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Abstract

With the wide applications of dual-rotor flux-modulation machines for the growing
wind power generations, research activities for the control of dual-rotor flux-modulation
machines are intensified in recent years. Most of the existing control schemes are based
on indirect measurements of the d-axis inductance, the q-axis inductance and the stator
resistance to achieve high torque density and low torque ripple for the dual-rotor flux-
modulation machines. However, conventional measurements of the d-axis inductance, the
q-axis inductance and the stator resistance may suffer from (i) low accuracy and (ii) addi-
tional sensor costs. To this end, an adaptive differential evolution algorithm is proposed to
identify the machine parameters by considering the magnetic saturation and cross-coupling
issue at low rotational speed of dual-rotor flux-modulation machines. Finite element anal-
ysis is adopted in simulation to preliminarily monitor the actual machine parameter values
based on the length and cross section area of the conductor and inductance matrix com-
putation. Both simulation and experimental results reveal that the adopted adaptive differ-
ential evolution algorithm can identify the three parameters more steadily and accurately
than the conventional genetic algorithm.

1 INTRODUCTION

Owing to the economic viability, matured technology and non-
pullulating nature, wind energy has become one of the most
aspiring renewable energy sources for power grids. For exam-
ple, European Union’s renewable energy directives have already
set a goal of producing more than 15% of energy from wind by
2030 [1]. It is expected that more wind energy will be installed
for the existing power grids and future smart grids. By far, tradi-
tional single-rotor electric machines are most widely used for
wind energy conversion systems. However, bulky mechanical
gears or even the magnetic gears (MGs) in the single-rotor elec-
tric machines may suffer from high acoustic noise, low relia-
bility, weak transmission precision and large total volume and
weight [2–5]. To overcome these drawbacks, dual-rotor flux-
modulation (DRFM) machines, which integrate both the brush-
less permanent magnetic (PM) machines and MGs, are pro-
posed [6].
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Being different from the traditional single-rotor machines
to achieve either energy conversion or speed variation, DRFM
machines can implement both functions with even lower costs,
more compact structures and smaller volumes [7,8]. They also
inherit the merit of the traditional single-rotor machines to oper-
ate with higher torque density and better winding heat dissi-
pation performance by adopting PMs as excitation sources, as
compared to the traditional wound field machines. Research
activities of DRFM machines in various perspectives are inten-
sified over the last decade. Nevertheless, some aspects of
DRFM machines have not been fully investigated. One impor-
tant aspect is the parameter identifications of DRFM machines,
which has been rarely studied. It is well known that accurate
monitoring the d-axis inductance, q-axis inductance and stator
resistance of the DRFM machine can enhance the vector con-
trol performance with zero offsets at steady state, fast dynam-
ics and low harmonics [9–12]. These parameters are inher-
ent properties that are correlated to the topology, material,
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winding distribution, and thermal effect of DRFM machines.
In general, finite element analysis (FEA) can be used to iden-
tify these parameters accurately [13–15]. However, due to the
FEA is only validated for electric machines with well-known
topologies, it cannot be used to identify the parameters of well-
packaged DRFM machines in practice. In this paper, the FEA
method is adopted in simulation to identify the d-axis induc-
tance, q-axis inductance and stator resistance of the machine as
references for the heuristic algorithm-based method in exper-
iment. Some pioneering identification methods, including the
standstill frequency response test [16], the short-circuit test [17],
the load rejection test [18] and the current decay test [19], have
been adopted for well-packaged wound-field permanent mag-
net synchronous machines (PMSM). However, these methods
are only validated for PMSM without considering the magnet
saturation and cross-coupling effects.

To bridge the research gap, owing to the development of dig-
ital processors, heuristic algorithm-based methods are used to
monitor the parameters of PMSM with the considerations of
electromagnetic characteristics in saturation and cross-coupling
[20]. In ref. [21] and ref. [22], a particle swarm optimization-
based method and a genetic algorithm (GA)-based method are
employed to estimate multiple parameters of PMSM based on
non-linear state equations. In ref. [23], the GA-based method
is further developed to identify both the electromagnetic and
mechanical parameters of a PMSM. In ref. [24], flux linkage and
dq-axis inductances of a PMSM is accurately monitored by an
improved immune clonal-based quantum GA. Besides, the iden-
tification performances of various types of GA-based methods
are compared in ref. [25].

