in some developing countries in the BRI such as African 

countries, people may be unwilling to pay extra costs for using EVs. Therefore, for countries with 

insufficient funds, it is particularly important to increase people’s awareness of green travel. Through 

advertising the merits of green transportation, people may gradually accept a higher cost deviation, 

which helps the charging stations serve more charging demands under the limited budget. To enhance 

people's awareness of green travel, the government may distribute promotional materials in 

communities, schools, and gasoline supply stations and may also provide subsidies to charging stations 

to reduce EV users’ charging costs. 

 

4.3.2 Budget policy suggestions 

Since the participants of the BRI have different economic levels, their budget policy towards 

promoting transport electrification may be distinct to each other. For some developed countries, the 

government may have sufficient budget to implement large-scale charging station construction; while 

for some developing countries, the government’s budget may be only enough to build a few amounts 

of stations. In this section, we try to give some practical suggestions on how to devise budget policies 

on building charging stations for countries with different levels of economic development. To 

understand the impact of budget on the charging demand fulfillment, we calculate the marginal utility 

of the available budget with respect to the covered flow volume and the covered OD pairs under the 

tolerance of 0, 0.1, 0.2, and 0.3. In Table 3, the columns named by MU. Flows and MU. Pairs represent 

the increased ratios of covered flows and OD pairs when we provide an additional 1 unit cost compared 

with the budget listed in the first column. It can be found that as more budget available, the marginal 

utility of budget with respect to the flow coverage constantly declines; while the marginal utility of 

budget with respect to the covered OD pairs fluctuates and does not perform a certain obvious pattern. 

 

Table 3 Comparison of the marginal utility of budget under different cost deviation tolerances. 

B 
Tolerance 0 Tolerance 0.1 Tolerance 0.2 Tolerance 0.3 

MU. Flows MU. Pairs MU. Flows MU. Pairs MU. Flows MU. Pairs MU. Flows MU. Pairs 

0 0.178 0.020 0.178 0.020 0.178 0.020 0.178 0.020 

1 0.109 0.040 0.130 0.080 0.133 0.090 0.133 0.090 

2 0.072 0.040 0.080 0.020 0.097 0.060 0.097 0.060 

3 0.066 0.030 0.073 0.030 0.084 0.100 0.094 0.130 
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4 0.060 0.040 0.057 0.130 0.055 0.080 0.059 0.120 

5 0.060 0.020 0.072 0.000 0.075 0.100 0.073 0.070 

6 0.074 0.070 0.081 0.170 0.076 0.140 0.078 0.160 

7 0.058 0.080 0.065 0.100 0.073 0.090 0.069 0.060 

8 0.048 0.120 0.050 0.080 0.047 0.040 0.048 0.130 

9 0.056 0.110 0.051 0.080 0.043 0.110 0.050 0.090 

10 0.048 0.060 0.042 0.050 0.044 0.100 0.039 0.050 

11 0.041 0.080 0.045 0.140 0.034 0.010 0.034 0.010 

12 0.046 0.090 0.042 0.060 0.030 0.040 0.024 0.010 

13 0.040 0.070 0.023 0.030 0.020 0.020 0.015 0.000 

14 0.013 0.020 0.007 0.010 0.006 0.000 0.004 0.000 

15 0.009 0.030 0.001 0.000 0.001 0.000 0.001 0.000 

16 0.009 0.030 0.001 0.000 0.001 0.000 0.001 0.000 

17 0.006 0.030 0.000 0.000 0.000 0.000 0.000 0.000 

18 0.004 0.010 0.000 0.000 0.001 0.000 0.001 0.000 

19 0.003 0.010 0.001 0.000 0.000 0.000 0.000 0.000 

 

It is worth noting that under the tolerance of 0.3, all OD pairs can be covered with a budget of 

12 while the ratio of the covered flow volume is around 95%, meaning that further increasing budget 

does not cover more travel routes but reduces the travel cost through providing more efficient charging 

service. With more budget for building more fast charging stations, the EV users can travel along a 

more cost-saving travel path, which attracts more travelers to use EVs for traveling. When the budget 

reaches a certain value, all OD pairs have been covered and the government often needs to invest a lot 

of additional budget to improve the flow coverage. For example, intending to cover 95% of all flows, 

the government needs to invest 13, 12, 12, and 11 unit costs under the tolerance of 0, 0.1, 0.2, and 0.3, 

respectively; however, to attain the 100% flow coverage, additional 7, 8, 8, and 9 unit costs are required, 

respectively. Therefore, for countries with insufficient budget, we do not recommend the government 

to invest too much in building charging stations. On the contrary, we recommend a more economical 

budget policy that uses a limited budget to achieve acceptable flow coverage. In addition, even for 

countries with ample budget, it may be better to cover 95% of all flows since serving the remaining 5% 

flows needs a huge amount of investment, which is uneconomical.  

 

4.3.3 Station type and location suggestions 

Table 4 and Table 5 tabulate the locations chosen for being allocated charging stations under 

four tolerance levels and a different budget. It can be found that the station type at a certain location is 

influenced by the value of tolerance. For example, given 8 unit costs available for building stations and 

any cost deviation being unacceptable, the only fast charging station is placed at location 14; as 

tolerance rises to 0.1, all 8 unit costs are used to install slow charging stations. For another example, 

under the budget of 12 and tolerance of 0.2, we construct fast charging stations at locations 2, 4, and 16; 

in contrast, if tolerance is 0.3, only locations 2 and 16 are installed with fast charging stations while the 

extra budget is put into slow charging station construction. This phenomenon may be explained by that 

when tolerance gets increased, users could detour to a far station for battery charging and the model 

would tend to allocate more economical slow charging stations so as to cover more OD travel paths. 

Additionally, it is worth noting that some locations are placed charging stations under almost all budget 

and tolerance levels, such as locations 1, 3, 14, and 15. These stations are all big cites in Zhejiang, 

which are also the origins or destinations of OD pairs with large flow volumes. The results are consistent 

with the practical experience of prioritizing to build charging stations in big cities. On the other hand,
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Table 4 Station location comparison under the tolerance of 0 and 0.1 with the increase of budget. 

B 
Tolerance 0 Tolerance 0.1 

Fast Station No. Slow Station No. Fast Station No. Slow Station No. 

2 / 4, 15 / 4, 15 

4 / 4, 9, 15, 16 / 4, 14, 15, 16 

6 / 4, 9, 14, 15, 16, 22 / 4, 9, 14, 15, 16, 22 

8 14 4, 9, 13, 15, 16, 22 / 4, 5, 9, 13, 14, 15, 16, 22 

10 2, 16 4, 5, 9, 14, 15, 22 2, 5 4, 9, 13, 15, 16, 22 

12 1, 2, 16 4, 5, 9, 13, 15, 22 1, 2 4, 5, 9, 13, 14, 15, 16, 22 

14 1, 2, 16 4, 5, 8, 9, 13, 14, 15, 22 1, 2, 5 4, 8, 9, 13, 14, 15, 16, 22 

16 1, 2, 16 4, 5, 8, 9, 13, 14, 15, 18, 22, 23 1, 2, 5 4, 8, 9, 13, 14, 15, 16, 18, 22, 23 

18 1, 2, 16, 22 4, 5, 8, 9, 13, 14, 15, 18, 21, 23 1, 2, 5 4, 8, 9, 13, 14, 15, 16, 17, 18, 21, 22, 23 

20 1, 2, 16, 19, 22 4, 5, 6, 8, 9, 13, 14, 15, 21, 23 1, 2, 5, 19 4, 6, 8, 9, 13, 14, 15, 16, 18, 21, 22, 23 

