
JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST 2021 1

Time-capturing Dynamic Graph Embedding for
Temporal Linkage Evolution

Yu Yang, Jiannong Cao, Fellow, IEEE, Milos Stojmenovic, Senzhang Wang, Member, IEEE,
Yiran Cheng, Chun Lum, and Zhetao Li, Member, IEEE

Abstract—Dynamic graph embedding learns representation vectors for vertices and edges in a graph that evolves over time. We aim
to capture and embed the evolution of vertices’ temporal connectivity. Existing work studies the vertices’ dynamic connection changes
but neglects the time it takes for edges to evolve, failing to embed temporal linkage information into the evolution of the graph. To
capture vertices’ temporal linkage evolution, we model dynamic graphs as a sequence of snapshot graphs, appending the respective
timespans of edges (ToE). We co-train a linear regressor to embed ToE while inferring a common latent space for all snapshot graphs
by a matrix-factorization-based model to embed vertices’ dynamic connection changes. Vertices’ temporal linkage evolution is captured
as their moving trajectories within the common latent representation space. Our embedding algorithm converges quickly with our
proposed training methods, which is very time efficient and scalable. Extensive evaluations on several datasets show that our model
can achieve significant performance improvements, i.e. 22.98% on average across all datasets, over the state-of-the-art baselines in
the tasks of vertex classification, static and time-aware link prediction, and ToE prediction.

Index Terms—Dynamic graph embedding, Graph evolution, Edge timespan, Graph mining.

F

1 INTRODUCTION

G RAPHS are one of the most widely used data represen-
tations which naturally exist in the real world in the

form of social networks, biological networks, information d-
iffusion networks, road networks etc. Static graphs represent
immutable connections among vertices; however, many real
world applications of graphs are dynamic and evolve over
time. Vertices could join quickly or slowly, leave at their
own pace, and even re-join the graph, thereby making their
connections dynamically malleable over time. Efficiently ex-
tracting meaningful knowledge from the evolution of vertex
connections in dynamic graphs is an open research problem
in graph mining.

Dynamic graph embedding draws from and builds upon
the great success of graph representation learning, also
referred to as graph embedding or network embedding
[1]. Dynamic graph embedding captures and encodes the
evolution of vertex properties and connections as low di-
mensional representation vectors in order to benefit down-
stream machine learning applications. Existing works model
the dynamic graph as either a sequence of static snapshot
graphs [2] [3] [4] [5] [6] [7] [8] [9] [10] or neighborhood
formation sequence sampled from the temporal random
walk [11] [12] [13]. These approaches merely capture the
sequential changes of static graph structure throughout the

• Y. Yang, J. Cao, Y. Cheng and C. Lum are with the Department of
Computing, The Hong Kong Polytechnic University, China.
E-mail: csyyang@comp.polyu.edu.hk, jiannong.cao@polyu.edu.hk

• M. Stojmenovic is with Singidunum University, Serbia.
E-mail: mstojmenovic@singidunum.ac.rs

• S. Wang is with School of Computer Science and Engineering, Central
South University, China. E-mail: szwang@csu.edu.cn

• Z. Li is with Hunan International Scientific and Technological Coopera-
tion Base of Intelligent Network, Key Laboratory of Hunan Province for
Internet of Things and Information Security, and College of Computer-
Science, Xiangtan University, China. E-mail: liztchina@hotmail.com

snapshot graph sequence as well as the sequential linkage
evolution among vertices for embedding. However, the time
it takes for vertex connections to evolve is also dynamic and
it is neglected by the above approaches. Here, we tackle
the problem of embedding the temporal linkage evolution
of vertices in a dynamic graph, while simultaneously pre-
serving their dynamic connection changes and timespans of
edge formation (ToE).

ToE preserves important duration of edge formation
information as well as the temporal dependencies of vertices
while the dynamic graphs evolve. For example, in a dynam-
ic transaction network, buyers could appear at any time to
trade with sellers and disappear afterward, thereby forming
an edge. The ToE in this case represents how long the buyer
takes to complete the transaction after the seller posts a sell
order, which carries important trading behavior and may
be used to form trading strategies. Cautious traders may
prefer to spend a significant amount of time looking for the
best price of an item. Thus, the edges they construct may
have a relatively long ToE. Other traders may complete a
transaction as soon as goods appear on the market, therefore
resulting in a significantly shorter ToE. It is possible for
buyers to complete the transaction with one of multiple sell
orders posted by the same seller at different times, in which
the ToE serves as discriminative information. Should ToE be
neglected and merely reduced to the dynamic connectivity
changes among vertices, the above trading patterns and
strategies would be totally lost.

There are two major challenges in jointly embedding the
dynamic linkage evolution and ToE for preserving the tem-
poral evolutionary patterns of a dynamic graph. The first
challenge is capturing and learning the structural evolution-
ary patterns of a dynamic graph from their local dynamic
instances, which is the snapshot graph, in an interpretable
manner. The vertices’ connections and ToEs in every snap-

The following publication Y. Yang et al., "Time-Capturing Dynamic Graph Embedding for Temporal Linkage Evolution," in IEEE Transactions on Knowledge and Data
Engineering, vol. 35, no. 1, pp. 958-971, 1 Jan. 2023 is available at https://dx.doi.org/10.1109/TKDE.2021.3085758.

This is the Pre-Published Version.

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST 2021 2

shot graph are highly dynamic, therefore making it difficult
to reconstruct the global evolution process of a dynamic
graph from the snapshot graph sequence in an interpretable
manner. Another challenge is preserving the temporal de-
pendency among vertices while embedding ToE. If the ToEs
are aggregated for each vertex directly and appended with
other vertex attributes, which is a common approach for
embedding vertex attributes in static graphs [14] [15], the
temporal dependency among vertices will gradually be lost
due to information loss through aggregation [16]. Therefore,
the embedding algorithm should maximally prevent van-
ishing temporal dependency while embedding ToE.

To address the above challenges, we first model the
dynamic graph as a sequence of snapshot graphs with
ToE for every edge. We then propose a matrix factoriza-
tion based Time Capturing Dynamic Graph Embedding
algorithm named TCDGE, which infers a common latent
space for capturing the structural and temporal evolution
of the dynamic graph and encodes them into representation
vectors. Our approach differs from TNE [2], which embeds
the snapshot graphs into separate latent spaces, since we
learn a common latent space from every snapshot graph
for representing the vertices’ dynamic connections. When
vertex connections evolve, their projected positions in the
latent space will change accordingly. Therefore, vertices’
moving trajectories within the common latent space reflects
their evolutionary patterns in the dynamic graph.

In order to embed ToE into the representations and
preserve the temporal dependencies among vertices, we first
concatenate the representation of every two vertices that
form an edge as features for representing their temporal
dependency. We then regard the ToE as discriminative in-
formation and co-train a linear regressor using the above
features while learning the common latent space. The opti-
mization algorithm we present in this paper is generic for
any linear regressor such as the LASSO regression, the ridge
regression, and the elastic net regression. Finally, vertices’
temporal dependency and ToE will be gradually embedded
into the representations as well as the latent space during
co-training.

To overcome the bottleneck of time efficiency in factor-
izing large-scale matrices, we optimize the latent space and
the representation of the vertices by a projected gradient
approach. Meanwhile, we propose a singular value decom-
position (SVD) based approach to initialize our embedding
algorithm. It not only helps boost the convergence speed
for our algorithm but also prevents it from converging to a
meaningless local optimal. Inspired by negative sampling,
we introduce negative samples to co-train the regression
model. Negative samples are constructed as any two ver-
tices without any edges between them and we set their
ToE to zero. This indicates that these two vertices have
no temporal dependencies in the snapshot graph. Conse-
quently, our TCDGE algorithm is very time efficient and
scalable, even though the model is complicated with high-
order polynomials.

Our contributions are highlighted as follows:

• We propose a matrix factorization based dynamic
graph embedding algorithm to embed the tempo-
ral linkage evolution by learning a common latent

space for capturing the global evolutionary patterns
throughout the sequence of snapshot graphs while
co-training a linear regressor, i.e., LASSO, to embed
ToE for preserving vertices’ temporal dependency.
Our approach differs from end-to-end embedding al-
gorithms, which usually are black boxes, by interpre-
tively capturing vertices’ temporal linkage evolution
as their moving trajectories within the latent space.

• We initialize our embedding algorithm by an SVD-
based method and introduce negative samples to
co-train the linear regressor. Thus, our embedding
algorithm is very time efficient and scalable.

• We propose a new task, namely time-aware link
prediction, to validate the effectiveness of dynamic
graph embedding algorithms in preserving the tem-
poral dynamics.

• We conduct experiments on three public datasets
over four machine learning applications. The ex-
perimental results show that our model achieves
performance improvements of 17.00%, 22.91% and
11.88%, respectively, over the state-of-the-art base-
lines in vertex classification, ToE prediction, static
and time-aware link prediction.

