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Abstract: Five recycled coarse aggregate (RCA) treatment techniques including flow-through car-
bonation, pressurized carbonation, wet carbonation, nano silica (NS) pre-spraying and combined
pressurized carbonation with NS pre-spraying, were utilized to improve the performance of recycled
aggregate concrete (RAC). The characteristics of the stress–strain curves of RACs including peak
stress, peak strain, elastic modulus, ultimate strain and toughness were evaluated after using the
above RCA treatment techniques. A theoretical model for natural aggregate concrete was used
to analyse the stress–strain curve of RAC. Additionally, the carbonation resistance of RAC after
using different RCA treatment techniques were investigated. The results showed that the calculated
stress–strain curve of RAC based on the theoretical model matched well with the experimental re-
sults. Among the three types of carbonation techniques, pressurized carbonation caused the highest
improvement in peak stress and elastic modulus of RAC, followed by flow-through carbonation, the
last was wet carbonation. The NS pre-spraying method contributed to even higher improvement in
peak stress and elastic modulus of RAC than the pressurized carbonation method. The combined
pressurized carbonation with NS pre-spraying exhibited the highest enhancement of RAC because
both the RCA and the new interface transition zone (ITZ) were improved. The carbonation resistance
of RAC was improved after using all the studied RCA treatment techniques.

Keywords: recycled aggregate concrete; nano silica; carbonation treatment; carbonation resistance;
stress–strain curve

1. Introduction

A huge amount of construction and demolition waste is being produced globally,
which brings in many environmental problems and induces a heavy burden to the limited
landfill capacity especially in populated areas such as Hong Kong. In the past decades,
much research has been conducted to utilize waste concrete as recycled coarse aggregate
(RCA) as partial or whole replacement of natural coarse aggregate (NCA) to produce
recycled aggregate concrete (RAC). It can not only reduce the amount of waste concrete,
but also decrease the consumption of the natural resources to produce NCA. Nevertheless,
because of the inferior physical properties of RCA when compared to NCA, such as higher
water absorption, higher porosity, lower density and the presence of initial cracks [1–4],
the mechanical properties and durability of RAC are lower than that of natural aggregate
concrete (NAC) [5–9]. As a result, the use of RAC is currently still limited, and most of the
applications are in non-structural uses [10].

To broaden the application of RAC, many RCA treatment techniques have been pro-
posed to enhance the performance of RAC in the past few decades. In general, there
are three categories of RCA treatment techniques in terms of their enhancement mecha-
nisms. The first type is to remove the old mortar that is attached on RCA by mechanical
grinding [11,12], heat grinding [13,14], ultrasonic cleaning in water [15], soaking in acid
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solutions [16], etc. However, these techniques have obvious disadvantages such as high
energy consumption, high CO2 emission, large amount of waste fines produced and the
increased chloride and sulfate contents [3]. The second type is to enhance the old mor-
tar of RCA and the old interface transition zone (ITZ) with methods such as accelerated
carbonation [17–20], microbial carbonate precipitation [21], pre-soaking in sodium silicate
solution [22] or polyvinyl alcohol [23,24], etc. The third type is to enhance the new ITZ
between RCA and new mortar and many surface treatment techniques have been proposed
to realize this purpose such as coating RCA with cement slurry [25], pozzolan slurries [26],
nano materials [27,28].

Among these RCA treatment techniques, accelerated carbonation has attracted much
research interest. According to the review study by Liang et.al [29], four types of acceler-
ation carbonation methods have been utilized to pretreat RCA, which includes standard
carbonation [30], pressurized carbonation [17–19], flow-through CO2 curing (or flow-
through carbonation) [31], and water-CO2 cooperative curing (or wet carbonation) [32].
By using acceleration carbonation, CO2 reacts with the hydration product of cement such
as Ca(OH)2 and C-S-H and un-hydrated cement clinkers to produce calcium carbonate
and silica gel, which densifies the microstructures of RCA [29,33]. As a result, the physical
properties of RCA and the performance of RAC could be improved. However, different
carbonation treatment methods vary a lot in terms of efficiency and operation easiness. It
is necessary to compare the efficiencies of different carbonation treatment methods.

