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ABSTRACT This paper presents the nonlinear analysis of stability and dynamic rotational accuracy of
an unbalanced rotor supported by aerostatic journal bearings. A finite element method is utilized with the
Runge-Kutta fourth order method to solve the transient Reynolds equation and the rotor dynamics equations
simultaneously for the dynamic response analysis of the rotor. The dynamic behavior of the rotor center is
analyzed under different rotor masses. It is shown that the dynamic responses of the rotor strongly depend
on the rotor mass. The periodic, multi-periodic or quasi-periodic motions are observed as the rotor mass
changes. Under a given operating speed, themass at which the resonance occurs is studied and its relationship
with the mass of the rotor at the threshold of instability is found for the first time. The influences of supply
pressure, bearing clearance, orifice diameter and eccentric distance on the rotational accuracy, the resonance
and instability threshold are also investigated. The result of this study can provide guidance for designing
aerostatic bearing rotor systems with required running accuracy and stability.

INDEX TERMS Aerostatic bearings, nonlinear analysis, rotational accuracy, whirl stability.

I. INTRODUCTION
Aerostatic bearings are important mechanical components
and have been widely employed in high precision and
high speed applications, such as ultra-precision/high speed
machine tools, precision instruments, electric motors, and
disks [1], [2], because of their high accuracy, low noise,
zero friction, and long life [3]. High stability and rotational
accuracy are very important for the aerostatic bearings. For
example, the motion accuracy of the aerostatic bearing spin-
dle directly affects the surface quality of machined mechan-
ical components in ultraprecision diamond turning [4].
However, the air film between the journal and bearing sur-
face introduces nonlinear effects into the dynamics of rotor
systems and the systems may show self-excited instabil-
ity at high rotational speeds or rotor masses. This kind of
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instability is also known as half frequency whirl, which
means the rotor vibrates at about half the rotational frequency
and with large amplitudes, or even the rotor crashes on the
bearing surface [5]. Besides, the rotor has an unbalanced
mass inevitably, resulting from manufacturing and installa-
tion errors [4], even though dynamic balancing work has been
done. This causes centrifugal forces to be generated by the
rotating rotor and force the rotor to vibrate [6], which is
the main source of the rotor’s error motions [7], [8]. These
motions reduce rotational accuracy, and the forced vibration
may even cause resonance. The self-excited instability and
mass unbalance-induced vibration are the major obstacles to
the further application of aerostatic bearings. Therefore, it is
necessary to investigate the dynamic behavior of an unbal-
anced rotor supported by aerostatic bearings, which will be
beneficial for improving the stability and rotational accuracy
by selecting the suitable values of geometric and operation
parameters.
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Many researchers have investigated the stability of air
bearings theoretically and experimentally. The linear theory
is widely employed to evaluate the bearing dynamic char-
acteristics and predict the stability. Ausman [9] solved the
linearized ph solutions to the transient Reynolds equations
and the equations of motions simultaneously, determined the
threshold point for the half frequency whirl, and finally found
that the vibration frequency was equal to half the rotational
frequency or slightly smaller at the threshold value. Lund [10]
developed a calculation approach to estimate the dynamic
characteristics, such as the spring and damping coefficients
of the air journal bearing, which was applied to predict the
critical speed and the unbalance response. Lihua et al. [11]
employed a hybrid approach which combined the equiva-
lent coefficient method and the partial derivative method to
numerically obtain the damping and stiffness coefficients of
air bearings. Al-Bender [12] developed a model based on
the linear perturbation approach, which was experimentally
proven to be effective in the stability prediction of air journal
bearings. Chen et al. [13] presented the stability analysis of
aerostatic bearings using the perturbation method and ana-
lyzed the effects of the positions and numbers of the supply
holes on the stability. Yu et al. [14] analyzed the dynamic per-
formance of externally pressured air bearings with inherent
orifices under the excitation of perturbation forces numeri-
cally and experimentally. Most of the existing researches on
the stability analysis of aerostatic bearings are based on the
linear theory. However, it has been proved that the linearized
approach is limited to the prediction of vibrations around the
equilibrium positionwith small amplitudes and fails to realize
the accurate prediction of rotor center orbits with large ampli-
tudes [15], [16]. There are also a limited number of studies on
the dynamic responses of air bearings by the nonlinear orbit
method in which the Reynolds equation and the equations of
motions are solved together to gain the transient responses of
the bearing system. Colombo et al. [17] investigated the radial
vibrations of a vertical well-balanced rotor with aerostatic
bearings using the nonlinear orbit method and found that
there were three kinds of possible responses of the rotor
center: point stability, orbital stability, and instability with
the increasing rotor mass. Wang and Yau [18] presented the
nonlinear vibration analysis of an air bearing spindle with
high speed. Kuo et al. [19] conducted the bifurcation analysis
for a porous air bearing system.

