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Abstract—Electric vehicles (EVs) have received considerable1

attention in dealing with severe environmental and energy crises.2

The capacity planning of public charging stations has been a3

major factor in facilitating the wide market penetration of EVs.4

In this paper, we present an optimization model for charging5

station capacity planning to maximize the fuzzy quality of6

service (FQoS) considering queuing behavior, blocking reliability,7

and multiple charging options classified by battery technical8

specifications. The uncertainty of the EV arrival and service9

time are taken into account and described as fuzzy numbers10

characterized by triangular membership functions. Meanwhile,11

an α-cuts-based algorithm is proposed to defuzzify the FQoS.12

Finally, the numerical results illustrate that a more robust plan13

can be obtained by accounting for FQoS. The contribution of14

the proposed model allows decision-makers and operators to15

plan the capacity of charging stations with fuzzy EV arrival16

rate and service rate and provide a better service for customers17

with different charging options.18

Index Terms—electric vehicle, charging station, capacity plan-19

ning, fuzzy quality of service, multiple charging options20

I. INTRODUCTION21

ELECTRIC Vehicles (EVs) have gained popularity in re-22

cent years to mitigate the shortage of fossil fuel and meet23

climate change targets. Compared to conventional vehicles24

with an internal combustion engine (ICE) that consume fossil25

fuels and exhaust gas emissions [1], EVs powered by elec-26

tricity provide a cleaner and environmental option to replace27

traditional ICE and move pollution away from urban areas.28

As a result, EVs featured as environmentally friendly have29

been pushed into mainstream adoption in many countries. The30

UK government has published an aggressive strategy called31

“Driving the Future Today” to expand charging networks,32

aiming at zero greenhouse gas emission by 2050 [2]. Further-33

more, the Automated and Electric Vehicles Bill 2017–201934

released in 2017 also intended to reduce the dependence on35

fossil fuels [3]. Considering the rapid developments in battery36

production technology, it is suggested that over 150 million37

EVs are required by 2030 [4], and the EV population is38

expected to reach a considerable market portion in the future39

[5]. Correspondingly, the necessary deployment of chargers40

and charging stations is essential to achieve such penetration41
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rates since EVs are basically supported by an electric motor 42

powered by rechargeable battery packs [6]. The United States 43

government has rolled out a project that hosts chargers every 44

25 miles at West Coast Green Highway [7]. In parallel, over 45

1000 chargers are installed by the Scottish government to 46

ensure that the average distance from any location to the 47

nearest public charger is about 2.78 miles, aiming to phasing 48

out the need for new petrol and diesel cars and vans by 2032 49

[8]. Obviously, the expansion and design of reliable charging 50

stations are essential for the rapid development of the EV 51

market. 52

At the moment, multiple charging options classified by the 53

battery technical specifications are available for EV charging 54

[9]. Therefore, it is crucial to design and operate integrated 55

charging stations to a provide efficient charging services for 56

customers with different charging options. However, no matter 57

what kind of charging technique is adopted, EV charging 58

duration is always considered to be long when compared to 59

traditional liquid-fuel powered ICE counterparts. A relatively 60

long charging time inevitably leads to the formation of queuing 61

behavior, which may cause the EV customers’ dissatisfaction 62

if the waiting time is unacceptable. Without considering the 63

construction cost and charging station layout, this problem 64

can be addressed by installing more chargers in a charging 65

station. However, the success of EV market development pri- 66

marily relies on the capability of the power grid. Uncontrolled 67

charging service can easily lead to the line and transformer 68

overloading, thus resulting in an outage [10]. For instance, 69

5% EVs charging simultaneously would lead to 5.5 GW of 70

extra power consumption in the Virginia and Carolinas region 71

by 2018 [11]. Therefore, the trade-off between waiting time 72

and grid reliability is of paramount importance for a charging 73

station. 74

As a widely accepted indicator, the quality of service 75

(QoS) evaluation of charging stations has received widespread 76

attention [12]–[16]. The literature on charging station design 77

and QoS evaluation can be grouped into two categories. The 78

first group includes studies from the customers’ standpoint, 79

and more recent attention has mainly focused on the queuing 80

theory. If all the charging sockets are occupied, EVs must 81

join a queue and wait for an available socket. In [17], the 82

charging load of a single fast charging station is forecasted by 83

an M/M/s queuing model with the arrival rate of discharged 84

EVs. In [18], a mathematical model is developed for handling 85

requests for EV charging/discharging at EV charging stations 86

based on queuing theory. A capacity-limited recharging sta- 87
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tion location model with queuing behavior considering both88

