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ABSTRACT State-of-Charge (SOC) estimation of lithium-ion batteries have a great significance for ensuring
the safety and reliability of battery management systems in electrical vehicle. Deep learning method can
hierarchically extract complex feature information from input data by building deep neural networks (DNNs)
with multi-layer nonlinear transformations. With the development of graphic processing unit, the training
speed of the network is faster than before, and it has been proved to be an effective data-driven method
to estimate SOC. In order to further explore the potential of DNNs in SOC estimation, take battery
measurements like voltage, current and temperature directly as input and SOC as output, an improved
method using the Nesterov Accelerated Gradient (NAG) algorithm based Bidirectional Gated Recurrent
Unit (Bi-GRU) network is put forward in this paper. Notably, to address the oscillation problem existing
in the traditional gradient descent algorithm, NAG is used to optimize the Bi-GRU. The gradient update
direction is corrected by considering the gradient influence of the historical and the current moment,
combined with the estimated location of the parameters at the next moment. Compared to state-of-the-art
estimation methods, the proposed method enables to capture battery temporal information in both forward
and backward directions and get independent context information. Finally, two well-recognized lithium-ion
batteries datasets from University of Maryland and McMaster University are applied to verify the validity of
the research. Compared with the previous methods, the experimental results demonstrate that the proposed
NAG based Bi-GRU method for SOC estimation can improve the precision of the prediction at various
ambient temperature.

INDEX TERMS State-of-Charge estimation, lithium-ion batteries, Bidirectional Gated Recurrent Unit,
Nesterov Accelerated Gradient.

I. INTRODUCTION
With global warming and the emergence of various extreme
climates, the greenhouse gas emissions caused by diesel and
gasoline vehicles have been paid more and more attention.
The development of electric vehicles and hybrid vehicles has
triggered extensive research to reduce fossil fuel consumption
and greenhouse gas emissions. Battery management system
(BMS) is widely used, to guarantee the safety, durability,
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reliability and efficiency of electric vehicles, then perform
the necessary management and diagnostic functions [1]. The
State-of-Charge (SOC) provides reliable information about
the potential charging and discharge strategies, and it is one of
the essential states that BMS needs to monitor [2], [3]. There-
fore, the accurate estimation of SOC plays an essential role
in BMS [4]. Actually, SOC is not an inherent parameter of
the battery, and it cannot be measured directly by any sensor.
The parameters such as current, voltage, temperature, internal
resistance, battery ageing etc. often affects the estimation
of SOC. Furthermore, SOC estimation in electric vehicles

11252 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-3639-8466
https://orcid.org/0000-0001-7264-2019


Z. Zhang et al.: Improved Bidirectional Gated Recurrent Unit Method for Accurate SOC Estimation

requires a good performance of accuracy and real-time, dif-
ferent battery materials and working conditions make it chal-
lenging to obtain the battery SOC accurately in real-time [5].