The remainder of this paper is organized as follows.
Related work is reviewed in the next section, followed by
the problem definition in section 3. We present the intuition
of capturing the temporal linkage evolution in section 4 and
propose TCDGE and the optimization algorithm in section
5. Experimental results will be reported in section 6 before
we conclude the paper in the last section.

2 RELATED WORK

Starting with DeepWalk [1], numerous static graph embed-
ding methods have been proposed to encode the graph
structure and attributes such as high-order proximities [17]
[18], vertices’ centrality [19], vertex and edge attributes [15]
[16], text semantics [14] [20], and communities [21] [22].
In addition to embedding a single homogeneous graph,
EOE [23] and HWNN [24] infer a common latent space for
respectively embedding coupled heterogeneous graphs and
hypergraph. In addition to these unsupervised methods,
there are several works focusing on task specific graph rep-
resentation learning [25] [26]. It simultaneously train a dis-
criminator or classifier using the labels of edges or vertices
while learning the embeddings. The discriminator serves as
a supervisor to make the final learned representation robust
enough for discriminating the labels in specific applications.
We borrow the idea of learning discriminative information
while embedding the graph structure to co-train a linear
regressor for encoding the ToE and temporal dependencies
of vertices into the final representations.

In dynamic graph embedding, the main issue becomes
handling the dynamic evolving nature of vertices and edges,
and encoding their evolutionary patterns. Existing work-
s learn the structural differences of a graph at different
timestamps by either matrix factorization or deep learning
approaches. For matrix factorization approaches, TNE [2]
is a pioneering work that factorizes the consecutive snap-
shot graphs into different latent spaces with a temporal
smoothness regularization. TMF [3] learns the first-order

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST 2021 3

neighborhood information while factorizing the adjacency
matrices of snapshot graphs. DHPE [5] employs the general-
ized SVD to preserve the high-order proximities and Timers
[27] explores the timing of restarting SVD to overcome the
error accumulation while embedding the dynamic graph.
However, they fail to preserve the global structural evolu-
tion of the whole dynamic graph over time. In addition,
none of them embed temporal information of vertices and
edges like ToE with the structural evolution.

There exist deep learning methods that capture the spe-
cific evolution process in dynamic graphs. DynamicTriad
[4] models the triad closure process when a graph evolves.
HTNE [12] models the neighborhood formation sequences
as a Hawkes Process with a time-aware weights. EPNE
[28] learns the periodic linkage evolution patterns by causal
convolutions. However, these specific dynamic processes
merely exist in some particular graphs. For example, the
triad closure process is not common in other networks ex-
cept social networks, thus leading to poor performance. We
embed temporal linkage evolution without pre-assuming
any dynamic processes and give an interpretation about
what happens in the latent space when the dynamic graph
evolves over time.

There are also methods that approach the graph evo-
lution process by incrementally appending out-of sample
vertices or edges into the existing in-sample graph like
DepthLGP [10], GraphSAGE [8], MVC-DNE [29], etc. Dyn-
GEN [6] adopts auto-encoders to incrementally handle the
growing graph and its extended version Dyngraph2Vec [7]
trains a LSTM to capture the evolution throughout snapshot
graphs. DySAT [30] employs the self-attention mechanism
to capture the structure difference throughout the snapshot
graph sequence instead of using LSTM. DynGraphGAN [9]
learns long-term structural evolution via adversarial train-
ing. However, none of them model the ToE and temporal
dependencies of vertices, thereby failing to preserve the
complete evolutionary pattern of the dynamic graph in both
structural and temporal domains, which is one of the main
contributions of our work.

3 PROBLEM DEFINITION

In this section, we give a complimentary definition of dy-
namic graphs and then properly formulate the dynamic
graph embedding problem.
Definition 1. Dynamic Graph. A dynamic graph G =
{Gt1 , Gt2 , · · · , Gtn} is a sequence of directed or undi-
rected snapshot graphs Gt, where Gt = (Vt, Et,Wt)
is a snapshot graph at time t ∈ {t1, t2, . . . , tn}. Vt is
a subset of the vertex set V = {v1, v2, . . . , vm}. The
edge et,δi,j = (vti , v

t′

j , δ) ∈ Et in Gt represents the con-
nection between an upcoming vertex vti joining at time
t and an existing vertex vt

′

j appearing at time t′, where
i, j ∈ {1, 2, . . . ,m}, t′ ≤ t and δ = t − t′ is the ToE
of et,δi,j . Each edge et,δi,j is associated with an edge weight
wt,δi,j ∈Wt.

Since Vt ⊆ V for any t, the network structure in Gt
evolves over time which also leads to G evolving. At time t,
the edge et,δi,j links the upcoming vertex vti to an existing
one vt

′

j which joins the graph at time t′. The temporal

dependency among vertices is reflected by the ToE δ. It is
possible for vti to form edges with the same vertex appearing
at different times vt

′

j and vt
′′

j . These two edges link the
same vertex pair but have different ToE δ, which gives the
dynamic graph the ability to distinguish the edges between
the same pair of vertices but established at two different
timestamps.

Definition 1 provides a generic description of the dynam-
ic graph. When tn = 1, the dynamic graph G degenerates
into a static graph. If we assume t = t′+1 for all edges,G be-
comes a continuous-time dynamic graph defined in [11]. If
we assume t′ = t, G becomes a structure evolving dynamic
snapshot graph sequence which is adopted by most of the
approaches in dynamic graph embedding literature [2] [3]
[4] [5] [6] [7] [8] [9] [10]. When we assume t′ = t, Vt ⊆ Vt+1

and Et ⊆ Et+1, G becomes a growing graph, where the
vertices and edges are only appended to the graph but not
removed. Our definition of a dynamic graph is generic and
captures both the structure and temporal dynamics.

Definition 2. Dynamic Graph Embedding. Given a dynamic
graph G = {Gt1 , Gt2 , · · · , Gtn} and assuming that the
maximum number of vertices m is known, the objective
is to learn a mapping function f : v 7→ rv ∈ Rk for ∀v ∈
V such that rv preserves the temporal linkage evolution
of vertex v in terms of the dynamic connection changes
and temporal dependency, where k is a positive integer
indicating the dimension of the representation rv .

4 CAPTURING THE EVOLUTION OF DYNAMIC
GRAPHS

In this section, we introduce the intuitions of capturing the
evolution of a dynamic graph and interpret what happens
in the latent representation space when the dynamic graph
evolves.

Since each snapshot graph Gt is an instance of the
dynamic graph G at time t, the dynamic change throughout
the snapshot graph sequence exactly reflects the evolution of
G. From a vertex point of view, this evolution process con-
sists of the sequential changes of vertices’ connections with
their corresponding ToE. Embedding the dynamic graph G
becomes inferring a latent space H with k dimensions that
maximizes the retention of vertices’ temporal connections
and attributes. When projecting the snapshot graph Gt into
the latent space H , every vertex in Gt obtains a response
vector rt, which is its embedding, showing its position in H .
If vertices have similar connectivity and ToE, they should be
close to each other in H , which means the distance between
their embeddings is small.

When either vertices’ connections evolve or their ToE
changes, resulting from the evolution of the dynamic graph,
their embeddings will change accordingly, therefore causing
their position in H to move. The trajectory of every vertex
in H carries its evolution process throughout the snapshot
graph sequence. An example of our idea is shown in Fig.
1, where vertices c and d have similar connectivity as well
as ToE among their connections so that their embeddings
in the latent space H should be close to each other, and
their moving trajectories are also similar. Since the silent
vertices disconnect from any existing vertices, they should

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST 2021 4

Fig. 1. An illustration of the evolution of a dynamic graph. a, b, c, and d
are vertices in a dynamic graph G = {Gt1 , Gt2 , Gt3}, where their edge
colors represents different ToE.

be projected to the same position in H no matter which
snapshot graph they leave. The connectivities of vertices a
and c are different in the three snapshot graphs resulting in
different temporal linkage evolutions, which leads to their
moving trajectories being far away from each other. Finally,
the embedding of any vertex v that preserves its temporal
linkage evolution is obtained by Eq. (1), and represents its
moving trajectory in H , where rv,t ∈ Rk is its learned
representation from the snapshot graph Gt, and T is a
transpose operator.

rv = [rTv,t1 , r
T
v,t2 , · · · , r

T
v,tn]

T (1)

In the next section, we will propose our dynamic graph
embedding model and an optimization algorithm to effi-
ciently infer the latent space H for embedding vertices’
temporal linkage evolution.

5 EMBEDDING TEMPORAL LINKAGE EVOLUTION

In this section, we present the details of our proposed time
capturing dynamic graph embedding (TCDGE) model for
encoding vertices’ temporal linkage evolution as represen-
tations. Plus, we illustrate the optimization algorithm and
training procedure to efficiently train the TCDGE model.

5.1 Time Capturing Dynamic Graph Embedding Model

Before introducing our TCDGE model to solve the chal-
lenges, we first list the notations that will be used in the
remainder of this paper in Table 1.