22 1, 2, 16, 19, 22 4, 5, 6, 8, 9, 13, 14, 15, 17, 18, 21, 23 1, 2, 5, 19 4, 6, 8, 9, 10, 13, 14, 15, 16, 17, 18, 21, 22, 23 

24 1, 2, 3, 5, 6, 19 4, 8, 9, 11, 13, 14, 15, 16, 18, 21, 22, 23 1, 2, 3, 5, 6, 19 4, 8, 9, 11, 13, 14, 15, 16, 18, 21, 22, 23 

26 1, 2, 3, 5, 6, 11, 19 4, 8, 9, 13, 14, 15, 16, 17, 18, 21, 22, 23 1, 2, 3, 5, 6, 19 4, 7, 8, 9, 11, 13, 14, 15, 16, 17, 18, 21, 22, 23 

28 1, 2, 3, 5, 6, 11, 19 4, 7, 8, 9, 10, 13, 14, 15, 16, 17, 18, 21, 

22, 23 

1, 2, 3, 5, 6, 19 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 21, 

22, 23 

30 1, 2, 3, 5, 6, 18, 19, 26 4, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 21, 

22, 23 

1, 2, 3, 5, 6, 11, 12, 19 4, 7, 8, 9, 10, 13, 14, 15, 16, 17, 18, 21, 22, 23 

32 1, 2, 3, 5, 6, 9, 18, 19, 22, 26 4, 7, 8, 10, 11, 13, 14, 15, 16, 17, 21, 23 1, 2, 3, 4, 5, 6, 9, 11, 12, 19 7, 8, 10, 13, 14, 15, 16, 17, 18, 21, 22, 23 

34 1, 2, 3, 5, 6, 9, 12, 18, 19, 22, 26 4, 7, 8, 10, 11, 13, 14, 15, 16, 17, 21, 23 1, 2, 3, 4, 5, 6, 9, 11, 12, 19, 28 7, 8, 10, 13, 14, 15, 16, 17, 18, 21, 22, 23 

36 1, 2, 3, 5, 6, 9, 11, 12, 13, 18, 19, 22, 26 4, 7, 8, 10, 14, 15, 16, 17, 21, 23 1, 2, 3, 4, 5, 6, 9, 11, 12, 13, 19, 22, 28 7, 8, 10, 14, 15, 16, 17, 18, 21, 23 

38 1, 2, 3, 4, 5, 6, 9, 11, 12, 18, 19, 22, 26, 28 7, 8, 10, 13, 14, 15, 16, 17, 21, 23 1, 2, 3, 4, 5, 6, 9, 11, 12, 18, 19, 22, 26, 28 7, 8, 10, 13, 14, 15, 16, 17, 21, 23 

40 1, 2, 3, 4, 5, 6, 9, 11, 12, 13, 16, 18, 19, 22, 

26, 28 

7, 8, 10, 14, 15, 17, 21, 23 1, 2, 3, 4, 5, 6, 9, 11, 12, 13, 15, 19, 22, 23, 

26, 28 

7, 8, 10, 14, 16, 17, 18, 21 
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Table 5 Station location comparison under the tolerance of 0.2 and 0.3 with the increase of budget. 

B 
Tolerance 0.2 Tolerance 0.3 

Fast Station No. Slow Station No. Fast Station No. Slow Station No. 

2 / 4, 15 /                                          4, 15                                               

4 / 4, 14, 15, 16 /                                        4, 14, 15, 16                                       

6 /  4, 9, 13, 14, 15, 16 /                                      4, 9, 13, 14, 15, 16                                

8 16 4, 9, 13, 14, 15, 22 16 4, 9, 13, 14, 15, 22                                

10 16 4, 9, 13, 14, 15, 18, 22, 23 16 4, 9, 13, 14, 15, 18, 22, 23                        

12 2, 4, 16 5, 9, 13, 14, 15, 22 2, 16                                               1, 4, 5, 9, 13, 14, 15, 22                          

14 1, 2, 16 4, 5, 8, 9, 13, 15, 22, 23 1, 2, 16                                            4, 5, 8, 9, 13, 15, 22, 23                          

16 1, 2, 16 4, 5, 6, 8, 9, 13, 14, 15, 22, 23 1, 2, 16                                            4, 5, 6, 8, 9, 13, 14, 15, 22, 23                   

18 1, 2, 16 4, 5, 6, 8, 9, 13, 14, 15, 17, 18, 22, 23 1, 2, 16                                            4, 5, 6, 8, 9, 11, 13, 14, 15, 18, 22, 23           

20 1, 2, 3 4, 5, 6, 8, 9, 11, 13, 14, 15, 16, 18, 21, 22, 23 1, 2, 3, 6                                          4, 5, 8, 9, 11, 13, 14, 15, 16, 18, 22, 23          

22 1, 2, 3, 6 4, 5, 8, 9, 11, 13, 14, 15, 16, 17, 18, 21, 22, 23 1, 2, 3, 6                                          4, 5, 8, 9, 11, 13, 14, 15, 16, 17, 18, 21, 

22, 23  

24 1, 2, 3, 5, 6 4, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 21, 22, 

23 

1, 2, 3, 5, 6                                       4, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 21, 

22, 23 

26 1, 2, 3, 5, 6, 19 4, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 21, 22, 

23 

1, 2, 3, 5, 6, 19                                   4, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 21, 

22, 23 

28 1, 2, 3, 5, 6, 19 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 21, 

22, 23 

1, 2, 3, 5, 6, 11, 19                               4, 7, 8, 9, 10, 13, 14, 15, 16, 17, 18, 21, 

22, 23  

30 1, 2, 3, 5, 6, 11, 12, 19 4, 7, 8, 9, 10, 13, 14, 15, 16, 17, 18, 21, 22, 23 1, 2, 3, 5, 6, 11, 12, 19                           4, 7, 8, 9, 10, 13, 14, 15, 16, 17, 18, 21, 

22, 23  

32 1, 2, 3, 4, 5, 6, 9, 11, 12, 19 7, 8, 10, 13, 14, 15, 16, 17, 18, 21, 22, 23 1, 2, 3, 4, 5, 6, 9, 11, 12, 19                     7, 8, 10, 13, 14, 15, 16, 17, 18, 21, 22, 23        

34 1, 2, 3, 4, 5, 6, 9, 11, 12, 19, 28 7, 8, 10, 13, 14, 15, 16, 17, 18, 21, 22, 23 1, 2, 3, 4, 5, 6, 9, 11, 12, 19, 28                 7, 8, 10, 13, 14, 15, 16, 17, 18, 21, 22, 23        

36 1, 2, 3, 4, 5, 6, 9, 11, 12, 13, 19, 22, 28 7, 8, 10, 14, 15, 16, 17, 18, 21, 23 1, 2, 3, 4, 5, 6, 9, 11, 12, 13, 19, 22, 28         7, 8, 10, 14, 15, 16, 17, 18, 21, 23                

38 1, 2, 3, 4, 5, 6, 9, 11, 12, 18, 19, 22, 26, 

28 

7, 8, 10, 13, 14, 15, 16, 17, 21, 23 1, 2, 3, 4, 5, 6, 9, 11, 12, 18, 19, 22, 26, 28     7, 8, 10, 13, 14, 15, 16, 17, 21, 23                

40 1, 2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 18, 19, 

22, 26, 28 

8, 10, 14, 15, 16, 17, 21, 23 1, 2, 3, 4, 5, 6, 9, 11, 12, 13, 16, 18, 19, 22, 

26, 28 

7, 8, 10, 14, 15, 17, 21, 23 
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some locations have never been placed charging stations, such as locations 29, 30, 31, 32, 33, and 34, 

which are all small cities with less than one million population.  