At present, the commonly used SOC estimation methods
can be divided into four categories: look-up table method,
ampere-hour method, model-based method and data-driven
method. The look-up table method is a simple method to
estimate the SOC. By using themapping relationship between
battery characteristic and SOC, the battery behavior is charac-
terized by a large number of experiments. The conventional
look-up table methods mainly includes open-circuit voltage
method [6] and AC impedance method [7]. Still, the estima-
tion accuracy depends on the accuracy of the look-up table
established by experiments. The main idea of the ampere-
hour method is: by measuring the current that though the bat-
tery and calculate the current integration value at this period
of time, and then add it to the initial value of the battery,
finally get the SOC [8]. The ampere-hour method is an open-
loop estimation method. Due to the influence of current sen-
sor sampling accuracy and sampling frequency, there will be
accumulated error in the integration for a long time [9]–[11].
The battery model is combined with the nonlinear observer
to form a model-based method. Yan et al. [12] developed a
Lebesgue-sampling-based extended Kalman filter to estimate
the SOC. Shehab El Din et al. [13] proposed an unscented
Kalman filter with the autocovariance least-squares technique
to estimate SOC, and evaluated using a novel battery cell
model. Zhang et al. [14] presented an adaptive weighting
cubature particle filter to estimate SOC. Considering that
the cubature particle filter is sensitive to noise, the statistics
of system noise, prediction state, measurement vector and
covariance are estimated by an adaptive weighting method.
Also, some nonlinear observers are applied to model-based
method for SOC estimation, such as H infinity filter [15], pro-
portional integral observer [16], sliding mode observer [17],
Luenberger observer [18], etc. The model-based method uses
a closed-loop structure, which can estimate the SOC with
an unknown initial state. However, the process of establish-
ing the model is complex and time-consuming, and it is
difficult to identify the parameters online, which requires a
large amount of calculation. Besides, the estimation accuracy
depends on the accuracy of the battery model and parameter
identification. In recent years, data-driven method has drawn
more attention from scholars because it only requires battery
measured signals for SOC estimation, instead of relying on
any complicated battery model. With the rapid development
of graphic processing units, building and training neural net-
works have beenmore andmuch easier and faster than before,
the neural network-based deep learning method has drawn
more attention from the research world [19]. Therefore,
data-driven method for SOC estimation often use machine
learning platform, automatically learn network parameters
by intelligent algorithms [20]. Lipu et al. [21] using the
back-propagation neural network to estimate the SOC for a
lithium-ion battery, principal component analysis and par-
ticle swarm optimization algorithms were used to enhance

the accuracy and robustness of the SOC estimation model.
Song et al. [22] proposed a combined convolutional neural
network–long short-term memory network to infer battery
SOC from measurable data, such as current, voltage, and
temperature. Li et al. proposed a method for SOC prediction
based on particle swarm support vector regression [23]. The
data-driven method relies on the analysis of battery measured
signals, which avoids the difficulties in parameter identifica-
tion and high computational complexity in the model-based
method, and the data-driven method have the advantages
of estimation speed and generalization. Therefore, in recent
years, the use of the data-driven method to estimate SOC has
received more and more attention [19].

It is essential to choose the network structure and the
optimization function of network weight in the data-driven
model. Appropriate network structure and optimization func-
tion can minimize the network loss function and improve
the training speed. Lipu et al. [24] proposed a long short-
term memory model with an attention mechanism to estimate
the charging status of lithium-ion batteries. Mamo et al. [25]
proposed a state-of-charge estimation model for a lithium-ion
batteries using an improved extreme learningmachine (ELM)
algorithm. A battery states estimation method by combin-
ing recurrent neural network modeling and particle-filtering-
based errors redress was investigated [26]. Hannan et al. [27]
developed an SOC estimation approach for a lithium-ion
batteries by improving BPNN capability using backtrack-
ing search algorithm. However, the classical unidirectional
structure cannot capture battery temporal information in both
forward and backward directions. Furthermore, the classical
gradient descent algorithm are easy to fall into the local opti-
mum, and have a slow convergence speed. To solve the above
problems, this paper further investigates the network structure
and optimization algorithm suitable for SOC estimation. The
main contributions are summarized as follows:

(1) A GRUwith bidirectional structure for SOC estimation
is presented, which is able to capture the long-term time
dependencies of battery sequence in forwarding and back-
ward directions, and improve the accuracy of the model.

(2) Unlike the other optimization algorithms, NAG consid-
ers the gradient influence of historical and current moment
as the factor, and modifies the direction of gradient update
by predicting the position of parameters in the next moment.
Because of these, NAG can effectively reduce the vibra-
tion and improve the stability in the process of gradient
descent.

(3) The influence of various parameters on the accuracy of
the model was analyzed through experiments, and two public
lithium-ion battery datasets is used to verify the validity of
the proposed Bi-GRU model.

The rest of the paper is organized as follows. Section 2
briefly describes the Bi-GRU and NAG algorithm. A NAG
algorithm based Bi-GRUmethod is proposed for battery SOC
estimation in Section 3. The experimental simulation and
results analysis are discussed in section 4. Section 5 con-
cludes this paper.
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FIGURE 1. The structure of the GRU.