The representations of vertices in a latent space should
reconstruct the original dynamic graph reasonably well
with the inverted latent space projector. Thus, we minimize
the quadratic reconstruction loss under non-negative con-
straints for inferring the common latent spaceH and encode
the representations of vertices in each snapshot graph Gt:

argmin
H,Wt

1

2

n∑
t=1

‖Gt −HWt‖2F s.t. ∀Wt ≥ 0, H ≥ 0 (2)

Adjacency matrices are commonly used to capture the
linkage information among vertices in a graph. However,
the adjacency matrices of real world graphs are usually very
sparse such as those for information networks, transaction
networks, etc., which introduces bias into machine learning
algorithms and leads to imprecise results [31]. Additionally,

TABLE 1
Notations for time capturing dynamic graph embedding

Symbols Description

Gt A snapshot graph at time t, t = t1, t2, . . . , tn
m The maximum number of vertices in G
At ∈ Rm×m The adjacency matrix of Gt
Mt ∈ Rm×m The high-order proximity matrix of Gt
Mt(u) ∈ Rm×1 The high-order proximity vector of vertex u at t
H ∈ Rm×k The inferred latent representation space
Wt ∈ Rk×m The learned representation matrix at t
Wt(u) ∈ Rk×1 The representation vector of vertex u at t
ytu,v ∈ R The ToE of an edge linked vertices u and v at t
x ∈ R(2k+1)×1 The learned coefficients of a linear regressor

the adjacency matrix only captures 1-step direct connec-
tions of vertices and is weak at representing the high-
order neighborhood structure of the graph. One common
approach to overcome this issue is to extract the high-order
proximities of a graph from its adjacency matrix [14], [18].
In this paper, we employ high-order proximity matrix Mt

of Gt as input, where Mt = Ât + Ât
2
+ · · · + Ât

m
and

Ât is the 1-step probability transition matrix obtained from
the adjacency matrix At after a column-wise normalization.
If a vertex leaves Gt, meaning that it has no connection
with any existing vertices at t, we define it as a silent
vertex and all elements in its corresponding At column are
zero. Consequently, its corresponding vector in Mt is also
a zero vector leading the optimally learned representations
to also be zero vectors. Finally, the evolving structure of G
is preserved in a sequence of high-order proximity matrices
Mt. By factorizing them, we infer a common latent space H
and encode the structural dynamics of the dynamic graph
into the representation Wt.

In solving the second challenge and further capturing the
temporal dynamics, which are the temporal dependencies
of every pair of vertices carried by the ToE of their linked
edges, the objective is to embed the ToE into the representa-
tions Wt while factorizing Mt. We regard every single edge
as a data sample to encode their ToE individually, which
is different from treating all edges in a snapshot graph as
a matrix Mt for embedding the graph structure. Inspired
by discriminative embedding [25], [26], we treat ToE as
“supervised” information to co-train a linear regressor while
encoding the representationsWt. In other words, we employ
the ToE to guide the embedding process and transfer it into
the learned representations. Specifically, we constrain the
learned Wt such that it should have the ability to simultane-
ously reconstruct the graph structure and accurately predict
the ToE using the co-trained regressor x. Given the ToE of
an edge connecting two vertices u and v, we concatenate
their representation vectors Wt(u) and Wt(v) together as
the feature of their corresponding edge to co-train a linear
regressor for estimating its ToE as follows:

Jtp =

n∑
t=1

∑
u,v

(
ytu,v −

[
Wt(u)

T Wt(v)
T 1

]
x
)2

+ αφ (x) (3)

where φ(x) is a regularization of x and α > 0 is a regression
parameter. 1 is a constant for linear regression. Jtp is a
LASSO regressor when φ(x) = ‖x‖1, and it becomes a
ridge regressor or an elastic net regressor if φ(x) is ‖x‖22
or ‖x‖22 + α′‖x‖1 respectively.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST 2021 5

The temporal dependencies of u and v are embedded
into their corresponding representations by the co-trained
regressor since the representations of both source and target
vertices are involved to regress the ToE of the edge they
formed. If there does not exist any edges between u and
v at time t, we set the corresponding ytu,v = 0, indicating
that there is no temporal dependency between these two
vertices at time t. When the dynamic graphs are undirected,
we let ytu,v = ytv,u so that every pair of vertices corre-
sponds to the same ToE no matter how we concatenate their
representation Wt(u) and Wt(v). In addition, if u appears
multiple times in the dynamic graph, such as a seller that
posts multiple selling announcements at different times in a
dynamic transaction network that we mentioned in Section
1, ToE is exactly the unique discriminative information for
the new coming vertex v, identifying which u it connects to.
Such temporal dependencies between u and v are accurately
preserved by our co-trained regressor which adopts the
concatenation of their representations Wt(u) and Wt(v) as a
feature to regress their corresponding ToE.

The co-trained linear regressor x allows our approach to
identify the exact source vertex by estimating the ToE when
performing link prediction. Although existing approaches
can achieve the same goal by training an extra discriminator
using well learned representations, their performance is not
satisfactory due to the absence of discriminative informa-
tion, such as ToE, for identifying the source vertex while
learning the embeddings (please refer to the experimental
results in Section 6.5). Therefore, the learned representation
Wt has the ability to reconstruct the dynamic graph struc-
ture and preserve the temporal dependencies of vertices by
approximating the ToE of every edge.

Lastly, we assume that the graph evolves smoothly
instead of being totally reconstructed at every time step.
Thus, we penalize vertices’s sharp changes of position in
the latent space by minimizing the `2 distance between
representations in two consecutive snapshot graphs:

Jsm =

n∑
t=1

∑
u

(
1−Wt(u)

TWt(u)
)2

+

n∑
t=2

∑
u

(
1−Wt(u)

TWt−1(u)
)2 (4)

In order to maintain stability when factorizing H and
Wt from Mt, we employ quadratic regularizations Jreg =
‖H‖2F +

∑n
t=1 ‖Wt‖2F to prevent H and Wt from becoming

sparse rapidly. Therefore, the overall TCDGE model is

argmin
H≥0,Wt≥0,x

1

2

n∑
t=1

‖Mt −HWt‖2F +
λ1

2
Jreg +

λ2

2
Jsm +

λ3

2
Jtp (5)

where λ1 > 0, λ2 > 0, and λ3 > 0 are model parameters.
It co-trains a linear regressor to embed the ToE y, which
carries the timespan of edges and temporal dependencies
of vertices, into the representation Wt while encoding the
high-order proximities by factorizing Mt for simultaneously
preserving the structural dynamics. Since the ToE is an
attribute of the dynamic graph and naturally exists, our
proposed TCDGE is still an unsupervised representation
learning approach.

5.2 Optimization Algorithm
In this subsection, we will explain how the optimization
problem (5) was solved in detail. We aim to find the optimal
latent space H , the representations of vertices Wt and the
regression coefficient x. It is suitable to use an alternating
directions method to solve this optimization problem by
fixing H and x to solve Wt followed by fixing Wt to update
H and x.

5.2.1 Optimizing Vertex Presentation Wt

Since Wt(u) and Wt(v) are a part of Wt, it is difficult
to handle the integrated vector [Wt(u)

T ,Wt(v)
T , 1] in Jtp

when solving for Wt. Thus, we let x = [xTu , x
T
v , x0]

T , where
xu ∈ Rk×1, xv ∈ Rk×1, and x0 ∈ R, and rewrite Jtp as

Jtp =

n∑
t=1

∑
u,v

(
ytu,v −Wt(u)

T xu −Wt(v)
T xv − x0

)2
+ αφ (x) (6)

We obtain the objective function of optimizing Wt as Eq. (7),
which is a fourth-order polynomial and is non-convex.

argmin
Wt≥0

1

2

n∑
t=1

‖Mt −HWt‖2F +
λ1

2

n∑
t=1

‖Wt‖2F +
λ2

2
Jsm

+
λ3

2

n∑
t=1

∑
u,v

(
ytu,v −Wt(u)

T xu −Wt(v)
T xv − x0

)2 (7)

Therefore, we adopt a block coordinate descent approach to
solve Wt. When updating Wt(u) for each vertex u at time
t, we fix the H , x, and Wt(v) of all the other vertices v
at time t as well as all the representations W that are not
at time t. Consequently, the Wt problem becomes a convex
optimization problem as shown in Eq. (8).

arg min
Wt(u)≥0

f(Wt(u)) = arg min
Wt(u)≥0

1

2
‖Mt(u) −HWt(u)‖

2
2 +

λ1

2
‖Wt(u)‖

2
2

+
λ2

2

((
1 −Wt(u)

T
Wt(u)

)2
+
(
1 −Wt(u)

T
Wt−1(u)

)2)
+
λ3

2

∑
v

(
y
t
u,v −Wt(u)

T
xu −Wt(v)

T
xv − x0

)2
+
λ3

2

(
y
t
u,u −Wt(u)

T
xu −Wt(u)

T
xv − x0

)2
(8)

If we choose to ignore situations where vertices can link
to themselves (self-links), the last term in Eq. (8) could
be removed. We use the projected gradient methods [32]
to solve this convex optimization problem and obtain the
updating function of Wt(u):