The use of nano silica (NS) to pretreat RCA has also attracted many researchers’
interests. Currently, the commonly used technique is by pro-soaking RCA in colloidal
NS [27,28,34]. This technique not only improves the physical properties of RCA, but also
enhances the new ITZ between RCA and new mortar. However, this technique may have
low economic feasibility because it consumes a large amount of NS due to high water
absorption of RCA. Recently, a new NS treatment method, namely pre-spraying NS on the
surface of RCA, was proposed by the authors [35]. It consumes much less NS than using
the NS pre-soaking method. Moreover, it causes better improvement in the performance of
RAC than using the pre-soaking method. However, considering the high price of NS, it
is necessary to compare the efficiency of the NS pre-spraying treatment with other RCA
treatment techniques before using it in real applications.

As mentioned above, the carbonation treatments could enhance the physical properties
of RCA while the NS pre-spraying could improve the properties of the new ITZ between
RCA and the new mortar. As a result, the performance of RAC could be improved.
However, it is not clear which treatment contributes to better. As known, stress–strain
curve and carbonation resistance are very important properties for structural concrete.
Therefore, the objective of this study is to compare the characteristics of stress–strain
curve and carbonation resistance of RAC after using NS pre-spraying and three types
of carbonation treatments, namely flow-through carbonation, pressurized carbonation
and wet carbonation. Moreover, a combined method with pressurized carbonation and
NS-spraying was first adopted in this study. Considering that pressurized carbonation
could enhance RCA while the NS pre-spraying method mainly enhance the new ITZ of
RAC, it is expected that the combined pressurized carbonation with NS pre-spraying may
give rise to an overall better enhancement of RAC.

2. Materials and Experimental Program
2.1. Materials

The cement used was an ordinary Portland cement CEM I 52.5N. The fine aggregate
was a river sand with a fineness modulus of 2.6. The RCA was produced in the laboratory
by crushing a batch of waste concrete block collected from a construction site in Hong Kong.
The RCA was then sieved into two fractions, namely 10–20 mm and 5–10 mm. Crushed
granite with sizes of 10–20 mm and 5–10 mm were used as NCA. The water absorption
and particle density of NCA and RCA are shown in Table 1. A commercial colloidal nano
silica (NS) with an average size of 106 nm was used. The pH value was 9.5. The density
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was 1.206 kg/m3. According to the X-ray fluorescence results, the contents of SiO2 in the
colloidal NS was 34.3%, the content of Na2O was 0.2% and the rest was water.

Table 1. Water absorption and particle density of coarse aggregates.

Aggregate Size (mm) Water Absorption
(%)

Particle Density
(kg/m3)

RCA5–10 5–10 6.72% 2229
RCA10–20 10–20 7.77% 2196
NCA5–10 5–10 0.69% 2634

NCA10–20 10–20 0.57% 2602

2.2. Different RCA Treatment Techniques

In this study, five RCA treatment techniques, which includes flow-through carbon-
ation, pressurized carbonation, wet carbonation, NS pre-spraying, and the combined
pressurized carbonation with NS pre-spraying, were adopted to enhance the performance
of RAC. The details of them are given as follows.

2.2.1. Flow-Through Carbonation

Before the flow-through carbonation, RCA was pre-conditioned by storing in a cham-
ber (T = 25 ◦C, RH = 50%) for 24 h, because this is the optimum moisture content for
acceleration carbonation [29]. Next, RCA was spread out with one layer in a cylindrical
chamber, in which pure CO2 (>99% purity) was injected from one side and emitted from
the other side. The flow rate of CO2 was 1.0 L/min. After carbonation for 24 h at room
temperature (25 ◦C), RCA was stored in a chamber (T = 25 ◦C, RH = 50%) for air-drying
before using it for casting concrete.

2.2.2. Pressurized Carbonation

A carbonation chamber, which was introduced in our previous study [19], was used
for the pressurized carbonation. Similar to the flow-through carbonation, RCA was also pre-
conditioned by storing in a chamber (T = 25 ◦C, RH = 50%). Then, RCA was placed inside
the carbonation device and CO2 was injected. The pressure in the chamber was control at
+1.0 Bar. The duration of the pressurized carbonation was 24 h. Finally, the treated RCA
was air-dried in a chamber (T = 25 ◦C, RH = 50%) before preparing the concrete.