II. A NAG ALGORITHM BASED Bi-GRU
A. Bi-GRU NETWORK
GRU [28] is a kind of recurrent neural network (RNN). Like
LSTM (long short term memory) [29], it is also proposed to
address the problems of long-term memory and gradient in
back-propagation. We choose GRU in our work since it per-
forms similarly to LSTM, but is computationally cheaper. The
structure of the GRU is shown in Fig. 1. GRU is composed of
the current input xt , the previous hidden state ht−1, the update
gate zt , the reset gate rt , and the new hidden state ht . In the
following process, the input of GRU is xt and ht−1, and the
output is ht .
• Update gate

The update gate zt is used to control the degree that the
information of the previous moment is brought into the cur-
rent state. The greater the value of the update gate, the more
information is brought in from the previous moment. Update
gate zt can be calculated by:

zt = σ (Wz · [ht−1, xt ]+ bz) (1)

whereWz and bz are the weight matrix and bias of the update
gate respectively. σ (x) = 1/[1+exp(−x)] means the Sigmoid
function, by which the data is converted into values in the
range of 0 ∼ 1 (acting as the gate-control signal).
• Reset gate

Reset gate rt is used to control how much of the hidden layer
information of the previous moment needs to be forgotten. It
can be calculated by:

rt = σ (Wr · [ht−1, xt ]+ br ) (2)

where Wr and br are the weight matrix and bias of the reset
gate respectively. If there is no need to remember the hidden
state of the previous moment, sigmoid will set the output of
the reset gate to 0 to forget the information of the hidden state
of the previous moment. On the contrary, sigmoid will set the
output of the reset gate to 1, so that all the hidden states from
the previous moment pass through, that is, the smaller the
reset gate is, the less information is retained from the previous
state.

FIGURE 2. The structure of the Bi-GRU.

• Candidate output state
Candidate output state h̃t can be calculated by:

h̃t = tanh(Wh · [rt � ht−1, xt ]+ bh) (3)

whereWh and bh are the weight matrix and bias of candidate
output state h̃t respectively. tanh activates the function to scale
the data to a range from −1 to 1. � is Hadamard Product,
namely the multiplication of the corresponding elements in
the matrix. The output of the reset gate directly affects the
candidate output state of the GRU unit. The product of rt and
the hidden layer state of the previousmoment determines how
much the output of the neuron is retained from the previous
moment. The greater the value of rt,, the more the output of
the neuron is retained from the previous moment, and vice
versa.
• New hidden state

The output of GRU is the new hidden layer state ht , it is
determined by zt , ht−1 and h̃t . The mathematical expression
is as follows:

ht = (1− zt )� ht−1 + zt � h̃t (4)

The larger zt is, the greater dependence of ht on h̃t is, and the
smaller determining role of ht−1 on the output is. (1 − zt )�
ht−1 indicates the selective ‘‘forgetting’’ to previous hidden
state ht−1,zt � h̃t indicates selective ‘‘memory’’ to h̃t which
contains the current node information.

Unlike traditional GRU which can only predicate the out-
put of the next moment based on the temporal sequence
information of the previous moment, Bi-GRU combines the
information of the input sequence in both the forward and
backward directions. The bidirectional structure is shown
in Fig. 2. The bidirectional structure can be regarded as
two hidden layers with opposite directions of information
transfer and GRU units. At the moment t , the input xt supplies
the hidden layers in two opposite directions simultaneously.
The output yt at moment t is jointly determined by these
two one-way hidden layers. The forward GRU layer has the
information of moment t and the previous moment in the
input sequence, while the backward GRU layer has the infor-
mation of moment t and the subsequent moment in the input
sequence. The hidden layer propagation process of Bi-GRU
can be defined as :

Eht = f ( EWxt + EV Eht−1 + Eb) (5)
←

h t = f (
←

Wxt +
←

V
←

h t+1 +
←

b) (6)
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yt = σ (Eht ,
←

h t ) (7)

where Eh and
←

h t indicate the hidden-layer state of forward
and backward calculation respectively; EW , EV ,

←

W ,
←

V mean
the weight of the input and the hidden layer state of the
previous moment in forward and backward calculation; Eb and
←

b respectively indicate the bias of forward and backward
calculation.

A bidirectional cyclic hidden layer structure can capture
the forward and backward dependence in time of battery SOC
and the battery parameters, and it can effectively improve the
processing ability of the model for nonlinear data. Therefore,
it is meaningful to use a Bi-GRU structure to estimate the
SOC.