Wt(u) = max {Wt(u)− β 5 f(Wt(u)), 0} (9)

where β > 0 is the learning rate and the gradient
5f(Wt(u)) satisfies

5f(Wt(u)) = H
T
HWt(u) −H

T
Mt(u) + λ1Wt(u)

−λ2
(
Wt(u)

(
1 −Wt(u)

T
Wt(u)

)
+Wt−1(u)

(
1 −Wt(u)

T
Wt−1(u)

))
−λ3

∑
v

(
y
t
u,v −Wt(u)

T
xu −Wt(v)

T
xv − x0

)
xu

−λ3
(
y
t
u,u −Wt(u)

T
(xu + xv) − x0

)
(xu + xv)

(10)

To ensure a sufficient decrease of Eq. (9) and to speed up
convergence, we update the learning rate β with a scaling
factor θ to make the new Wt(u) satisfy

f(W
i+1
t (u))− f(W i

t (u)) ≤ σ1 5 f(W
i
t (u))

T
(
W
i+1
t (u)−W i

t (u)
)

(11)

where i is the number of iterations and σ1 is a tolerance.
With the proof by Bertsekas in [33], there always exists a
β > 0 that satisfies the rule (11) and every limit point of
{W i

t (u)}∞i=1 is a stationary point of the bound-constrained

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST 2021 6

Algorithm 1 The projected gradient algorithm of solvingWt

Input: Mt, H , x, W 0
t , yt, λ1, λ2, λ3, 0 < θ < 1, 0 < σ1 < 1

Output: Wt

1: repeat
2: for u = 1, 2, . . . ,m do
3: β0 = 0.01
4: for i = 1, 2, . . . do
5: βi = βi−1

6: if βi satisfies Eq. (11) then
7: repeat
8: βi = βi/θ
9: until βi does not satisfy Eq. (11)

10: else
11: repeat
12: βi = βi · θ
13: until βi satisfies Eq. (11)
14: end if
15: Update Wt(u) by using Eq. (9)
16: end for
17: end for
18: until converge.
19: return Wt

optimization problem (8) [32]. After optimizing everyWt(u)
for every vertex in Gt, an optimal Wt is obtained. The
pseudo code for solving Wt is presented in Algorithm 1.

5.2.2 Optimizing Common Latent Space H
When fixing Wt and x, the H optimization problem can be
addressed by solving

argmin
H

h(H) = argmin
H≥0

1

2

n∑
t=1

‖Mt −HWt‖2F +
λ1

2
‖H‖2F (12)

This is also a convex bound-constrained optimization prob-
lem that is again solvable using the projected gradient
method, which is similar to the approach we employed in
solving Wt. The updating function of H is

H = max {H − β 5 h(H), 0} (13)

where the gradient of h(H) is

5h(H) =

n∑
t=1

(HWt −Mt)W
T
t + λ1H (14)

When optimizing H , we adopt the same learning rate
updating strategy in solving Wt here to ensure sufficient
decent under the condition (15). σ2 is the tolerance and i is
the number of iterations.

h(Hi+1)− h(Hi) ≤ σ2 5 h(Hi)T
(
Hi+1 −Hi

)
(15)

5.2.3 Co-training Linear Regressor for Embedding ToE
Fixing H and Wt for all t to optimize x is a standard
linear regression problem. When rewriting the Jtp in Eq.
(3) in matrix form, we obtain the objective function of op-
timizing x by Eq. (16), where Z = [ZT1 , Z

T
2 , · · · , ZTn]T and

y = [yT1 , y
T
2 , · · · , yTn]T , which is a standard linear regression

problem.

argmin
x

λ3

2
Jtp = argmin

x

λ3

2
‖y − Zx‖22 +

αλ3

2
αφ (x) (16)

Zt for t = 1, · · · , n contains the concatenated features of
any pair of vertices in the snapshot graph Gt as showed
in Eq. (17) and yt ∈ Rm

2

is the corresponding ToE. The
standard algorithm can be directly applied to solve the
linear regression problem with different regularization φ(x)
and finally get x.

Zt =

Wt(1)T Wt(1)T 1
Wt(1)T Wt(2)T 1

...
...

...
Wt(1)T Wt(m)T 1
Wt(2)T Wt(1)T 1

...
...

...
Wt(2)T Wt(m)T 1

...
...

...
Wt(m)T Wt(m)T 1

∈ Rm2×(2k+1) (17)

Since the connections of vertices usually evolve very
frequently in a dynamic graph, which leads to substantial
changes to the concatenated edge features but only has a
slight impact on ToE, LASSO is very robust for embedding
the ToE and unlikely to overfit. In the remainder of this
paper, we specifically employ the LASSO regressor, letting
φ(x) = ‖x‖1, for illustration. To obtain the optimal LASSO
regressor x, we first let g(x) = λ3

2 ‖y − Zx‖22, and then
compute its gradient by ∇g(x) = λ3(Z

TZx− ZT y). Lastly,
we employ the FISTA algorithm [34] to solve the LASSO
problem and obtain an optimal x with

x = Sαλ3
2

(x− γ∇g(x)) (18)

where S(·) is a soft-threshold calculator. γ = 1/λmax(Z
TZ)

where λmax(Z
TZ) is the maximum eigenvalue of ZTZ

which is the smallest Lipschitz constant of ∇g(x). The
computational complexity of the FISTA algorithm is only
O(1/m2) [34] which solves the LASSO very efficiently.

5.3 Efficient Training Procedure and Convergence

Although the projected gradient algorithm and the FISTA
algorithm are efficient for matrix factorization and LASSO
regression respectively, there exist two bottlenecks in fur-
ther improving the training efficiency and making TCDGE
converge faster. One bottleneck is the initialization of Wt

and H to make them close to the optimal point for reduc-
ing the training time while preventing them from sticking
into meaningless local optima. The other bottleneck is that
very large-scale training samples make the FISTA algorithm
very time-consuming in computing the gradient ∇g(x).
Training sets containing too many edges with zero ToE
impair the training precision of linear regressor as well.
Here, we present an initialization approach using singular
value decomposition (SVD) and an efficient FISTA training
procedure to address the above efficiency bottlenecks.

5.3.1 Initialization of Wt and H by SVD
The TCDGE algorithm cannot be initialized by randomly
generated H0 and W 0

t . Usually, Mt is a sparse matrix but
randomly generated H0 and W 0

t are all dense matrices. It
will make either or both H and Wt become zero matrices
after a few iterations. Thus, the algorithm stops at a local
optimum and outputs meaningless results.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST 2021 7

To avoid reaching the zero local optimal point, the ini-
tialized H0 and W 0

t should meet the requirement ‖Mt −
H0W 0

t ‖2F ≤ ‖Mt‖2F [32]. Therefore, we adopt SVD to
initialize H0 and W 0

t as follows. First, we decompose every
Mt and obtain its left-singular matrix Ut, singular value
matrix It, and right-singular matrix St. Then, we select the
rectangular diagonal sub-matrix from It corresponding to
the top k singular values, and the first k columns from Ut
and St denoted as It,k, Ut,k and St,k. Finally, we initialize
H0 and W 0

t by

H0 =
1

n

n∑
t=1

Ut,k and W 0
t = It,kS

T
t,k (19)

Using SVD to initialize our embedding algorithm prevents
it from being stuck in the zero local optimum and allows it
to pursue meaningful results.

5.3.2 Efficient Linear Regressor Training with Negative
Sampling
To capture all of the temporal dependencies among the
m vertices in a dynamic graph consisting of n snapshot
graphs, m2 × n training samples in Z are used to co-train
the linear regressor in every time step. Because of the high
dimensionality of Z , computing the gradient ∇g(x) is very
time-consuming. Meanwhile, many vertices usually do not
connect to each other in real cases. Thus, edges with zero
ToE are much more common than nonzero ToE edges, which
causes imbalance issues and impairs the precision of the co-
trained regression model.

Inspired by negative sampling [35], we mark all edges
with nonzero ToE as positive samples and randomly choose
a set of zero ToE edges, following a uniform distribution,
as negative samples to jointly train the regressor. Different
from deep learning models that just select a very small
number of negative samples based on the label difference for
training, we restrict the number of negative samples to half
of the number of positive ones because negative samples in
our model indicate vertices having no temporal dependency
which is one of the most important pieces of information
that should be learned by the regressor.

After negative sampling, the training samples in Z are
dramatically reduced and positive samples become majori-
ties, therefore saving the computational cost in calculating
∇g(x) and preventing the regressor from being dominated
by the negative samples, which makes it converge quickly
and precisely. We have tried selecting negative samples
based on a probability distribution that is proportional or
inversely proportional to the vertex degree but the experi-
mental results show that this is rarely much different from
following the uniform distribution.

5.3.3 Convergence and Stop Criteria
The overall work flow of the TCDGE algorithm is presented
in Algorithm 2, which essentially is a block-wise coordinate
descent algorithm. Therefore, its convergence can be guar-
anteed according to the proof of convergence of block-wise
coordinate descent [36]. Both algorithms for optimizing Wt

and H stop when they meet the condition in Eq. (20) and
Eq. (21), which ensures the optimization outputs are close
to a stationary point [32]. ε is a very small positive number.