2.2.3. Wet Carbonation

A batch of RCA was placed in layers in porous baskets and soaked in tap water, and
the water was stirred by a mechanical device at 200 rpm at 25 ◦C. Then, CO2 was injected
into the water by using a flow rate controller and a fine-bubble generating diffuser. The
water to RCA ratio was controlled at 10:1, and the CO2 gas flow rate was 0.2 L/min/(100 g
RCA). The duration of wet carbonation was 6 h. Finally, RCA was removed from the
container and air-dried in a chamber (T = 25 ◦C, RH = 50%) before preparing the concrete.

2.2.4. NS Pre-Spraying

The colloidal NS was pre-sprayed evenly on the surface of air-dried untreated RCA by
a liquid spraying device when each batch of 5.0 kg RCA was rotated in an inclined mixer
with a rotation speed of 10 rev/min. The amount of colloidal NS was control at 3% of RCA
by mass. After that, the treated RCA was stored in a chamber (T = 25 ◦C, RH = 50%) for
air-drying before casting the concrete.

2.2.5. Combined Pressurized Carbonation with NS Pre-Spraying

First, a batch of untreated RCA was carbonated by following the procedure of the
pressurized carbonation technique above. Then, the colloidal NS was pre-sprayed on
the surface of carbonated RCA with the same procedure of NS pre-spraying technique
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described above. Finally, the treated RCA was also air-dried in the chamber (T = 25 ◦C,
RH = 50%) before preparing the concrete.

2.3. New Concrete Mix Proportions

Seven new concrete mixtures were prepared with the NCA, untreated RCA, and
the RCA treated by five RCA treatment techniques above. The corresponding concrete
mixtures were labeled as NAC, RAC-non, RAC-FC, RAC-PC, RAC-WC, RAC-NS and
RAC-PCNS, respectively. The control mix proportion is given in Table 2. Considering the
water absorption and moisture content of each type of coarse aggregate, extra amounts of
water were added to maintain a consistent effective water to cement (W/C) ratio.

Table 2. Mix proportions of the control concrete (kg/m3).

W/C Ratio Water Cement Sand Coarse Aggregate
(5–10 mm)

Coarse Aggregate
(10–20 mm)

0.60 195 325 752 282 846

2.4. Testing Methods
2.4.1. Measurement of Water Absorption and Particle Density of RCA

The water absorption and particle density of NCA and RCA were determined in
accordance with BS 812-2. The particle density on an oven-dried basis was used in this study.
To reduce the variation of sampling, the same batch of RCA was used to testing the water
absorption and particle density before and after each type of RCA treatment technique.

2.4.2. Measurement of Density of Hardened Concrete

The density of hardened concrete was measured according to BS EN 12390-7. In this
study, the mass of the hardened concrete in water-saturated state was measured. The
volume of the hardened concrete was obtained by water displacement. The density of the
hardened concrete was determined as the mass divided by the volume.

2.4.3. Measurement of Stress–Strain Curve of Concrete

Three concrete cylinders with the dimension of Φ100 mm × 200 mm were tested for
each mixture. The stress–strain curve of concrete was determined according to the loading
procedure prescribed in BS EN-12390. The loading rate was 0.6 MPa/s. The loading was
terminated when the force was decreased to around 20% of the peak force after failure.
The applied compressive force was measured by an internal force transducer in the testing
machine. The displacement of each concrete specimen was measured by two linear variable
differential transformers. The stress–strain curve of concrete could be obtained based on
the force and average displacement.

2.4.4. Measurement of Carbonation Resistance of Concrete

The carbonation depth of concrete was determined according to an accelerating
carbonation method described in BS EN 12390-12 using 100 mm× 100 mm × 100 mm
cubes. First, the concrete cubes were preconditioned in the indoor laboratory environment
for 14 days after curing in water for 28 days. Then, these samples were placed in a storage
chamber, in which the CO2 concentration was 3.5% by volume with the storage chamber
was at a temperature of 20 ◦C and relative humidity of 57%, for periods of up to 28 days.
After 7 days and 28 days of carbonation test, 2 concrete cubes were split in halves and
the fractured surfaces were sprayed with a phenolphthalein indicator, which caused the
uncarbonated zone to have pink color and uncarbonated zone the original concrete grey
color. The edge of the pink color zone was marked and the distance to the sample surface
at 4 points on each of the 4 faces was measured. The average value was calculated as the
carbonation depth of each sample.
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3. Results and Discussion
3.1. Water Absorption and Particle Density of RCA