Table 6 reports in detail the number of two types of stations under different budgets and 

tolerances. We further visualize the variations of the number of stations with the increase of budget in 

Figure 7 for sake of discussion. It can be seen that under four tolerance levels, the number of fast 

charging stations witnesses a steady increase with the growth of budget whereas the number of slow 

charging stations, by and large, first rises and then declines after the budget exceeds 14, performing a 

mountain shape. Interestingly,  under the tolerance of 0.1 and 0.2, the number of slow charging stations 

fluctuates as the budget varies between 4 and 12. For instance, when tolerance is 0.1, the number of 

slow charging stations decreases from 8 to 6 as the budget rises from 4 to 5; also, the number becomes 

from 14 to 12 when an additional one unit cost is available compared with the budget of 11. Besides, 

under each of the four tolerances, the number of fast charging stations surpasses that of slow charging 

stations after the budget exceeds 35. Different from the intuition of placing more fast charging stations, 

the experimental results tell us that in most cases, the government should build more slow charging 

stations to cover more travel paths, instead of prioritizing fast station construction for improving 

charging efficiency. Some developing countries in the BRI may not have enough budget to conduct 

large-scale charging station construction and may also not have a compatible power grid supporting fast 

charging station operations. In this case, the government is supposed to first build slow charging stations 

to refuel as many travel routes as possible and then to consider improving the charging efficiency. 

Fortunately, we can see, as shown in the previous section, that even with a very limited budget, we can 

success to over 90% of all flows under any tolerance level. This observation consolidates the policy that 

prioritizes building stations at the early stage of promoting transport electrification. 

 

Table 6 Comparison of the number of charging stations with the increase of budget under different cost 

deviation tolerances. 

B 
Tolerance 0 Tolerance 0.1 Tolerance 0.2 Tolerance 0.3 

No. Fast No. Slow No. Fast No. Slow No. Fast No. Slow No. Fast No. Slow 

1 0 2 0 2 0 2 0 2 

2 0 4 0 4 0 4 0 4 

3 0 6 0 6 0 6 0 6 

4 1 6 0 8 1 6 1 6 

5 2 6 2 6 1 8 1 8 

6 3 6 2 8 3 6 2 8 

7 3 8 3 8 3 8 3 8 

8 3 10 3 10 3 10 3 10 

9 4 10 3 12 3 12 3 12 

10 5 10 4 12 3 14 4 12 

11 5 12 4 14 4 14 4 14 

12 6 12 6 12 5 14 5 14 

13 7 12 6 14 6 14 6 14 

14 7 14 6 16 6 16 7 14 

15 8 14 8 14 8 14 8 14 

16 10 12 10 12 10 12 10 12 

17 11 12 11 12 11 12 11 12 

18 13 10 13 10 13 10 13 10 

19 14 10 14 10 14 10 14 10 

20 16 8 16 8 16 8 16 8 
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Figure 7 Variations of the number of fast and slow charging stations under different cost deviation 

tolerances. 

4.3.4 Station operation suggestions 

To analyze the workload of each charging station, we calculate the number of flows served by 

each station as budget varies from 1 to 20 under the tolerance of 0, 0.1, 0.2, and 0.3, as shown in Table 

7 to Table 10. Clearly, the workload of these stations distinct from each other significantly. For example, 

when the EV users accept at most a 10% increase in the travel cost and 12 unit costs will be invested in 

the station construction, the busiest location - location 1 - serves nearly 25,000 flows. By contrast, the 

least-busy location - location 21 - serves around 2,000 flows, less than 8% of the flows through location 

1. The locations that are often chosen by the model to locate charging stations generally have a large 

number of flows passing through them and are often the origins or destinations of OD pairs with a large 

flow volume. Besides, the intersection of multiple highways is also easily be chosen by the model. 

These locations can be regarded as the traffic pivot on the network and should be prosperous cities in 

Zhejiang. As a matter of fact, location 1 is the capital of Zhejiang Province - Hangzhou - which has 

over 10 million population, and is connected with eight highway corridors; whereas location 21 is a 

small city located in the southeast corner of Zhejiang Province, and its population is less than 1 million. 

This fact coincides with our analysis that the model tends to locate charging stations at locations with 

high traffic flows. Allowing a larger tolerance for travel cost deviation generally makes the workload 

of a particular station increase. For instance, given the budget being 12, the traffic flows served by 

location 2 under tolerance of 0, 0.1, 0.2, and 0.3 are 16,142, 17,219, 19,510, and 19,836, respectively. 

This could be explained by that as more additional travel costs being acceptable, the EV users could 

make a detour to far stations for refueling so that the total served flows get increased.
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Table 7 Traffic flows served by each station with the increase of budget under the tolerance of 0. 

No. Flows 

 

City/Loc No. 

B 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Hangzhou 1 0 0 0 0 0 14,368 17,338 19,723 19,723 20,548 22,329 23,297 23,297 23,509 24,230 24,344 25,027 25,219 25,544 25,544 

Ningbo 2 0 0 0 0 7,065 10,174 12,313 12,564 14,392 15,175 15,175 16,142 16,142 17,903 18,017 18,175 18,175 18,367 18,367 18,526 

Wenzhou 3 0 0 0 0 0 0 0 0 0 0 0 18,286 21,286 21,399 22,362 22,634 22,634 22,868 22,868 22,868 

Shaoxing 4 6,992 6,992 7,636 10,041 9,795 10,227 11,808 12,100 12,100 15,039 15,331 15,457 15,457 15,457 15,457 15,457 15,617 15,617 15,617 15,776 

Taizhou 5 0 0 0 0 9,174 9,174 9,174 9,174 11,377 14,051 14,051 15,104 15,295 15,655 15,655 15,927 15,927 15,927 15,927 15,927 

Jinhua 6 0 0 0 0 0 0 0 0 0 4,574 4,574 7,087 8,509 9,827 11,024 11,024 11,024 11,024 11,024 11,024 

Quzhou 7 0 0 0 0 0 0 0 0 0 0 0 0 0 1,549 1,794 1,794 2,477 2,477 2,477 2,477 

Huzhou 8 0 0 0 0 0 0 2,520 2,520 2,520 2,672 2,672 2,898 2,898 2,898 3,057 3,057 3,057 3,057 3,382 3,382 

Jiaxing 9 0 2,978 0 2,978 4,205 5,035 5,035 5,327 5,981 5,802 5,981 6,352 6,352 6,352 6,352 6,757 6,878 6,878 7,203 7,203 

Zhoushan 10 0 0 0 0 0 0 0 0 0 0 0 0 0 1,566 1,566 1,566 1,566 1,566 1,566 1,725 

Lishui 11 0 0 0 0 0 0 0 0 0 0 0 2,700 4,356 4,356 5,319 5,319 5,319 5,553 5,553 5,553 

Jiande 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 683 683 683 683 

Cixi 13 0 0 0 2,745 0 7,182 7,670 7,670 8,688 8,688 8,688 8,641 8,641 8,853 8,853 9,419 9,419 9,611 9,611 9,611 

Yuyao 14 0 0 2,407 4,812 4,566 0 5,016 5,016 5,267 5,267 5,267 5,156 5,156 5,156 5,156 5,267 5,267 5,267 5,267 5,426 

Ruian 15 5,995 6,251 5,995 5,995 6,602 6,602 6,602 6,602 6,745 6,745 6,745 6,745 8,706 8,706 8,582 8,582 8,582 8,706 8,706 8,706 

Yueqing 16 0 4,949 0 0 8,838 5,027 8,838 8,838 11,626 12,336 12,336 13,389 13,810 13,923 13,813 14,085 14,085 14,195 14,195 14,195 