Regarding the rotational accuracy of aerostatic bearings,
existing research work has focused largely on the accurate
measurement of the error motions and the error separation
techniques [20]–[23]; and it has been found that the spin-
dle error motion separation method is able to achieve a
sub-nanometer measurement accuracy [24]. However, only
a few researchers have investigated the rotational accuracy
of aerostatic bearing rotor systems theoretically and numeri-
cally. Kim and Kim [25] theoretically analyzed the effects of
bearing shape error on static rotational accuracy of the rotor
and concluded that the shape error of the bearing, especially
for a two-lobe or three-lobe shape, would degrade rotational

accuracy and thus should be avoided. Han et al. [26] evalu-
ated the stiffness and damping coefficients of the externally
pressurized air bearing using the linear approach and then
calculated the orbit of the rotor. Yabe [27], [28] theoretically
studied how the rotational accuracy was influenced by man-
ufacturing errors, including the out-of-roundness of the rotor
and the size deviation of the orifice in aerostatic journal bear-
ing rotor systems, and found that out-of-roundness played a
dominant role in rotational accuracy. Cappa et al. [29] built a
numerical air film model to calculate the error motion of the
rotor and investigated the effects of several machining errors
and bearing parameters on rotational accuracy. Cui et al. [30]
studied the effects of machining errors on the rotational accu-
racy of a rotor supported by porous aerostatic bearings and
concluded that compared with non-flatness errors, waviness
errors have a greater impact on bearing rotational accuracy.
However, all the above papers focused on the effects of
geometric imperfections on the static rotational accuracy of a
well-balanced rotor supported by aerostatic bearings at a low
rotor speed.

In the existing studies on the numerical simulations of
the performance of the aerostatic bearings, the finite element
method (FEM) and the finite difference method (FDM) are
the most commonly used techniques to solve the Reynolds
equation. FEM can be adaptable and convenient for a large
variety of geometric shapes compared with FDM. In most
of the studies [18], [19], [30], [31], Euler’s method (or the
first order Runge-Kutta method) was employed to solve the
equations of motion of the rotor due to its simplicity. How-
ever, Euler’s method is a first order numerical approach to
solving the differential equations which means that it is only
first order accurate. Runge-Kutta methods of high order have
been developed to improve the accuracy of the solutions.
Among them, the Runge-Kutta fourth order method is the
most widely used method which can achieve very high accu-
racy [32] and will be adopted in this study.

To sum up, the published studies provided insight into the
stability and rotational accuracy of air bearing rotor systems.
In most of them, the analysis was based on the linear theory
without considering mass unbalance, although the air bearing
rotor system is nonlinear in nature due to the nonlinearity
of the air film pressure [33], [34]. And little attention has
been paid to the nonlinear dynamic stability and rotational
accuracy of aerostatic bearings. Moreover, rotor mass has a
great influence on the dynamic responses of the rotor, and a
better dynamic performance can be achieved by changing the
rotor mass. However, there is a lack of comprehensive studies
focused on variations of dynamic rotational accuracy of an
unbalanced rotor supported by aerostatic journal bearings
with respect to rotor mass. The aim of this study is therefore
to shrink the research gaps by solving the nonlinear Reynolds
equation numerically together with the rotor dynamics equa-
tions for nonlinear transient analysis of the aerostatic bearing
rotor system with mass unbalance, with the rotor in a vertical
attitude. The dynamic behavior and rotational accuracy of
the rotor are analyzed as the rotor mass increases. The mass
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FIGURE 1. Diagram of the aerostatic journal bearing.

which corresponds to the resonance is investigated for the
first time and then the influence of supply pressure, orifice
diameter, bearing clearance and eccentric distance on rota-
tional accuracy, resonance and whirl instability are studied.
The results of this study will provide useful guidance for
designing an aerostatic bearing rotor system and selecting the
operating conditions.

II. MATHEMATICAL MODEL
A. REYNOLDS EQUATION
The geometric configuration of an aerostatic journal bearing
with inherent orifices is illustrated in Fig. 1. The air with
supply pressure p0 flows into the bearing clearance through
the orifices, produces an air film and then flows out from
two ends of the bearings with the atmospheric pressure pa.
The air flow in the bearing clearance is modeled by the
Reynolds equation, which is derived based on the following
assumptions in this study.

1) Due to the ratio of the bearing clearance to the radius
of the bearing being very small, and the error resulting
from neglecting the curvature is only about 0.1% [35],
the curvature of the air film is ignored.

2) The air flow is isothermal, and the rotor and air bearing
are rigid.

3) Air viscosity is assumed to be constant, and the value
of air pressure keeps constant in the film thickness
direction.