recharging time and waiting time is proposed in [19]. In [20],89

a charging infrastructure planning model is established with an90

M/M/s/N queuing model. Both waiting time and construc-91

tion costs are considered to determine the optimal capacity of92

a charging station. A multi-priority M/M/s queuing model93

is proposed in [21] to minimize the waiting time for a public94

charging station. The customers in this model are divided into95

two classes with different queuing priorities to improve the96

EVs satisfaction in terms of charging service by achieving97

waiting time reduction. In [22], a QoS evaluation model for a98

fast charging station is proposed considering queuing theory99

and multiple charging options. A corresponding charging100

strategy is also investigated to reduce the mean waiting time to101

serve more customers. In [23], an M/M/s/N queuing model102

is employed to evaluate the queuing state of different charging103

stations and find the optimal one that ensures the minimum104

total charging time. The relationship between the charging105

station capacity and customer service quality considering106

queuing theory is investigated in [24]. Simulations based on107

a homogeneous EV arrival are carried out and closed-form108

equations are derived therefrom to estimate recharging time109

and waiting time in the queue. On the other hand, the grid110

reliability also plays a key role in the design and operation111

of a public charging station. The second group includes112

studies from the standpoint of design-makers and operators.113

The study in [10] presents a capacity planning framework114

for EV charging stations with loss-of-load-probability as the115

primary performance metric, which measures the probability116

that the remaining grid power in the storage system fails117

to accommodate the demand. Authors in [25] proposed an118

optimization model for the optimal siting and sizing problem119

of EV charging stations, which minimizes the Energy Not120

Supplied (ENS) as the objective to guarantee the power system121

reliability. In [26], an EV charging station planning model is122

established considering the electrical reliability check based123

on a DC power flow model to ensure the charging reliability124

and expected QoS.125

Besides, a few recent research works use both queuing126

theory and grid reliability to design the charging station. A127

charging station architecture is designed in [27] to provide a128

desirable QoS by using performance measure from queuing129

theory with sustained grid stability guarantees. In [28], a con-130

trol and management framework of the grid power is proposed131

based on a non-preemptive priority queue. This model can be132

taken into account to design a charging station with various133

charging demands. However, a deterministic charging demand134

model is required within the literature to model the charging135

behavior of EV customers, which is impractical in a real charg-136

ing environment. Accurate modeling of charging demand and137

service requires historical data related to EV arrival, departure,138

and energy consumption in order to statistically reflect the139

stochastic processes of the overall charging behavior. However,140

historical data is either insufficient or uncertain. Imprecision141

or ambiguity is the characteristic of many capacity planning142

parameters, generally because of insufficient historical data.143

Besides, it is unfeasible to determine the planning parameters144

in the design stage of a charging station since no accurate145

data can be collected before the charging station is actually 146

operating, thus implying that only approximate values of 147

arrival rate and service rate can be used to evaluate the 148

QoS and further design the system capacity. Therefore, due 149

to the insufficient understanding of the charging behavior of 150

EV customers, a gap still exists in the literature since none 151

of the existing works considers fuzzy characteristics in the 152

capacity design process of a charging station. In this paper, we 153

present a capacity planning model for an EV charging station 154

that provide multiple charging options for EV customers. 155

The customers’ mean waiting time and the charging station’s 156

blocking probability are the QoS criterion for the performance 157

evaluation of a charging station. Furthermore, the blocking 158

probability is calculated to evaluate the grid reliability of the 159

charging station. The major contributions of this study are 160

outlined in the following: 161

1) We introduce the fuzzy M/M/s/N queuing theory 162

to model the EV charging station that offers multiple 163

charging options, where the arrivals rates and service 164

rates are considered as fuzzy numbers. 165

2) We propose a novel fuzzy quality of service (FQoS) 166

evaluation model to quantify the service quality based 167

on the mean waiting time and blocking reliability. A 168

defuzzification algorithm is presented to obtain the de- 169

fuzzified FQoS from the output of the aggregated fuzzy 170

set. 171

3) We develop a new capacity planning model considering 172

FQoS to find the optimal system capacity and number of 173

charging sockets of each charging option. We show that 174

a more robust capacity plan can be obtained by including 175

the fuzziness in the model. 176

This paper is organized as follows. Section II presents 177

the original capacity planning model, including M/M/s/N 178

queuing theory, blocking probability estimation and the QoS 179

evaluation model. Section III describes the capacity planning 180

model considering FQoS, where the fuzzy queuing theory and 181

blocking probability are investigated considering the fuzzy 182

arrival rate and service rate. A defuzzification algorithm is 183

also proposed in Section III to transform the FQoS into a 184

crisp value. The analytical and simulation results are presented 185

and discussed in Section IV. Finally, Section V concludes a 186

summary of the study. 187

II. SYSTEM MODEL AND PROBLEM FORMULATION 188

Electric vehicle charging demands are basically determined 189

by the actual needs of customers. Multiple charging options 190

(e.g., DC fast charging, AC Level-II charging, superfast charg- 191

ing, etc.) are available in a standard public charging station. 192

Customers adopt different charging options according to their 193

personal arrangements and preference [29]. Based on this 194

premise, each charging option has a queue with a specific 195

arrival rate and service rate. The charging service follows 196

the first-come and first-serviced (FCFS) order as illustrated 197

in Fig. 1. The capacity planning problem of a charging station 198

is influenced by the dynamics between design-makers and 199

customers. The former expects stable grid reliability, and the 200

latter seeks lower waiting time. We consider two canonical 201
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Fig. 1. Schematic view of the queuing behavior

design aspects, i.e., the number of charging sockets and202

queuing system capacity, of an EV charging station to balance203

such dynamics. In this paper, the goal of a charging station is204

to provide a better quality of service (QoS) to customers with205

different charging options. The QoS of a charging station can206

be divided into two components, including the mean waiting207

time and blocking reliability. Clearly, installing more charging208

sockets would reduce the mean waiting time but also provoke209

the congestion of the power grid and further increase the210

blocking probability. In the design stage of a charging station,211

it is often infeasible to determine the crisp arrival and service212

rate due to the inaccuracy or fluctuation of data. Therefore,213

we propose an integrated solution that considers FQoS and214

multiple charging options. The primary goal of the model is to215

maximize the FQoS with desirable waiting time and blocking216

reliability guarantees. Before proceeding to the details of the217

fuzzy model, the original QoS evaluation method and capacity218

optimization model will be discussed considering multiple219

charging options.220

A. Queuing model221

In this section, we present a queuing model that will be222

used to represent the EV charging behavior. Since an EV with223

a specific charging option does not necessarily need identical224

plug-in sockets, customers can immediately enter service if225

there is an available socket in the charging station. If all226

expected sockets are occupied, then the EV has to join a227

designated queue until a suitable socket becomes available.228

In this paper, we consider G distinct charging options, which229

are distinguished by their technical specifications. The arrival230

rate of a specific charging option is defined as the number231

of EVs that arrive at the charging station per hour, whereas232

the service rate of a charging socket is defined as the number233

of EVs that can be served per hour. We assume that EVs234

arrive at the charging station according to a Poisson process235

and the arrival rate of option g ∈ {1, 2, ..., G} is denoted by236

λg . It should be noted that the spatial temporal distribution237

of the charging request is not included in the model. Fur-238

thermore, all service times are independent and identically239

distributed according to an exponentially distributed service240

rate µg facilitated by a charging socket. The charging service241

is provided by sg sockets in each queue and thus implying242

that the overall queuing system can be further divided into G 243

queuing subsystems with a distinct capacity Ng . In principle, 244

queuing process tends to derive the performance measures with 245

the Markov chain by introducing the state description [30]. 246

Therefore, we adopt M/M/sg/Ng queuing model for each 247

option where M denotes the Markovian process. Note that EV 248

arrivals act independently. The state transition diagram for the 249

queue system with capacity Ng can be derived and depicted 250

as shown in Fig 2, where each state represents the number of 251

EVs in the corresponding queuing system. 252

Let kg denote the number of EVs in the queuing system 253

with option g. It should be noted that if kg ≤ sg , the overall 254

completion rate is kgµg since no queuing behavior occurs in 255

the system. Otherwise, the completion rate is sgµg since all 256

sockets are occupied and the EV needs to join a designated 257

queue until a suitable socket becomes available. 258

For any positive integer u and possible states x0, x1, ..., 259

xu, xu+1, a Markov chain is defined as a discrete-time stochas- 260

tic process with state space ξ = {0, 1, 2, ...} if the probability 261

of the system in each state satisfies the rule of conditional 262

independence, i.e., 263

P (Xu+1=xu1|Xu=xu, Xu−1 = xu−1, ..., X0 = x0)

