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A B S T R A C T

This paper presents probabilistic assessment of seismically-induced slope displacements considering uncertainties
of seismic ground motions and soil properties. A stochastic ground motion model representing both the temporal
and spectral non-stationarity of earthquake shakings and a three-dimensional rotational failure mechanism are
integrated to assess Newmark-type slope displacements. A new probabilistic approach that incorporates machine
learning in metamodeling technique is proposed, by combining relevance vector machine with polynomial chaos
expansions (RVM-PCE). Compared with other PCE methods, the proposed RVM-PCE is shown to be more effective
in estimating failure probabilities. The sensitivity and relative influence of each random input parameter to the
slope displacements are discussed. Finally, the fragility curves for slope displacements are established for site-
specific soil conditions and earthquake hazard levels. The results indicate that the slope displacement is more
sensitive to the intensities and strong shaking durations of seismic ground motions than the frequency contents,
and a critical Arias intensity that leads to the maximum annual failure probabilities can be identified by the
proposed approach.
1. Introduction

Assessment of slope stability under earthquake excitations is a chal-
lenging problem in geotechnical engineering. Previous methods devel-
oped for such purpose can be broadly categorized into three groups
(Jibson, 2011): (1) pseudostatic analysis, (2) stress-deformation analysis
and (3) Newmark-type displacement analysis. The pseudostatic
approach, which simplifies seismic excitations as constant inertial forces,
is commonly used in the slope engineering practice. Although the
approach is straightforward and easily implementable, it fails to repre-
sent the dynamic nature of earthquake motions and the results obtained
are either pseudostatic safety factors or critical seismic accelerations (Qin
and Chian, 2018). However, the displacements experienced by the slopes
are often more important from the perspective of hazard management
(Lin and Whitman, 1986). While stress-deformation analyses using finite
element methods provide the most realistic representation of slope
behavior subjected to seismic loadings, these often involve complex
modeling techniques, such as determination of boundary conditions and
selection of constitutive models, and are usually computationally
demanding (Li et al., 2018).
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The Newmark’s sliding block analysis method (Newmark, 1965;
Jibson, 2011) incorporates the dynamic nature of ground motions in a
more realistic manner than pseudostatic analysis, but is not as sophisti-
cated as finite element simulation. It captures the essence in slope
deformation during earthquakes, and has been widely adopted by many
researchers, such as (Hsieh and Lee, 2011; Nadukuru and Michalowski,
2013; Chousianitis et al., 2014; He et al., 2015; Tasi and Chien, 2016;
Leshinsky, 2018). In these studies, recorded groundmotions were used to
evaluate slope displacements and empirical equations were built corre-
spondingly by regression analysis, but they did not explicitly consider
different levels of uncertainties regarding soil properties, slope geome-
tries and earthquake ground motion features (intensity, frequency and
duration).

On the contrary, probabilistic analyses allow these uncertainties to be
incorporated rationally and quantitatively, and expressed as failure
probabilities or hazard levels. Meanwhile, it should be noted that ground
motion records from previous earthquake events are not always appli-
cable for stochastic analysis. Although some regression formulas had
been directly adopted in probabilistic analysis (Travasarou et al., 2004;
Du and Wang, 2016), their validity is questionable at regions where the
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Table 1
Statistics of six ground motion parameters (Rezaeian, 2010).

Ground motion
parameters

Probability
Distributions

Mean
(μ)

COV Distribution
Bounds

Ia (m/s) Lognormal 0.05 3.5 [0, ∞]
D5-95 (s) Beta 17.25 0.5 [5, 45]
tmid (s) Beta 12.38 0.6 [0.5, 40]
ωmid/2π (Hz) Gamma 5.87 0.5 [0, ∞]
ω0/2π (Hz) Two-sided Truncated

Exponential
�0.09 2.1 [–2, 0.5]

ζf Beta 0.21 0.7 [0.02, 1]
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regression data are scarce. Besides, many of these regression formulas
only adopt one or two ground motion parameters for prediction of slope
displacements, which are in fact affected by multiple earthquake ground
motion characteristics, including the intensity, frequency content and
duration. An alternative approach is to generate synthetic ground mo-
tions. Some simplified methods, such as sinusoidal curves or Gaussian
stationary process (Lin andWhitman, 1986; Kim and Sitar, 2013; Qin and
Chian, 2018), had been used to simulate seismic ground motions in
previous probabilistic slope stability analysis. These simplified methods
either involve parameters without clear physical meaning or hardly
represent realistic earthquake ground motions.