Based on the above assumptions, the transient Reynolds
equation is derived as:

∂

∂ x̄

(
h3
∂p2

∂ x̄

)
+
∂

∂z

(
h3
∂p2

∂z

)
+ 24ηρ

pa
ρa
ṽδi

= 12ηu1
∂ (ph)
∂ x̄
+ 24η

∂ (ph)
∂t

(1)

where p is the air film pressure, h is the air film thickness,
η is the dynamic viscosity of air, z and x̄ are the axial and
circumferential coordinates, respectively. ρ is the density of
air, pa is the atmospheric pressure, ρa is the atmospheric
density, ṽ is the velocity flowing through the orifice, u1 is
the velocity in the circumferential direction of the journal
surface, δi = 1 at the outlet of the orifice in the air film
lubrication region, otherwise δi = 0.
According to Fig. 1, the thickness of air film can be derived

as:

h = h0 + y cosϕ + x sinϕ (2)

where h0 is bearing clearance, ϕ is the angular coordinate,
ϕ = x̄/R, x and y are coordinates of the rotor center C in the
x and y directions, respectively.
By using the following expressions:

ζ =
z
R
, H =

h
h0
, P =

p
p0
, Q̄ =

24µR2pa
h30p

2
0ρa

ρṽ,

3 =
12ηR2ω

p0h20
, σ =

24ηR2ω

p0h20
, τ = ωt, and f = P2

where R is the radius of the bearing, p0 is the supply pressure
and ω is the angular velocity of the rotor, the dimensionless
form of the Reynolds equation can be obtained:

∂

∂ζ

(
H3 ∂f
∂ζ

)
+

∂

∂ϕ

(
H3 ∂f
∂ϕ

)
+ Q̄δi

= 3
∂(PH )
∂ϕ

+ σ
∂(PH )
∂τ

(3)

The air film pressure distribution, i.e. the solution of (3)
must satisfy the following three kinds of boundary conditions:

1) At both ends of the bearing: P = pa/p0.
2) At the symmetric boundary: ∂P/∂n = 0.
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3) At the orifice: P = pd /p0.
In this study, the Reynolds equation given in (3) is solved

numerically using the finite element method to obtain the air
film pressure distribution. Firstly, by applying the Galerkin’s
weighted residual method, equation (3) is changed as:∫∫
�

[
H3

(
∂f
∂ζ

∂δf
∂ζ
+
∂f
∂ϕ

∂δf
∂ϕ

)
− Q̄δiδf

−3PH
∂δf
∂ϕ
+ σ

∂ (PH)
∂τ

δf
]
dζdϕ = 0 (4)

where δf is the variation of f .
Then, equation (4) is discretized in the computational

domain by the finite element method. f , H and P can be
expressed approximately as:

f = NeTf e

H = NeTHe

P = NeTPe
(5)

where superscript e refers to an element, Ne is the shape
function, f e, He and Pe are the element vectors consisting
of nodal values of the element. In two-dimensional finite ele-
ment analysis, triangular elements and rectangular elements
are commonly used, in which the triangular elements are
easier and have the advantages of high calculation accuracy
and efficiency in solving the Reynolds equation [35]–[37].
Therefore, triangular elements are adopted in the present
analysis.

A vector Qe is introduced to link the element vectors with
the global vectors, which consists of all the nodal values, let:

f e = Qef n×1
δf e = Qeδf n×1
Pe = QePn×1

(6)

where n is the total number of nodes in the computational
domain.

By introducing (5) and (6) to (4), the finite element formu-
lation can be derived as:

Kf n×1 −3BPn×1 + σCf n×1 + σD
∂Pn×1
∂τ

= T (7)

where

K =
ne∑
e=1

QeT
∫∫
1e

(
NeTHe

)3
∂Ne

∂ζ

∂NeT

∂ζ

+
∂Ne

∂ϕ

∂NeT

∂ϕ

 dζdϕQe (8)

B =
ne∑
e=1

QeT
∂Ne

∂ϕ
HeT

∫∫
1e

NeNeTdζdϕQe (9)

C =
ne∑
e=1

QeT
∫∫
1e

NeNeT ∂H
e

∂τ
NeTdζdϕQe (10)

D =
ne∑
e=1

QeT
∫∫
1e

NeNeTHeNeTdζdϕQe (11)

T =
ne∑
e=1

QeT
∫∫
1e

Q̄Neδidζdϕ = k1µr ṁrδi (12)

ne is the total number of elements in the computational
domain, 1e is the area of the element, µr is the ratio of the
area entering in the computational domain to the total area of
the r-th orifice, ṁr is the mass flow rate of the r-th orifice,
and k1 = 24ηpa

/(
h30p

2
0ρa

)
.