This paper presents an adaptive differential evolution (ADE)-
based method to identify the d-axis inductance, q-axis induc-
tance and stator resistance of a recently proposed bi-directional
DRFM machine, which gain the merits of superior torque
density and better heat dissipation performances than the tradi-
tional wound field machines for wind turbines. ADE is an intu-
itive, yet powerful evolutionary algorithm to search out global
optimal solutions with the smoothest convergence [26,27]. It
has been validated to outperform the conventional GA in (i)
global optimum rather than local optimum and (ii) fewer tuning
parameters by numerous single- and multi-objective problems
in different areas [28–34]. In this paper, the ADE algorithm
performs more accurate identifications on the three parameters
than the conventional GA. The proposed method is established
based on the measurements of driving voltages and currents of
the DRFM machine at different frequencies. If all the param-
eters of the machine are well known, the driving voltages (as
the system outputs) can be accurately estimated based on the
measured driving currents (as the system input) and the math-
ematical model (as the transfer function of the system). How-
ever, some parameters of the well-packaged DRFM machine,
such as the d-axis inductance, q-axis inductance and stator resis-
tance, are unknown. Hence, by minimizing the measured driv-
ing voltages (as the actual system outputs) and the estimated
driving voltages (as the estimated system outputs) based on
the measured output currents and the mathematical model, the
three unknown parameters can be identified. In other words,

FIGURE 1 Cross section configuration of the dual-rotor flux-modulation
machine

the ADE algorithm can search the values of the d-axis induc-
tance, q-axis inductance and stator resistance of the investigated
DRFM machine to make sure the differences between the mea-
sured driving voltages and the estimated driving voltages are
minimized.

The main contributions of this paper include: (1) This might
be the first paper to identify the d-axis inductance, q-axis
inductance and stator resistance of a recently proposed DFRM
machine, which owns the potential of wide applications in wind
energy conversion systems. (2) This paper compares the perfor-
mance of the proposed ADE algorithm and the conventional
GA to identify the parameters of a flux-modulation permanent-
magnetic machine. (3) Compared to the conventional meth-
ods to monitor the parameters of a DRFM machine at high
rotational speed [35], the proposed ADE algorithm-based
method can identify the parameters at a relatively low rotational
speed.

2 A BRIEF REVIEW OF THE
DUAL-ROTOR-FLUX-MODULATION
MACHINE

The structure of the investigated DRFM machine is shown in
Figure 1, which comprises two rotors and one stator. Both the
two rotors are designed as the PM-ferrite array structure. The
armature winding is settled in the stator. As shown in Figure 2,
both of the inner rotor PM and outer rotor PM have radially out-
ward direction. The magnetic flux can be decomposed into two
paths. One path is induced by the inner PM excitation, while
the other path is induced by the outer PM excitation. In this
machine, the flux modulation effect is achieved in two ways.
Both the inner rotor PMs and outer rotor PMs can interact with
the windings via the modulation ferrite in another rotor’s teeth
respectively. Compared with the pure rotor-PM machine and the
stator-PM machine, this type of machine is expected to have
improved torque density because of its dual PM excitation.

Some major parameters of the DRFM machine are labelled
in Figure 3. Detailed information of main design parameters are
listed in Table 1. Assume the pole pair number of field excita-
tion exciter is Pf and the modulator pole number is Pr, then the
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FIGURE 2 Permanent magnetic bi-directional excitation mechanism of
the dual-rotor flux-modulation machine. (a) Inner rotor permanent magnetic
excitation, (b) outer rotor permanent magnetic excitation

FIGURE 3 Parameters of the dual-rotor flux-modulation machine
structure

harmonics after modulated Pm,k can be drawn as [3]

⎧⎪⎨⎪⎩
Pm,k = |mPf + kPr|

m = 1, 3, 5, 7⋯ k = 0, ±1, ±2…
. (1)