B. THE NAG ALGORITHM
In order to solve the problems of training speed and gra-
dient in training process, a NAG algorithm was applied to
Bi-GRU. Actually, NAG is inspired by the classical momen-
tum gradient algorithm. Classical momentum considers the
gradient effect of current moment and historical moment,
and introduces momentum term mt and hyperparameter γ
into the gradient descent problem. Notably, γ represents
the influence of historical gradient, the greater the γ is,
the greater the influence of historical gradient on the cur-
rent. If the gradient of the current moment is close to the
direction of the historical gradient, the current trend will be
strengthened. Otherwise, it will be weakened. In contrast to
the classical momentum gradient algorithm, NAG adds a step
to modify the parameter θ by estimating the position of the
next parameter. The updating process of the two algorithms
is shown in Fig 3. The weight updating process of NAG
is:

m0 = 0 (8)

mt = γmt−1 − η∇L(θt−1 − γmt−1) (9)

θt+1 = θt − mt (10)

where η represents the learning rate of the network; L(·)
represents loss function of the network; ∇L(·) represents the
gradient matrix of loss function.

In Fig. 3, ∇1 represents the gradient update vector of
classical momentum algorithm, ∇2 represents the gradient
update vector of NAG algorithm. It is clear that∇2 is ahead of
∇1, namely, the updating speed of NAG is faster than that of
momentummethod. When the γm term exceeds the optimum
point, η∇1 points to the other side of gradient rise direction,
while η∇2 points to the gradient descent direction, so the
NAG algorithm can reduce oscillation.

Table 1 compared the classical momentum gradient algo-
rithm and NAG. In the process of gradient descent, the NAG
algorithm can effectively weaken the oscillation, which can
reduce the problem of missing the optimal solution caused
by the fast speed. In SOC estimation, the input is strongly
nonlinear, based on this, NAG is more suitable for optimizing
Bi-GRU network.

FIGURE 3. The update process of NAG and momentum gradient algorithm.

TABLE 1. Comparison of classical momentum gradient algorithm and
NAG algorithm.

III. Bi-GRU BASED ON NAG METHOD FOR SOC
ESTIMATION
In SOC estimation, the battery parameter sequence has a
long-term dependence in the forward and backward direction.
In order to capture such a dependence in time and improve
the training speed, this paper proposes a Bi-GRU based on
NAG method, and applies it in the SOC estimation to verify
the validity of the model. Tt , It , Vt respectively represent the
ambient temperature, discharge current and terminal voltage
of the battery at moment t; SOCt represents the charged state
of the battery at moment t . SOC ′t represents the estimated
value of SOC by proposed model at moment t. The steps of
specific method to estimate SOC is provided as follows.
Step 1 (Data Preprocessing): The vector x = [T, I, V],

T = [T1, T2, . . .Tt , . . .Tn], I = [I1, I2, . . . It , . . . In], V =
[V1, V2, . . .Vt , . . .Vn] is used as the input; SOC = [SOC1,
SOC2, . . . SOCt , SOCn] is used as the output. In this paper,
we use the minimum-maximum normalization method to
preprocess the data, and scale the battery data to 0 ∼ 1
range, to remove the unit limit of the data, so as to facili-
tate the comparison and weighting of indicators in different
units or magnitudes and improve the training speed of the
network. Minimum-maximum normalization:

x i =
xi − xmin
xmax − xmin

(11)

Step 2 (Bi-GRU Network Training): In the process of train-
ing, we optimize the parameters of the network using NAG
optimization algorithm. Set θ ′t = θt − γmt and introduce
it into formula (9) and (10). The NAG algorithm could be
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rewritten as:

θ ′t = θ
′

t−1 − γmt − η∇L(θ
′

t−1) (12)

mt = γmt−1 − η∇L(θ ′t−1) (13)

Define the loss function for the network:

L(θ ′) =
1
2
(SOCt − SOC ′t )

2 (14)

The process of NAG to optimize network parameters is as
follows.
Step 3 (SOC Estimation and Performance Evaluation):

In this paper, mean absolute error (MAE) and root mean
square error (RMAE) is used to evaluate the performance of
well-established model. MAE represents the average of the
absolute error between the predicted and the observed value.
RMSE is an indication of the dispersion of the samples, and
large RMSE indicates high degree of dispersion.