= P (xu+1 = j|Xu = i)
(1)

where Xu is a random variable that denotes the value of the 264

Markov chain at step u. Specifically, when new EVs arrive 265

at or depart from the charging station, the next state of the 266

queuing system is only determined by the current state and the 267

time elapsed according to certain probabilistic rules, i.e., this 268

stochastic process exhibits Markov (or memory-less) property. 269

The state transition matrix P with time homogenous for 270

the queuing system with Markov property in this paper is 271

defined as a matrix containing information on the probabilities 272

of particular transitions. Given the finite and countable state 273

space ξ, the (i, j)th element of the state transition matrix P 274

is given by 275

Pij = Pr(Xu+1 = j,Xu = i) (2)

The corresponding transition matrix can be expressed as 276




−λ λ 0 · · · 0 0

µ −(λ+µ) λ · · · 0 0

0 2µ λ −(λ+2µ) · · · 0

· · · · · ·
0 0 · · · sµ −(λ+s) λ

0 0 · · · · · · · · · · · ·




(3)

0 1 2 . . . gs . . .1gs  1gN  gN

g 2 g g gs  g gs 

g g g g

Fig. 2. The state transition diagram
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Note that the subscript g representing different charging op-277

tions is omitted for simplicity. Let πk denote the probability278

of the queuing system being in state k. πππ = {π0, π1, ..., πN}279

is a Ng +1−dimensional row vector whose ith element is πi.280

Given the system state transition matrix P , πππ is the vector of281

steady-state probability if282

πππ · P = 000T (4)

The kth steady-state probability can be obtained by a simple283

set of first-order difference equations as follows:284

(k + 1)µπk+1 = λπk (5)

In particular,285

π1 =
λ

µ
π0 (6)

and286

π2 =
1

2

(
λ

µ

)2

π0 (7)

Let ρ = λ/µ denote the occupancy rate of the queuing287

system. In this paper, we assume that ρ/s 6= 1 in the following288

model. Therefore, the general solution of the steady-state289

probability distribution is calculated by290

πk =





1

k!
ρkπ0 for 0 ≤ k ≤ s
ρs

s!sk−s
π0 for s ≤ k ≤ N

(8)

Owing to the fact that
∑N
k=0 πk = 1, π0 can be expressed by291

π0 =

(
s−1∑

k=0

1

k!
ρk +

ρs
[
1− (ρ/s)N−s+1

]

s!(1− ρ/s)

)−1
(9)

By mathematical induction, the mean queue length is given292

by293

E(L) =

N∑

k=s

(k − s) · πk (10)

According to Little’s law, the number of customers in a294

stationary queuing system is equal to the effective arrival rate295

λ multiplied by the mean time that a customer spends in the296

queuing system. Therefore, the mean waiting time for different297

charging options is calculated by the formula below:298

Wg =
E(Lg)

λg(1− πgN )
∀g = {1, 2, ..., G} (11)

Obviously, the mean waiting time is decreasing with an in-299

creasing number of charging sockets. Let λ =
∑G
g=1 λg denote300

the total arrival rate of the charging station. Consequently, the301

weighted average waiting time of the overall charging station302

is given by303

W =

G∑

g=1

λg
λ
Wg (12)

B. Blocking reliability304

The design and operational management of a charging sta-305

tion are of paramount significance in achieving an acceptable306

QoS. In this paper, the mean waiting time and blocking relia- 307

bility for each charging subsystem are considered as the QoS 308

evaluation metrics. In this paper, a charging period is defined 309

as a time interval where the queuing system satisfies the 310

steady-state condition mentioned in Eq. (4). For the problems 311

discussed above, the following assumptions are made in this 312

paper: 313

1) The available grid power for each charging option is 314

predetermined and fixed at the beginning of first period. 315

2) If the remaining grid power is less than the requested 316

power, the charging service will be suspended resulting 317

in an outage until the next period. 318

3) The requested power of EV customers with the same 319

charging option is assumed to be equal. 320

Blocking probability is defined as the probability that the 321

remaining grid power fails to meet the demand of customers 322

within a certain period. Obviously, blocking probability con- 323

stitutes a natural performance metric of the grid reliability. 324

To formalize this, let eg be the aggregated units of grid 325

power available to EV fleets with charging option g. Given 326

the aforementioned criterion, the blocking probability of each 327

queuing system can be expressed as 328

V = P {e ≤ c} (13)

where c denotes the total amount of power requested from 329

the grid to meet the charging demand of customers. Note that 330

the subscript g is omitted again for convenience. By recalling 331

that queuing system can be described as a Markov chain, we 332

propose a simple method to obtain the blocking probability. 333

For a public charging station, it is reasonable for operators 334

to include safety margins into the capacity planning of the 335

power storage system to hedge against uncertainties such as 336

demand surge. Therefore, the relationship between the required 337

power and available power should satisfy e ≥ c for each 338

charging option, thus implying that the safety margin can be 339

defined as e − c. However, the available power is oftentimes 340

not a crisp value in a practical application environment due 341

to uncertainties caused by the previous operating periods. For 342

instance, the failure of a charging socket will inevitably lead 343

to the remaining power greater than expected before the next 344

period. Likewise, unexpected increases in charging demand 345

will reduce the amount of power available for the next period. 346

Without loss of generality, it is reasonable to assume that the 347

available power X is a random variable that follows Gaussian 348

distribution with mean e and variance σ2, i.e., X ∼ N(e, σ2); 349

therefore, the blocking probability can be further rewritten as 350

V = P {X− c < 0} = P

{
z <

c− e
σ

}
(14)

where z is a standard normal deviate with mean 0 and 351

standard deviation 1. To illustrate this method more intuitive, 352

the relationship between the above parameters is depicted in 353

Fig. 3. 354

In what follows, the mean requested power c can be 355

derived based on the aforementioned steady-state probability 356

distribution πππ. Let n denote the mean number of charging 357

sockets occupied by customers in the queue; then n can be 358



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 5

approximated by359

n =

s−1∑
k=0

1

(k − 1)!
ρk +

N∑
k=s

1

(s− 1)!sk−s
ρs

s−1∑
k=0

1

k!
ρk +

ρs
[
1− (ρ/s)N−s+1

]

s!(1− ρ/s)