The current study adopts the stochastic groundmotionmodel proposed
by Rezaeian (2010), which is capable of simulating both the temporal and
spectral non-stationary characteristics of earthquake shakings in a more
realistic manner than simplified ground motion models. Besides, the
metamodeling method of polynomial chaos expansion (PCE) has been
widely employed to conduct probabilistic analysis in geotechnical engi-
neering (e.g. Mollon et al., 2010; Li et al., 2011; Lo and Leung, 2017, 2018;
Guo et al., 2018; Pan et al., 2020). However, PCEs suffer from a substantial
computational burden, especially for high-dimensional problems. In order
to enhance the computational efficiency, sparse polynomial chaos expan-
sions (SPCEs) have recently gained popularity (e.g., Blatman and Sudret,
2010; Xu and Kong, 2018). Relevance Vector Machine (RVM) is a machine
learning technique which adopts Bayesian inference method to obtain
sparse solutions for regression or classification problems (Tipping, 2001).
In this work, a novel method is proposed to incorporate SPCEwith RVM, in
an attempt to perform probabilistic analyses of slope stability considering
stochastic seismic ground motions.

In the subsequent sections, the Rezaeian’s stochastic ground model is
introduced, followed by evaluation of the Newmark-type slope
displacement with the three-dimensional rotational failure mechanism.
The methods of PCE (metamodeling) and RVM (machine learning) are
then introduced. The presented RVM-PCE is compared with other
methods in terms of the evaluated failure probabilities. A sensitivity
analysis and a parametric study are then conducted to elucidate the in-
fluences of ground motion parameters on slope displacements. Finally,
the fragility curves and hazard curves of slope displacements are gener-
ated by combining various sources of uncertainty.

2. Artificial ground motion models

Real earthquake ground motions are associated with both temporal
(in the time domain) and spectral nonstationary (in the frequency
domain) features (Rezaeian, 2010), and a good artificial stochastic
ground motion model should be able to simulate both characteristics.
Temporal nonstationarity refers to the evolving intensities of ground
motions in time, which increases slowly from zero to a nearly constant
value (“strong shaking” phase of an earthquake) and then decreases back
to zero during a total of approximately 10–60 s; spectral nonstationarity
refers to time-varying frequencies of ground motions, starting with high
frequencies (short wavelengths) during the initial few seconds, followed
by moderate frequencies (moderate wavelengths) and ending with low
frequencies (long wave lengths) (Rezaeian, 2010).

Rezaeian and Der Kiureghian (2008) proposed a synthetic ground
motion model which adopts a modulated filtered white-noise process to
achieve the temporal and spectral nonstationarity. In their model,
time-modulating functions and linear filters are employed to shape the
random process in the time and frequency domains, and a synthetic
seismic acceleration time-history aðtÞ is given by

aðtÞ¼ qðt; αÞ
8<: 1
σh

Z t

�∞
h½t� τ; λðτÞ�ωðτÞdτ

9=; (1)

where ωðτÞ is a white-noise process; σh is a normalization term; the
gamma time-modulating function qðt;αÞ is defined as
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qðt;αÞ¼α1tα2�1e�α3 t (2)
in which the vector α ¼ fα1; α2; α3g determines the intensity, shape and
duration of the process; the single-degree-of-freedom linear filter
h½t�τ; λðτÞ� is defined as

h½t� τ; λðτÞ�¼

8>><>>:
ωðτÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ζ2ðτÞ

q e�ζðτÞωðτÞðt�τÞ sin
h
ωðτÞðt � τÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ζ2ðτÞ

q i
; τ � t

0; τ > t

(3)

where λðτÞ ¼ ½ωðτÞ; ζðτÞ�, with ωðτÞ and ζðτÞ representing the predom-
inant frequency and the damping ratio, respectively.

Some key physical features of an earthquake ground motion that
impact structure responses include the time-varying intensity, the
effective duration, the evolving predominant frequency and the band-
width of motions. Six physically based parameters (Ia,D5-95, tmid,ωmid,ω0,
ζf ) are employed to characterize groundmotions (Rezaeian, 2010). In the
modulated filtered white-noise process model, the intensity-related pa-
rameters α and frequency-related parameters λðτÞ can be calibrated by
these six ground motion physical parameters.

The intensity-related parameter vector α ¼ fα1; α2; α3g can be
determined by three physical parameters (Ia, D5-95, tmid). The first phys-
ical parameter Ia is the Arias intensity, which is defined as the time-
integral of the square of the ground acceleration time-histories:

Ia ¼ π
2g

Z Td

0
aðtÞ2dt (4)

where g is the gravitational acceleration and Td the total motion duration.
The Arias intensity is often deemed as the most suitable and reliable
indicator to represent the damaging effects of earthquake shakings, since
it incorporates the features of shaking amplitude and duration of ground
motions, and provides the complete energy content of seismic waves
propagating inside soil masses (Chousianitis et al., 2014). Therefore, it
carries more information than a single peak value, such as peak ground
accelerations or peak ground velocity.