Cangnan 17 0 0 0 0 0 0 0 0 0 0 0 0 1,707 1,707 1,707 1,707 1,707 1,707 1,707 1,707 

Zhuji 18 0 0 0 0 0 0 0 2,570 2,570 0 3,924 5,251 5,251 5,251 6,089 6,203 6,203 6,395 6,395 6,395 

Xinchang 19 0 0 0 0 0 0 0 0 0 4,790 4,790 5,088 5,088 5,394 5,508 5,394 5,394 5,394 5,394 5,394 

Yuhuan 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Wenling 21 0 0 0 0 0 0 0 0 1,849 1,962 1,962 1,962 1,962 1,962 1,962 1,962 1,962 1,962 1,962 1,962 

Linhai 22 0 0 2,846 2,846 5,150 5,150 5,150 5,150 6,978 9,914 9,914 10,709 10,709 11,069 11,069 11,341 11,341 11,341 11,341 11,341 

Yiwu 23 0 0 0 0 0 0 0 2,458 2,458 5,940 5,940 7,684 7,856 8,162 9,114 9,114 9,114 9,114 9,114 9,114 

Dongyang 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Lanxi 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Yongkang 26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3,943 3,943 3,943 3,943 3,943 3,943 

Jiangshan 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Deqing 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3,382 3,382 

Changxing 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Anji 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Pinghu 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Tongxiang 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Haining 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Longquan 34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table 8 Traffic flows served by each station with the increase of budget under the tolerance of 0.1. 

No. Flows 

 

City/Loc No. 

B 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Hangzhou 1 0 0 0 0 0 14,935 18,846 21,404 21,502 23,602 23,649 24,596 24,710 25,254 25,439 25,439 25,364 25,389 25,364 25,387 

Ningbo 2 0 0 0 0 10,416 10,562 15,769 16,553 16,864 16,578 17,898 17,219 17,135 18,456 18,456 18,480 18,597 18,640 18,621 18,640 

Wenzhou 3 0 0 0 0 0 0 0 0 0 0 0 20,872 22,417 22,433 22,786 22,776 22,786 22,797 22,821 22,825 

Shaoxing 4 6,992 9,752 9,752 7,973 9,338 11,321 11,938 12,361 12,100 15,959 16,084 16,251 16,379 16,520 15,894 16,570 16,570 15,776 16,405 15,776 

Taizhou 5 0 0 0 5,442 11,055 5,243 9,204 12,050 12,927 14,993 15,227 16,454 16,659 16,704 16,062 16,693 16,704 15,927 16,556 15,927 

Jinhua 6 0 0 0 0 0 0 0 0 0 4,962 4,962 8,617 10,001 9,873 10,807 10,166 10,166 10,953 10,348 10,981 

Quzhou 7 0 0 0 0 0 0 0 0 0 0 0 0 1,878 2,248 2,461 2,461 2,461 2,455 2,477 2,477 

Huzhou 8 0 0 0 0 0 0 3,060 3,060 3,060 3,098 3,098 3,330 3,330 3,330 3,330 3,330 3,376 3,376 3,382 3,373 

Jiaxing 9 0 0 2,978 3,331 5,197 6,229 6,306 6,729 6,598 6,598 6,598 6,984 6,984 6,984 7,105 7,157 7,203 7,203 7,203 7,203 

Zhoushan 10 0 0 0 0 0 0 0 0 0 0 1,684 0 0 1,691 1,691 1,725 1,725 1,725 1,725 1,725 

Lishui 11 0 0 0 0 0 0 0 0 0 0 0 4,140 4,341 4,341 5,336 4,695 4,695 5,482 4,877 5,510 

Jiande 12 0 0 0 0 0 0 0 0 0 0 0 0 0 498 683 683 683 683 683 683 

Cixi 13 0 0 0 2,852 5,138 5,632 10,235 10,408 10,506 9,438 9,485 9,483 9,483 9,530 9,530 9,581 9,575 9,611 9,592 9,611 

Yuyao 14 0 4,523 4,523 2,744 0 5,131 5,384 5,514 5,254 5,254 5,378 5,260 5,260 5,385 5,385 5,410 5,419 5,426 5,426 5,426 

Ruian 15 5,995 6,251 6,251 5,995 6,745 5,995 6,745 6,745 8,452 6,745 8,452 6,938 8,645 8,645 8,706 8,706 8,706 8,706 8,706 8,706 

Yueqing 16 0 4,949 4,949 2,596 9,968 2,845 10,214 10,214 12,352 13,170 13,376 14,712 14,903 14,919 14,330 14,961 14,972 14,195 14,824 14,195 

Cangnan 17 0 0 0 0 0 0 0 0 1,707 0 1,707 0 1,707 1,707 1,707 1,707 1,707 1,707 1,707 1,707 

Zhuji 18 0 0 0 0 0 0 0 3,039 3,039 4,393 4,393 5,408 5,522 5,522 6,176 5,534 5,414 6,233 5,586 6,238 

Xinchang 19 0 0 0 0 0 0 0 0 0 5,511 5,511 6,259 6,316 6,188 5,547 6,188 6,302 5,508 6,137 5,508 

Yuhuan 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Wenling 21 0 0 0 0 0 0 0 0 1,947 1,962 1,962 1,962 1,962 1,962 1,962 1,962 1,962 1,962 1,962 1,962 

Linhai 22 0 0 2,846 2,846 7,586 2,763 5,491 8,696 9,007 11,410 11,454 12,059 12,073 12,118 11,476 12,107 12,118 11,341 11,970 11,341 

Yiwu 23 0 0 0 0 0 0 0 2,754 2,754 6,328 6,328 8,181 8,353 8,225 8,913 8,272 8,272 9,066 8,438 9,071 

Dongyang 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Lanxi 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,794 

Yongkang 26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3,267 3,900 

Jiangshan 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Deqing 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3,376 3,376 3,382 3,373 

Changxing 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Anji 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Pinghu 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Tongxiang 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Haining 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Longquan 34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table 9 Traffic flows served by each station with the increase of budget under the tolerance of 0.2. 

No. Flows 

 

City/Loc No. 

B 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Hangzhou 1 0 0 0 0 0 0 20,352 22,543 24,054 23,707 24,908 25,017 24,716 25,214 25,323 25,324 25,125 25,503 25,493 25,473 

Ningbo 2 0 0 0 0 0 15,129 15,162 17,596 17,635 18,198 17,311 19,510 18,540 18,570 18,570 18,604 18,849 18,526 18,526 18,504 

Wenzhou 3 0 0 0 0 0 0 0 0 0 0 21,740 22,504 22,401 22,433 22,784 22,785 22,784 22,804 22,825 22,819 

Shaoxing 4 6,992 9,752 10,396 9,416 10,734 14,460 11,399 12,880 12,989 12,730 13,044 13,164 16,481 16,520 16,534 15,928 15,776 16,570 16,559 16,411 

Taizhou 5 0 0 0 0 0 13,027 13,385 13,492 13,570 13,079 13,389 14,693 16,690 16,704 16,701 16,061 15,908 16,721 16,719 16,562 

Jinhua 6 0 0 0 0 0 0 0 4,285 4,580 4,580 8,831 8,849 8,965 9,947 10,166 10,807 10,959 10,166 10,172 10,339 

Quzhou 7 0 0 0 0 0 0 0 0 0 0 0 0 0 2,322 2,461 2,461 2,461 2,461 2,477 2,477 

Huzhou 8 0 0 0 0 0 0 3,181 3,181 3,181 3,181 3,273 3,297 3,330 3,330 3,328 3,329 3,376 3,376 3,373 3,373 