(15)

Using the above formula, we can further obtain the mean360

requested power drawn from the grid for a period with duration361

T :362

c = n · d · µ · T (16)

where d denotes the mean power requested by a customer363

per recharging. According to Eqs. (13)-(16), the blocking364

probability is increasing along with the number of charging365

sockets. Clearly, the blocking probability is largely influenced366

by the safety margin. In this paper, the safety margin is367

assumed to be a predetermined value, i.e., e is an endogenous368

variable.369

For the overall charging station, the weighted average block-370

ing probability is calculated through the formula below:371

V =

G∑

g=1

λg
λ
Vg ∀g ∈ {1, 2, ..., G} (17)

C. Optimization Model372

The objective of the proposed model is to find an optimal373

charging station capacity Ng and number of charging sockets374

sg , such that the QoS of the overall charging station is375

maximized. For the QoS of the overall charging station, a376

logarithmic utility function is adopted to integrate the mean377

waiting time W and blocking probability V . Given the arrival378

rate λg and service rate µg , QoS is computed by379

QoS =
1

log(1 +W ) + log(1 + V )
(18)

The associated integer decision variables are Ng and sg(g =380

1, 2, ..., G), depending on which arrival rate λg and service381

rate µg involved in the queuing model is determined for each382

charging option. Additionally, QoS for different system capac-383

ity plans is determined following Eq. (18). Considering the384

c

V

Safety 

Margin

( )f x

e

Fig. 3. Relationship between the available power and requested power

construction cost and limited land area, let Nmax represents 385

the capacity of the overall charging station. To this end, the 386

nonlinear formulation to maximize the QoS of the overall 387

charging station is presented as follows: 388

maximize QoS =
1

log(1 +W ) + log(1 + V )
(19)

Subject to: 389

G∑

g=1

Ng < Nmax (20)

390
sg ≤ Ng ∀g ∈ {1, 2, ..., G} (21)

391

c ≤ eg ∀g ∈ {1, 2, ..., G} (22)
392

hg ≤ H ∀g ∈ {1, 2, ..., G} (23)
393

Ng, sg are integers, ∀g ∈ {1, 2, ..., G} (24)

In this formulation, Constraints (20) and (21) limit the 394

system capacity and number of charging sockets , respectively. 395

Constraint (22) restricts that the safety margin must be a 396

positive number. It is noteworthy that Constraint (23) shows 397

that the loss rate of each queuing subsystem is required to be 398

smaller than a certain level. In fact, if a charging station is 399

constructed in an extremely small scale, both mean waiting 400

time and blocking probability would decrease since most 401

customers fail to enter the queuing system, which is obviously 402

unacceptable for both customers and operators. Based on the 403

queuing model, the loss rate of option g can be calculated by 404

hg =





λg − µgng
λg

for λ > µgng

0 for λ ≤ µgng
(25)

Besides, Ng and sg must be integer values for all g = 405

1, 2, ..., G as illustrated in Eq. (24). In what follows, the fuzzy 406

quality of service (FQoS) evaluation and capacity planning 407

model considering fuzzy queuing behavior and blocking prob- 408

ability are investigated based on the original model mentioned 409

above. 410

III. CAPACITY PLANNING MODEL CONSIDERING FUZZY 411

QUALITY OF SERVICE 412

During the design stage of a charging station, it is difficult 413

to determine the arrival rate and service rate accurately. 414

Therefore, it is reasonable to include the fuzzy characteristics 415

in the model. Fuzzy numbers will inevitably affect the QoS 416

of the charging station since only approximate values are 417

considered. In light of this, we propose an integrated solution 418

that considers both fuzzy queuing behavior and grid reliability. 419

Specifically, fuzzy mean waiting time, blocking probability, 420

and QoS would be estimated based on fuzzy arrival rate and 421

service rate with a specific membership function. Furthermore, 422

a defuzzification algorithm based on α-cuts and membership 423

weighted average method is proposed to obtain the QoS from 424

the aggregated fuzzy set. Finally, an optimization model is 425

formulated to obtain the optimal number of charging sockets 426

and system capacity of each charging option. 427
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A. Fuzzy Queuing Model428

It is practical that the arrival rate and service rate would not429

be crisp values in a realistic setting. Therefore, it is infeasible430

to obtain the crisp arrival and service rate in the design431

stage of an EV charging station. To overcome this challenge,432

fuzzy theory is employed to facilitate the evaluation of the433

performance measures. Based on the aforementioned original434

queuing model, a fuzzy queue denoted by FM/FM/sg/Ng435

is investigated.436

In this paper, a fuzzy queuing system is defined as a437

queuing system whose arrival rate λ and service rate µ are438

fuzzy numbers. Let λ̃ and µ̃ denote the fuzzy universal sets439

of arrival rate and service rate which are characterized by440

their membership functions. Likewise, the subscript g for each441

parameter is omitted for simplicity. A procedure is proposed442

to construct the membership functions of the performance443

measures in each queuing system. Specifically, we apply the444

α-cuts method to transform the fuzzy problem into a family445

of crisp cases [31]. Let ηλ̃(x) and ηµ̃(y) be the membership446

functions of fuzzy universal sets λ̃ and µ̃. Then it follows that447

λ̃ =
{
x, ηλ̃(x)|x ∈ X

}
(26)

448

µ̃ = {y, ηµ̃(y)|y ∈ Y } (27)