MAE =
1
T

T∑
t=1

∣∣SOC − SOC ′t ∣∣ (15)

RMSE =
1
T

√√√√ T∑
t=1

(SOC − SOC ′t ) (16)

Step 4 (Model Optimization): Replace parameters and
retrain the network, analyze the performance of different
network parameters on SOC estimation problem.

IV. EXPERIMENTAL SIMULATION AND RESULTS
A. DATASET DESCRIPTION
In this work, two public lithium-ion battery datasets are
used to evaluate the proposed method. The electrical char-
acteristics of the batteries are listed in Table 2. One of
the experimental dataset is collected from the Samsung
18650 LiNiMnCoO2/Graphite lithium-ion batteries by the
Center for Advanced Life Cycle Engineering (CALCE) at
University of Maryland [30]. It includes the current and
voltage data of BJDST, DST, FUDS and US06 drive cycles
in varying ambient temperatures. Test process at three ambi-
ent temperatures of 0◦C, 25◦C and 45◦C, and the sampling
frequency of voltage and current parameters is 1s. Samsung
INR 18650-20R dataset includes four stages: charging, dis-
charging at a current rate of 1 C, standing and discharging
according to drive cycles. Fig. 4 shows the current data of the
four drive cycles.

LG 18650HG2 lithium-ion battery dataset, which is per-
formed atMcMaster University in Hamilton, Ontario, Canada
by Dr. Phillip Kollmeyer. In this dataset, eight driving cycles
are included: UDD, HWFET, LA92, US06 and their random
mix. The tests are repeated for ambient temperatures of 40◦C,
25◦C, 10◦C, 0◦C, −10◦C, and −20◦C, in that order. In this
paper, LA92 and UDDS at 25◦C are selected to test the
universality of the proposed method. Fig. 5 shows the current
of the LA92 and UDDS cycles.

Process Description of NAG
1 Initialization:
2 - Initialization the weights and bias of zt , rt , ht :

Wzh,0,Wzx,0, bz,0;Wrh,0,Wrx,0, br,0;Wh,0,Wx,0, bh,0
3 - Initialization the weights and bias of the output layer:
Wo,0, bo,0

4 for t = 1, 2, · · · do
5 - Calculate the loss function L(θ ′)
6 - Calculate the gradient of the loss function to the hidden

layer parameters:

∇LW ,zh =
∂L(θ ′)
∂Wzh

∇LW ,zx =
∂L(θ ′)
∂Wzx

,

∇Lb,z =
∂L(θ ′)
∂Wbz


∇LW ,rh =

∂L(θ ′)
∂Wrh

∇LW ,rx =
∂L(θ ′)
∂Wrx

,

∇Lb,r =
∂L(θ ′)
∂Wbr

∇LW ,h =
∂L(θ ′)
∂Wh

∇LW ,x =
∂L(θ ′)
∂Wx

∇Lb,h =
∂L(θ ′)
∂Wbh

7 - Calculate the gradient of the loss function to the output
layer parameters:

∇LW ,o =
∂L(θ ′)
∂Wo

, ∇Lb,o =
∂L(θ ′)
∂bo

8 - Calculate the momentum of the hidden layer weight and
bias: 

mW ,zh,t = γmW ,zh,t−1 − η∇LW ,zh,t−1
mW ,zx,t = γmW ,zx,t−1 − η∇LW ,zx,t−1,
mb,z,t = γmb,z,t − η∇Lb,z,t−1
mW ,rh,t = γmW ,rh,t−1 − η∇LW ,rh,t−1
mW ,rx,t = γmW ,rx,t−1 − η∇LW ,rx,t−1
mb,r,t = γmb,r,t − η∇Lb,r,t−1
mW ,h,t = γmW ,h,t−1 − η∇LW ,h,t−1
mW ,x,t = γmW ,x,t−1 − η∇LW ,x,t−1
mb,h,t = γmb,h,t − η∇Lb,h,t−1