Flux density analysis is conducted by using the FEA. It can be
seen from Figure 4 that for the inner PM excitation, the dom-
inant flux harmonics in the airgap is the 2nd-order harmon-
ics. For the outer PM excitation, the dominant flux harmonic
is 13th-order harmonics, which is presented in Figure 5. As to
realize high transmission ratio, the winding pole pair number is
designed to be 2. Therefore, assume ωri and ωro represent the
angular velocity of inner rotor and outer rotor respectively, then

TABLE 1 Main design parameters

Symbol Quantity Value

D Stator outer diameter 240 mm

Rshaft Shaft radius 30 mm

lg Axial length 65 mm

lag Airgap length 0.8mm

Hri Inner rotor height 10 mm

Hro Outer rotor height 12 mm

Hs Stator height 45 mm

Nri Pole pairs of inner rotor 11

Nro Pole pairs of outer rotor 13

Z Number of slots 24

P Number of winding pole pairs 2

Nc Number of conductors 100

Mr Magnetic remanence 1.2 T

FIGURE 4 Flux density analysis of the inner rotor permanent magnetic
excitation. (a) Airgap flux density, (b) spectrum

the speed of armature field ωa can be derived as

𝜔a =
Nro

Nro − Nri
𝜔ro −

Nri

Nro − Nri
𝜔ri. (2)
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FIGURE 5 Flux density analysis of the outer rotor permanent magnetic
excitation. (a) Airgap flux density, (b) spectrum

FIGURE 6 Vector diagram of the dual-rotor flux-modulation machine

It can be seen from Equation (2) that this machine can realize
a variable transmission ratio. In addition, when the two rotors
rotate at different directions to each other, it can achieve rela-
tively high gear ratio.

The vector diagram of the DRFM machine with load is
shown in Figure 6. The length of the vector indicates the mag-
nitude the electrical property. The angle difference between the

two vectors indicates the initial phase difference between the
two electrical properties. The initial position of the back EMF
vector Ėm is on the q-axis. The initial angle difference between
the current vector İ and Ėm is the internal power factor angle
φ. Then, the d-axis current İd and the q-axis current İq are{

İd = İ sin𝜑

İq = İ cos𝜑
. (3)

The equivalent circuit model can be derived as

Ėm = U̇ + İ Rs + j İdLd + j İqLq. (4)

The angle difference between the voltage vector U̇ and the
current vector İ is the external power factor angle β, which can
be externally measured. The angle difference between the volt-
age vector U̇ and the back EMF vector Ėm is the power angle
δ, which satisfy

𝛿 = 𝜑 − 𝛽. (5)

By ignoring the eddy current and hysteresis losses, the flux
linkage model of DRFM machine can be formatted as,{

Φ̇d = Ldİd + Φ̇m

Φ̇q = Lq İq

. (6)

where Φ̇d and Φ̇q are the d-axis and q-axis flux linkage vectors;
Φ̇m is the PM flux linkage vector. Substitute Equation (6) into
Equation (4), the voltage mathematical model of the DRFM
machine can be derived as{

U̇d = Rsİd + pΦ̇d − (Nro𝜔ro − Nri𝜔ri )Φ̇q

U̇q = Rsİq + pΦ̇q + (Nro𝜔ro − Nri𝜔ri )Φ̇d

. (7)

where U̇d and U̇q are the d-axis and q-axis voltage vectors; p is
the differential operator.

3 THE ALGORITHM OF ADAPTIVE
DIFFERENTIAL EVOLUTION FOR THE
DUAL-ROTOR-FLUX-MODULATION
MACHINE

Based on the time-domain voltage mathematical model in Equa-
tion (7), the frequency-domain voltage mathematical model of
the DRFM machine can be derived as{

ud = Rsid + j𝜔(Ldid + 𝜑m) − Ns𝜔Lqiq

uq = Rsiq + j𝜔Lqiq + Ns𝜔(Ldid + 𝜑m)
. (8)