The characteristics of interest of a queuing system for449

a charging station is the mean waiting time of customers450

denoted by W (λ̃, µ̃). In general, the membership function can451

be obtained using Zadeh’s extension principle [32] [33] as452

follows:453

ηW (λ̃,µ̃)(z)= sup
x∈X,y∈Y

min
{
ηλ̃(x), ηµ̃(y)|z=W (x, y)

}
(28)

Accordingly, the transition intensities and state probabilities454

are also fuzzy numbers. Based on Eq. (11), the membership455

function can be further rewritten as456

ηW(λ̃,µ̃)(z)= sup
x∈X,y∈Y

min

{
ηλ̃(x), ηµ̃(y)|z=

E(L̃)

λ̃(1−π̃N )

}
(29)

Note that given a specified α-cut, the original fuzzy sets are457

reduced to a series of crisp cases:458

λ(α) =
{
x ∈ X|ηλ̃(x) ≥ α

}
(30)

459

µ(α) = {y ∈ Y |ηµ̃(y) ≥ α} (31)

Consequently, the FM/FM/s/N model is transformed460

into a family of original M/M/s/N models. Likewise, the461

fuzzy Markov chain can also be decomposed into multiple462

ordinary Markov chains. Since the intervals are crisp values463

if we consider α-cuts in the model, Eqs. (30) and (31) can be464

further expressed as follows:465

λ(α) =
[
min

{
x|ηλ̃(x) ≥ α

}
,max

{
x|ηλ̃(x) ≥ α

}]

=
[
xLα, x

U
α

] (32)

466

µ(α) = [min {y|ηµ̃(y) ≥ α} ,max {y|ηµ̃(y) ≥ α}]
=
[
yLα , y

U
α

] (33)

where xLα , yLα , xUα , and yUα are the upper and lower bounds467

of λ(α) and µ(α). The triangular membership function is468



1

Lx
Ux

x

x

Fig. 4. The α-cuts set of a triangular fuzzy number

employed in this study to model the uncertainties of the fuzzy 469

numbers. Compared with other membership functions (such 470

as trapezoidal membership function), triangular membership 471

functions require the least prior knowledge of the charging 472

environment since only upper and lower bounds are used to 473

determine the fuzzy set [34]–[36]. To intuitively illustrate the 474

formulas, the α-cuts set of a triangular fuzzy number is shown 475

in Fig. 4. According to the convexity of a fuzzy number, the 476

bounds of λ̃ and µ̃ are functions of α, which can be expressed 477

as xLα = min η−1
λ̃

(α), xUα = max η−1
λ̃

(α), yLα = min η−1µ̃ (α), 478

and yUα = max η−1µ̃ (α). Obviously, the fuzzy mean waiting 479

time W (λ̃, µ̃) is also parameterized by α. Therefore, we can 480

apply the α-cuts method to obtain the membership function 481

ηW̃ (λ̃,µ̃)(z). 482

To construct the membership function of W (λ̃, µ̃), at least 483

one of the following conditions is required according to 484

Zadeh’s extension principle: 485

1) ηλ̃(x) = α and ηµ̃(y) ≥ α 486

2) ηλ̃(x) ≥ α and ηµ̃(y) = α 487

such that 488

z =
E(L)

λ(1− πN )

=

N∑
k=s

(k − s)πk

λ

(
1− ρN

s!sN−s

(
s−1∑
k=0

1

k!
ρk+

ρs
[
1−(ρ/s)N−s+1

]

s!(1− ρ/s)

)
−1

)

(34)

to satisfy ηW̃ (λ̃,µ̃)(z) = α. This problem can be solved 489

by introducing the parametric non-linear programming (NLP) 490

technique [37]–[39]. If ηλ̃(x) = α and ηµ̃(y) ≥ α, we have 491

WL1
g (α) = min

x,y∈R
N∑
k=s

(k − s)πk

λ

(
1− ρN

s!sN−s

(
s−1∑
k=0

1

k!
ρk+

ρs
[
1−(ρ/s)N−s+1

]

s!(1− ρ/s)

)
−1

) (35)

xLα ≤ x ≤ xUα 492
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y ∈ µ(α)493

WU1
g (α) = max

x,y∈R
N∑
k=s

(k − s)πk

λ

(
1− ρN

s!sN−s

(
s−1∑
k=0

1

k!
ρk+

ρs
[
1−(ρ/s)N−s+1

]

s!(1− ρ/s)

)
−1

) (36)

xLα ≤ x ≤ xUα494

y ∈ µ(α)495

Similarly, if ηλ̃(x) ≥ α and ηµ̃(y) = α, then, as expected, we496

have497

WL2
g (α) = min

x,y∈R
N∑
k=s

(k − s)πk

λ

(
1− ρN

s!sN−s

(
s−1∑
k=0

1

k!
ρk+

ρs
[
1−(ρ/s)N−s+1

]

s!(1− ρ/s)

)
−1

) (37)

x ∈ λ(α)498

yLα ≤ y ≤ xUα499

WU2
g (α) = max

x,y∈R
N∑
k=s

(k − s)πk

λ

(
1− ρN

s!sN−s

(
s−1∑
k=0

1

k!
ρk+

ρs
[
1−(ρ/s)N−s+1

]

s!(1− ρ/s)

)
−1

) (38)

x ∈ λ(α)500

yLα ≤ y ≤ yUα501

It is worth noting that the α-cuts of the fuzzy numbers can502

be viewed as a nested form, thus implying that Eqs. (35)503

and (36), Eqs. (37) and (38) have the same optimal results.504

Therefore, the model can be expressed equivalently in the505

following form:506

WL
g (α) = min

x,y∈R
N∑
k=s

(k − s)πk

λ

(
1− ρN

s!sN−s

(
s−1∑
k=0

1

k!
ρk+

ρs
[
1−(ρ/s)N−s+1

]

s!(1− ρ/s)

)
−1

) (39)

xLα ≤ x ≤ xUα507

yLα ≤ y ≤ yUα508

WU
g (α) = max

x,y∈R
N∑
k=s

(k − s)πk

λ

(
1− ρN

s!sN−s

(
s−1∑
k=0

1

k!
ρk+

ρs
[
1−(ρ/s)N−s+1

]

s!(1− ρ/s)