Compared with that of the original RCA, the percentage of the decrease in water ab-
sorption of RCA and the increase in particle density of RCA after using different treatment
techniques are shown in Figures 1 and 2, respectively. In the figures, FC, PC, WC, NS
and PCNS represent flow-through carbonation, pressurized carbonation, wet carbonation,
NS pre-spraying, and the combined pressurized carbonation with NS pre-spraying, re-
spectively. It can be observed that the decrease in water absorption of the smaller size
aggregate (RCA5–10) was larger than that the larger aggregate (RCA10–20). Among the
three types of carbonation techniques, pressurized carbonation caused the largest reduction
(14.4% for RCA5–10 and 11.9% for RCA10–20) in the water absorption value, followed
by flow-through carbonation, and the last one was wet carbonation. After using the NS
pre-spraying technique, the water absorption of RCA was only slightly decreased (3.6% for
RCA5–10 and 2.8% for RCA10–20) which was even less than that of the wet carbonation.
When using the combined pressurized carbonation with NS pre-spraying method, the wa-
ter absorption exhibited the highest decrease (16.8% for RCA5–10 and 14.4% for RCA10–20)
suggesting that these two methods can work effectively to enhance RCA. Generally, the
increasing trend of the particle density corresponded to the decreasing trend of water
absorption after the RCA was subjected to the different treatment methods. However, the
magnitude of the increase in the particle density was much lower than that of the decrease
in water absorption.
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The images of the un-treated RCA and RCAs treated by three types of carbonation
methods after spraying phenolphthalein solution are shown in Figure 3. A pink color
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(within dotted line in Figure 3) represents that the area was not carbonated. Some of
untreated RCA was shown to have been carbonated on the surface because it was placed
in air for a long time. However, the interior of the RCA was not carbonated. After using
the pressurized carbonation technique, most of the interior of the RCA was carbonated.
When using the flow-through carbonation, the carbonation degree was lower than using
the pressurized carbonation. The carbonation depth of RCA was very small after subjecting
to the wet carbonation. The results indicate that the water absorption and particle density
of RCA are dependent on the carbonation degree of RCA.
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3.2. Density of Hardened Concrete

The densities of the seven groups of new concrete prepared are shown in Figure 4.
The results showed that the density of NAC was 5.8% higher than that of RAC prepared
with the untreated RCA. That is because the density of NCA was higher than that of RCA.
After using the treatments methods, the density of RAC was slightly increased. However,
the magnitudes of the increase were very small (<1.0%).
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3.3. Stress–Strain Curve of Concrete

An example of stress–strain curve of concrete is shown in Figure 5. The peak stress
is the maximum stress of the stress–strain curve. The peak strain is defined as the strain
corresponding to the peak stress. The ultimate strain is defined as the strain corresponding
to the stress at which 50% of the peak strain at the descending part of stress–strain curve
is attained [19]. Toughness is an index to represent the energy absorption capacity of a
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material, which is often defined as the area under the stress–strain curve. In this study,
toughness of the concrete is determined as the area under the stress–strain curve up to the
peak stress of the concrete specimens [36]. The elastic modulus (Ec) is determined from the
stress–strain curve using the following equation

Ec =
σ1 − σ2

ε1 − ε2
(1)

where, σ1 and σ2 are the stresses corresponding to 5% and 1/3 of the peak stress, respec-
tively; ε1 and ε2 are the strain values at the stress level σ1 and σ2, respectively.
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3.3.1. Peak Stress

The peak stresses of seven groups of concrete after subjecting to the compressive load
test are shown in Figure 6. The peak stress of NAC was 44.7% higher than that of RAC-non.
After using the RCA treatment techniques, the peak stresses of the RAC were increased.
The increment by using the pressurized carbonation was higher than that of flow-through
carbonation and wet carbonation. That is because when using the pressurized carbonation,
the carbonation degree of RCA was higher than using other two carbonation techniques,
leading to a better enhancement of RCA. The NS pre-spraying technique caused a slightly
better improvement in peak stress than using the three types of carbonation techniques.
That is because the ITZ between RCA and new mortar was enhanced after using NS pre-
spraying, which may be more efficient to improve peak stress than the enhancement of
RCA. When using the combined pressurized carbonation with NS pre-spraying technique,
the peak stress exhibited the highest increase (17.1%) than the RAC-non because both the
new ITZ and the RCA were enhanced. However, it was still significantly lower than that
of NAC.
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Figure 6. Peak stress of hardened concretes.