Algorithm 2 The TCDGE algorithm

Input: Mt, y, Z , x0, τ0, λ1, λ2, λ3, α, 0 < θ < 1, 0 < σ1 < 1,
0 < σ2 < 1

Output: H , Wt, x
1: Initialize H0 and W 0

t by Equation 19
2: Initialize x by the FISTA algorithm
3: repeat
4: for t = 1, 2, . . . , n do
5: Update Wt by Algorithm 1
6: end for
7: Update H by the projected gradient algorithm
8: Update x by the FISTA algorithm
9: until converge.

10: return H , Wt, x

TABLE 2
Statistics of datasets

Dataset |V | |E| |Gt| Mean ToE Std ToE #Classes

UCI Messages 1899 22640 7 0.7387 (days) 2.1762 -

Transaction 5881 35592 11 1.4637
(months) 1.9303 2

Co-authorship 10374 60101 5 1.3834 (years) 1.0414 3

For the jth element aj in vector a, p(·) equals the gradient
at aj if aj > 0 else p(·) equals the negative gradient at aj .

‖p(5h(Hi))‖2 ≤ ε‖ 5 h(H1)‖2 (20)

‖p(5f(W i
t (u)))‖2 ≤ ε‖ 5 f(W 1

t (u))‖2 (21)

The FISTA algorithm for embedding the ToE stops when the
residual of x is less than a small positive number ε′.

6 EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we conduct extensive experiments to show-
case the effectiveness and efficiency of the TCDGE algo-
rithms in the data mining tasks of vertex classification,
ToE prediction, static link prediction, and time-aware link
prediction.

6.1 Experimental Setting
6.1.1 Datasets
Three public real-world datasets are considered when vali-
dating the performance of TCDGE on data mining applica-
tions, whose statistics are presented in Table 2.

UCI Messages1 [37] is an online communication network
of students. A vertex represents a student that has sent or
received messages. The ToE is the communication time in-
terval between a pair of students. The communication lasts
7 months so that a dynamic graph containing 7 snapshot
communication graphs has been built for capturing their
dynamic communication behaviors.

Transaction2 [38] is a bitcoin transaction network. A ver-
tex is a trader who buys and sells bitcoins and an edge forms
while two traders complete a transaction. The ToE is the
time interval between buying and selling. Each snapshot
graph carries the transactions in a 6 month period. Since

1. http://konect.uni-koblenz.de/networks/opsahl-ucsocial
2. https://snap.stanford.edu/data/soc-sign-bitcoin-otc.html

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST 2021 8

bitcoin traders are anonymous, there is a need to maintain
a record of their reputation to prevent transactions with
fraudulent and risky traders. Traders rate each other’s trust-
worthiness on a scale of -10 (total distrust) to +10 (total trust)
with a step of 1 after completing each transaction, so that we
label traders whose average score is above 1 as trustworthy
while the rest are deemed untrustworthy. Finally, we obtain
1092 untrustworthy traders and 4789 trustworthy ones.

We derive a Co-authorship3 network for publications from
2010 to 2014 in three research areas including networking
(NW), data mining (DM) and artificial intelligence (AI) from
the DBLP. A vertex is an author and two authors form an
edge when they coauthor a paper. The ToE indicates the
time interval between co-authorship. We deem researchers
that have coauthored with not less than 6 other authors and
at least coauthored with one of them twice in that period.
The snapshot graphs represent the co-authorship in every
year. We label the vertices by their research areas which they
published most in. Finally, we obtains 3405 authors in NW,
2909 authors in DM, and 4060 authors in AI.

6.1.2 Baseline Methods

We benchmark our TCDGE algorithm to 7 state-of-the-art
methods listed below using their published codes.

• DeepWalk4 [1] is a static graph embedding algorith-
m that employs skip-gram to encode linkage rela-
tionships among vertices searched by the random
walk. We tested the combination of hyper param-
eters given window sizes ws ∈ {5, 8, 10}, walk
lengths wl ∈ {10, 20, 30, 40}, and numbers of walks
nw ∈ {20, 40, 60}, and report the best results.

• Temporal Network Embedding (TNE)5 [2] is a ma-
trix factorization based dynamic graph embedding
method that encodes the structure evolving patterns
in different latent spaces. We tested the hyper param-
eter λ ∈ {0.01, 0.1, 1, 10}, and report the best results.

• Timers6 [27] is an incremental SVD approach for
dynamic graph embedding which overcomes the er-
ror accumulation issues by restarting SVD when the
error margin exceeds a threshold. We use the default
parameter settings θ = 0.17.

• DynamicTriad7 [4] preserves the triad closure process
while embedding the structural evolution. We test-
ed all combinations of hyper parameters β0, β1 ∈
{0.01, 0.1, 1, 10}, and report the best results.

• GraphSAGE8 [8] is a graph convolutional network
approach for embedding the structural evolution of
a dynamic graph. We train a two layer model with
respective neighborhood sample sizes 25 and 10, as
described in the original paper. We test different
aggregators including GCN, mean, mean-pooling,
and LSTM and report the performance of the best
performing aggregator in each dataset.

3. http://projects.csail.mit.edu/dnd/DBLP/
4. https://github.com/phanein/deepwalk
5. https://github.com/linhongseba/Temporal-Network-Embedding
6. https://github.com/ZW-ZHANG/TIMERS
7. https://github.com/luckiezhou/DynamicTriad
8. https://github.com/williamleif/GraphSAGE

• DynGEN9 [6] adopts a deep auto-encoder to embed
the structure changes throughout the snapshot graph
sequence. We train a two layer model and adopt the
default parameter settings that are recommended by
the authors.

• DynG2vecAERNN9 [7] is an extension of DynGEN
which first adopts a deep neutral network to encode
the structure of each snapshot graph, and then em-
ploys an LSTM to embed the sequential evolution of
every vertex throughout the snapshot graphs. A two
layer model is trained with the default parameter
setting as described in the original paper.

In order to verify the effectiveness of learning the common
latent space H to capture the linkage evolution, we exper-
iment with our TCDGE without embedding ToE by setting
λ3 = 0, namely TCDGE-noToE. Meanwhile, we test another
variant TCDGE, namely TCDGE-wgToE, that adopts the
ToE as weights of the adjacency matrix of each snapshot
graph but does not co-train any regression model, thus
verifying the effectiveness of our co-training approach.

6.1.3 Evaluation Metrics
We employ micro-F1 and macro-F1 scores as evaluation
metrics for the task of vertex classification as seen below:

Micro-F1 =
2
∑
i TPi∑

i (2TPi + FPi + FNi)
(22)

Macro-F1 =
1

c

∑
i

2TPi
2TPi + FPi + FN

(23)

where TPi, FPi, and FNi are the true positive, false pos-
itive, and false negative results of the ith predicted class,
respectively. The macro-F1 score is the mean of the class-
wise F1 score that is sensitive to the performance in classify-
ing each individual class. The micro-F1 score measures the
overall classification performance regardless of the accuracy
in individual classes. Higher micro-F1 and macro-F1 scores
indicate better vertex classification performance.

We evaluate the performance of ToE prediction by mea-
suring the Root Mean Square Error (RMSE) between the
predicted ToE and the ground truth as

RMSE =

√√√√∑
y∈Stest (y − ŷ)

2

|Stest|
(24)

where y denotes the real ToE in the test set Stest and ŷ is the
predicted one. |Stest| is the number of test samples in Stest.
The smaller the RMSE, the more accurate the ToE prediction.

In link prediction, we employ the average area under the
curve (AUC) of the receiver operating characteristic (ROC)
curve as the performance metric. The higher the AUC, the
better the link prediction performance.

6.1.4 Parameter Setting
The experiments have been conducted with k = 45 as
the dimension of the representation vector for both our
method and all baselines in all testing datasets. For the
parameters of TCDGE, we set the scaling factor θ = 0.5,
tolerance σ1 = σ2 = 0.01. We co-train a LASSO regressor

9. https://github.com/palash1992/DynamicGEM

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST 2021 9

TABLE 3
Vertex classification results

Transaction Co-authorship
Micro-F1 Macro-F1 Micro-F1 Macro-F1

DeepWalk 0.8855 0.7229 0.5645 0.5684
TNE 0.8673 0.6777 0.4221 0.4064

Timers 0.7810 0.4896 0.3358 0.2965
GraphSAGE 0.6205 0.6256 0.4793 0.4537

DynamicTriad 0.8652 0.6737 0.5243 0.5189
DynGEN 0.8316 0.6680 0.5150 0.5065

DynG2vecAERNN 0.8140 0.4721 0.4681 0.5398
TCDGE-noToE 0.8621 0.7390 0.6921 0.7220
TCDGE-wgToE 0.8625 0.7402 0.6701 0.6885

TCDGE 0.9032 0.7725 0.6728 0.7079

for our TCDGE with initial regression parameter α = 1
Since Wt will be updated at each time step, making Z
change dynamically, the regression parameter α cannot
be fixed. Otherwise, the LASSO cannot adequately fit the
ToE by using the new Z at each time. In addition, the
training error of LASSO will gradually accumulate so that
the reconstruction error of the overall embedding model
will progressively increase, thus leading to poor embedding
results. We adopt θ to dynamically update α 10 times
using the same updating strategies in the projected gradient
algorithm for learning the best LASSO regressor x at each
time. Finally, we report the best results by testing the com-
bination of model parameters given λ1 ∈ {0.001, 0.01, 1}
and λ2, λ3 ∈ {0.0001, 0.001, 0.01, 0.1, 1} for the data mining
tasks presented in the following subsections. All experi-
ments are conducted on a standard workstation with 2 Intel
Xeon Gold 6128 CPUs and 64GB RAM, and are implement-
ed in MATLAB.