The ideal air mass flow rate, as derived in [35], is:

ṁ = Ap0φ

√
2ρa
pa
ψ (13)

ψ =



[
κ

2

(
2

κ + 1

)(κ+1)/(κ−1)]1/2
;

p
p0
≤ βκ{

κ

κ−1

[(
p
p0

)2/κ
−

(
p
p0

)(κ+1)/κ]}1/2

;
p
p0
> βκ

(14)

where A is the area of the orifice, φ is the discharge coef-
ficient, and φ = 0.8, κ = 1.4 for the ideal air and βκ =(

2
κ+1

)κ/κ−1
.

Equation (7) is used to solve the unsteady-state Reynolds
equation. A finite element formulation for the steady-state
equation can be got as (15) by omitting the time-dependent
items.

Kf n×1 −3BPn×1 = T (15)

By integrating the air film pressure distribution over the
rotor surface, the bearing forces can be gained as:

fax = p0R2
∫ L/(2R)

0
dζ
∫ 2π

0
P sinϕdϕ

fay = p0R2
∫ L/(2R)

0
dζ
∫ 2π

0
P cosϕdϕ

(16)

B. ROTOR DYNAMICS EQUATIONS
In this study, only translational motions in the x and y direc-
tions are considered, as illustrated in Fig. 1. And the dynamics
equations of the rotor expressed in the coordinate system xoy
can be written as:

m
d2x
dt2
= fex + fax + mrω2 cosωt

m
d2y
dt2
= fey + fay + mrω2 sinωt

(17)

where m is the rotor mass, r is the mass eccentric distance,
i.e. the distance between the geometry center and mass center
of the rotor, t is time, fex and fey are the components of the
external forces in the x and y directions, respectively.

By introducing the following dimensionless parameters:

X =
x
h0
, Y =

y
h0
, r̄ =

r
h0
, Fex =

fex
P0R2

, Fey =
fey
P0R2

,

Fax =
fax
P0R2

, Fay =
fay
P0R2

, M =
mh0ω2

P0R2
,
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the dimensionless form of (17) is then rewritten as:
M
d2X
dτ 2
= Fex + Fax +Mr cos τ

M
d2Y
dτ 2
= Fey + Fay +Mr̄ sin τ

(18)

C. COMPUTATION PROCEDURE
The pressure distribution of air film obtained by solving (7) is
determined by the rotor’s position from (18), and at the same
time, Fax and Fay in (18) can be calculated by (16), which
is related to the air film pressure distribution. This means
that the Reynolds equation and the rotor dynamics equations
couple. To obtain the rotor’s dynamic response under external
forces, air film forces and centrifugal forces, equation (7) and
equation (18) need to be solved simultaneously.

By introducing the state variables,

ψ1 = X , ψ2 = Ẋ , ψ3 = Y , ψ4 = Ẏ

the rotor dynamics equations can be converted into the state
equations as follows:

dψ1

dτ
= ψ2

dψ2

dτ
=
Fex + Fax

M
+ r̄ cos τ

dψ3

dτ
= ψ4

dψ4

dτ
=
Fey + Fay

M
+ r̄ sin τ

(19)

The resulting equations for the dynamic response of the
rotor are:

dψi
dτ
= gi (τ,P, ψ1, ψ2, ψ3, ψ4) , i = 1, 2, 3, 4

dPj
dτ
= wj (τ,P, ψ1, ψ2, ψ3, ψ4) , j = 1, 2, 3 . . . n (20)

where n is the number of the grid nodes in the computational
domain. wj can be obtained by (7) and the boundary condi-
tions.

Equation (20) can be rewritten for convenience in a vector
form as:

dS
dτ
= I (τ,S) (21)

where S is the vector consisting of ψ1, ψ2, ψ3, ψ4 and
P1,P2 · · ·Pn, and I is the vector consisting of g1, g2, g3, g4
and w1,w2 · · ·wn. The dimensions of S and I are both (n +
4)× 1.

The Runge-Kutta fourth order method is a numerical
approach to solving the differential equations of the form
like (21), with fourth order accuracy. If the same time step
is adopted, it has higher accuracy than Euler’s method. And
thus the Runge-Kutta fourth order method is employed to
solve (21) in this study. In this method, the value Sk+1 at the
(k + 1)- th time step is estimated by the value Sk at the k- th

TABLE 1. Comparison of the load carrying capacity between the results
from [38] and those from the present study.

time step plus the weighted average of four increments, which
is given by:

K1 = I (τk ,Sk)

K2 = I
(
τk +

1τ

2
,Sk +1τ

K1

2

)
K3 = I

(
τk +

1τ

2
,Sk +1τ

K2

2

)
K4 = I (τk +1τ,Sk +1τK3)

Sk+1 = Sk +
1τ

6
(K1 + 2K2 + 2K3 + K4)

(22)

where 1τ is the time step size.
The computational procedure of the dynamic response of

the rotor is shown in Fig. 2. It starts with a given initial
position, i.e. X0, Y0 and then the air film pressure distribu-
tion can be obtained by solving the steady-state Reynolds
equation (15). The bearing forces can be calculated by (16).
The initial velocities of the rotor in the x and y directions
are assumed to be 0. The displacements and velocities of the
rotor and the pressure distribution of air film can be obtained
by solving (21) using the Runge-Kutta fourth order method
described in (22) step by step.MATLAB is used to solve these
equations.

