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Anterior cervical discectomy and fusion (ACDF) immobilizes surgical segments and can lead to the development of adjacent segment 
degeneration and adjacent segment disease. Thus, cervical total disc replacement (CTDR) has been developed with the aim to pre-
serve the biomechanics of spine. However, heterotopic ossification (HO), a complication following CTDR, can reduce the segmental 
range of motion (ROM) and defects the motion-preservation benefit of CTDR. The pathological process of HO in CTDR remains un-
known. HO has been suggested to be a self-defense mechanism in response to the non-physiological biomechanics of the cervical 
spine following CTDR. The current literature review is concerned with the association between the biomechanical factors and HO 
formation and the clinical significance of HO in CTDR. Endplate coverage, disc height, segmental angle, and center of rotation may be 
associated with the development of HO. The longer the follow-up, the higher the rate of ROM-limiting HO. Regardless of the loss of 
motion-preservation benefit of CTDR in patients with HO, CTDR confers patients with a motion-preservation period before the devel-
opment of ROM-limiting HO. This may delay the development of adjacent segment degeneration compared with ACDF. Future clinical 
studies should explore the association between HO and changes in biomechanical factors of the cervical spine.
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Introduction

Cervical total disc replacement (CTDR) has emerged as 
an alternative to anterior cervical discectomy and fusion 
(ACDF). In theory, the major advantage of CTDR over 
ACDF is the preservation of segmental range of motion 
(ROM) and function, thereby minimizing the risk of adja-
cent segment degeneration (ASD) [1]. ROM preservation 
can alleviate intradiscal pressure and stress at levels adja-

cent to the operated segments [2]. Compared with ACDF, 
CTDR demonstrates superiority in some aspects of clini-
cal outcome, such as a higher rate of neurological success, 
while maintaining non-inferiority in the majority of other 
clinical and safety outcomes [3]. Unfortunately, hetero-
topic ossification (HO), which is consistently reported as 
a complication in clinical trials, may impact the long-term 
superiority of CTDR over ACDF.

The pathological process underlying the development 
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erotopic bone,” “cervical,” “arthroplasty,” “total disc/disk 
replacement,” “artificial disc/disk replacement,” and “disc/
disk prosthesis.” A search in the reference lists of all the 
selected articles was manually performed to identify other 
potential studies.

After removal of duplicates and screening of title and 
abstract, full-text eligible studies were reviewed. The 
whole screening and reviewing process was conducted by 
two reviewers. Any disagreement in the reviewing process 
was first resolved by a discussion between the reviewers. If 
the reviewers could not reach a consensus, a senior author 
was consulted.

The inclusion criteria were as follows: (1) studies that 
reported the association between HO and ≥1 biomechani-
cal factor(s); (2) subjects aged ≥18 years; and (3) there is 
no limitation on the number of doctors who diagnosed 
HO, the type of prosthesis, or the classification system 
used to grade HO. The exclusion criteria were as follows: 
(1) articles that did not provide original data, such as edi-
torials; (2) studies written in languages other than English; 
(3) TDR in the lumbar spine; and (4) duplicated publica-
tions.

Biomechanical Factors

The human spine is a biomechanically complex structure. 

of HO remains unclear. Although a number of modifiable 
and non-modifiable risk factors have been found to be as-
sociated with HO formation, the evidence is inconclusive 
[4,5]. Additionally, the postoperative use of non-steroidal 
anti-inflammatory drugs does not seem effective in reduc-
ing the rate of HO [6]. Three conditions have been postu-
lated as essential for HO formation—osteogenic precursor 
cells, inducing agents, and a permissive environment [7]. 
The current literature review has the following objectives: 
(1) to discuss what biomechanical factors may act as an 
inducing agent of and create a permissive environment 
for HO formation in CTDR and (2) to discuss the clinical 
significance of HO.