Obviously, ud and uq can be estimated based on the parame-
ters Rs, Ld, Lq, Ns, φm, ω, and the measured id and iq, such that
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⎧⎪⎨⎪⎩
udest = Rsid + j𝜔(Ldid + ’m ) − Ns𝜔Lqiq

uqest = Rsiq + j𝜔Lqiq + Ns𝜔(Ldid + ’m )
. (9)

where udest = [ udest1 udest2 ⋯ udestn ]T ; uqest =

[ uqest1 uqest2 … uqestn ]T ; id = [ id1 id2 … idn ]T , iq =

[ iq1 iq2 … iqn ]T ; 𝜑m = [𝜑m1 𝜑m2 … 𝜑mn ]T . The angu-
lar frequency ω is swept from the lower bound ωL to the upper
bound ωH for the system to obtain various values of ud, uq, id
and iq. Then, the identification model for the parameters of the
DRFM machine can be derived as

min J = ‖udest − ud‖ + ‖uqest − uq‖
s.t.

⎧⎪⎪⎨⎪⎪⎩

𝜔L ≤ 𝜔 ≤ 𝜔H

LdL ≤ Ld ≤ LdH

LqL ≤ Lq ≤ LqH

RsL ≤ Rs ≤ RsH

.
(10)

where ud = [ ud1 ud2 … udn ]T ; uq = [ uq1 uq2 … uqn ]T ; LdL,
LqL and RsL are the lower bounds of Ld, Lq and Rs, respec-
tively; LdH, LqH and RsH are the upper bounds of Ld, Lq
and Rs, respectively. The objective of the identification model
in Equation (8) is to minimize the norm of the voltage dif-
ferences between the estimated udest and uqest, and the mea-
sured ud and uq. The identified parameters Ld, Lq and Rs
are searched within the bounds. Based on the identification
model, both the conventional GA and the proposed ADE are
adopted in this paper to minimize the objective function in
Equation (10), thus monitoring Ld, Lq and Rs of the DRFM
machine.

The flowchart of the conventional GA is shown in Figure 7.
Initially, the individuals, being encoded in strings of bits (0 s and
1 s), also known as the chromosomes, are randomly generated
for each parameter (Ld, Lq and Rs) with the population size of
Psize. Each chromosome contains Csize bits. Then, by decoding
the binary chromosomes into the decimal solutions, the objec-
tive function

J = ||udest − ud|| + ||uqest − uq|| (11)

can be evaluated based on the decimal individuals. If either of
the terminal conditions of (i) the generations reaching the maxi-
mum generations maxgen or (ii) the algorithm being convergent,
is satisfied, the algorithm stops and output the optimum solu-
tions and the corresponding fitness value. On the contrary, if
none of the terminal conditions is satisfied, the algorithm goes
to the operations of selection, crossover and mutation. For the
selection operation, first two parent chromosomes in the cur-
rent population are selected based on the sorted fitness (greater
opportunities to be selected in the roulette for smaller fitness).
For the crossover operation, two selected parent chromosomes

FIGURE 7 Flowchart of the conventional genetic algorithm

cross over at every two loci (positions in two chromosomes)
to generate an offspring with the crossover rate of Pc. If no
crossover operation is performed, the parent chromosomes are
copied. For the mutation operation, the new offspring mutates
at each locus (position in the chromosome) to generate another
offspring with the mutation rate of Pm. If no mutation opera-
tion is performed, the parent chromosome is copied. Then, the
newly generated population is applied for the next iteration.

ADE, as a stochastic direct search and global optimization
algorithm developed by Storn and Price for continuous space
optimization, can overcome the drawbacks of the conventional
GA [27]. The advantages of ADE over the conventional GA
can be concluded as follows [28–33]:

1) ADE can avoid being trapped in local optimum and out-
performs conventional GA regarding single-objective and
multiple-objective optimization problems;

2) ADE uses fewer tuning parameters than conventional
GA. Only population size, maximum generation, differen-
tial weight (F) bounds and crossover rate (CR) bounds are
adopted without resorting to an external probability density
function;

3) ADE exhibits better performance in exploration and
exploitation by dynamically adjusting F and CR.

The flowchart of the ADE algorithm is shown in Figure 8.
The process can be described in detail as following:

1. [Initialization]: Generate a random population of Psize indi-
viduals in the search-space (within the lower and the upper
bounds given in Equation (10)) for the parameters of Ld, Lq
and Rs.