III. RESULTS AND DISCUSSION
In this study, the steady-state Reynolds equation needs to
be solved first and then the rotor’s dynamic responses can
be obtained by combining the transient Reynolds equation
and the rotor dynamics equations. To validate the proposed
numerical methods and program code, the calculation results
from this study are compared with the previous studies.

Table 1 shows the comparison of the load carrying capacity
of the aerostatic journal bearing between the results from [38]
and those from the present study using the same bearing
parameters(D = 25 mm, L = 50 mm, h0 = 12 µm,
d0 = 0.2 mm), where F =

√
f 2ax + f 2ay. It is found that the

calculated results by the proposed model are in good agree-
ment with both the experimental results and the calculated
ones by FDM & Newton iteration in [38]. Compared with
FDM & Newton iteration, and the experiment, the maximum
errors of the present model are 5% and 11%, which validates
the numerical model for the steady-state Reynolds equation
in this study.

Fig. 3 illustrates the orbits of a well-balanced rotor with a
self-acting air journal bearing. Fig. 3(a) is from [31] where
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FIGURE 2. The computational flow chart of the dynamic response of the
rotor.

FDM and Euler’s method were used. And Fig. 3(b) is the
result from the present numerical model by setting the orifice
diameter to be 0 for self-acting bearings. As can be seen,
the two orbits are very similar, and they both run spirally
outwards and finally form a circle whose radius is close
to 1. This shows the correctness of the numerical methods
for the rotor’s dynamic response. Overall, the good agree-
ments with [31], [38] validate the numerical model in this
study.

TABLE 2. The bearing parameters.

In the following study, the transient behaviors of a vertical
unbalanced rotor with an aerostatic bearing are investigated
as the rotor mass varies. The effects of supply pressure,
orifice diameter, bearing clearance and eccentric distance on
rotational accuracy and stability are then further studied. The
parameters of the bearing rotor system used in this study are
given in Table 2.

A. EFFECTS OF ROTOR MASS
To investigate the effects of the rotor mass on the tran-
sient behaviors, a series of simulations is carried out for
different rotor masses. The orbits of the rotor center, phase
portraits, and Poincaré maps are employed to analyze the
rotor’s dynamic behavior. In addition, fast Fourier transfor-
mation (FFT) is used to gain the displacement spectra of
the rotor center. In the simulations, supply pressure p0 =
0.5 Mpa, orifice diameter d0 = 0.3 mm, bearing clearance
h0 = 20 µm, and eccentric distance r = 1 µm.

Figs. 4(a) - 6(a) show the orbits of the rotor center at
m = 0.2 kg, 0.475 kg and 0.48 kg. It can be observed that the
orbit of the rotor center is regular for low values of rotor mass
(m = 0.2 kg). This is different from the transient response of
a well-balanced rotor for which the orbit converges to a point
at small rotor masses [17]. The regular orbits persist for all
rotor masses less than 0.47 kg. The orbit becomes irregular
with relatively low amplitudes at m = 0.475 kg and loses its
stability and fluctuates with large amplitudes (close to 1) at
m = 0.48 kg.
Figs. 4(b) - 6(b) illustrate the phase portraits of the rotor

center at different masses. It is found that the phase portrait
at m = 0.2 kg is regular and similar to the orbit of the
rotor center. But the phase portraits become irregular at m =
0.475kg and 0.48 kg.

The FFT spectra of the rotor displacement in the x direc-
tion and Poincaré maps are shown in Figs. 4(c, d) - 6(c, d)
at m = 0.2 kg, 0.475 kg and 0.48 kg. It is clearly seen
that the rotor performs harmonic motion with the frequency
equal to the rotational frequency of the rotor (60000/60 =
1000 Hz) at m = 0.2 kg, and one point in the Poincaré
map (see Fig. 4(d)) confirms that the motion of the rotor
center is a T-periodic motion. By increasing rotor mass, the
FFT spectrum shows another peak at about half the rotational
frequency (500 Hz) at m = 0.475 kg. And discrete points in
the Poincaré map indicate a multi-periodic motion. As shown
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FIGURE 3. The orbit of the rotor center (L/D = 1, 3 = 0.1, M = 0.15, Fe = 0.1292) (a) from [31] (Reprinted from [31],
Copyright (2009), with permission from Elsevier) and (b) from the present study.