Jiaxing 9 0 0 4,558 4,733 4,836 5,927 6,694 6,694 6,747 6,747 6,912 7,058 7,058 7,058 7,105 7,157 7,203 7,203 7,203 7,203 

Zhoushan 10 0 0 0 0 0 0 0 0 0 1,632 0 1,691 1,691 1,691 1,691 1,725 1,725 1,725 1,725 1,725 

Lishui 11 0 0 0 0 0 0 0 0 0 0 5,240 5,281 4,309 4,341 4,695 5,336 5,488 4,695 4,709 4,868 

Jiande 12 0 0 0 0 0 0 0 0 0 0 0 0 0 498 683 683 683 683 683 683 

Cixi 13 0 0 3,717 4,002 4,114 5,126 10,583 10,695 10,734 10,387 10,195 10,560 9,530 9,530 9,530 9,582 9,581 9,611 9,603 9,589 

Yuyao 14 0 4,523 4,664 2,173 4,817 8,582 0 5,580 5,580 5,322 5,528 5,723 5,385 5,385 5,385 5,419 5,665 5,426 5,426 5,426 

Ruian 15 5,995 6,477 6,477 6,346 6,715 6,827 6,827 6,827 8,421 8,421 8,463 8,645 8,645 8,645 8,706 8,706 8,706 8,706 8,706 8,706 

Yueqing 16 0 5,175 5,175 2,995 8,301 11,359 11,893 11,906 11,984 12,735 13,242 14,266 14,919 14,919 14,969 14,329 14,176 14,989 14,987 14,830 

Cangnan 17 0 0 0 0 0 0 0 0 1,707 1,707 1,668 1,707 1,707 1,707 1,707 1,707 1,707 1,707 1,707 1,707 

Zhuji 18 0 0 0 0 2,451 0 0 0 5,259 5,259 6,799 6,799 5,482 5,482 5,420 6,062 6,214 5,553 5,552 5,689 

Xinchang 19 0 0 0 0 0 0 0 0 0 0 0 0 6,364 6,302 6,300 5,660 5,508 6,188 6,177 6,029 

Yuhuan 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Wenling 21 0 0 0 0 0 0 0 0 0 1,897 1,740 1,947 1,962 1,962 1,962 1,962 1,962 1,962 1,962 1,962 

Linhai 22 0 0 0 862 3,784 8,737 9,119 9,226 9,226 8,604 8,632 9,646 12,104 12,118 12,115 11,475 11,322 12,135 12,133 11,976 

Yiwu 23 0 0 0 0 2,357 0 3,056 5,444 5,739 5,739 7,723 7,723 8,360 8,299 8,272 8,913 9,066 8,272 8,262 8,429 

Dongyang 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Lanxi 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Yongkang 26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3,099 3,258 

Jiangshan 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Deqing 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3,376 3,376 3,373 3,373 

Changxing 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Anji 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Pinghu 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Tongxiang 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Haining 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Longquan 34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table 10 Traffic flows served by each station with the increase of budget under the tolerance of 0.3. 

No. Flows 

 

City/Loc No. 

B 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Hangzhou 1 0 0 0 0 0 14,228 20,527 22,543 24,281 25,114 25,137 25,247 24,984 24,913 25,439 25,439 25,371 25,480 25,276 25,298 

Ningbo 2 0 0 0 0 0 15,284 15,605 17,922 18,059 17,417 17,637 19,836 18,426 18,570 18,456 18,490 18,604 18,507 18,750 18,772 

Wenzhou 3 0 0 0 0 0 0 0 0 0 20,029 21,740 22,504 22,401 22,786 22,786 22,786 22,786 22,868 22,868 22,868 

Shaoxing 4 6,992 9,752 10,396 10,586 10,924 11,531 11,900 13,206 13,378 13,445 13,445 13,565 16,481 16,351 15,894 15,929 15,929 15,776 15,776 15,776 

Taizhou 5 0 0 0 0 0 13,320 13,732 13,766 14,347 13,145 13,664 14,968 16,690 16,551 16,062 16,062 16,062 15,927 15,927 15,927 

Jinhua 6 0 0 0 0 0 0 0 4,285 5,737 9,504 9,455 9,474 9,514 10,718 10,807 10,807 10,960 11,024 11,024 11,024 

Quzhou 7 0 0 0 0 0 0 0 0 0 0 0 0 0 2,177 2,461 2,461 2,461 2,477 2,477 2,477 

Huzhou 8 0 0 0 0 0 0 3,181 3,181 3,181 3,273 3,273 3,297 3,330 3,330 3,330 3,330 3,376 3,336 3,382 3,382 

Jiaxing 9 0 0 4,558 4,864 5,169 5,600 6,694 6,694 6,747 6,912 6,912 7,058 7,058 7,058 7,105 7,157 7,203 7,157 7,203 7,203 

Zhoushan 10 0 0 0 0 0 0 0 0 0 0 0 1,691 1,691 1,691 1,691 1,725 1,725 1,725 1,725 1,725 

Lishui 11 0 0 0 0 0 0 0 0 1,659 5,289 5,240 5,281 4,309 4,847 5,336 5,336 5,489 5,553 5,553 5,553 

Jiande 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 683 683 683 683 683 683 

Cixi 13 0 0 3,717 4,245 4,381 8,486 10,628 10,695 10,734 10,122 10,195 10,560 9,530 9,530 9,530 9,582 9,582 9,592 9,589 9,611 

Yuyao 14 0 4,523 4,664 5,007 5,007 5,980 0 5,906 5,906 5,854 5,854 6,049 5,385 5,385 5,385 5,419 5,419 5,426 5,672 5,672 

Ruian 15 5,995 6,477 6,477 6,715 6,715 6,827 6,827 6,827 6,963 6,908 8,463 8,645 8,645 8,706 8,706 8,706 8,706 8,706 8,706 8,706 

Yueqing 16 0 5,175 482 8,872 8,872 12,075 12,275 12,288 12,987 11,893 13,242 14,266 14,919 14,819 14,330 14,330 14,330 14,195 14,195 14,195 

Cangnan 17 0 0 0 0 0 0 0 0 0 0 1,668 1,707 1,707 1,707 1,707 1,707 1,707 1,707 1,707 1,707 

Zhuji 18 0 0 0 0 2,789 0 0 0 5,487 7,077 7,028 7,028 5,750 5,844 6,176 6,176 6,214 6,376 6,373 6,395 

Xinchang 19 0 0 0 0 0 0 0 0 0 0 0 0 6,250 6,277 5,547 5,547 5,661 5,394 5,394 5,394 

Yuhuan 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Wenling 21 0 0 0 0 0 0 0 0 0 0 1,740 1,947 1,962 1,962 1,962 1,962 1,962 1,962 1,962 1,962 

Linhai 22 0 0 0 4,104 4,104 9,078 9,517 9,552 9,650 8,738 8,958 9,972 12,104 11,965 11,476 11,476 11,476 11,341 11,341 11,341 

Yiwu 23 0 0 0 0 2,606 0 3,056 5,444 5,967 8,002 7,953 7,953 8,515 8,824 8,913 8,913 9,066 9,114 9,114 9,114 

Dongyang 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Lanxi 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Yongkang 26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3,943 3,943 3,943 

Jiangshan 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Deqing 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3,376 0 3,382 3,382 

Changxing 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Anji 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Pinghu 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Tongxiang 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Haining 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Longquan 34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Based on the above analysis, we understand that both budget and tolerance for cost deviation 

largely affect the workload of a certain station. Thus, when operating a charging station system, the 

operators are expected to equip more charging piles and workers at the busy stations while installing 

fewer chargers and workers at the idle stations. Meanwhile, since some busy stations could serve lots 

of EVs simultaneously, the government must enhance the power grid around these locations for 

electricity safety. Furthermore, these busy stations could be congested due to excessive charging 

demands, which also requires the operator to improve the service quality of these stations. The 

government may organize activities at these busy stations with high public exposure to advertising green 

transportation and other related policy, e.g., EV purchase incentives. To improve the utility of idle 

stations and at the same time, to divert the workload of busy stations, the government may impose a 

charging subsidy policy among these stations. In particular, the charging price at idle stations should be 

reduced while the charging price at busy stations can be increased, especially during peak charging 

hours. The developing countries of BRI are strongly recommended to adopt such a subsidy policy since 

it can alleviate the workload of busy stations and to improve idle stations’ utility, making governments’ 

station operation policy more economical and efficient. Furthermore, balancing charging demand can 

mitigate the pressure on the power grid and avoid the formation of hidden safety hazards, which is 

particularly important for some countries and regions with underdeveloped power technology. 