2. [Fitness]: Evaluate the fitness of each individual using the
objective function J = ||udest-ud||+||uqest-uq||.
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FIGURE 8 Flowchart of the proposed adaptive differential evolution

3. [Checked]: If both the termination conditions of (i) gener-
ations reaching the maximum generations maxgen and (ii)
the algorithm being convergent, are satisfied, the algorithm
stops and output the optimum solutions and the correspond-
ing fitness value. On the contrary, if any one of the termina-
tion conditions is not satisfied, the algorithm repeats in the
adaptive mutation operation, the adaptive crossover opera-
tion and the selection operation.

4. [New population]: Create a new population by repeating the
following steps
1. [Adaptive mutation operation]: Randomly select three

vectors of Xp1(g), Xp2(g) and Xp3(g) with distinct indices
of p1, p2, p3, where g indicates the number of the iter-
ations. Then, apply the three vectors into the adaptive
function

F𝛼 = Flow +
(
Fup − Flow

) f2 − f1

f3 − f1
. (12)

where Fα is the adaptive differential weight; Flow and Fup are the
lower and upper bounds of the differential weight, respectively;
f1, f2 and f3 are the fitness of Xp1(g), Xp2(g) and Xp3(g), f1 < f2 <
f3. Consequently, a new offspring using the differential strategies
of DE/rand/1 can be obtained as

H𝛼 (g) = Xp1 (g) + F𝛼
(
Xp2 (g) − Xp3 (g)

)
. (13)

where Hα(g) is the yield of offspring. If Hα(g) is invalid, the
adaptive mutation operation needs to be performed again until
it is in the search-space.

1. [Adaptive crossover operation]: Cross over the two
selected parents to generate a new offspring Hα(g)

FIGURE 9 Waveforms of the line voltage and current (phase A) at 5 Hz

with the crossover rate Pcα,

Pcff =

{
Plow +

(
Pup−Plow

)
( f𝛼− fmin)

( fmax− fmin)
f𝛼 < f

Plow f𝛼 ≥ f
. (14)

where Plow and Pup are the lower and upper bounds of the
crossover rate; fα is the fitness of the individual α; fmin and fmax
are the minimum and the maximum fitness; f is the averaged
fitness. If rα < Pcα or α = R, where rα is a random number; R is
a random index for dimensionality, then set

H𝛼 (g) = XP1 (g) + F𝛼 (XP2 (g) − XP3 (g)) . (15)

If no crossover operation is performed, the parents are
copied.

3. [Selection operation]: Compare J(Xα+1) to J(Xα). If J(Xα+1)
< J(Xα), then replace the solution in the current popula-
tion by the improved candidate solution Xα+1 based on the
greedy selection method.

4. [Replace and loop]: If the termination conditions are not
satisfied, the algorithm goes to the operations of the adap-
tive mutation, the adaptive crossover, and the selection, to
generate a new population for a further run.

4 SIMULATION RESULTS

Simulation are carried out using the software Ansys Maxwell
and Matlab. The main design parameters of the investigated
DRFM machine are listed in Table 1. The frequency of the
armature winding field fs is s swept from 5 to 55 Hz with the
interval of 5 Hz. The plots of the line voltages and currents
(phase a) at 5 Hz are presented in Figure 9. Second-order band-
pass filters are used to obtain the fundamental components of
both the line voltages and currents. The transfer function of the
bandpass filters is

H (s) =
2𝜁𝜔os

s2 + 2𝜁𝜔os + 𝜔2
o
. (16)
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TABLE 2 Measurements at different frequencies

fs(Hz) δ (deg) β (deg) Id (A) Iq (A) Ud (V) Uq (V) φm (Wb)