9 - Calculate the momentum of the output layer weight and
bias:

mW ,o,t = γmW ,o,t−1 − η∇LW ,o,t−1,

mb,o,t = γmb,o,t−1 − η∇Lb,o,t−1
10 - Update the weight and bias of the hidden layer:

Wzh,t = Wzh,t−1 − γmW ,zh,t−1 − η∇LW ,zh,t−1
Wzx,t = Wzx,t−1 − γmW ,zx,t−1 − η∇LW ,zx,t−1
bz,t = bz,t−1 − γmb,z,t−1 − η∇Lb,z,t−1
Wrh,t = Wrh,t−1 − γmW ,rh,t−1 − η∇LW ,rh,t−1
Wrx,t = Wrx,t−1 − γmW ,rx,t−1 − η∇LW ,rx,t−1
br,t = br,t−1 − γmb,r,t−1 − η∇Lb,r,t−1
Wh,t = Wh,t−1 − γmW ,h,t−1 − η∇LW ,h,t−1
Wx,t = Wx,t−1 − γmW ,x,t−1 − η∇LW ,x,t−1
bh,t = bh,t−1 − γmb,h,t−1 − η∇Lb,h,t−1

11 - Update the weight and bias of the output layer:
Wo,t = Wo,t−1 − γmW ,o,t − η∇LW ,o,t−1,

bo,t = bo,t−1 − γmb,o,t − η∇Lb,o,t−1
12 - t = t + 1
13 end
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TABLE 2. Electrical characteristics of the batteries.

FIGURE 4. The current of four drive cycles: (a) BJDST, (b) DST, (c) FUDS,
and (d) US06.

FIGURE 5. The current of LA92 and UDDS drive cycles.

B. SOFTWARE AND HARDWARE
In this study, the randommixture of BJDST, DST andUS06 is
used as a training set, the current and voltage profile at 25◦C
are displayed in Fig. 6. FUDS, LA92 and UDDS is used as a
test set.

The experiments are conducted on the PC with CPU
Intel(R) Core(TM) i7-8700 CPU@3.20 GHz, 16.0 GBRAM
with PyCharm 2018.

C. THE INFLUENCE OF DIFFERENT PARAMETERS ON
MODEL ACCURACY
1) SOC ESTIMATION AT MULTIPLE
AMBIENT TEMPERATURES
The discharge process of the battery is always in a chang-
ing ambient temperature. And in the SOC estimation
process, the influence of ambient temperature cannot be
ignored [31]–[33]. It is relatively simple to estimation the
SOC of the constant current charging and discharging process

FIGURE 6. The INR 18650-20R measured data in the BJDST, DST and
US06 test: (a) Current, (b) Voltage, (c) Capacity.

TABLE 3. Results on FUDS set T when the network is trained on multiple
ambient temperature.

of the battery, and the proposed model is mainly to solve the
estimation problem of the battery discharge under different
working conditions, so the discharge process data is used to
test the model. Table 3 lists the test results on FUDS set at dif-
ferent ambient temperatures. Fig. 7 shows the performance on
a FUDS discharge process on multiple ambient temperature
with an initial SOC of 80%.

The results show that the proposed method have a good
performance under different temperature conditions in pre-
dicting SOC.MAE is within 1.9% and RMSE is within 2.2%.
Therefore, the model can accurately estimate battery SOC
under the circumstance of temperature change. From the
comparison results of the estimated performance of the mod-
els at different temperatures, it can be obtained that the model
has poor estimation accuracy at low temperature. This is due
to the more complex battery dynamics at low temperatures,
which increases the difficulty of SOC estimation. In addition,
due to battery capacity limitations, the drive cycle is shorter at
low temperatures and less measurement data is collected from
the battery. Without fully training the model using these low
temperature data, the estimated performance of the model is
lower.