 

4.3.5 Deploying charging stations in multiple stages 

As the government aims to promote green transportation, the public’s environmentally friendly 

awareness and acceptance of traveling by EVs are expected to advance. Reflected in the modeling 

perspective, it is the increase of travelers’ tolerance for travel cost deviation. The change of tolerance 

may significantly influences the station deployment. To see that, we deploy stations with 12 unit budgets 

under tolerances 0 and 0.3, respectively. Under tolerance 0, the fast charging stations should be built at 

locations 1, 2, 3, 5, 6, 19 and the slow charging stations should be at locations 4, 8, 9, 11, 13, 14, 15, 

16, 18, 21, 22, 23. Under tolerance 0.3, the optimal locations for fast and slow charging stations are 1, 

2, 3, 5, 6 and 4, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 21, 22, 23, respectively. When EV users accept a 

higher cost deviation, there is no need to assign a fast charging station at location 19. Instead, the saved 

cost can be used to build two slow charging stations at locations 10 and 17. Accordingly, the covered 

flow volume rises from 63,393 to 69,487 as tolerance changes from 0 to 0.3. In the real world, it may 

be impractical for the government to remove station 19, although station 19 becomes redundant when 

travelers’ tolerance increases to 0.3. A way to cope with this problem is to implement infrastructure 

projects in several stages. This enables the government to modify the project according to travelers’ 

changing behaviors, specifically the tolerance in this study. Ideally, the charging stations installed in 

the future stages should complement these in early stages, so as to cover as many flows as possible after 

the travelers’ tolerance increases. 

Now we consider a mid-term plan, i.e., two stages, to further illustrate the above idea. Suppose 

the government will invest 7 unit budget at each stage and travelers’ tolerance rises from 0 to 0.3. To 

satisfy the charging demand at stage 1, we use the proposed approach to maximize the flow coverage 

under tolerance 0 and budge 7. As shown in Table 11, the resultant station deployment is locations 1, 

2, 5 for fast charging stations and locations 4, 8, 9, 13, 14, 15, 16, 22 for slow charging stations. As for 
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stage 2, we maximize the flow coverage under tolerance 0.3 and budget 14. The result suggests fast 

charging station to be built at locations 1, 2, 3, 5, 6, 11, 19 and slow charging stations at locations 4, 7, 

8, 9, 10, 13, 14, 15, 16, 17, 18, 21, 22, 23. By comparing the two deployment plans, at stage 2, we 

should build fast charging stations at locations 6, 11, 19 and slow charging stations at locations 17, 18, 

21, 23.  

To conclude, the government should first estimate travelers’ tolerance for travel cost deviation 

at stages 1 and 2, which can be done by survey. Then, under the given total budget, the government 

needs to assign the investment at stages 1 and 2. For stage 1, we use the proposed approach to maximize 

flow coverage under the tolerance and the budget for stage 1 and obtain the deployment plan for stage 

1. As for stage 2, we maximize flow coverage under the tolerance of stage 2 and the total budget of all 

stages. Then, we compare the obtained deployment with the plan of stage 1 to find which stations should 

be added. These added stations are the deployment plan for stage 2. Note that the problem solved at 

each stage is static. Briefly, at a certain stage, we maximize the flow coverage with the tolerance of and 

the budget allocated to this stage. The obtained deployment excluding the stations previously built is 

the deployment plan of this stage. The inputs of each stage are assumed to be estimated or given by the 

operator. Analytically modeling the uncertainty of parameters in future stages requires other 

sophisticated techniques, e.g., stochastic or robust optimization, which goes beyond the focus of this 

study. 

 

Table 11 Comparison of two stages in a mid-term station deployment plan. 

 Stage I Stage II 

Tolerance 0.1 0.3 

Budget 7 14 

No. Flows 53609 72640 

Fast Station No. 1, 2, 5 1, 2, 3, 5, 6, 11, 19                         

Slow Station No. 4, 8, 9, 13, 14, 15, 16, 22 4, 7, 8, 9, 10, 13, 14, 15, 16, 17, 18, 21, 22, 23  

 

4.4 Policy outlook 

Following the fast advancement of battery technology, it is foreseeable that the EVs will be 

increasingly adaptable to long-distance trips in the future. However, larger battery capacity will bring 

about an increase in charging time, and accordingly, a more efficient charging service would be 

desirable for the EV users. Thus, widely building fast charging stations more aligns with the 

development trend of travelers’ improving requirements. On the other hand, with the quickly evolving 

charging technology, even the currently state-of-art charging facilities are possible to become out-of-

date in the next few years. The charging facility replacement and renovation will inevitably call for a 

large amount of investment. Hence, to reduce the renovation costs, the government is expected to adopt 

more replaceable equipment when constructing charging stations, such as modular equipment, which 

can be partly replaced in the renovation. Also, the government is supposed to improve the power grid 

load to ensure electricity safety as well as to support potential peak power consumption.  

As the EVs are gaining more and more popularity, the charging demand for EVs will definitely 

get increased. The charging stations will be more closely connected with EV users’ life and travel and 

are likely to be the pivot joining people’s lives and the future Internet of Things (IoT). The data 
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contained in the charging station has great value, such as EV users’ behavioral data (e.g., travel 

trajectory and station choices), battery charging data (e.g., charging and discharging process), as well 

as power grid data (e.g., potential safety hazard and peak valley values). These data will help us better 

understand EV users’ preferences and habits for improving service quality and regulate the construction 

of charging stations and ensure the safety level. In addition to assisting in IoT connection and policy-

making, the data can also be used in research areas such as emerging battery and charging technologies. 

Promoting charging station construction on a large scale not only requires financial support but 

also needs land policy support so that we can allocate these stations in a reasonable deployment. In this 

process, the central government plays a crucial role in responsible for the top-level design, i.e., entailing 

favorable financial and land policies for charging station construction together with green transportation 

advertisements. For instance, allocate dedicated funds for the construction of charging stations; sell the 

land for charging stations at low prices; subsidize the purchase of electric vehicles; and subsidize the 

charging fees. When the local governments optimize the station deployment in their administration 

areas, they should combine the regional charging demands and policies for better adapting to local 

conditions. In particular, for the developed countries in the BRI, the government could locate more fast 

charging stations domestically to provide efficient charging services and adapt to future increasing 

charging demands. In contrast, in the developing countries in the BRI and other nations with a limited 

budget, they are expected to prioritize slow charging station construction so that more travel routes can 

be covered. Furthermore, the government could also build fast charging stations at metropolitans, 

especially in the cities with a high EV penetration rate, while locating slow charging stations in villages 

and rural areas. These two types of stations can be geographically complementary to each other. 