5 −54.73 71.27 4.05 −2.94 18.86 13.34 0.88

10 −54.73 71.27 4.05 −2.94 37.72 26.68 0.88

15 −55.17 70.83 4.05 −2.94 56.87 39.57 0.88

20 −55.63 70.37 4.05 −2.94 76.23 52.14 0.88

25 −56.08 69.92 4.05 −2.94 95.78 64.41 0.88

30 −56.53 69.47 4.05 −2.94 115.51 76.37 0.88

35 −57 69 4.05 −2.94 135.43 87.95 0.88

40 −57.43 68.57 4.05 −2.94 155.45 99.30 0.88

45 −57.88 68.12 4.05 −2.94 175.65 110.27 0.88

50 −58.33 67.67 4.05 −2.94 196.02 120.92 0.88

55 −58.80 67.20 4.05 −2.94 216.41 131.06 0.88

TABLE 3 Parameters of the conventional GA

Parameter Value

Population size Psize 12

Maximum generation maxgen 1000

Mutation rate 0.2

Crossover rate 0.9

Selection rate 0.5

where the damping ratio ζ is calculated based on the centre fre-
quency (i.e. fs) and the bandwidth of the bandpass filter (i.e.
BW). In this paper, the bandwidth is set to be 10% of the centre
frequency, which exhibits good enough filtering performance in
both simulation and experiment. Based on the definition as

𝜁 =
BW
2 fs

. (17)

the damping ratio used in this paper is 0.05.
Based on the amplitudes of the fundamental voltages and cur-

rents, and their phase differences, Ud, Uq, Id and Iq (amplitude
values) of the DRFM machine for different fs can be obtained,
as listed in Table 2. The flux produced by PM (φm) is prelim-
inarily estimated by the analytical method, which is about 0.88
Wb. The three parameters are initially identified by the 2D FEA
solver in Ansys Maxwell. The stator resistance of the machine
can be calculated based on the length and cross section area of
the conductor. The d-axis inductance and q-axis inductance can
be obtained by employing the inductance matrix computation.
The d-axis inductance, q-axis inductance and stator resistance
are calculated to be 61.42 μH, 61.46 μH and 2 Ω, respectively.

The three parameters are identified by the conventional GA
and the proposed ADE, the specifications of which by taking
both optimization accuracy and computation time into con-
sideration, are provided in Tables 3 and 4, respectively. The
searching constraints of the monitored parameters are identi-
cally designed for the conventional GA and the ADE, are listed
in Table 5.

TABLE 4 Parameters of the ADE

Parameter Value

Population size Psize 18

Maximum generation maxgen 400

Lower limit of the differential weight Fmin 0.1

Upper limit of the differential weight Fmax 0.8

Lower limit of the crossover rate Pmin 0.1

TABLE 5 Constraints of the parameters

Lower bounds Value Upper bounds Value

LdL 40 μH LdH 80 μH

LqL 40 μH LqH 80 μH

RsL 0 Ω RsH 5 Ω

4.1 Conventional genetic algorithm

The parameters are monitored by the conventional GA ten
times independently. The comparisons between the identified
and the actual parameters of Ld, Lq and Rs, and their rel-
ative errors are shown in Figure 10(a)–(c), respectively. The

FIGURE 10 Identified results of the conventional GA. (a) d-axis
inductance, (b) q-axis inductance, (c) stator resistance
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FIGURE 11 Fitness values of the conventional genetic algorithm

maximum relative error of Ld, Lq and Rs can reach about
4.85%, 4.17% and 9.5%, respectively. Despite the relative errors
of the identified Ld and Lq are within 5% and the identified Rs
are within 10% by the conventional GA, the variations for the
10 cases of identifications are significant. The percentages of
the standard deviations over the actual values of the parameters
monitored by FEA are 2.96%, 1.77% and 6.3%, respectively.
The corresponding fitness values are depicted in Figure 11.
Obviously, the fitness values are unsteady, which exhibits the
drawbacks of the conventional GA to find local optimal points.

4.2 Adaptive differential evolution

Then, the three parameters are identified by the ADE with the
population size of Psize = 7*nvar (nvar indicates the number of
variables to be identified, e.g. nvar = 3) ten times independently.
The generations of the ADE are converged at 233 for all the
10 cases. The parameters are steadily identified at the genera-
tions of 233, 500 and 2000, as shown in Figure 12 (only case 1
is exhibited, the rest cases are similar). The maximum relative
error of the parameters identified by the ADE are 0.4%, 0.08%
and 0.76%, all of which are less than 1%. The percentages of
the standard deviations over the actual values of the parameters
monitored by FEA are less than 0.5%. The fitness values of the
ADE for all the cases are consistently 0.92, which indicates the
ADE can find the global optimal points.