Materials and Methods

A systematic review on the association between biome-
chanical factors of the cervical spine and HO in CTDR 
was conducted in accordance with the Preferred Re-
porting Items for Systematic Review and Meta-Analysis 
protocols guideline and the guidelines for academic 
neurosurgeons [8-10]. We searched in the MEDLINE, 
EMBASE, Cochrane Central Register of Controlled Tri-
als, and PubMed databases for eligible studies published 
until April 2018. The following medical subject headings 
and text words were used: “heterotopic ossification,” “het-

569 Records identified through database searching
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30 Additional records identified through other sources

310 Records after duplicates removed

310 Records screened

211 Full-text articles assessed for eligibility

10 Studies included in qualitative synthesis

99 Records excluded after screening of titles and abstracts

201 Full-text articles excluded, with reasons
• �‌�132 No data on the association between biomechanical 

factor and HO
• 20 Foreign language
• 4 Letter/commentary
• 32 Review articles
• 13 Used same set of patients

Fig. 1. PRISMA flow diagram. HO, heterotopic ossification; PRISMA, Preferred Reporting Items for Systematic Review and Meta-Analysis. 
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The replacement of cervical intervertebral discs with arti-
ficial implants designed to mimic natural motion is done 
in an attempt to preserve segmental- and adjacent-level 
motion [11]. However, there is potential for these devices 
to still result in non-physiological strain [12]. Cho et al. 
[13,14] reasoned that HO could actually be a self-defense 
mechanism in response to the non-physiological biome-
chanics of the cervical spine following CTDR. In order to 
investigate the association between biomechanical factors 
and HO, our initial search produced 310 articles after re-
moval of duplicates, of which 10 studies were included in 
our review (Fig. 1) [5,12,15-22].

Endplate Coverage

Inappropriate endplate coverage may be associated with 
the development of HO. Pickett et al. [23] first proposed 
that the formation of grade IV HO at 17-month follow-
up in a patient was due to undersizing of the prosthesis. 
This theory is corroborated in a retrospective study of the 
Bryan cervical disc, which classified “suboptimal carpen-
try group” as an uncovered vertebral endplate of >1 mm 
and/or kyphotic position of the implant [12]. They discov-
ered that the suboptimal carpentry group was associated 
with a higher rate of grade II or more severe HO at 2-year 
follow-up [12]. In fact, the footprint mismatch between 
the endplates and prostheses was 43.7% in the Bryan 
and ProDisc-C, 60.4% in Discover, and 100% in Prestige 
implants in the anterior–posterior plane [24]. However, 
results are not unanimous, with vertebral endplate cover-
age not being significantly associated with a higher rate of 
ROM-limiting HO in patients undergoing CTDR with the 
ProDisc-C implant [16]. The use of different types of im-
plant may explain the contradictory results in the studies. 
Additionally, Wenger et al. [25] postulated that complete 
endplate coverage could block osseous outgrowth of end-
plate, and, thus, minimize the risk of HO. As such, it has 
been recommended that CTDR prosthetics should be as 
large as possible to cover the whole endplate, dissipating 
loading force evenly across the endplate [24].

Disc Height

Disc height could potentially be another biomechanical 
factor contributing to HO formation. Although an in-
crease in disc height is necessary in order to properly de-
compress the nerve roots, over-distraction of disc height 

is correlated with increased segmental ROM [16]. This re-
sult is in agreement with another study which found that 
approximately 30% of the inter-subject variability in C5/
C6 and C6/C7 flexion–extension ROM could be attribut-
ed to the differences in disc height at these segments [26]. 
Given the changes in disc height and ROM after CTDR, 
HO has been theorized to stabilize the non-physiological 
movement of cervical spine [13,14]. However, the associa-
tion between HO and disc height is yet to be proven.

Segmental Angle

Segmental angle is altered after CTDR with some types of 
prosthesis. Following CTDR using Bryan disc prosthesis, 
segmental angle became kyphotic relative to the preopera-
tive segmental angle [27]. A prospective study quantified 
that only 36% of patients with segmental lordosis before 
CTDR had segmental lordosis preserved postoperation 
[28]. In spite of the loss of segmental lordosis in some sub-
jects, the C2/C7 Cobb angle did not change significantly; 
as such, other cervical levels might have compensated for 
the loss of physiological alignment at surgical segment 
[27,29]. In contrast to the Bryan disc, ProDisc-C has been 
reported to result in significantly more lordosis at the sur-
gical segment and across the global cervical spine [30,31].

The angle of the surgical spinal segment is associated 
with its ROM. An in vivo study demonstrated an inverse 
association between shell angle with segmental ROM in 
flexion and extension [32]. Also, an increase in flexion–
extension ROM after CTDR with ProDisc-C prosthesis 
has been reported in both in vitro and in vivo studies 
[33,34]. Theoretically, increased segmental mobility can 
accentuate strain on the uncovertebral and facet joints 
[35]. Hence, Rabin et al. [32] recommended that upper 
and lower device endplates should be parallel to each oth-
er when inserted into the disc space to preserve segmental 
ROM. Although HO may develop in response to the non-
physiological biomechanics of the cervical spine following 
CTDR [13,14], the effect of segmental hypermobility on 
HO development is unproven.