The increase of charging stations could put more challenges to the power facilities. 

Companying with the promotion of charging facility construction, the power grids should be also 

upgraded at the same time to be adaptable to high-power charging loads. Meanwhile, the government 

is expected to actively conduct advertisement and education of green transportation in the public. For 

example, the EV users are encouraged to refuel their vehicles in low power consumption valleys and 

accept staggered charging. Furthermore, the supporting policy towards unifying the standard of station 

construction and operation is anticipated to facilitate coordination and communication in a holistic 

management perspective. Finally, the collaboration between the local governments and enterprises, 

which is popular in many commercial activities, can be referenced to share the costs of construction 

and operation. It may be a good choice to allocate the stations nearby large shopping malls and ask the 

shopping malls to afford part of the costs, e.g., buying lands and hiring workers. The charging stations 

will attract more travelers for the malls, beneficial for both the government and the enterprise. 

 

5. Conclusions and future research  

This study investigates the optimal deployment of charging stations, i.e., fast and slow charging 

stations, for flow coverage maximization under the limited budget while taking EV users’ partial 

charging behavior and elastic demand. The travelers are assumed to accept a cost deviation travel path 

aside from the minimum cost travel path and the additional cost will result in travel demand decline. To 

solve this problem, we propose a two-phase approach that first quickly finds high-quality station 

deployment and then utilizes the obtained deployment plan to expedite the model solving of the 
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considered location problem. To efficiently find high-quality station deployment plans, we develop a 

two-layer heuristic based on the simulated annealing framework. A deployment generation rule based 

on the flows passing through each candidate location is devised to construct promising deployment 

plans in the outer layer. The flow coverage of the generated deployment is assessed in the inner layer 

to refine the deployment generation rule. Leveraging the convexity of the elastic demand function and 

the inverse relationship of GTC and covered flows, we propose a mixed-integer linear programming 

model that can quickly find the flow coverage, which further enhances the algorithm efficiency. The 

performance of the proposed two-phase approach is examined on the highway network of Zhejiang, 

China by numerical experiments. The results show that our approach significantly outperforms the 

existing algorithm for the DMCS problem in the computation time, particularly under a difficult 

parameter setting such as permitting a high travel cost deviation tolerance. 

Considering travelers’ behavioral characteristics in charging station location optimization 

provides policymakers with some insightful implications from five perspectives. Notably, we found 

that (a) Given a higher cost deviation being accepted by travelers, the predesignated budget can satisfy 

more charging demands. In other words, by encouraging travelers to accept a reasonable additional 

travel cost through advertising green transportation and transport electrification, governments could 

serve more EV users under a limited budget or use less investment to accomplish the target demand 

fulfillment, resulting in a more economical policy. (b) As the available investment rises, the growth rate 

of flow coverage slows down gradually, especially after the ratio of covered flow volume reaches 95%. 

As a matter of fact, a high flow coverage ratio can be achieved with very limited funds. Thus, we 

strongly recommend that governments set a reasonable target of charging demand fulfillment, such as 

85%-95%, rather than substantially invest to satisfy all demands, so as to ensure the efficient utilization 

of the investment. (c) Densely populated cities and the intersection of multiple highways are more 

favorable to be chosen as a charging station location, especially locating fast charging stations; on the 

contrary, small cities are much less likely to be assigned a charging station. Therefore, we recommend 

governments to policy practice in large cities and transportation hubs, with emphasis on budget and 

policy support. (d) It is observed that the workload between charging stations differs from each other 

significantly. The busiest station serves more than ten times as many users as the least-busy station, 

suggesting a charging demand imbalance among stations. Operators could equip these busy stations 

with more charging piles and workers, as well as upgrade the supporting power grid to ensure electricity 

during peak demand times. Also, pricing strategies, which is widely used in transportation management 

(Eliasson, 2021), may be incorporated to alleviate the imbalanced workload among stations. For 

example, applying different charging prices between busy and idle stations to mitigate the work pressure 

of busy stations and increase the efficiency of idle stations. (e) It can be foreseeable that after regulators 

advertise for green transportation, the popularity of EVs and travelers’ cost deviation tolerance would 

get increased over time. Therefore, governments should take into account travelers’ changing tolerance 

when devising a mid- or long-term station construction plan. In particular, the pre-positioned charging 

stations and the post-positioned stations are expected to together form the optimal deployment after 

travelers’ cost deviation tolerance gets increased.  

Further research can be conducted in several directions. First, due to the limited capacity of 

charging stations in the real world, users may have to wait for being served. The queueing behavior at 

the charging station can be modeled in the future. Second, the travel time of each link is assumed to be 
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known in advance in this paper while in practice the travel time may increase due to the traffic 

congestion. The impact of traffic congestion can be incorporated into the location model to depict EV 

users’ travel costs more precisely. Third, instead of the linear charging profile adopted in this study, we 

can consider other realistic charging profiles and the impact of EV’s own properties, e.g., the battery 

thermal effect (Liao et al., 2021), on battery charging and discharging in locating charging stations, 

which enables the model to be more powerful and the location strategy to be more realistic. 
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Appendixes 

Appendix 1. Notations 

N  Set of locations  

A  Set of links 

S  Set of candidate locations for building charging stations 

W  Set of OD pairs 

,i j  Indices for locations  

s  Index for candidate locations 

 o w  Origin of OD pair w  

 d w  Destination of OD pair w  

w  Index for OD pairs 

q  Index for station types 

B  Total budget  

E  Battery capacity measured in kWh 
q

sb  Cost of building type q  station at location s  

OE  Initial SOC at origins 

DE  Minimum SOC after arriving at destinations 

ijt  Travel time along link  ,i j  

ije  Electricity consumption of link  ,i j  

q  Fixed time of charging at type q  stations 

q  Fixed cost of charging at type  q  stations 

q  Time consumption per kWh of charging at type q  stations 

q  Cost per kWh of charging at type q  stations 

  Travelers’ value-of-time measured in $/h 
wC  Minimum GTC of OD pair w  

w  Tolerance for cost deviation of OD pair w  
w  Sensitivity to cost deviation of OD pair w  
wF  Flows between OD pair w  under cost 

wC  

 wf  Convex elastic demand function with respect to GTC 

w

ijx  Binary variable which equals 1 if the path flow between OD pair w  traverses link  ,i j  and 

0 otherwise 
wz  Binary variable which equals 1 if OD pair w  is covered and 0 otherwise 
w

sr  Binary variable which equals 1 if the path flow between OD pair w  charges at location s  

and 0 otherwise 
w

sp  Continuous variable representing the charging amount at location s  for OD pair w  
w

ie  Continuous variable denoting the remaining SOC upon exiting location i  for OD pair w  
wc  Continuous variable expressing the generalized travel cost of OD pair w  
slow

sy  Value of the slow charging station location variable in the LP relaxation of the model [OP-II] 
fast

sy  Value of the slow charging station location variable in the LP relaxation of the model [OP-II] 

s  Cost ratio of building a fast and a slow charging station at location s  
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sf  Flows passing through location s  in the LP relaxation of the model [OP-II] 

sf  Potential of location s  in the deployment initialization process 

 Candidate location sequence in the decreasing order of sf  

T  Annealing temperature 

l  Iteration number 

  Annealing ratio 

TabuX  Tabu list for storing low-quality station deployments 

sv  Flows passing through location s  under the current deployment D  

sv  Flows passing through location s  under the new deployment D  

k  The number of bad locations according to ,sv s S   

D  Current station deployment 

f  Current flow coverage 
*D  Best station deployment 
*f  Best flow coverage 

D  New station deployment 

f   New flow coverage 

s  Location to be removed for construct new deployments 

s  Fixed time of charging at location s  under a given deployment 

s  Fixed cost of charging at location s  under a given deployment 

s  Time per kWh of charging at location s  under a given deployment 

s  Cost per kWh of charging at location s  under a given deployment 

 

Appendix 2. The optimization model for determining the MCTP of OD pair w  

[OP-I] 
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where M  is a sufficiently large positive number and 


 is the set of non-negative real numbers. 