The comparisons of maximum relative error, average relative
error and standard deviations of the three identified parame-
ters for all the 10 cases between the conventional GA and the
ADE are depicted in Figure 13. The maximum relative error
can be reduced about 4.45%, 4.09% and 8.74% for the d-axis
inductance, q-axis inductance and stator resistance, as shown in
Figure 13(a). The average relative error can be reduced about
1.67%, 1.12% and 4.15% for the three parameters, as shown
in Figure 13(b). The standard deviations can be reduced about
2.73%, 1.59% and 5.86% for the three parameters, as shown in
Figure 13(c). Apparently, the ADE can identify the three param-
eters more accurately and steadily than the conventional GA.

5 EXPERIMENTAL VERIFICATIONS

Experiments are carried out on the prototype of the DRFM
machine in Figure 14. The main design specifications of the
machine are listed in Table 1. The DRFM machine operates

FIGURE 12 Identified results of the adaptive differential evolution. (a)
d-axis inductance, (b) q-axis inductance, (c) stator resistance

under both no-load condition and full-load condition to obtain
all necessary data. Two sets of servo systems are connected
to the two rotors, as shown in Figure 15. TMS320F28335 is
adopted as the controller for driving circuit of the DRFM
machine. The total costs of the adopted system are about 40,000
Hong Kong dollars, including the costs on the prototype, driv-
ing circuits and sensors.

The parameters Ld, Lq and Rs are identified by both the con-
ventional GA and the ADE algorithms in Figures 7 and 8 ten
times independently based on the measurements of Ud, Uq, Id
and Iq. The actual Ld, Lq and Rs are assumed to be the same
as the parameters given in the simulation, that is, Ld = 61.42
μH, Lq = 61.46 μH and Rs = 2 Ω. Then, the comparisons of
the identified parameters between the conventional GA and the
ADE can be obtained, as shown in Figure 16.

The average relative errors of the three parameters are 12.8%,
12.6% and 10.4% for the conventional GA, while they are only
5.2%, 5.1% and 4.2% for the ADE. The average relative error
of the three parameters can be reduced about 7.6%, 7.5% and
6.2%, respectively. The percentages of the standard deviations
over the actual values of the parameters are 4.2%, 3.2% and
10.9% for the conventional GA, while they are only 0.8%, 0.3%
and 1% for the ADE. The standard deviations can be reduced
about 3.4%, 2.9% and 9.9%, respectively. The fitness values of
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FIGURE 13 Comparisons between genetic algorithm and adaptive
differential evolution in simulation. (a) Maximum relative error, (b) average
relative error, (c) standard deviations

FIGURE 14 Photograph of the machine prototype. (a) Lamination core,
(b) inner rotor, (c) outer rotor, (d) armature winding, (e) stator slot, (f) overall
appearance

FIGURE 15 Photograph of the test bench

FIGURE 16 Comparisons between genetic algorithm and adaptive
differential evolution in experiment. (a) Average relative error, (b) standard
deviations, (c) fitness values

the conventional GA are different for all the ten times identi-
fications, while that of the ADE are consistent to be 3.67. The
comparisons in Figure 16 validate that the ADE can identify the
three parameters more accurately and steadily than the conven-
tional GA for a practical DRFM machine.
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6 CONCLUSIONS

This paper presents an ADE algorithm to identify the param-
eters of the d-axis inductance, q-axis inductance and the stator
resistance of a recently proposed bi-directional DRFM machine.
Both simulation and experimental results reveal that the ADE
algorithm can identify the three parameters more accurately and
steadily than the conventional GA. For the practical DRFM
machine, the average relative error of the d-axis inductance, q-
axis inductance and the stator resistance can be reduced about
7.6%, 7.5% and 6.2% and the percentages of the standard devi-
ations over the actual values of the parameters can be mitigated
about 3.4%, 2.9% and 9.9% by adopting the ADE rather than
the conventional GA.
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