The second physical parameter D5-95 was defined by Rezaeian (2010)
as the time interval between the instants at which 5% and 95% of the
expected Arias Intensity are reached, representing the strong shaking
phase. The third parameter tmid is the time at which 45% of the expected
Arias Intensity is reached during the strong shaking phase. The evolving
predominant frequency ωðτÞ is assumed to be linearly varying, which can
be determined by two physical parameters ωmid and ω0, which respec-
tively defines the filter frequency at tmid and its changing rate. The filter
damping ratio ζðτÞ is taken as a constant ζf . The details on the determi-
nation of parameters α and λðτÞ using (Ia, D5-95, tmid, ωmid, ω0, ζf ) can be
found in Rezaeian (2010). Thus an artificial ground motion can be
simulated with the modulated filtered white-noise process model for a
specified set of ground motion parameters.

Rezaeian (2010) estimated the statistical properties of the six physical
parameters of seismic ground motions, based on 206 data points from the
Campbell-BozorgniaNGAdatabase (Campbell andBozorgnia, 2007, 2008),
which contain 31 pairs of horizontal recordings from 12 earthquakes for



Table 2
Correlation coefficients between six ground motion parameters (after Rezaeian,
2010).

Ia D5-95 tmid ωmid ω0 ζf

Ia 1 �0.36 0.01 �0.15 0.13 �0.01
D5-95 �0.36 1 0.67 �0.13 �0.16 �0.2
tmid 0.01 0.67 1 �0.28 �0.2 �0.22
ωmid �0.15 �0.13 �0.28 1 �0.2 0.28
ω0 0.13 �0.16 �0.2 �0.2 1 �0.01
ζf �0.01 �0.2 �0.22 0.28 �0.01 1
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strike-slip type of faulting, and 72 pairs of horizontal recordings from 7
earthquakes for reverse type of faulting. These statistical properties,
including mean values, coefficients of variation (COVs), probability distri-
butions, are listed in Table 1, and their correlation coefficients are given in
Table 2. These values are adopted in this paper. Fig. 1 shows two artificial
ground motion records for two cases of Arias intensity, with the other
ground motion parameters corresponding to the means values given in
Table 1. The two acceleration time histories involve similar durations,
predominant frequencies and bandwidths at the strong shaking phase, but
very different peak ground accelerations due to different Arias intensities.

3. Newmark displacements for 3D slope failure mechanisms

Newmark-type displacement approach presumes that permanent
displacements of slopes occur when the earthquake ground acceleration
Fig. 1. Simulated ground motion records by Rezaeian’s stoc

407
exceeds a critical value, which may be obtained by the pseudostatic
analysis, and the failing mass is treated as a sliding block moving on a
given failure surface. The magnitude of total displacements is obtained
by double integration of the difference between the ground motion and
the critical accelerations with respect to time. This paper estimates
seismic slope displacements by combining the Newmark-type method
with the kinematical approach of limit analysis.

Slope analysis based on the kinematical approach of limit analysis has
attracted considerable attention over the years, and the three-
dimensional rotational failure mechanism is a classical model for slope
stability analysis, which inspired many subsequent works (Michalowski
and Drescher, 2009; Zhao et al., 2016; Huang et al., 2018). It can be
easily incorporated into the pseudostatic analysis to estimate safety fac-
tors of slopes (Michalowski and Martel, 2011; Yang and Pan, 2015), and
into the Newmark-type displacement analysis of slopes (Nadukuru and
Michalowski, 2013; He et al., 2015). The rotational failure mechanism of
a 3D slope model, with a height H, a width B and an inclination angle β,
subjected to earthquake ground motions, is shown in Fig. 2. More details
on the rotational mechanism are available in Michalowski and Drescher
(2009). Pan et al. (2017) presented a discretization scheme for the failure
mass under this mechanism, which is employed herein to evaluate the
Newmark-type displacements, following the similar procedure as Nadu-
kuru and Michalowski (2013). The current work extends the study of
Nadukuru and Michalowski (2013) by incorporating stochastic seismic
ground motions to slope displacement estimates in the probabilistic
framework.
hastic model for (a) Ia ¼ 0.1 m/s and (b) Ia ¼ 2.0 m/s.



Fig. 2. Rotational failure mechanism of a 3D slope.

Table 3
Geometry and shear strength parameters of two example slopes.

Parameters Slope A Slope B

Mean
(μ)

COV Correlation
coefficient

Mean
(μ)

COV Correlation
coefficient

β (�) 60 0 – 48 0 –

H (m) 12 0 – 12 0 –

B/H 3 0 – 5 0 –

γ 20 0 – 20 0 –

c (kPa) 30 0.2 ρc; φ ¼ –0.5 10 0.2 ρc; φ ¼ –0.5
φ (�) 20 0.1 27 0.1
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The Newmark-type displacement at the slope toe is obtained by

S ¼ r0eðθh�θ0Þtanφ �
ZZ

€θ dtdt; _θ > 0 (5)

where €θ is the block rotational acceleration,

€θ ¼ aðtÞ � ac
IO

γ
X
i

X
j

�
Vi;jri;jsinθi;j

�
(6)

and ac is the pseudostatic critical seismic acceleration:

ac¼
�c cot φ

hP
i;jri;jsi;jcosθi;jþ

P
i;jri;jsi;jcos

�
θi;jþβ

�i�γ
P

i

P
j

�
ri;jVi;jcosθi;j

�
γ
P

i

P
j

�
Vi;jri;jsinθi;j

� g

(7)
Table 4
Summary of seismic slope displacement thresholds and associated risk levels.