3.3.2. Elastic Modulus

The elastic modulus values of the studied concrete are shown in Figure 7. The elastic
modulus of NAC was 30.3% higher than that of RAC-non. However, the elastic modulus of
RAC was increased after using the treatment techniques. After using the three carbonation
techniques, the increases were less than 3%. The NS pre-spraying technique induced a
larger increase (7.6%). It indicates that the enhancement of the new ITZ might be more
efficient in improving the elastic modulus of RAC than the enhancement of RCA. After
using the combined pressurized carbonation and NS pre-spraying, the elastic modulus
exhibited the highest increase (10.0%). However, the magnitude of increase in elastic
modulus of RAC was much lower than that of the compressive strength, indicating that the
influence of the carbonation treatments and NS pre-spraying treatments on elastic modulus
of RAC was less obvious than that on compressive strength.
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Figure 7. Elastic modulus of hardened concretes.

3.3.3. Peak Strain

The peak strains of the studied concrete are shown in Figure 8. It showed that the peak
strain of NAC was slightly lower (1.2%) than that of RAC, and it did not show significantly
changes after using the RCA treatment techniques although some variations were observed.
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Figure 8. Peak strain of hardened concretes.

3.3.4. Ultimate Strain

The ultimate strain values of all the concrete specimens are shown in Figure 9. Similar
to the peak strain, the ultimate strain of NAC was slightly lower (1.5%) than that of RAC-
non. Meanwhile, after using these RCA treatment techniques, the ultimate strain of RAC
were all reduced.
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Figure 9. Ultimate strain of hardened concretes.

The ratio of ultimate strain to peak strain (εcu/εc,r) is a parameter used to describe the
trend of the descending part of stress–strain curve. A higher εcu/εc,r means that the stress
decreases faster with the increase in strain at the descending part of stress–strain curve and
the material is more brittle. The average εcu/εc,r values of the NAC, RAC-non, RAC-FC,
RAC-PC, RAC-WC, RAC-NS and RAC-PCNS were 2.52, 2.66, 2.46, 2.54, 2.66, 2.57, 2.54.
After using the RCA treatment techniques, the εcu/εc,r values were all reduced slightly,
indicating that the stress decreased faster with the increase in strain at the descending part
of stress–strain curve which also mean the concrete has become more brittle.

3.3.5. Toughness

The toughness values of all concrete specimens are shown in Figure 10. It shows
that the toughness of NAC was 37.8% higher than that of RAC-non. After using the
flow-through carbonation and pressurized carbonation, the toughness of RAC increased
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slightly (2.7% and 2.6%, respectively) because of the increased peak stress and elastic
modulus. However, the toughness of RAC decreased slightly (5.7% and 5.6%, respectively)
when using the wet carbonation and NS pre-spraying techniques. It may be related to
the decreased peak strain. After using the combined pressurized carbonation with NS
pre-spraying technique, the toughness of RAC showed much a larger increase, which
was 13.1%.
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Figure 10. Toughness of hardened concretes.

3.3.6. Theoretical Model of Stress–Strain Curve

The theoretical model for stress–strain curve of NAC in the Chinese standard (GB50010-
2010) was used to analyse the test results in this study. In the standard, the uni-axial
compressive stress–strain curve is determined as

σ = (1 − dc)Ecε (2)

dc =

{
1 − ρcn

n−1+xn x ≤ 1
1 − ρc

αc(x−1)2+x
x > 1 (3)

n =
Ecεc, r

Ecεc, r − fc, r
(4)

ρc =
fc, r

Ecεc, r
(5)

x =
ε

εc,r
(6)

where, σ and ε are the stress and the strain of concrete, respectively, dc is a parameter
for damage evolution; fc, r is the representative value of compressive strength of concrete,
it was taken as the peak stress in this study; εc, r is peak strain of concrete; Ec is elastic
modulus of concrete. αc is a parameter for the descending part of stress–strain curve,
which is related to the value of εcu/εc,r. Based on the Chinese standard GB50010-2010, αc
was taken as 0.74, 1.06, 1.36 and 1.65 when the value of εcu/εc,r was 3.0, 2.6, 2.3 and 2.1,
respectively. When the εcu/εc,r was between the above values (3.0, 2.6, 2.3 and 2.1), the
value of αc was determined by linear interpolation method.