)
−1

) (40)

xLα ≤ x ≤ xUα 509

yLα ≤ y ≤ yUα 510

Indeed, since the queuing system mentioned above are more 511

complicated than other queues such as FM/FM/1/N model 512

which has been well investigated in other studies, it is almost 513

impossible to derive analytical results under such a complex 514

case. In other words, a closed-form membership function of 515

ηW̃ (λ̃,µ̃)(z) is difficult to obtain since WL
α and WU

α are both 516

non-invertible as s increases. However, in real applications, 517

what matters is the fuzzy mean waiting time of customers 518

since it is a critical parameter of the overall queuing model. 519

Therefore, it is unnecessary to obtain the real function of 520

ηW̃ (λ̃,µ̃)(z) in this paper. Finally, the bounds of the fuzzy mean 521

waiting time of the overall charging station is given by 522

WL(α) =

G∑

g=1

λg
λ
WL
g (α) (41)

WU (α) =

G∑

g=1

λg
λ
WU
g (α) (42)

Where λg and λ are crisp cases of λ̃g and λ̃. 523

B. Fuzzy Blocking Reliability 524

By recalling the original blocking reliability estimation 525

model in Section II (B), the mean number of occupied sockets 526

is a fuzzy number ñ parameterized by λ̃ and µ̃, thus implying 527

that the blocking reliability also possesses fuzzy characteristics 528

since it is derived from fuzzy operations. Let Ṽ (λ̃, µ̃) denote 529

the fuzzy universal set of the blocking reliability; then Ṽ (λ̃, µ̃) 530

can be expressed as 531

ηṼ (λ̃,µ̃)(v) = sup
x,y∈R

min
{
ηλ̃(x), ηµ̃(y)|v = V (x, y)

}

= sup
x,y∈R

min

{
ηλ̃(x), ηµ̃(y)|v=P

(
z<

c−e
σ

)}

(43)

Correspondingly, the fuzzy blocking probability can be 532

derived based on the NLP technique and Zadeh’s extension 533

principle: 534

V Lg (α) = min
x,y∈R

P


z<

1

σ


µTd

s−1∑
k=0

1

(k−1)!ρ
k+

N∑
k=s

1

(s−1)!sk−s ρ
s

s−1∑
k=0

1

k!
ρk+

ρs
[
1−(ρ/s)N−s+1

]

s!(1−ρ/s)

−e







(44)
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Fig. 5. Flowchart of the proposed capacity planning model

xLα ≤ x ≤ xUα535

yLα ≤ y ≤ yUα536

V Ug (α) = max
x,y∈R

P


z<

1

σ


µTd

s−1∑
k=0

1

(k−1)!ρ
k+

N∑
k=s

1

(s−1)!sk−s ρ
s

s−1∑
k=0

1

k!
ρk+

ρs
[
1−(ρ/s)N−s+1

]

s!(1−ρ/s)

−e







(45)

xLα ≤ x ≤ xUα537

yLα ≤ y ≤ yUα538

Likewise, the weighted average bounds of fuzzy blocking539

probability can be further calculated by540

V L(α) =

G∑

g=1

λg
λ
V Lg (α) (46)

541

V U (α) =

G∑

g=1

λg
λ
V Ug (α) (47)

In what follows, an FQoS evaluation model is proposed542

by considering the fuzzy mean waiting time and blocking543

probability to evaluate the service quality of a charging station.544

C. FQoS evaluation and Optimization Model545

The objective of the proposed model is to find the optimal546

number of charging sockets sg and system capacity Ng , such547

Algorithm 1 Defuzzification Algorithm for FQoS

Input: g = {1, 2, ..., G},ηλ̃g(x),ηµ̃g(y),sg,Ng,dg,eg,σg,T ,δ
Output: Defuzzified QoS
1: Set QoS ← 0
2: λ←∑G

g=1 λg(αδ)
3: for i = 1→ δ do
4: αi ← i−1

δ−1
5: for g = 1→ G do
6: calculate WL

g (αi) and WU
g (αi)

7: calculate V L
g (αi) and V U

g (αi)
8: end for
9: WL(αi),W

U (αi)←WeightedAverage(λg(αδ), λ)
10: V L(αi), V

U (αi)←WeightedAverage(λg(αδ), λ)
11: Call function of QoSL(αi)
12: Call function of QoSU (αi)

13: QoS ← QoS + αi
δ(δ+1)
2(δ−1)ηQoS(αi)

14: end for

1

that the FQoS of the overall charging station is maximized. 548

Note that we use λLα, λ
U
α , µ

L
α, µ

U
α to represent the bounds of 549

λ̃(α) and µ̃(α) in the following model to avoid confusion. 550

Likewise, a method based on the aforementioned logarithmic 551

utility function, NLP technique, and Zadeh’s extension prin- 552

ciple is employed to integrate W̃ and Ṽ . Given λ̃g(α) and 553

µ̃g(α), FQoS can be estimated by 554

QoSL(α) = min

{
1

logW + logV

}
(48)

λLα ≤ λ ≤ λUα 555

µLα ≤ µ ≤ µUα 556

QoSU (α) = max

{
1

logW + logV

}
(49)

λLα ≤ λ ≤ λUα 557

µLα ≤ µ ≤ µUα 558

In what follows, we propose a defuzzification algorithm 559

which is described in Algorithm 1 based on α-cuts and 560

membership weighted average method. Owing to the fact 561

that a closed-form membership function for QoS cannot be 562

obtained, we can fit the shape of QoS by introducing an 563

enumeration method based on α-cuts. Therefore, the set of 564

intervals
{[
QoSLα , QoS

U
α

]
α ∈ (0, 1)

}
still reveals the trend 565

of the membership function of QoS, which lays a solid 566

foundation for the next step. Assume that we enumerate δ 567

values of α: αi =
i− 1

δ − 1
, i = 1, 2, ..., δ. Then δ sets of upper 568

and lower bounds of QoS can be obtained. Consequently, the 569

defuzzified QoS can be estimated based on the membership 570

weighted average method as follows: 571

QoS =

δ∑

i−1
αi
δ(δ + 1)

2(δ − 1)
ηQoS(λ̃(α),µ̃(α)) (50)