The objective function shown by Eq. (3) can be regarded as GTC to complete the trip between 

OD pair w  under the given station deployment plan. If this OD pair is covered, we have 1wz   and the 

objective function reduces to 
wc . In this case, the proposed model minimizes GTC and we can obtain 

the model [OP-I] of OD pair w  under the given station deployment. If OD pair w  cannot be covered, 

we have 0wz   and the objective value will be a very large positive number. Since we aim to minimize 

the objective function, the variable 
wz  will be forced to be zero if this OD pair can be covered.  

Eq. (4) defines GTC of OD pair w , where the first part of its right-hand-side (RHS) is the cost 

resulted from travel time along highways and the second part represents the cost of charging activities. 

Constraint (5) suggests that the GTC cannot exceed the pre-specified acceptable threshold. Constraint 

(6) ensures the flow conservation of the path flow between OD pair w . 

Constraints (7)-(12) are the battery charging constraints. In particular, Constraint (7) expresses 

the initial SOC before departing from the origin. If a charging station locates at the origin of OD pair 

w , the SOC could be replenished by an amount 
 

w

o w
p ; otherwise, the SOC upon exiting the origin is 

OE . Constraint (8) restricts that the SOC at the destination is above 
DE . Constraint (9) indicates the 

upper and lower bounds of the SOC upon leaving a certain location. The SOC cannot exceed the battery 

capacity while it should be sufficient to traverse the next link. Constraint (10) limits the maximum 

refueling amount when charging the battery. Constraints (11) and (12) establish the relationship of the 

SOC between any two adjacent locations. Specifically, for a candidate location s , if link  ,i s  is 

traversed by the path flow of OD pair w , Constraint (11) reduces to an equality constraint, i.e., 
w w w
s s i ise p e e  .The LHS and RHS represent the SOCs upon arriving at location s  and exiting 

location i , respectively, and these two values of SOC should be the same. If the path flow does not 

traverse link  ,i s , Constraint (11) becomes redundant. Likewise, Constraint (12) expresses the SOC 

relationship of a noncandidate location and its adjacent locations. The variable domains are specified 

by Constraints (13) and (14). 

The proposed model is a mixed-integer linear programming model. In particular, the objective 

function and all constraints are linear while decision variables contain both integer and continuous 

variables. The number of constraints is positively proportional to network size and candidate locate set, 

in particular,  2
S N . Hence, for each OD pair, its MCTP has a moderate size and variables and 

thus generally, can be solved efficiently by off-the-shelf solvers. 
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Appendix 3. The model [OP-II] 

Except for the decision variables w

ijx , wz , 
w

s , 
w

ie , 
w

sp  as defined in the model [OP-I], the 

model [OP-II] introduces a station location variable  0,1q

sy   for each candidate location s S  and 

each station type q Q , to determine whether type q  station is built at location s . A mixed-integer 

nonlinear programming model was first developed to formulate the DMCS problem. The nonlinear 

objective function and the nonlinear terms in constraints were then addressed by piece-wise linear 

approximation and linearization, respectively. The resultant mixed-integer linear programming model 

is as follows: 

[OP-II] 
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where the sets  ,H w
 and  ,H w

 are defined as follows: 
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In the model [OP-II], the feasible travel cost range of OD pair w  is partitioned by a total number 

of  V w  pre-specified breakpoints; the n th  breakpoint of OD pair w  is denoted by 
w

nc . The flow 

volume of OD pair w  under the travel cost 
w

nc  is represented by  w w

nf c . For each breakpoint 

 , , 1,...,w

nc w W n V w   , a  nonnegative variable 
w

n  is defined, referred to as the convex coefficient 

associated with 
w

nc . Eq. (15) represents the approximated covered flow volume. Constraints (16) and 

(17) limit the total construction costs and the number of station types at a particular location, 

respectively. Constraint (18) defines the GTC of OD pair w , where 
,1w q

sc  and 
,2w q

sc  are auxiliary 

variables for linearizing the charging amount-dependent cost and the fixed cost of charging at location 

s  by type q  station w . Constraint (19) is the linearization constraint for the variables 
,1w q

sc  and 
,2w q

sc . 

The GTC of OD pair w  is represented by breakpoints and coefficients in Constraint (20). The upper 

bound of all coefficient of OD pair w  is specified by Constraint (21). The coefficients should further 

satisfy Constraint (22). In the model [OP-II], a Gray code method is employed to reduce the number of 

auxiliary binary variables in the formulation of the piece-wise linear approximation. A special kind of 

binary code, namely Gray code, is used to develop a compact form of the coefficient constraint, i.e., 

Constraint (22). The th   digit of the n th  Gray code of OD pair w  is denoted by ,

w

n  . A binary 

auxiliary variable 
w

  is defined for the th   digit of the Gray codes of OD pair w . As for the details 

of the Gray code method, please refer to the paper of Ouyang et al. (2020). 

 

Appendix 4 Pseudo-code of the TSA heuristic algorithm 

1 Initialize T ,  , k , l , L , 
*D , 

*f , 
*D D , 

*f f , 
*,s sv v s S   , and 

TabuX  . 

// Outer Layer 

2 For 1,...,l L  

 // New deployment generation 

3  _ _ 0Out of Tabu   // Denote whether the new deployment is out of the Tabu list. 

4  While _ _ 0Out of Tabu   

5    _ ,s Random Min D k  // Find the station to be removed. 

6    _ ,D Random Strategy D s  // Select a new deployment generation strategy. 

7   If 
TabuD X  

8    _ _ 1Out of Tabu   // The new deployment is out of the Tabu list. 

9   End if 

10  End while 

 // Inner Layer 

  // New deployment assessment 

11   _ _f Find flow coverage D   // Assess the flow coverage of D . 

12   _ _ ,sv Find passing flows s s S     // Calculate the flows through each location. 

 // Deployment update and annealing 

13  If f f   

14   D D , f f  , ,s sv v s S    // Update the current deployment, flow coverage, and 

flows through each candidate location. 

15   If 
*f f  
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16    
*D D , 

*f f  // Update the best deployment and the best flow coverage. 

17   End if 

18  Else if    0,1
f f T

e Rand


  // Generate a random number between 0 and 1 as the threshold. 

19   D D , f f  , ,s sv v s S    

20   T T   // Update the annealing temperature. 

21  Else 

22   
Tabu TabuX X D  // Update the Tabu list. 

23  End if 

24 End for 

25 Return 
*D  // Return the best deployment. 

 

We define several subfunctions for ease of representation. Subfunction  _Random Min  

returns a candidate location, denoted by s , that is randomly chosen from the worst- k  locations 

according to the value of ,sv s S  . Subfunction  _Random Strategy  returns a new station 

deployment plan, denoted by D , that is constructed by removing the station at location s  from the 

incumbent deployment plan D  and randomly chooses a strategy between Strategy Fast and Strategy 

Slow to allocate new stations. The flow coverage of deployment plan D  and the flows through each 

location ,sv s S    are obtained by  _ _Find flow coverage  and  _ _Find passing flows , 

respectively through the model [OP-I] and the elastic demand function. 
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