6.2 Vertex Classification
Vertex classification aims to identify the unique label of
vertices using their learned representations in the dynamic
graph G. We first learn the representation of vertices in
every snapshot graph Gt. Then, concatenate the represen-
tations Wt together by Eq. (1) for classification. A support
vector machine (SVM) with a Gaussian kernel is trained by
using these features to classify their corresponding labels.
It tests the embedding algorithms’ ability to capture the
global graph evolutionary patterns in G for all timestamps.
Since the UCI messages dataset does not contain vertex
labels, we compare the classification performance in both
bitcoin transactions and co-authorship datasets. We repeat
the 5-fold cross-validation on both datasets 10 times and
compare the average performance in macro-F1 and micro-
F1 scores. We did not adopt any extra methods to handle the
issues of unbalanced labels in the bitcoin transaction dataset
but straightforwardly train the SVM for testing the actual
performance of our TCDGE algorithm in the case of label
unbalanced classification. The results are shown in Table 3.

In the bitcoin transaction dataset, our TCDGE algorithm
achieves the best performance, and outperforms the best
baseline by 2.00% in micro-F1 scores and by 4.36% in
macro-F1 scores. In the co-authorship dataset, TCDGE and
its variants, TCDGE-noToE and TCDGE-wgToE, dramatical-
ly outperform all 7 other baseline methods. This indicates
that capturing the moving trajectories of vertices in the com-
mon latent space, learned throughout the snapshot graph

TABLE 4
Average RMSE of ToE prediction

UCI Messages Transaction Co-authorship

DeepWalk 2.5934 2.1084 1.0395
TNE 2.5335 2.0932 1.0377

Timers 2.1536 2.1074 1.0428
GraphSAGE 2.1471 2.1004 1.0392

DynamicTriad 2.3329 2.3485 1.3425
DynGEN 2.4160 2.4053 1.0395

DynG2vecAERNN 2.1640 1.9756 0.9891
TCDGE-noToE 2.1957 2.0920 1.0371
TCDGE-wgToE 2.1595 2.0659 1.0452

TCDGE 2.1419 1.7798 0.8967

sequence by our proposed approach, embeds the evolution
of a dynamic graph better than the baseline methods. In
addition, the temporal evolution patterns captured by our
approach work much better than the baselines in unbal-
anced label classification.

In the co-authorship dataset, TCDGE-noToE performs
the best. This may be because the standard deviation of its
ToE is relatively small meaning that the time intervals of
co-authoring papers are not as significant as who they co-
author with over time for classifying their research areas.
Therefore, purely capturing the linkage evolution may be
good enough for classifying authors’ research areas from
their co-authorship, and our TCDGE and TCDGE-wgToE
achieve close performance, yet slightly worse than TCDGE-
noToE but still much better than the baselines.

When people trade bitcoins, the time interval between
transactions becomes important for measuring traders’ trad-
ing behavior and strategies, which results in higher standard
deviation of ToEs. Since our TCDGE algorithm successfully
embeds both structural evolution and the temporal infor-
mation of edges at the same time, it achieves the highest
macro and micro F1 scores and dramatically outperforms
the traditional models which merely capture the linkage
information. Although TCDGE-wgToE leverages the ToE
as weights of the adjacency matrices for embedding, the
temporal dependency among vertices gradually diminish-
es during embedding due to the aggregation throughout
the snapshot graph sequence, which is consistent with the
conclusion drawn in [16]. However, co-training the LASSO
regressor has the ability to better preserve the temporal de-
pendency among vertices and encode it into the final repre-
sentation. Therefore, embedding the temporal dependency
together with the structural evolution among vertices into
a common latent space makes the learned representation
vectors preserve the global structural and temporal evolu-
tionary patterns from the whole dynamic graph, which is
more discriminative and leads to better classification results.

6.3 ToE Prediction

The objective of ToE prediction is to estimate the ToE of
an edge given the representation of its source and target
vertices for testing how effectively the learned represen-
tations capture temporal information. The experiment is
conducted under the leave-one-snapshot-graph-out cross-
validation setting. Since our model co-trains a LASSO re-
gressor simultaneously with the representation learning, a
snapshot graph is selected for testing at each round and

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST 2021 10

(a) Results for the UCI message dataset (b) Results for the Transaction dataset (c) Results for the Co-authorship dataset

Fig. 2. Average AUC of time-aware link prediction with varying threshold ε.

TABLE 5
Average AUC of static link prediction

UCI Messages Transaction Co-authorship

DeepWalk 0.6619 0.9028 0.5977
TNE 0.6524 0.8264 0.5861

Timers 0.4943 0.4938 0.5156
GraphSAGE 0.5091 0.5624 0.5890

DynamicTriad 0.5187 0.4197 0.5950
DynGEN 0.6028 0.5826 0.4874

DynG2vecAERNN 0.4977 0.5218 0.4949
TCDGE-noToE 0.7003 0.9194 0.6044
TCDGE-wgToE 0.6969 0.9187 0.6037

TCDGE 0.7314 0.9248 0.6142

we use the rest of the snapshot graphs to train our model
until every snapshot graph serves as the testing graph once.
When testing the baseline methods, we first generate all
the representations from every snapshot graph, and then
employ them to further train a LASSO regressor under the
same cross-validation setting. We repeat each experiment 10
times and report the average RMSE.

The ToE prediction results are presented in Table 4. Our
method achieves a 12.85% lower RMSE on average against
all baseline methods and outperforms the best baseline by
6.50% indicating that the temporal dynamics are preserved
by our proposed co-training approach, which results in
much lower ToE prediction errors than the baseline ap-
proaches that ignore it. The representations learned by our
TCDGE carry both structural evolution of the dynamic
graph and its ToE such that it is more effective when
discriminating temporal information than those approaches
that purely embed the graph structure, which leads to better
performance in ToE prediction.

6.4 Static Link Prediction

Static link prediction aims to predict whether a pair of
vertices will form an edge at time t + 1, given their em-
beddings learned at t. This task ignores the joining time
of source vertices, which is widely adopted by the existing
work to test the performance of learned embeddings. Here
we employ the cosine distance to measure the similarity of
two vertices in the latent space and calculate the probability
of forming a new edge by the sigmoid function. We predict
the links in snapshot graphGt+1 by using the representation
Wt under the same experimental settings as those of [2]. The

performance is measured by the average AUC for predicting
G2 to Gn.

The results are reported in Table 5. Overall, our proposed
TCDGE algorithm outperforms all baselines by 27.56% on
average with respect to the AUC, and achieves 2.22% high-
er AUC than the best baseline method TCDGE-noToE on
average in all three datasets. The baseline approaches only
learn from the linkage information. However, our TCDGE
algorithm not only learns the evolving patterns of who
the vertices link to, but also embeds how they link by
capturing their ToEs and temporal dependency such that
the edges between the same pair of vertices but established
at two different timestamps can be distinguished. Therefore,
our TCDGE algorithm achieves better static link prediction
performance in terms of higher AUC than all baselines.

6.5 Time-aware Link Prediction

Time-aware link prediction is a unique application for dy-
namic graph embedding, which aims to identify the joining
time of existing vertices on top of the static link prediction.
It performs two tasks at the same time. One is to predict
whether a pair of vertices will form an edge at time t + 1
when given their representations at time t. The other is to
predict the joining time of existing vertex to identify the
unique one since it can join the dynamic graph several times.
Specifically, data mining applications such as predicting
which sell order will be completed by a buyer, predicting
the future victims of fraud and when the fraud will happen,
recommending items at an appropriate time, etc., can all be
abstracted as time-aware link prediction applications.

Since the joining time of an existing vertex is equal to
the difference between the ToE and the joining time of an
upcoming vertex, predicting the joining time of existing ver-
tices at the time when the upcoming one joins the dynamic
graph is the same as predicting the ToE of the edge they
form. Thus, we predict the ToE instead of the actual joining
time of existing vertices in this experiment.