References Site location/conditions

Wieczorek et al. (1985) San Mateo County, California
Keefer and Wilson (1989) Southern California
Jibson and Keefer (1993) Mississippi Valley
Blake (2002) Southern California, slip surfaces intersecting stiff imp

etc.)
Southern California, ductile (non-strain-softening) soil
Southern California, significant strain softening soils

California Geological Sudret
(2008)

California

Jibson et al. (2000)
Jibson and Michael (2009) Anchorage, Alaska
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where (θi;j, ri,j) are the polar coordinates of the barycenter of a discretized
element, and (Vi;j, si;j) are the corresponding volume and lateral area;
IO ¼ γ

P
i

P
j
ðVi;jri;j2Þ=g is the mass moment of inertia around the rotating

axis, which is treated approximately in Nadukuru and Michalowski
(2013), neglecting the moment of inertia term about the mass center; g is
the gravitational acceleration; γ is the soil unit weight; c and φ are the
cohesion and friction angle; the geometrical parameters r0, θ0, θh, as
illustrated in Fig. 2, are determined by optimizing the upper-bound so-
lution of ac through equating the external work rates to the internal en-
ergy dissipations.

Two example slopes with configurations listed in Table 3 are
considered in this paper. The soil cohesion and friction angle are assumed
to follow lognormal distributions with a correlation coefficient of �0.5,
while the slope geometry (β, H, B/H) and the soil unit weight γ are taken
to be deterministic because they can be easily and reliably measured. In
total, there are eight input random variables, including six ground mo-
tion parameters (Ia, D5-95, tmid, ωmid, ω0, ζf ) and two soil shear strength
parameters (c, φ). Probabilistic analyses are then performed to study the
influences of their variations on seismic slope stability.

4. Metamodel-based Monte Carlo Simulations

Probabilistic analysis is commonly adopted to quantify the effects of
uncertainties associated with input parameters, by evaluating the cor-
responding failure probabilities of the system responses. Specifically,
input parameters are often treated as random variables following pre-
scribed probability distributions. The failure probability of model re-
sponses can be expressed by

Pf ¼
Z

GðxÞ�0

f ðxÞdx (8)

in which x is a random vector representing input parameters; f(x) is the
joint probability density function (PDF) of x; G(x) is the limit state
function, with G(x)<0 defining failure domains. The limit state function
in terms of permanent displacements of a slope is defined by

GðxÞ¼ Smax � SðxÞ (9)

where S is the permanent displacement computed by Eq. (5), and Smax is
the allowable permanent displacement of the slope. In order to correlate
the seismic slope displacements to subsequent landslides, Jibson (2011)
conducted a literature review on the thresholds of seismic slope dis-
placements and their risk levels leading to a landslide, as summarized in
Table 4. Based on their review, it appears that the threshold of 10 cm
Displacement thresholds causing landslides and
damage

5 cm
10 cm
5–10 cm

rovements (buildings, pools, <5 cm

s <15 cm
5 cm for peak shear strength
15 cm for residual strengths
0–15 cm, serious landslide movement and damage
15–100 cm, strength loss and continuing failure
>100 cm, damaging landslide movement
2–15 cm, smaller, shallow landslides
0–1 cm, low hazard
1–5 cm, moderate hazard
5–15 cm, high hazard
>15 cm, very high hazard
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corresponds to a moderate level of landslide risks. Thus, the allowable
permanent displacement is taken as 10 cm in this study.

The calculation of Eq. (8) is generally computationally intractable,
especially for high-dimensional problems. Some approaches are pro-
posed to evaluate the failure probability approximately. These include
the first-order and second-order reliability methods, Monte Carlo Simu-
lations (MCS), response surface methods, etc., among which the MCS is a
relatively straightforward and robust method. In MCS, an unbiased es-
timate of the failure probability is evaluated by

bPf ¼ 1
Nmc

XNmc

i¼1
IðGðxÞ� (10)

where Nmc is the number of samples in MCS; IðGÞ is equal to 1 for G < 0,
otherwise IðGÞ ¼ 0. The coefficient of variation (COV) of estimated
failure probability is expressed as

COV bPf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�cPf

NmccPf

vuut (11)

The classical Monte Carlo Simulation is often regarded as a standard
reference for testing other probabilistic methods. However, it suffers
from a rather low computational efficiency. For example, it requires
10kþ2 simulations, according to Eq. (11), when the estimated failure
probability is 10–k for a coefficient of variation (COVbPf Þ of 10%. Recently,

a metamodel-based MCS technique has been proposed to circumvent this
issue. The key idea is to replace the original deterministic model, for
example the slope displacement S by Eqs. (5)–(7), with a metamodel in
Monte Carlo Simulations. A metamodel should be computationally effi-
cient and capable of capturing the behavior of model responses so that it
can surrogate the original models to make predictions.