Center of Rotation

Center of rotation (COR) of the cervical spine is altered 
after CTDR. By adopting a finite element model of the 
C5/C6 cervical spine after CTDR, a biomechanical study 
found that the position of instantaneous COR of Bryan 
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disc was less stable than that in intact cervical spine 
during flexion–extension movement [36]. Another ra-
diological study examining Prestige LP and ProDisc-C 
prostheses showed that COR-Y (directed perpendicular to 
the endplate) was significantly different from the healthy 
controls while COR-X (directed along the x-axis of su-
perior endplate of the lower vertebral body) was signifi-
cantly more anterior to the control group [37]. Significant 
changes in postoperative COR-X and COR-Y have been 
reported in another study examining ProDisc-C and Syn-
ergy prostheses [35]. Indeed, a more posterior COR was 
correlated with a higher rate of HO [20]. Tu et al. [2] sug-
gested that surgeons should place implants at the center of 
the disc space, with symmetrical disc space from the sides. 
However, such suggestion did not take the physiological 
COR in human spine into consideration. In general, finite 
axis of rotation is situated inferior to the intervertebral 
disc and posterior to the center of the endplate [38,39]. 
Moreover, from C1 to C7, axis of rotation gradually moves 
more superiorly and anteriorly [38,39]. Thus, COR of each 
cervical level is different from that of the other cervical 
levels.

To summarize, evidence on whether CTDR can restore 
cervical kinematics back to normal is lacking. While 
CTDR with Prestige prosthesis was found more compat-
ible to physiological kinematics of spine than the Bryan 
disc, both types of prosthesis simulated significantly dif-
ferent spinal kinematics from the healthy population [40]. 
Incompatibility of spinal kinematics after CTDR with 
physiological kinematics may, therefore, be an inducing 
agent of HO [41]. Notably, some biomechanical factors 
are associated with the development of HO in CTDR 
(Table 1).

Does Heterotopic Ossification Really  
Matter to Patients in Cervical Total Disc  

Replacement?

Evidence about the association between follow-up period 
and HO is conflicting. A retrospective study with an av-
erage of 36.9-month follow-up period showed that over 
time patients were more likely to develop new and more 
severe HO [42]. Strikingly, in a meta-analysis of 38 stud-
ies, the prevalence of HO was comparable among studies 
with 1–2-year, 2–5-year, and 5–10-year follow-up [43]. 
Also, there was no significant association between HO 
and the duration of follow-up. The conflicting results can 

be attributed to the inclusion of studies with long follow-
up period in the meta-analysis.

In contrast to overall HO, the rate of ROM-limiting 
HO seemed to correlate with time [43]. A meta-analysis 
showed that the rates of ROM-limiting HO in studies 
with 2–5-year and 5–10-year follow-up were higher than 
those of studies with 1–2-year follow-up [43]. The positive 
association between ROM-limiting HO and follow-up  
duration is further supported by our meta-analysis of 94 
clinical trials on CTDR [44]. There was 0.63% increase of 
ROM-limiting HO for every increase of one month in the 
follow-up time [43]. Given long enough follow-up time 
after CTDR, all prosthesis may eventually develop ROM-
limiting HO (Fig. 2). However, patients are unlikely to 
develop ROM-limiting HO shortly after CTDR. In studies 
with an average or mean follow-up shorter than 3 years, 
most reported no cases of ROM-limiting HO [28,45-62]. 
The median HO-free period was 27.1 months [63].

Although CTDR was designed to preserve segmental 
ROM and prevent the development of ASD, deviation of 
postoperative ROM from the preoperative values has been 
reported in clinical trials. Segmental ROM has been re-
ported to decrease shortly after surgery and could persist 
up to 6-month follow-up in some studies [30,58,64-67].
Factors that might have led to the decrease in segmental 
ROM reported in the studies include the following: (1) the 
cohort of subjects has greater impairment in ROM preop-
eratively [68]; (2) fear of moving the neck to the extremes 