FIGURE 4. Dynamic response, (a) the orbit of rotor center, (b) phase portrait, (c) FFT spectrum of rotor displacement
in the x direction, (d) Poincaré map at m = 0.2 kg.

in Fig. 6(c), the amplitude at half the rotational frequency
increases sharply and the closed curve formed in Fig. 6(d)
demonstrates quasi-periodic motion at m = 0.48 kg.

Fig. 7 shows the waterfall plot of the rotor’s responses
in the x direction. It provides us with the information of
amplitudes and frequencies for rotor masses from 0.02 kg to
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FIGURE 5. Dynamic response, (a) the orbit of rotor center, (b) phase portrait, (c) FFT spectrum of rotor displacement
in the x direction, (d) Poincaré map at m = 0.475 kg.

0.48 kg. It is observed that the synchronous vibration occurs
when the rotor mass is below 0.47 kg and the amplitude
increases as the rotor mass increases until m = 0.14 kg,
and then slowly decreases until m = 0.47 kg. The rotat-
ing unbalanced mass generates the centrifugal force whose
direction changes periodically because of the rotation, as a
result, the rotor is forced to vibrate at the frequency of the
rotational speed. Therefore, the synchronous vibration origi-
nates from the unbalanced mass. The stiffness of the bearing
can be estimated by k = 1F/1ε, and the calculated value is
5.3 × 106 N/m. The natural frequency can be then obtained
by fn =

√
k/m/(2π ). It is found that at m = 0.14 kg, the

estimated natural frequency is 979.25 Hz which is very close
to the forcing frequency (rotational frequency) of 1000 Hz.
This means that resonance occurs, and thus, the amplitude of
synchronous vibration reaches the maximum atm = 0.14 kg.
And the mass which corresponds to the resonance is denoted
as mr in this study.

The former results have shown that the multi-periodic or
quasi-periodic motion occurs at the rotor mass above 0.47 kg.
In addition, it can be also observed from Fig. 7 that when
the rotor mass is more than 0.47 kg, there is another peak at

about half the rotational frequency of the rotor. This com-
ponent is called half frequency whirl. To investigate what
it comes from, additional simulations of the responses of a
well-balanced rotor are conducted to remove the effect of
the unbalanced mass, in which the mass eccentric distance
r = 0 and other parameters are the same as the above
simulations. Fig. 8 plots the responses of a well-balanced
rotor in the x direction at m = 0.2 kg and 0.47 kg. It can
be observed that the vibration amplitude decreases to 0 after
tens of milliseconds, although the FFT spectrum shows a
very small peak at the natural frequency of the bearing at
m = 0.2 kg. However, the half frequency whirl occurs, and
its amplitude does not decrease with time and keeps constant
when m increases to 0.47 kg. Therefore, it can be inferred
that the half frequency whirl originates from the bearing air
film itself and this self-excited vibration occurs only if m is
larger than a certain value. Moreover, its amplitude grows
dramatically under the effect of both air film and unbalanced
mass for an unbalanced rotor, as the rotor mass goes beyond
0.47 kg, which indicates an unstable state and is dangerous to
the system as shown in Fig. 7. As seen in Fig. 7, the amplitude
at m = 0.48 kg is very large, and this is probably because
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FIGURE 6. Dynamic response, (a) the orbit of rotor center, (b) phase portrait, (c) FFT spectrum of rotor displacement
in the x direction, (d) Poincaré map at m = 0.48 kg.

FIGURE 7. Waterfall plot of rotor’s responses in the x direction.

the natural frequency at m = 0.48 kg is close to half the
rotational frequency (ω /2) and it shows good agreement with
the value of mr (0.14 kg) that is approximately a quarter
of 0.48 kg. As the rotor mass continues to increase, the rotor

will vibrate at an amplitude of nearly 1 or even crashes on the
bearings. In this paper, themass that starts with half frequency
whirl is defined as threshold mass of instability (mt ) and it is
slightly smaller than 4 times the mass which corresponds to
the resonance (mr ) under the same operating speed.

B. EFFECTS OF SUPPLY PRESSURE
An analysis is conducted of the effects of supply pressure on
rotational accuracy, the resonance and instability threshold of
the rotor. The rotational accuracy is studied by investigating
the amplitudes of the rotor center orbits. In the simulations,
orifice diameter d0 = 0.2 mm, bearing clearance h0 =
20 µm, and eccentric distance r = 1 µm.

Fig. 9 illustrates the variations of rotational accuracy with
respect to the rotor mass less than the threshold mass of
instability (mt ) for different supply pressures. It should be
noted that the mt varies with different supply pressures. It is
shown that with the growth of the rotor mass, the orbit ampli-
tudes increase first and then decrease for all supply pressures.
This shows good agreement with the former results. The
influence of supply pressure on the resonance is obvious,
that the larger supply pressure can delay the resonance. This
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FIGURE 8. Dynamic response of a well-balanced rotor, (a) and (c) time response in the x direction at m = 0.2 kg and
0.47 kg, respectively; (b) and (d) FFT spectra of rotor displacement in the x direction m = 0.2 kg and 0.47 kg,
respectively.