The proposed capacity planning problem is formulated as a 572

non-linear integer program, where the associated integer de- 573

cision variables are sg and Ng , g = 1, 2, ..., G. The nonlinear 574

model to maximize the QoS of the overall charging station 575
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(a) λ̃1 and λ̃2 (b) µ1 and µ2 (c) FQoS

Fig. 6. Membership functions of fuzzy arrival rate, service rate and FQoS
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can be formulated as576

maximize QoS =

δ∑

i−1
αi
δ(δ + 1)

2(δ − 1)
ηQoS(λ̃(α),µ̃(α)) (51)

Subject to:577

G∑

g=1

Ng < Nmax (52)

578
sg ≤ Ng ∀g ∈ {1, 2, ..., G} (53)

579

c(αδ) ≤ eg ∀g ∈ {1, 2, ..., G} (54)
580

hg ≤ H ∀g ∈ {1, 2, ..., G} (55)
581

Ng, sg are integers, ∀g ∈ {1, 2, ..., G} (56)

Note that the constraint (54) exhibits that the safety margin582

between the crisp requested power and available power is583

included in the model. The flowchart of the proposed capacity584

planning problem is illustrated in Fig. 5.585

IV. NUMERICAL RESULTS586

In this section, we perform analytical and simulation results587

to evaluate the proposed capacity planning model considering588

FQoS and multiple charging options. In Section IV-A, we 589

present a numerical case to analyze the charging parameters 590

of the proposed capacity planning problem. In Section IV-B, 591

the effectiveness of the proposed model is evaluated under a 592

real-world scenario, where a non-fuzzy case is introduced as 593

a benchmark. 594

A. Case Study-I 595

In the first numerical case, we consider a charging station 596

which consists of two charging options, namely, Option 1 597

and Option 2. The parameter setting is elaborated as follows. 598

The fuzzy arrival rate and service rate of each option are 599

λ̃1 = [45, 50, 55], λ̃2 = [25, 30, 35], µ̃1 = [1.5, 2.5, 3], and 600

µ̃2 = [2, 2.5, 3] per hour, respectively. Obviously, λ̃ and µ̃ 601

are characterized by a symmetrical triangular membership 602

function as depicted in Figs. 6(a) and (b). In the simulations, 603

the period length is T1 = T2 = 1 hour, the requested power 604

per recharging is d1 = d2 = 1 unit, and the available 605

power of each option follows Gaussian distribution with mean 606

e1 = 40, e2 = 27 units and variance σ1 = σ2 = 4. Besides, 607

the maximum capacity of the overall charging station is set 608

as Nmax = 40 and the loss rate limit is set as 0.3. Genetic 609

Algorithm (GA) [40] is employed to resolve the capacity 610

planning problem considering FQoS. The optimization model 611
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(a) s1 vs. W1(s2 = 9) (b) s2 vs. W2(s1 = 18)

(c) s1 vs. V1(s2 = 9) (d) s2 vs. V2(s1 = 18)

Fig. 8. Relationship between number of charging sockets, mean waiting time and blocking probability

(a) s1 vs. V1 under different safety margin (crisp case) (b) Distribution of the maximum interval length

Fig. 9. Relationship between blocking probability and safety margin (Option 1)
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was built in MATLAB 2016a and run on an Intel Core i7-612