Several types of metamodels have been adopted in civil and
geotechnical applications, such as PCE, Kriging and support vector ma-
chines (Zhang and Goh, 2013; Pan and Dias, 2017; Wan et al., 2017;
Al-Bittar et al., 2018; Guo et al., 2018). PCE has been widely used in
geotechnical reliability analysis as it can provide multiple aspects of
probabilistic assessment, including failure probabilities, probability dis-
tribution, and statistical moments (mean, standard deviation, skewness
and kurtosis) of system response. Also, it is possible to utilize the PCE to
implement global sensitivity analysis based on the definition of Sobol’
indices.

5. Polynomial chaos expansion

5.1. Polynomial chaos representation of model responses

If the input of a computational model M , such as Eq. (5), are
described by independent random variables gathered in an input vector
x ¼ {x1,x2, …,xD}T2 ℝD, a polynomial chaos expansion of the associated
model response y reads (Ghanem and Spanos, 2003; Sudret, 2008):

y¼M ðxÞ ffi cM P ¼
XP
i¼0

wiψ iðxÞ (12)

where D represents the problem dimension; wis are polynomial co-
efficients; ψ iðxÞs are basis functions of multivariate polynomials which
are tensor product of univariate polynomials. The expressions of uni-
variate polynomials are related to the distributions of random variables,
such as Hermite polynomials for Gaussian distributions, Laguerre poly-
nomials for Gamma distributions. For example, the first four degrees of
univariate Hermite polynomials are: ψ0 ¼ 1, ψ1ðxÞ ¼ x, ψ2ðxÞ ¼ x2 � 1,
ψ3ðxÞ ¼ x3 � 3x. When random variables follow non-normal distribu-
tions, the isoprobabilistic transformation is used to convert them into
standard Gaussian variables; if random variables are correlated, the
Cholesky decomposition is adopted.
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For practical applications, a PCE is often truncated to retain a limited
number of terms. The common truncation scheme requires that the total
degree of univariate polynomials that constitutes the multivariate poly-
nomials is not greater than a give PCE order p, and it leads to the total
number of PCE terms Pþ1 being computed by

Pþ 1¼ðDþ pÞ!
D!p!

(13)

There are mainly three approaches to compute PCE coefficients,
namely the intrusive method, the projection method and the regression
method, among which the regression method is widely adopted in the
geotechnical community due to its convenience. In the regression
method, N realizations of the input vectors, denoted by a matrix X ¼ {x1,
x2,…, xN}T and also termed as design of experiments (DoE), is considered.
This leads to a system of linear equations with respect to PCE coefficients
w ¼ fw0; …;wP gT,24 ψ0

�
x1
�

⋯ ψP

�
x1
�

⋮ ⋱ ⋮
ψ0ðxNÞ ⋯ ψPðxNÞ

3524 w0

⋮
wP

35¼
24 y0

⋮
yN

35 (14)

where the vector y ¼ {y1, y2,…, yN}T denotes the corresponding model
responses. Thus the unknown PCE coefficients can be estimated by least-
square minimization as follows,

bw¼ðΨTΨÞ�1ΨTy (15)

where Ψ is the design matrix of polynomials basis,

Ψ¼
24 ψ1

�
x1
�

⋯ ψP

�
x1
�

⋮ ⋱ ⋮
ψ1ðxNÞ ⋯ ψPðxNÞ

35 (16)

In order to make the solution more stable and independent of DoE
samples, a large number of DoE samples are required. Generally, the DoE
size is set to be no less than two or three times P for a well-posed
regression result (Blatman and Sudret, 2010).
5.2. Error estimates

The mean-square residual error is estimated to measure the fitting
accuracy of a PCE metamodel on the DoE samples X,

ε1 ¼ 1
N

XN
i¼1

½yi � cM PðxiÞ�2 (17)

The well-known coefficient of determination R2 reads

R2 ¼ 1� ε1
Vy

(18)

where Vy is the empirical variance of model responses y. Even though the
coefficient of determination can be easily obtained, it generally un-
derestimates the true generalization error. An alternative approach for a
more reliable estimate of generalization error is the leave-one-out (LOO)
cross-validation, where the mean-square residual error is estimated by

εLOO ¼ 1
N

XN
i¼1

�
yi � cM X\i

P

�
xðiÞ

� �2
(19)

where cM X\i
P denotes a PCE model which is built from the DoE set X\i ¼

{ x1, …,xi�1, xiþ1, …, xN}T excluding xi. Thus the coefficient of determi-
nation Q2 of leave-one-out cross-validation is estimated by

Q2 ¼ 1� εLOO
Vy

(20)

Q2 reflects the predictive ability of a metamodel. The method of



Fig. 3. Comparisons of estimated failure probabilities.