FIGURE 9. Variations of rotational accuracy with respect to the rotor mass
less than threshold mass of instability (mt ) for different supply pressures.

is mainly due to the fact that the stiffness increases with
supply pressure [38] and according to the condition that the

resonance occurs (
√
k
/
m = ω), the larger the stiffness,

the bigger the mass which corresponds to the resonance (mr )
is under constant angular speed. However, with the supply
pressure growing, the amplitude at the resonance increases
obviously. In addition, the influence of the supply pressure on
rotational accuracy may be different at different rotor masses.
It is found from Fig. 9 that before the resonance occurs (the
rotor mass m < mr ), the orbit amplitude decreases with the
increasing supply pressure. For instance, at m = 0.1 kg,
the orbit amplitude reduces from 1.7 µm to 0.55 µm with
the supply pressure increasing from 0.4 Mpa to 0.7 Mpa.
On the other hand, for the large rotor mass beyond the mr ,
the influence of supply pressure on the orbit amplitude is
opposite of that for the rotor mass smaller than the mr , which
is clearly seen from Fig. 9.

Fig. 10 plots the stability maps for different supply pres-
sures by showing the variations of the threshold mass of
instability (mt ) with respect to the angular speeds of the
rotor under different supply pressures. It can be seen that the
curves are linear in the logarithmic coordinate system at all
the supply pressures. With the growth of the angular speed,
there is an obvious decrease in mt . In addition, it can be seen
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FIGURE 10. Stability maps for different supply pressures.

that the increasing supply pressure leads to the increase ofmt ,
which means that the stability region is extended.

The effects of supply pressures on the dynamic behavior
of the aerostatic bearing rotor system were experimentally
investigated by increasing the angular speeds of the rotor
in [39], [40], where the vibration amplitude increased first
and then decreased until the threshold speed of instability.
Thus, the angular speed plays a similar role with the rotor
mass in the dynamic behavior of the rotor, although the
relationship between the resonance speed and the threshold
speed of instability is quite different from that between the
mr and mt found in this study. Furthermore, it was found
from [39], [40] that the influence of supply pressure on the
vibration amplitudes was different at different angular speeds
and the increasing supply pressure could lead to an increase
in the instability threshold, which are similar to the results of
this study. This validates the findings of this study to some
extent.

The bearing length is also a geometric parameter affect-
ing the dynamic response of the bearing-rotor system. The
increasing bearing length can lead to an increase in the
lubrication area and consequently increase the bearing forces,
which is similar to the effect of supply pressure on the bearing
forces. As a result, the bearing length has similar effects on
the rotational accuracy and the threshold mass of instability
as the supply pressure.

C. EFFECTS OF ORIFICE DIAMETER
The effects of orifice diameter on rotational accuracy, the res-
onance and instability threshold of the rotor are investigated.
In the simulations, supply pressure p0 = 0.5 Mpa, bearing
clearance h0 = 20 µm, and eccentric distance r = 1 µm.
The variations of rotational accuracy with respect to the

rotor mass less than the threshold mass of instability (mt ) for
different orifice diameters are presented in Fig. 11. The size
of the orifice affects air flow and consequently the bearing’s
dynamic and static performance. The stiffness increases and

FIGURE 11. Variations of rotational accuracy with respect to the rotor
mass less than threshold mass of instability (mt ) for different orifice
diameters.

then decreases with the orifice diameter increase and accord-
ing to the former analysis, the mass where the resonance
occurs (mr ) should also increase first and then decrease,
which can be clearly seen in Fig. 11. The orifice diameter also
has a similar effect on the orbit amplitude at the resonance.
The orifice diameter has a different influence on the rotational
accuracy at different rotor masses. For the small rotor mass
below the mr , the orbit amplitude reduces first and then
grows with the orifice diameter increase. However, the orifice
diameter has an opposite effect on the orbit amplitude for a
large rotor mass beyond the mr . Fig. 12 shows the stability
maps for different orifice diameters. It is shown that with
the increasing orifice diameter, the value of the threshold
mass of instability increases first and then decreases, which
is in accordance with the trend of mr . Therefore, there is
an optimum value for the orifice diameter to achieve better
rotational accuracy and stability.