We conduct the experiment under the one-snapshot-
graph-ahead cross-validation setting in which a snapshot
graph Gt (t > 1) is selected for testing at each round
and we use the snapshot graph sequence {G1, · · · , Gt−1}
to train our model until every snapshot graph except G1

serves as the testing graph once. Since none of the baselines
can achieve the two goals in time-aware link prediction si-
multaneously, we employ the same cross-validation setting

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST 2021 11

(a) Average F1-score of vertex classification (b) Average RMSE of ToE prediction (c) Average AUC of static link prediction

Fig. 3. Testing the hyperparameter k in the Co-Authorship dataset.

to obtain baselines’ representations and then further train
a LASSO regressor to predict the ToE. We adopt the same
approach used in static link prediction to determine whether
there exists an edge connecting a pair of vertices here.

A temporal link has been correctly predicted if and only
if the model correctly predicts that a pair of vertices formed
an edge and the RMSE of ToE prediction for this edge is
less than a threshold ε. To test how the prediction accuracy
of ToE affects time-aware link prediction, we perform time-
aware link prediction in three datasets and test the threshold
ε from 0.0001 to 30. The experiment repeats 10 times for each
threshold and the average AUC are reported in Fig. 2.

Our TCDGE performs the best in all three testing
datasets when ε > 0.1. It also achieves the highest AUC
in the bitcoin transaction dataset and dramatically out-
performs other baselines except DynG2vecAERNN in the
remaining two datasets when ε ≤ 0.1. DynG2vecAERNN
works better in ToE prediction than other baselines (refer to
Table 4) but is comparatively much worse in link prediction
(refer to Table 5) such that it achieves relatively high AUC
with small ε but it cannot correctly predict more temporal
links when relaxing the threshold ε. Although our TCDGE
performs slightly worse than DynG2vecAERNN with small
ε, it becomes the best of all when ε = 1, and AUC increases
slowly when ε > 1. This indicates that the RMSE of ToE pre-
diction for most temporal edges predicted by our TCDGE is
less than 1. Consequently, our LASSO co-training approach
preserves the temporal dynamics well while embedding the
ToE, therefore resulting in superior performance in time-
aware link prediction.

6.6 Parameter Sensitivity Analysis
The TCDGE defined by Eq. (5) is dependent on regularizer
weights λ1, λ2, λ3 and a hyperparameter k which is the
dimension of the latent representation space as well as the
dimension of the learned embeddings. The selection of λ1,
λ2 and λ3 highly depends on the input data and the selec-
tion approach has been illustrated in section 6.1.4. Therefore,
we conduct sensitivity analysis on the hyperparameter k
from 15 to 285 in vertex classification, ToE prediction, and
static link prediction. The co-authorship dataset is adopted
here because the scale is relatively large compared to the
other two datasets and the number of vertices in the three
categories are almost balanced, which is more common in
daily life. We fix λ1 = 0.0001, λ2 = λ3 = 0.01 and only
vary k at each time. As shown in Fig. 3, when k increases,

(a) Convergence curves (b) Training time with varying k

Fig. 4. Convergence and training efficiency of TCDGE in the co-
authorship dataset.

both F1-scores in vertex classification increase almost lin-
early and gradually converge. The RMSE of ToE prediction
decreases exponentially and converges with increasing k.
The average AUC of static link prediction is not sensitive
to the dimension of the representations. Since all results
eventually converge to the best case when the k is high
enough, our TCDGE is not sensitive to the dimension of
the common latent space k.

6.7 Convergence and Training Efficiency

We demonstrate the convergence of our TCDGE algorithm
in the co-authorship dataset which has the highest number
of vertices. The loss of the objective function in Eq. (5),
fidelity term 1

2

∑n
t=1 ‖Mt − HWt‖2F , the LASSO regressor

Jtp in Eq. (3) when φ(x) = ‖x‖1, and temporal smoothness
regularization Jsm in Eq. (4) are shown in Fig. 4(a).

Our model converges in very few iterations because of
the initialization set by the SVD and the effectiveness of
the projected gradient method for solving Wt and H . Our
initialization approach not only prevents our TCDGE from
being stuck in the zero local optimum, but also generates an
approximation of Mt upon initialization, which already de-
creases the loss of fidelity. In the projected gradient method,
a scaler θ is employed to search for a good learning rate to
ensure the sufficient decrease of the gradient, thereby boost-
ing the convergence speed of the overall TCDGE algorithm.

Fig. 4(b) shows the average running time of each iter-
ation while training our TCDGE by varying the hyperpa-
rameter k. As k increases, the running time for updating
H at each iteration hardly increases. The running time of
updating Wt and co-training x almost linearly grows with
increasing k. It takes less than 1 minutes to finish updating

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST 2021 12

(a) Training time with varying the
number of vertices

(b) Training time with varying the
number of snapshot graphs

Fig. 5. Scalability test results of TCDGE in the synthesized dataset.

the representation for over ten thousand vertices when
k <= 105 and less than 5 minutes when k = 255.

Although our TCDGE model looks complex, it converges
quickly in terms of a small number of iterations and a
very short running time for encoding the representation Wt,
learning the common latent space H , and co-training the
LASSO regressor x, demonstrating the effectiveness of the
projected gradient method and the our proposed efficient
training procedure.

6.8 Scalability of TCDGE
We synthesize two datasets on top of the co-authorship
dataset to test the scalability of our TCDGE. One is to fix
the number of snapshot graphs but augment the number
of vertices in every snapshot graph by sampling vertices
and edges in the other snapshot graphs as new vertices and
edges of the current graph. This tests the scalability of the
project gradient approach for updating Wt and the LASSO
co-training. The experimental results are shown in Fig. 5(a).
As the number of vertices in the snapshot graph increases,
the running time for updating Wt grows almost linearly.
The running time for co-training LASSO and updating H
becomes slightly longer, but still much slower than the
growth rate of updating Wt.

The other synthesized dataset fixes the number of ver-
tices in every snapshot graph but augments the number
of snapshot graphs to test the scalability of learning the
common latent space H . We divide the vertices of each
existing snapshot graph into 5-folds based on the degree
of vertices. We take a fold from each existing snapshot
graph without duplication to synthesize a new snapshot
graph. In Fig. 5(b), the experimental results indicates that
the running time of learning the common latent space grows
linearly. Consequently, our TCDGE algorithm has very good
scalability although the embedding model is complicated
with high-order polynomials.

7 CONCLUSIONS

We generically model a dynamic graph as a sequence of
snapshot graphs appended with ToE for every edge, which
captures both the graph structure and temporal dependency
among vertices. A time capturing dynamic graph embed-
ding model is proposed to embed the global evolutionary
patterns of the dynamic graph, which preserves every ver-
tex’s temporal linkage evolution as its moving trajectories
within the inferred common latent representation space.

The experimental results show that our method can achieve
significant performance improvements over existing state-
of-the-art approaches and it is very efficient and scalable.

ACKNOWLEDGMENTS

This work is supported by the Hong Kong RGC Collabo-
rative Research Fund (CRF) with grant No. C5026-18G, the
Hong Kong RGC Theme-based Research Scheme (TRS) with
grant No. T41-603/20-R, the Fundamental Research Funds
for the Central Universities with grant No. NZ2020014, the
Guanddong Basic and Applied Basic Research Foundation
with grant No. 2021A1515012239, the National Natural Sci-
ence Foundation of China with Grant No. 62032020, and the
Hunan Science and Technology Planning Project with Grant
No. 2019RS3019.

REFERENCES

[1] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
2014, pp. 701–710.

[2] L. Zhu, D. Guo, J. Yin, G. Ver Steeg, and A. Galstyan, “Scalable
temporal latent space inference for link prediction in dynamic
social networks,” IEEE Transactions on Knowledge and Data Engi-
neering, vol. 28, no. 10, pp. 2765–2777, 2016.

[3] W. Yu, C. C. Aggarwal, and W. Wang, “Temporally factorized net-
work modeling for evolutionary network analysis,” in Proceedings
of the Tenth ACM International Conference on Web Search and Data
Mining, 2017, pp. 455–464.

[4] L.-k. Zhou, Y. Yang, X. Ren, F. Wu, and Y. Zhuang, “Dynamic
network embedding by modeling triadic closure process.” in
AAAI, 2018.

[5] D. Zhu, P. Cui, Z. Zhang, J. Pei, and W. Zhu, “High-order proximi-
ty preserved embedding for dynamic networks,” IEEE Transactions
on Knowledge and Data Engineering, 2018.

[6] P. Goyal, N. Kamra, X. He, and Y. Liu, “Dyngem: Deep embed-
ding method for dynamic graphs,” arXiv preprint arXiv:1805.11273,
2018.

[7] P. Goyal, S. R. Chhetri, and A. Canedo, “dyngraph2vec: Capturing
network dynamics using dynamic graph representation learning,”
Knowledge-Based Systems, 2019.

[8] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Advances in Neural Information Pro-
cessing Systems, 2017, pp. 1024–1034.

[9] Y. Xiong, Y. Zhang, H. Fu, W. Wang, Y. Zhu, and S. Y. Philip, “Dyn-
graphgan: Dynamic graph embedding via generative adversarial
networks,” in Proceedings of the International Conference on Database
Systems for Advanced Applications, 2019, pp. 536–552.