Q.-J. Pan et al. Geoscience Frontiers 12 (2021) 405–414
leave-one-out cross-validation performs well in the accuracy estima-
tion of PCEs and is used to select the optimal PCE metamodel in this
work.

According to Eq. (13), the number of PCE terms P grows exponentially
with the problem dimension D and the PCE order p. Taking this study
problem with 8 random variables as an example, a 5th-order full PCE has
totally 1287 terms,which requires aDoEwithmore than2500 samples. To
enhance the computational efficiency of PCE, the method of relevance
vector machine, in the framework of Bayesian inference, is adopted to
estimate PCE coefficients. It does not only avoid the over-fitting problem
caused by the least-square minimization method, but also give a sparse
result of PCE.

6. Relevance vector machine

Relevance vector machine (RVM) is a Bayesian learning method for
regression and classification tasks. Given a set of input vectors {x1, x2,…,
xN}T and the corresponding output vector {y1, y2, …, yN}T, the aim of
RVM is to find a parsimonious function f ðx;wÞ to well represent the
input-output relation with a good generalization performance,

y¼ f ðx;wÞ þ ε (21)

where w is the weight vector, ε is a zero-mean normal random variable
with the variance of ϑ�1. Therefore, the model response y follows a
Gaussian distribution,

pðyjw; x;ϑÞ¼N
�
f ðx;wÞ;ϑ�1

�
(22)

Considering N input vectors {x1, x2,…, xN}T associated with N output
{y1, y2, …, yN}T, a likelihood function is derived as,

pðyjw; x;ϑÞ¼
� ϑ

2π

�N=2
exp

(
� ϑ

2

XN
i¼1

½yi � f ðxi;wÞ�2
)

(23)

In relevance vector machine, independent zero-mean Gaussian priori
distributions are introduced to weight parameters wi’s with the variance
of ζ�1

i , and the likelihood of w is expressed as,

pðwjζÞ¼
	
1
2π


�M
2 YM

i¼1

exp
	
� ζiw2

i

2



(24)

where M represents the number of weight parameter, which is equal to
the number of PCE coefficients in this work, and ζ ¼ fζ1; ζ2; …; ζMgT is
a vector of M hyperparameters which are the inverse variance of the
associated weight wi. According to the Bayes theorem, the posterior
distribution of w is expressed as,

pðwjy; ζ;ϑÞ¼ pðyjw; x;ϑÞpðwjζÞ
pðyjζ; ϑÞ (25)

where pðyjζ; ϑÞ is a normalization term. As the likelihood and priori are
both Gaussian distributions, the posterior distribution is also a Gaussian
distribution,

pðwjy; ζ;ϑÞ¼N ðμw;ΣwÞ (26)

where

μw ¼ ϑΣwΨ
Ty (27)

Σw ¼ðAþ ϑΨTΨÞ�1 (28)

where A ¼ diagðζ1; ζ2; …ζMÞ. The values of hyperparametrs ζ and ϑ can
be obtained by maximization of the log marginal likelihood as follows,
410
L ðζ;ϑÞ ¼ ln pðyjw; x;ϑÞpðwjζÞdw ¼ �1
2

�
Mln2π þ lnjΩj þ yTΩ�1y

�
Z
(29)

where Ω ¼ ϑ�1Iþ ΨA�1ΨT . An iteration algorithm was proposed by
Tipping (2001) to find the optimal ζ and ϑ. If the optimal ζi (the inverse
variance of the coefficient wi) becomes very large, the priori distribution
of wi is confined to a narrow range concentrating around zero, meaning
that the weight parameter wi has a high probability of being zero. With
certain PCE coefficients being zero, this finally leads to a sparse repre-
sentation of f ðx;wÞ.

7. RVM-PCE

This study combines the relevance vector machine with polynomial
chaos expansion (RVM-PCE) to perform probabilistic analysis on seismic
slope stability. The PCE terms, ψ iðxÞ’s, are adopted as the basis functions in
RVM, and a necessary condition of RVM is to predetermine the number of
these functions (i.e. the order of PCE). In order to select the best PCE order,
a maximum order pmax is first assigned, and a series of PCEs are built for
each order p ¼ 1, …, pmax through RVM. The optimal PCE metamodel is
selected as the one associated with the smallest εLOO (or the largest co-
efficients of determination Q2 for the leave-one-out cross-validation).

It is worth noting that the proposed RVM-PCE approach differs from
the stepwise regression (SR) algorithm (Blatman and Sudret, 2010) in
various ways. In SR-PCE, in order to achieve a sparse PCE, the stepwise
Fig. 4. Comparisons of sparsity ratio.