For each type of concrete, a typical experimental stress–strain curve was compared
with the calculated one based on the above equations, as shown in Figure 11. It was
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observed that the experimental stress–strain curves of all concrete specimens matched
well the calculated stress–strain curves. Therefore, it is suggested that the uni-axial com-
pressive stress–strain curve of concrete given in the Chinese code (GB50010-2010) are also
suitable to the RACs with untreated RCA and treated RCA by using the studied RCA
treatment techniques.

3.4. Carbonation Resistance of Concrete

The carbonation depth of concrete is an indicator to assess its carbonation resistance.
A lower carbonation depth means better carbonation resistance. The 7-day and 28-day
carbonation depths of the seven groups of concrete are shown in Figure 12. The 7-day
and 28-day carbonation depths of RAC-non were much higher than that of NAC. After
using the flow-through carbonation, pressurized carbonation and combined pressurized
carbonation with NS pre-spraying, the 7-day carbonation depths of the corresponding
RACs were even larger than that of RAC-non. However, the 28-day carbonation depths
of these RACs were lower than that of RAC-non. That is because the carbonated RCAs
influenced the carbonation depth of RAC in two ways. On one hand, the carbonated
RCA was more densified than that of non-treated RCA, which reduced the penetration
rate of CO2 and thus caused a reduction of carbonation depth. On the other hand, the
carbonated RCA itself influenced the measurement of average carbonation depth, leading
to an increase in carbonation depth of RAC. When the carbonation depth of RAC was
small, the influence of carbonated RCA on the measurement carbonation depth was more
significant. On the contrary, the influence of the carbonated RCA on the CO2 penetration
rate played a more important role when the carbonation depth became larger. It could be
anticipated that when the carbonation resistant test duration was longer, the adverse effect
of the carbonated RCA could be reduced.

In contrast, the 7-day and 28-day carbonation depths of RAC-WC were both reduced
compared to RAC-non. That is because only the surface layer of the RCA was carbonated
after using the wet carbonation. At the same time, more nano-CaCO3 particles were formed
on the surface of RCA, which would densify the new ITZ [37]. As a result, the penetration
rate of CO2 was reduced. This is similar to the NS pre-spraying method, in which the new
ITZ could be significantly enhanced by the NS particles [35]. That is why the 7-day and
28-day carbonation depths of RAC-NS were similar to that of RAC-WC.
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Figure 12. Carbonation depth of hardened concrete.

4. Conclusions

In this study, the stress–strain curves and carbonation resistance of recycled aggregate
concrete (RAC) after using different recycled coarse aggregate (RCA) treatment techniques
were investigated, namely flow-through carbonation, pressurized carbonation, wet car-
bonation, nano silica (NS) pre-spraying and combined pressurized carbonation with NS
pre-spraying. Based on the testing results, the main findings can be summarized below.

(1) The theoretical model for stress–strain curve of natural aggregate concrete was also
suitable to RAC after subjecting to the RCA treatment techniques. For all the studied
RCA treatment techniques, the peak stress and elastic modulus of RAC were enhanced,
but the peak strain did not show significantly changes while the ultimate strain
exhibited some reduction.

(2) The 7-day carbonation depths of RAC after using flow-through carbonation, pres-
surized carbonation and combined pressurized carbonation with NS pre-spraying
were larger than that of RAC using untreated RCA because of the negative effect
the carbonated RCA. However, the 28-day carbonation depth of RAC was reduced
after using all the studied RCA treatment techniques. In other words, the carbonation
resistance of RAC could be enhanced by using these techniques.

(3) Comparing the efficiency of different RCA treatment techniques in enhancement of
the peak stress and elastic modulus, the combined pressurized carbonation with NS
pre-spraying was the best because both the RA and the new ITZ between RA and the
new mortar was enhanced, followed by NS pre-spraying, pressurized carbonation
and flow-through carbonation, and the worst was the wet carbonation because only
the surface layer of RA was carbonated. The combined pressurized carbonation
with NS pre-spraying can significantly improve the performance of RAC, which was
better than the other four techniques. Thus, this technique has potential to be used in
practical applications.
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