[10] J. Ma, P. Cui, and W. Zhu, “Depthlgp: Learning embeddings of
out-of-sample nodes in dynamic networks,” in AAAI, 2018.

[11] G. H. Nguyen, J. B. Lee, R. A. Rossi, N. K. Ahmed, E. Koh, and
S. Kim, “Continuous-time dynamic network embeddings,” in 3rd
International Workshop on Learning Representations for Big Networks,
2018.

[12] Y. Zuo, G. Liu, H. Lin, J. Guo, X. Hu, and J. Wu, “Embedding
temporal network via neighborhood formation,” in Proceedings
of the 24th ACM SIGKDD international conference on knowledge
discovery & data mining, 2018, pp. 2857–2866.

[13] H. Peng, J. Li, H. Yan, Q. Gong, S. Wang, L. Liu, L. Wang, and
X. Ren, “Dynamic network embedding via incremental skip-gram
with negative sampling,” Science China Information Sciences, vol. 63,
no. 10, pp. 1–19, 2020.

[14] C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Y. Chang, “Network
representation learning with rich text information.” in IJCAI, 2015,
pp. 2111–2117.

[15] D. Zhang, J. Yin, X. Zhu, and C. Zhang, “User profile preserving
social network embedding,” in IJCAI, 2017, pp. 3378–3384.

[16] P. Goyal, H. Hosseinmardi, E. Ferrara, and A. Galstyan, “Cap-
turing edge attributes via network embedding,” arXiv preprint
arXiv:1805.03280, 2018.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST 2021 13

[17] A. Grover and J. Leskovec, “node2vec: Scalable feature learning
for networks,” in Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, 2016, pp. 855–864.

[18] S. Cao, W. Lu, and Q. Xu, “Grarep: Learning graph representations
with global structural information,” in Proceedings of the 24th ACM
International on Conference on Information and Knowledge Manage-
ment, 2015, pp. 891–900.

[19] H. Chen, H. Yin, T. Chen, Q. V. H. Nguyen, W.-C. Peng, and X. Li,
“Exploiting centrality information with graph convolutions for
network representation learning,” in Proceedings of the 35th IEEE
International Conference on Data Engineering, 2019, pp. 590–601.

[20] L. Xu, X. Wei, J. Cao, and P. S. Yu, “On exploring semantic
meanings of links for embedding social networks,” in Proceedings
of the 2018 World Wide Web Conference, 2018, pp. 479–488.

[21] X. Wang, P. Cui, J. Wang, J. Pei, W. Zhu, and S. Yang, “Community
preserving network embedding.” in AAAI, 2017, pp. 203–209.

[22] J. Wang, J. Cao, W. Li, and S. Wang, “Cane: community-aware
network embedding via adversarial training,” Knowledge and In-
formation Systems, vol. 63, no. 2, pp. 411–438, 2021.

[23] L. Xu, X. Wei, J. Cao, and P. S. Yu, “Embedding of embedding: Joint
embedding for coupled heterogeneous networks,” in Proceedings
of the Tenth ACM International Conference on Web Search and Data
Mining, 2017, pp. 741–749.

[24] X. Sun, H. Yin, B. Liu, H. Chen, J. Cao, Y. Shao, and N. Q.
Viet Hung, “Heterogeneous hypergraph embedding for graph
classification,” in Proceedings of the 14th ACM International Con-
ference on Web Search and Data Mining, 2021, pp. 725–733.

[25] J. Li, J. Zhu, and B. Zhang, “Discriminative deep random walk for
network classification,” in Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics, 2016, pp. 1004–1013.

[26] D. Zhang, J. Yin, X. Zhu, and C. Zhang, “Collective classification
via discriminative matrix factorization on sparsely labeled net-
works,” in Proceedings of the 25th ACM International on Conference
on Information and Knowledge Management, 2016, pp. 1563–1572.

[27] Z. Zhang, P. Cui, J. Pei, X. Wang, and W. Zhu, “Timers: Error-
bounded svd restart on dynamic networks,” in AAAI, 2018.

[28] J. Wang, Y. Jin, G. Song, and X. Ma, “Epne: Evolutionary pattern p-
reserving network embedding,” in Proceedings of the 24th European
Conference on Artificial Intelligence, 2020.

[29] D. Yang, S. Wang, C. Li, X. Zhang, and Z. Li, “From properties
to links: Deep network embedding on incomplete graphs,” in Pro-
ceedings of the 2017 ACM on Conference on Information and Knowledge
Management, 2017, pp. 367–376.

[30] A. Sankar, Y. Wu, L. Gou, W. Zhang, and H. Yang, “Dynamic graph
representation learning via self-attention networks,” arXiv preprint
arXiv:1812.09430, 2018.

[31] S. Greenland, M. A. Mansournia, and D. G. Altman, “Sparse data
bias: a problem hiding in plain sight,” BMJ, vol. 352, p. i1981, 2016.

[32] C.-J. Lin, “Projected gradient methods for nonnegative matrix
factorization,” Neural computation, vol. 19, pp. 2756–2779, 2007.

[33] D. Bertsekas, “On the goldstein-levitin-polyak gradient projection
method,” IEEE Transactions on automatic control, vol. 21, no. 2, pp.
174–184, 1976.

[34] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems,” SIAM journal on imaging
sciences, vol. 2, no. 1, pp. 183–202, 2009.

[35] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their com-
positionality,” in Advances in neural information processing systems,
2013, pp. 3111–3119.

[36] P. Tseng, “Convergence of a block coordinate descent method for
nondifferentiable minimization,” Journal of optimization theory and
applications, vol. 109, no. 3, pp. 475–494, 2001.

[37] T. Opsahl and P. Panzarasa, “Clustering in weighted networks,”
Social networks, vol. 31, no. 2, pp. 155–163, 2009.

[38] S. Kumar, F. Spezzano, V. Subrahmanian, and C. Faloutsos, “Edge
weight prediction in weighted signed networks,” in Proceedings
of the 16th IEEE International Conference on Data Mining, 2016, pp.
221–230.

Yu Yang is currently a Ph.D. candidate with
the Department of Computing, The Hong Kong
Polytechnic University. He received the Bachelor
of Computer Science from Xi’an University of
Science and Technology in 2012, and M.Eng.
degree in Pattern Recognition and Intelligence
System from Shenzhen University in 2015. His
research interests include spatio-temporal da-
ta analysis, representation learning, and image
processing.

Jiannong Cao (M’93-SM’05-F’15) received the
M.Sc. and Ph.D. degrees in computer science
from Washington State University, Pullman, WA,
USA, in 1986 and 1990, respectively. He is cur-
rently the Chair Professor with the Department of
Computing, The Hong Kong Polytechnic Univer-
sity, Hong Kong. His current research interests
include parallel and distributed computing, mo-
bile computing, and big data analytics. Dr. Cao
has served as a member of the Editorial Boards
of several international journals, a Reviewer for

international journals/conference proceedings, and also as an Organiz-
ing/Program Committee member for many international conferences.

Milos Stojmenovic is a full professor at
Singidunum University, in Belgrade, Serbia. He
received his PhD in Computer Science in 2008
at the University of Ottawa, Canada. His profes-
sional interests have been focused in the fields
of computer vision, machine learning and sen-
sor networks where he researches and develops
software for the automated detection of objects
in images, deep Learning for prediction of future
events and routing simulations in ad hoc sensor
networks. He has published over fifty five scien-

tific contributions in books and peer reviewed conferences and journals.
He is on the editorial boards of two journals, and has an H-index of 18.
He is a visiting fellow at Hong Kong Polytechnic University, as well as at
Riga Technical University.

Senzhang Wang received the M.Sc. degree
from Southeast University, Nanjing, China, in
2009, and the Ph.D. degree in computer sci-
ence from Beihang University, Beijing, China, in
2015. He is currently a Professor with the School
of Computer Science and Engineering, Central
South University, Changsha. He has published
over ten papers on the top international jour-
nals and conferences such as Knowledge and
Information Systems, ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, AAAI

Conference on Artificial Intelligence. His current research interests in-
clude data mining and social network analysis.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST 2021 14

Yiran Cheng received the B.Sc. degree from
Department of Computing at The Hong Kong
Polytechnic University in 2020. He was an un-
dergraduate research assistant with the Internet
and Mobile Computing Laboratory at The Hong
Kong Polytechnic University from 2017 to 2019.
His research interests include data mining and
parallel computing.

Chun Lum received his B.S. degree from the
Department of Computing at the Hong Kong
Polytechnic University in 2018. His research
interests include data analytics and machine
learning.

Zhetao Li (M’17) is a professor in College of In-
formation Engineering, Xiangtan University. He
received the B.Eng. degree in Electrical Infor-
mation Engineering from Xiangtan University in
2002, the M.Eng. degree in Pattern Recognition
and Intelligent System from Beihang Universi-
ty in 2005, and the Ph.D. degree in Computer
Application Technology from Hunan University
in 2010. From Dec 2013 to Dec 2014, he was
a post-doc in wireless network at Stony Brook
University. His research interests include data

analytics, wireless communication and multimedia signal processing.