Fig. 5. Comparisons of coefficient of determination Q2 of the leave-one-out
cross-validation.
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regression method is employed to identify important terms from a full
PCE (discarding negligible terms), where an important term is one that
leads to a significant change in the estimated coefficient of de-
terminations. Meanwhile, the method of least square is used to estimate
the coefficients of the retained PCE basis. In the proposed RVM-PCE,
independent zero-mean Gaussian priori distributions are assigned to
the weight parameters of the full PCE terms. Sparsity is achieved when
the obtained variance of the Gaussian priori distribution of a weight
parameter is very small, which means the corresponding weight
parameter is equal to zero. The weight parameters (PCE coefficients) are
determined by Bayesian regression method.

8. Comparisons with other metamodeling approaches

The applicability of the proposed method to the probabilistic analysis
of seismic slope displacement is examined in this section. The proposed
method is compared with full PCEs, and SR-PCE. The ground motion
parameters of this case are taken from Tables 1 and 2, and the input
parameters of slope A given in Table 3 are adopted. In the proposed RVM-
PCE, the maximum PCE order pmax is set to 7. The failure probability
estimated byMCS with 1.0� 105 samples is equal to 6.3� 10�3, which is
taken as the reference value. The relative errors with respect to the MCS
reference value (ζPf

) for three different approaches are plotted in Fig. 3
when the number of DoE sample N changes from 500 to 3000. When the
number of DoE samples is relatively small, e.g., less than 2000, RVM-PCE
leads to the smallest relative errors of less than 10%, corresponding to the
best estimations of failure probabilities, while full PCE produces the
largest relative errors. This shows the superiority of the proposed RVM-
PCE approach, especially when the available DoE samples are sparse
(common in reality). The relative errors associated with three methods
decrease with the increasing number of DoE samples. This is expected as
the performance of a PCE metamodel should improve with the number
DoE samples. When N exceeds 2000, both the full PCE and the proposed
Table 5
Results of sobol’ index analyses.

Variables COV(Ia) ¼ 1.0 COV(Ia) ¼ 3.5

Ia 0.5842 0.8233
D5-95 0.1087 0.1250
tmid 0.0108 0.0309
ωmid 0.0010 0.0026
ω0 0.0004 0.0001
ζf 0.0009 0.0002
φ 0.0062 0.0025
c 0.1229 0.0170
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RVM-PCE converges to the same relative errors, while the SR-PCE pro-
duces the highest relative errors.

The SPCE sparsity ratio, which is the ratio of the number of retained
terms in a SPCE to that of its full PCE counterpart, is presented in Fig. 4.
The RVM-PCE has greater sparsity ratios than the SR-PCE, which means
that a SPCE obtained by RVM has more retained terms than the one by
SR-PCE. This is likely because the SR algorithm abandons some necessary
terms, and this may also be the reason why the SR-PCE produces less
accurate estimates of failure probabilities. The Q2 value at different
numbers of DoE samples are shown in Fig. 5. In all cases, the proposed
RVM-PCE leads to the highest values of Q2, meaning that the proposed
RVM-PCE results in the lowest generalization errors on DoE samples,
which contribute to its high accuracy when estimating failure probabil-
ities. The proposed RVM-PCE is therefore adopted for the probabilistic
analyses in later sections.

9. Sensitivity analysis

Sobol’ indices are then evaluated to quantify the respective contri-
bution or influence of each random variable to the system responses.
Table 5 shows the obtained results of sensitivity analysis for slope Awhen
the cohesion and friction angle are uncorrelated. Two different values of
COVs for Ia are considered, which are 1.0 and 3.5. In both cases, the
Sobol’ index of Ia is the highest among all ground motion and soil pa-
rameters, indicating that Ia contributes the most to the seismically-
induced slope displacements. This is partly because the Arias intensity
is the primary indicator representing earthquake shaking amplitudes and
durations, and partly because it has the largest COV compared with other
variables. In the case of COV(Ia) ¼ 1.0, the second most important vari-
able is the soil cohesion, which is followed by D5-95 and tmid. When
COV(Ia) ¼ 3.5, the strong shaking duration D5-95 becomes the second
most important parameter, followed by tmid and c. This shows that the
strong shaking duration of the earthquake and soil strength parameters
are also influential to seismic slope displacements. On the contrary, the
frequency changing rate ω0 and damping ratio ζf are the least important
parameters. The Newmark-type displacement is more sensitive to the
intensity and duration of ground motions than the frequency contents.

Fig. 6 shows the variations in mean estimates of Newmark-type dis-
placements with four ground motion parameters (Ia, D5-95, tmid, ωmid) for
slope A. The effects of frequency changing rate ω0 and bandwidth
parameter ζf are not shown due to their insignificant influences. As ex-
pected, the mean values of displacements increase with Ia and D5-95
(Fig. 6a and b). The relationship between the displacements and tmid
normalized by D5-95 is shown in Fig. 6c, showing an increasing trend of
displacements before tmid/D5-95 reaches the values of approximately
0.5–0.6, beyond which the displacements reduce with tmid/D5-95. Fig. 6d
shows that the mean displacements increase sharply with ωmid before 8
Hz, after which the rate of change is relatively low. This shows that the
seismic slope displacements are more sensitive to low frequency contents
of the ground motion.