7500U 2.70 GHz CPU and 8GB RAM. Moreover, we set613

δ = 11 to defuzzify the FQoS. By solving the model, the614

optimal individual fitness is N1 = 30, N2 = 10, s1 = 18 and615

s2 = 9. The α-cuts and corresponding membership function of616

QoS constructed by 11 α values are given in Fig. 6(c). In such617

a case, FQoS can be characterized by a roughly asymmetrical618

triangular membership function. The runtime of the proposed619

program is 2.14×103 seconds. The crisp and defuzzified FQoS620

are computed to be 5.445 and 5.968.621

As shown in Fig. 7(a), we can see that when N1 or N2 is622

small, no feasible solution can be obtained. It is because when623

N1 or N2 is small, the service capacity is small, thus implying624

that the loss rate constraint cannot be satisfied. Furthermore,625

better solutions always tend to be obtained on the boundary.626

It can be explained as follows: a higher customer loss rate627

would reduce the mean waiting time and blocking probability628

simultaneously. Therefore the QoS maximization model tends629

to adopt a plan with a higher loss rate. Take the crisp case as an630

example, Fig. 7(b) depicts that with the increase of loss rate,631

the QoS increases since more customers fail to join the queue.632

Therefore, compared with a compromised strategy, this model633

tends to derive a plan which provides a larger capacity for N1634

and a smaller capacity for N2. However, a high customer loss635

rate is unacceptable to both operators and customers. Hence,636

a loss rate constraint is essential under such a case.637

We proceed to explore the relationship between the mean638

waiting time, blocking probability, and number of charging639

sockets of each option. From Figs. 8(a) and (b), we can see that640

the mean waiting time is large when s is small, and with the641

increase of s, the mean waiting time decreases. It is noteworthy642

that if s = N , the mean waiting time is zero since no queuing643

behavior occurs in such a case. Figs 8(c) and (d) depicts644

the relationship between blocking probability and number645

of charging sockets. Given the predetermined safety margin,646

installing more charging sockets would increase the blocking647

probability since more sockets are occupied simultaneously. It648

is noteworthy that the interval between the upper and lower649

bound of blocking probability is larger than that of the mean650

waiting time since the blocking probability is significantly651

influenced by the safety margin (Fig. 9(a)). Take the optimal652

case of Option 1 (N1 = 30, s1 = 18) for example, based653

on Eqs. (13)-(16), the interval between the upper and lower654

bounds follows Gaussian distribution as depicted in Fig 9(b);655

hence we can mitigate the perturbation by adjusting the safety656

margin.657

B. Case Study-II658

In the second numerical case, the effectiveness of the659

proposed model is examined under a real-world scenario. The660

non-fuzzy case is served as a benchmark to demonstrate that661

a more robust capacity plan can be obtained by considering662

the fuzzy quality of service. Three charging options, includ-663

ing Tesla Supercharging, CHAdeMO Fast Charging, and AC664

Level-II charging, are offered by the charging station. The665

arrival rates are triangular fuzzy numbers represented by [30,666

37, 44], [20, 25, 30] and [6, 9, 12], respectively. Three popular667

EV models, comprising Tesla Model S (40 kWh), Nissan 668

Leaf (30 kWh) and Smart Ed2 (16.5kWh), are considered 669

in the charging station. For the Tesla Supercharging option, 670

each socket was assumed to supply 150 kW power [41]. 671

For the CHAdeMO charging option, each socket supplied 672

62.5 kW power [42]. For the AC Level-II charging option, 673

each socket supplied 11 kW power [43]. The service rate 674

of each charging option is computed to be 3.75, 2.08, and 675

0.67. The corresponding triangular fuzzy service rates are 676

set as [3.25, 3.75, 4.25], [1.68, 2.08, 2.48], and [0.42, 0.67, 677

0.92], respectively. The available power of each option follows 678

Gaussian distribution with mean e1 = 1350 kW, e2 = 620 kW, 679

e3 = 140 kW, and variance σ1 = 275, σ2 = 85, σ3 = 25. The 680

maximum capacity of the overall charging station is set as 681

Nmax = 75 and the loss rate limit is set as 0.25. The runtime 682

of the proposed program is 1.03 × 104 seconds. The optimal 683

capacity planning solution is N1 = 22, N2 = 25, N3 = 28, 684

s1 = 11, s2 = 8, s3 = 13. 685

We proceed to demonstrate that a more robust capacity plan 686

can be obtained by introducing the fuzzy theory. The true 687

arrival rates and service rates are set as 37, 25, 9, 0.75, 2.08, 688

and 0.67, which are unknown due to the limited data in the 689

capacity planning stage. Fig. 10 shows the QoS under fuzzy 690

and non-fuzzy cases with respect to the crisp arrival rates and 691

crisp service rates. The variance of the QoS (VQ) and the Eu- 692

clidean distance to the optimal solution (EO) are given in Table 693

I. A lower VQ indicates that the solution is insensitive to the 694

fluctuation of input charging parameters, which is important in 695

the capacity planning stage of a charging station. Furthermore, 696

the EO under fuzzy and non-fuzzy cases is also provided 697

since the queuing system capacity and number of charging 698

sockets are discrete variables. The results present that, since 699

the VQ and EO of the fuzzy case are both significantly 700

lower than that in the non-fuzzy case, the negative impact 701

caused by the parameter fluctuations can be mitigated by 702

considering the fuzzy numbers. In this illustrative example, the 703

VQ and EO are decreased by 39.04% and 14.33% on average 704

under the fuzzy case, respectively. In fact, if the true arrivals 705

rates and service rates take values from the corresponding 706

universal sets, the optimization model considering fuzziness 707

can always guarantee a relatively lower VQ and EO. Going 708

further, the provided results can be used as a guideline for 709

the subsequent charging station management. For instance, 710

the QoS is extremely sensitive to the arrival rate of the Tesla 711

Supercharging option. Hence it is crucial to collect the data 712

about the EV arrival with Tesla Supercharging option in the 713

follow-up operation stage to further determine the upper and 714

lower bounds. Furthermore, we can see that when µ1 is greater 715

than 3.45, the QoS decreases with the increase of µ1, which 716

indicates that the power storage of the Tesla Supercharging 717

option is insufficient and should be adjusted appropriately. 718

For µ2 and µ3, when the charging time increases, the QoS 719

will be significantly reduced, thus further charging policies 720

are required to improve the service efficiency, such as reducing 721

the EV customers’ parking time through a reasonable pricing 722

strategy. The simulation results indicate that it is difficult 723

for decision-makers to formulate reasonable service strategies 724

effectively in the design stage. Therefore, it is important to 725
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Fig. 10. Sensitive analysis for the arrival rates and service rates

consider fuzzy QoS in the planning model to render it robust726

against such uncertainty.727

V. CONCLUSION728

In this work, we proposed a capacity planning model for729

EV charging stations considering the fuzzy quality of service730

and multiple charging options. The associated variables are the731

number of charging sockets and queuing system capacity of732

each charging option. In the design stage of a charging station,733

it is difficult to determine the accurate arrival rate and service734

rate without historical data. In a scenario like this, two features735

differentiate the present analysis from the other approaches736

employed in the literature and make it more realistic for the737

capacity planning of an EV charging station. First, both mean738

waiting time and blocking probability are included in the QoS739

evaluation of a single charging station that offers multiple740

charging options for EV customers. Furthermore, the charging741

station is modeled as an FM/FM/s/N queuing system,742

where the arrival rate and service rate are fuzzy numbers743

that are characterized by triangular membership functions. 744

The bounds of mean waiting time and blocking probability 745

are computed by decomposing the fuzzy scenario into a 746

family of crisp cases. A defuzzification algorithm based on 747

α-cut and membership weighted average method is proposed 748

to defuzzify the FQoS from the aggregated fuzzy set. The 749

simulation results confirm that a more robust solution can be 750

obtained by incorporating the fuzzy characteristics into the 751

model. The implementation of the proposed model might be 752

useful for designing a charging station without enough EV 753

arrival and charging service data. The parameter analysis in 754

this work also allows decision-makers and operators to provide 755

high QoS for EV customers in the operating stage. Future 756

work aims at considering the peak lead hours of the grid 757

system. In this study, the charging demand is assumed to be 758

equivalent for different time periods, which is unrealistic in a 759

real charging environment. A differentiated grid load model 760

should be developed to mitigate the uncertainty associated 761

with the charging demand. This is essential for us to enhance 762

TABLE I
SENSITIVE ANALYSIS FOR FUZZY AND NON-FUZZY CASES

Evaluation Index λ1 λ2 λ3 µ1 µ2 µ3 Relative Decrease
VQ(Fuzzy) 4.9403 0.0317 0.0234 0.0315 7.8× 10−4 0.7062 39.04%
VQ(Non-Fuzzy) 10.7358 0.0496 0.0450 0.0458 9.8× 10−4 1.2733 -
EO(Fuzzy) 0.8975 0.7071 0.7637 0.6236 0.3333 0.8164 14.33%
EO(Non-Fuzzy) 1.0801 0.7993 0.8333 0.6817 0.4714 0.9718 -
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the performance of the proposed capacity planning model to763

render it robust against such uncertainty.764
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