2) SOC ESTIMATION AT DIFFERENT NETWORK PARAMETERS
In the process of network training, there are many network
parameters that affect the accuracy of the model, of which
the selection of number of hidden neurons and epoch has
the greatest influence on the network [33]. When the net-
work contains too many nodes, the limited information in
the training set is not enough to train all the neurons in the
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FIGURE 7. Estimation on the FUDS test set at ambient temperatures:
(a) 0◦C, (b) 25◦C, and (c) 45◦C.

hidden layer, which may lead to over fitting. Conversely,
using too few neurons in the hidden layer results in under
fitting. During the training, an epoch is a process in which all
the data is sent into the network to complete a forward calcu-
lation and back transmission. The size of epoch is related to
the degree of diversification of the data set. The greater the
degree of diversification, the larger epoch should be selected.
In addition, too many neurons in the hidden layer or too many
times of training will increase the training time, making it
difficult to achieve the desired effect.

It can be seen from Table 3 and Fig. 7 that the Bi-GRU
model has the most stable performance of estimation at 25◦C.

TABLE 4. RMSE of various hidden neurons and epochs tested in FUDS.

FIGURE 8. Model estimation performance with different number of
hidden neurons and epochs.

In order to reduce the influence of temperature factors on
the model error, the following tests are conducted under the
data set of a temperature of 25◦C. We constructed Bi-GRU
models with different numbers of hidden neurons and dif-
ferent epochs to evaluate the influence of different numbers
of neurons and epochs on the estimation performance of the
model.

Table 4 and Fig. 8 show the comparison results of esti-
mation performance of the model with different number of
hidden neurons and iterations. The results show that when
hidden neurons is too little, RMSE of the test results of the
model fluctuates continuously with the increase of epoch,
and the RMSE is at a higher level, and the network is under
fitting. When hidden neurons are excessive, network accu-
racy is improved, but RMSE does not significantly decrease
with the increase of epoch and fluctuates constantly. Select
appropriate hidden neurons, such as around 128, with the
increase of epochs, the RMSE of the model continuously
decreases; however, when different hidden neurons are used,
RMSE takes different times to reach its lowest point. When
RMSE exceeds the lowest point, continuous increasing epoch
will lead to the network over fitting and decreased accuracy of
the model. When epoch is 300, Fig. 9 shows the performance
of the Bi-GRU using different hidden neurons on a FUDS
dataset with an initial SOC of 80%.

3) DIFFERENT γ ON NETWORK
Hyperparameter γ of NAG algorithm represents the influence
of history gradient on current gradient update, and is gener-
ally valued between 0 and 1. With the increase of the number
of iterations, the power of γ ismore and more high, the coef-
ficient before gradient matrix∇L(θt ) continuously decreases,
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FIGURE 9. Estimates and errors of Bi-GRU using different hidden neurons
on the FUDS test dataset: (a) 32, (b) 64, (c) 128, and (d) 256.

FIGURE 10. Loss changes of different γ .

showing that the influence of history gradient on the current
gradient update is less and less, reaching the purpose that the
position closer to the current moment has greater influence
on the direction of gradient update. Fig.10 shows the changes
of Loss during different training in NAG algorithm. As can
be seen from Figure 10, when γ is 0.1, Loss appears obvious
oscillation in the process of descent, and the descent speed is
slow. When γ increased from 0.1 to 0.7, the descent rate of
Loss was gradually accelerated; however, when γ continues
to increase and is set to 0.9, the descent rate was some-
what reduced. However, different γ could eventually stabilize
Loss. Selecting appropriate hyperparameter can speed up the
training and improve the prediction accuracy of the model.

D. UNIVERSALITY OF THE MODEL
In order to evaluate the universality of the proposed model,
we use the LG 18650HG2 dataset for SOC estimation.
Fig. 11 shows the estimated results of LA92 and UDDS test
cases at 25◦C. It can be seen from it that the proposed Bi-GRU
model achieves satisfactory estimation accuracy for other
types of datasets. The RMSE and MAE of LA92 test case are
1.402% and 1.119% respectively, and the RMSE andMAE of
UDDS test case are 1.370% and 1.132% respectively, and the
maximum estimation error is within 5%. Due to its bidirec-
tional recursive structure, the proposed model performs well
in most test cases, and can perform better in SOC estimation.