50%

	 3-year FU	 10-year FU
Time

RO
M

-li
m

itn
g 

HO

Fig. 2. The association between the rate of ROM-limiting HO and the 
duration of FU after CTDR. ROM, range of motion; HO, heterotopic os-
sification; CTDR, cervical total disc replacement; FU, follow-up.
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of flexion and extension during dynamic X-ray; (3) and 
postoperative neck pain [30]. However, in longer term fol-
low-up, ROM became comparable to preoperative values 
[30,58,64-67]. Other studies have reported preserved seg-
mental ROM compared with preoperative ROM at 1–2-
year [14,20,55,69-72], 3–5-year [73-80], 7-year [81], and 
8-year follow-up [82]. Interestingly, some studies even 
reported significantly more mobile segments over 1-year 
follow-up [48] than at 5-year follow-up [83]. Of note, the 
rate of grade IV HO reported ranges from 0% to 2.9% in 
these studies [48,83], which are lower than those reported 
in meta-analyses of CTDR [43,84]. Since grade IV HO is 
known to bridge across the disc space and significantly 
restricts the segmental ROM, the low prevalence of grade 
IV HO in these trials may explain the increased segmental 
ROM (Fig. 3).

On the contrary, in studies with intermediate or long-
term follow-up, ROM tends to significantly decrease in 
relation to preoperative ROM. Segmental ROM signifi-
cantly decreased at 2-year [52,68], 4-year [85], >6-year 
[15], average 8-year [17], and average 10-year follow-up 
[86]. As the severity of HO and the incidence of ROM-
limiting HO correlated with the length of the follow-up 
period [42,43], the formation of ROM-limiting HO may 
be accounted for the reduced ROM reported in clinical 

trials with intermediate to long-term follow-up. Indeed, 
the segmental ROM was reduced in patients with HO 
[5,17,18] and those with grade II or higher HO [22]. The 
decrease in segmental ROM was significantly higher in 
patients who developed ROM-limiting HO, compared 
to patients with ROM-preserving HO and those without 
HO [5]. Also, HO formation was correlated with reduced 
ROM in a study with over 6-year follow-up [15], but not 
over 5-year follow-up [19]. Similarly, ROM-limiting HO 
was inversely associated with segmental ROM [21].

Overall, the segmental ROM shortly after CTDR is 
comparable or even higher than that before surgery. As 
shown in Fig. 3, segmental ROM tends to be preserved in 
short- to intermediate-term follow-up [14,20,30,55,58,64-
67,69-82], and the prosthesis continues to exercise its 
biomechanical functions. As the follow-up time increases, 
there will be an increased rate of ROM-limiting HO, 
which is functionally similar, if not identical, to the fused 
segments in ACDF [43]. While HO is gradually fusing the 
spinal segments, the formation of ROM-limiting HO is 
preceded by years of preservation of segmental mobility 
[14,20,30,55,58,64-67,69-82]. The years of preserved seg-
mental mobility may serve, in theory, as a “grace period” 
to delay the formation of ASD in CTDR, compared with 
ACDF (Fig. 3). Although a meta-analysis showed that the 
rate of adjacent segment disease is significantly lower in 
CTDR than ACDF at 2-year follow-up, intermediate- to 
long-term data are lacking [87]. In addition, HO forma-
tion does not seem to significantly jeopardize clinical out-
comes of patients in short- to intermediate-term follow-
up [88]. Therefore, CTDR may confer patients, at least, 
non-inferior clinical outcomes in short- to intermediate-
term follow-up, in comparison with ACDF. Long-term 
data on the clinical and radiological outcomes are war-
ranted to ascertain the safety profile of CTDR.

Conclusions

The biomechanical parameters of the operative segment 
and cervical spine are altered following CTDR. Some 
studies demonstrated that the changes in biomechanical 
factors were associated with the prevalence and/or sever-
ity of HO; however, a causal relationship between these 
factors remains unproven. Regardless, HO formation has 
not been shown to correlate with clinical outcomes in 
meta-analyses of short- to intermediate-term follow-up 
studies. CTDR preserves segmental mobility for years and 

 CTDR: high rate of severe HO	  CTDR: low rate of severe HO
 ACDF	  Grace period

Fig. 3. Grace period of HO formation. ROM of the operated segment 
may be unchanged or more mobile in comparison with preoperative 
ROM in short-term follow-up. ROM tends to decrease as follow-up 
time increases. There is a “grace period” where operated segment 
remains mobile before ROM-limiting HO forms. HO, heterotopic ossi-
fication; ROM, range of motion; CTDR, cervical total disc replacement; 
ACDF, anterior cervical discectomy and fusion.
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Short-term follow-up Intermediate follow-up

Long-term changes
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confers patients a grace period to delay the formation of 
ASD, compared with ACDF. Clinical trials with long-term 
follow-up are warranted to confirm the extended efficacy 
of CTDR in light of increased rates of ROM-limiting HO.
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