10. Fragility curves for slope stability

In probabilistic seismic hazard analysis (PSHA), a hazard curve is
used to show the relationship between a ground motion intensity mea-
sure and its mean annual probability of exceedance at a site. In this study,
the hazard curve of Arias intensity is selected because it is the most
influential to displacement predictions. Two hazard curves of Ia from two
sites in California are given in Fig. 7 (Howard et al., 2008), where the
annual exceedance probability decreases with the Arias intensity.

The failure probabilities of slopes with an allowable displacement of
10 cm are then evaluated using the RVM-PCE method. The mean values
of Arias intensity μIa is set to change from 0 to 10 m/s, and three mean
values of D5-95 (10 s, 17.25 s, and 25 s) are considered. The obtained
failure probabilities, also referred to as fragility curves, are provided in
Fig. 8a for the case of slope A and in Fig. 8b for the case of slope B. The



Fig. 6. Influences of four ground motion parameters, (a) Ia, (b) D5-95, (c) tmid, (d) ωmid, on mean estimates of slope Newmark-type displacements.

Fig. 7. PSHA hazard curves of Arias intensity.
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obtained failure probability quickly increases with the Arias intensity
before μIa ¼ 4 m/s, beyond which it increases more slowly. For example,
in Fig. 8a, the failure probability increases more than a hundredfold from
2.5� 10�3 at μIa ¼ 0.1 m/s to 3.5� 10�1 at μIa ¼ 4 m/s (for μD5-95 ¼
17.25 s), and only increases by around 100% as μIa rises from 4 m/s to 10
m/s.

The annual failure probability is equal to the product of the annual
rate of occurrence of the Arias intensity and the associated fragility
curves of slopes under that hazard level. Under the proposed framework,
the hazard curves of the Arias intensity given in Fig. 7 and the fragility
curves in Fig. 8 are employed to obtain the corresponding annual failure
probabilities, which are plotted in Fig. 9. As shown in the figure, both Ia
and D5-95 have significant influences on the annual failure probabilities.
It is interesting to note that the annual failure probability increases with
the Arias intensity to a peak value and then decreases; this maximum
annual failure probability occurs at a certain value of Arias intensity
which corresponds to a relatively high annual rate of occurrence and a
relatively large value of slope failure probability. In Fig. 9a, the most
probable annual failure event occurs when μIa is approximately equal to
2 m/s, while in Fig. 9b it happens at μIa ¼ 0.6 m/s. This shows that the
highest risk in slope engineering design is not always associated with the
largest Arias intensity. It is also important to consider the seismic hazard
levels at the specific site.

11. Conclusions

This paper presents an approach that allows probabilistic analysis on



Fig. 8. Fragility curves as a function of Arias intensity for (a) B/H ¼ 3.0, μc ¼
30 kPa, μφ ¼ 20�, β ¼ 60� and (b) B/H ¼ 5.0, μc ¼ 10 kPa, μφ ¼ 27�, β ¼ 48�.

Fig. 9. Annual slope failure probabilities at (a) Santa Clara Valley site and (b)
Bakersfield site.
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seismic slope performance to be performed with rigorous considerations
of uncertainties associated with earthquake ground motions and soil
shear strength. The Rezaeian stochastic groundmotionmodel enables the
generation of acceleration time histories with realistic temporal and
spectral non-stationary characteristics, and the corresponding ground
motion parameters, including intensity, frequency and duration, have
clear physical meanings related to the earthquake shaking features. By
utilizing the 3D slope failure mechanism and Newmark-type displace-
ment analysis method, the approach is more efficient than probabilistic
analyses through finite element methods. In order to perform probabi-
listic analysis, a new metamodel that utilizes relevance vector machine
and polynomial chaos expansion is proposed, showing better perfor-
mance compared with previous PCE methods.

Quantitative sensitivity analyses indicate that the ground motion
features of intensity and duration are more influential to the slope dis-
placements, compared to the frequency contents. Interestingly, there is a
critical magnitude of Arias intensity that is related to the maximum
413
annual failure probability, as a result of the combined effects of PSHA
hazard level and the slope failure probabilities. Such a critical Arias in-
tensity should be carefully considered in earthquake slope engineering.
The proposed method allows this critical magnitude to be determined
rationally in site-specific assessments of slope safety under seismic
conditions.

The failure mechanism (or the slip surface) is a critical assumption for
slope stability assessments, which may eventually affect the results of
failure probability evaluations. In this study, the 3D rotational failure
mechanism is adopted to assess the critical seismic acceleration and
Newmark-type displacements. The geometrical shape of the failure
mechanism (or the slip surface) is determined by optimizing the upper-
bound solution, equating the external work rates to the internal energy
dissipations, in search of the critical seismic accelerations. Uncertainties
in the size and shape of the slip surface are therefore not considered. This
is a limitation of the current study and a potential area for future
developments.
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