E. COMPARISON OF DIFFERENT MODELS
In order to evaluate the estimation performance of the pro-
posed model, we compared the proposed model with some
existing methods, including the methods based on data driven
such as LSTM, SVM, ELM, BPNN, RBFNN, GNN, and their
improved methods [24]–[27]. In addition, there are filtering
algorithms such as EKF, UKF, PF, CKF, AWCPF and their
improved algorithms [13], [33]. Table 5 shows the RMSE
of various models on FUDS, including ambient temperatures
of 0◦C, 25◦C and 45◦C. It can be divided into data-driven
methods and filtering methods.

It can be seen from Table 4 that in the data-driven methods,
temperature can influence SOC estimation accuracy, and the
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FIGURE 11. Estimates and errors of Bi-GRU on the different test cases at
25oC: (a) LA92, (b) UDDS.

RMSE of various models changes greatly with the change
of temperature. In general, the models have more estimation
error in low temperature state, but in high temperature state

TABLE 5. RMSE of various models on FUDS dataset.

the error is little and have a satisfactory accuracy. In the
proposed model, RMSE can be below 2.2% at different tem-
peratures, which is less sensitive to temperature compared
with other models. In contrast, there is less discussion on
the influence of temperature on SOC estimation by filtering
method.

It can be observed that under FUDS cycle conditions,
the proposed models have a high estimation accuracy. Within
the estimation models listed below, the LSTM model with
an attention mechanism model [25] has the best estimation
performance, that is, at 0◦C, 25◦C and 45◦C, RMSE is 0.96%,
0.87% and 0.92% respectively. Secondly, the LSTM-PF
model [26] has relatively better estimation accuracy and sta-
bility under the three temperatures, and its RMSE is 1.42%,
1.50% and 1.68% respectively. This is because PF is good
at processing data under non-Gaussian noise. In addition,
the BPNN based BSA model [27] also has a lower RMSE
in the FUDS at the three temperatures. However, it is sensi-
tive to temperature changes and has relatively poor stability.
Compared with the above three models, the Bi-GRU based
on NAG model which proposed in this paper has the advan-
tages of simple network structure, reaching ideal accuracy
of SOC estimation results and improved training speed. For
filtering methods, such as the AWCPF method [14], the
unconstrained-PF method [34], and others have the advan-
tage of less time-consuming for modeling, relatively low

11260 VOLUME 9, 2021



Z. Zhang et al.: Improved Bidirectional Gated Recurrent Unit Method for Accurate SOC Estimation

requirements for data set. It can be seen that the influence
of temperature change is seldom discussed when SOC esti-
mation is used in this kind of method, their SOC estimation
performance under temperature variation is up for discussion.
In addition, compared with the filtering methods, the NAG
based Bi-GRU method proposed in this paper has a smaller
RMSE on the FUDS data set in most cases, proving the
effectiveness of this method for SOC estimation.

V. CONCLUSION
In this paper, we offers three unique contributions. The contri-
bution on the battery modeling front is use the Bi-GRU maps
battery measurements like voltage, current, and temperature
directly to SOC of lithium-ion batteries. The contribution
of parameterization front is that a NAG algorithm is used
for ensure the stability and training speed of the network.
In NAG algorithm, the current parameters are corrected by
predicting the direction of gradient update at the next time,
which can effectively reduce the oscillation and improve
the network training speed in the process of optimizing the
network weight. Finally, in order to verify the effectiveness
of the proposed method, two types of lithium-ion battery
sets are tested. The performance of SOC estimation at dif-
ferent ambient temperatures are discussed by experiments.
The results show that the proposed method can learn the
effect of ambient temperature very well. The RMSE of INR
battery and NCR battery SOC estimation are less than 2.5%
and 3.5% respectively at different temperatures. In addition,
the effects of the number of neurons in the network, epoch
and the super parameter γ in NAG on the accuracy of the
model are also discussed. Selecting the appropriate number
of neurons, epoch and γ can ensure the training speed and
improve the prediction accuracy of the model. In addition,
by comparing the RMSE of various methods in the same set,
the proposed method has the advantages of simple network
structure and high accuracy of SOC estimation results. When
the trained model is used to test the test set, the test time
is very short and can be controlled within 1s under CPU
environment. Therefore, this method can realize real-time
estimation of battery SOC, which is suitable for on-board
real-time estimation.
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