D. EFFECTS OF BEARING CLEARANCE
In the aerostatic journal bearing rotor system, the rotor is
supported by a thin air film between the bearing surface and
rotor surface, and the dynamic performance of the bearing is
strongly affected by the air film thickness. Thus, the bearing
clearance is an important design parameter for the air bearing
rotor system. The effects of bearing clearance on rotational
accuracy, the resonance and instability threshold are studied.
In the calculations, supply pressure p0 = 0.5 Mpa, orifice
diameter d0 = 0.2 mm, and eccentric distance r = 1 µm.
Fig. 13 shows the variations of rotational accuracy with

respect to the rotor mass less than the threshold mass of
instability for different bearing clearance. It is shown that
with the bearing clearance decreasing, the resonance can be
delayed and the orbit amplitude at the resonance decreases.
However, the resonance may appear earlier if the bearing
clearance is too small (14 µm), this is mainly because there
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FIGURE 12. Stability maps for different orifice diameters.

FIGURE 13. Variations of rotational accuracy with respect to the rotor
mass less than threshold mass of instability (mt ) for different bearing
clearance.

is not enough air to support the rotor, resulting in low bearing
stiffness. For a small rotor mass below the mr , the decreasing
bearing clearance leads to a smaller orbit amplitude, but
the amplitude shows a slight increase in the case of the
bearing clearance h0 = 14 µm. On the other hand, for a
large rotor mass beyond the mr , the influence of the bearing
clearance on the orbit amplitude is different. The amplitude
increases first and then decreases with the bearing clearance
decreasing and is at its minimum at the bearing clearance
of 14 µm. Fig. 14 shows the stability maps for different bear-
ing clearance. It can be seen that with the decreasing bearing
clearance, mt increases, but it shows a decrease at h0 =
14 µm. Similar with the orifice diameter, there also exists
an optimum value for the bearing clearance to achieve better
rotational accuracy and stability. Thus, the bearing clearance
should be selected carefully when designing the bearing rotor
system.

FIGURE 14. Stability maps for different bearing clearance.

FIGURE 15. Variations of rotational accuracy with respect to the rotor
mass less than threshold mass of instability (mt ) for different eccentric
distances.

E. EFFECTS OF ECCENTRIC DISTANCES
The effects of eccentric distances on rotational accuracy, the
resonance and instability threshold are investigated. In the
calculations, supply pressure p0 = 0.5 Mpa, bearing clear-
ance h0 = 20 µm, and orifice diameter d0 = 0.2 mm.
The variations of rotational accuracy with respect to the

rotor mass less than the threshold mass of instability for
different eccentric distances are described in Fig. 15. It is
shown that the mass which corresponds to the resonance (mr )
decreases very slightly with the eccentric distance increasing,
which is probably due to the fact that the stiffness decreases
with the increasing distance between the rotor’s center and the
bearing center [37]. Unlike supply pressure, orifice diameter
and bearing clearance, the eccentric distance has the same
effect on the orbit amplitude for the whole rotor mass range.
It is clearly seen that the amplitude increases proportionally
with the eccentric distances, which is consistent with the
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FIGURE 16. Stability maps for different eccentric distances.

results from [39]. Fig. 16. shows stability maps for different
eccentric distances. The threshold mass of instability (mt ) has
little dependence on the eccentric distances, which indicates
that the half frequency whirl instability is self-excited and not
influenced by the mass unbalance.

IV. CONCLUSION
In this paper, the nonlinear dynamic response of an aerostatic
bearing with an unbalanced rotor is studied. Under the same
operating speed, the rotor mass where the resonance occurs
(mr ) is investigated, and its relationship with the mass at the
threshold of instability (mt ) is found for the first time. And
the influence of supply pressure, orifice diameter, bearing
clearance, and eccentric distance on the rotational accuracy,
resonance and instability threshold are numerically studied.
This study offers guidance for designing the aerostatic bear-
ing rotor systems. The study’s conclusions are summarized
as follows.

1) The dynamic responses of an unbalanced rotor
supported by aerostatic bearings strongly depend
on the rotor mass. The periodic, multi-periodic
or quasi-periodic motions occur as the rotor mass
changes.

2) With the growth of the rotor mass, the orbit amplitude
increases until the resonance occurs and then decreases
until the mt , which is nearly 4 times the mr . After
the mt , half frequency whirl occurs and the amplitude
grows dramatically, which means the rotor is unstable.
Besides, the variation curve of mt with the angular
speed is linear in the logarithmic coordinate system.

3) With increasing supply pressure, the mr and mt
increase, although there is also an obvious increase in
the orbit amplitude at the resonance. The influence of
the supply pressure on rotational accuracy is different
at different rotor masses. At the small rotor mass below
the mr , the bigger supply pressure leads to the smaller
orbit amplitude, although the effect of supply pressure

on the orbit amplitude is opposite at the large rotor mass
above the mr .

4) As the orifice diameter or bearing clearance increases,
the mr and mt and the orbit amplitude at the reso-
nance increase first and then decrease. And the orbit
amplitude at the rotor mass below the mr decreases
first and then increases. The orifice diameter or bearing
clearance has the opposite effect on rotational accuracy
at the large rotor mass above the mr .

5) The mr and mt have little dependence on the eccentric
distance. The increasing eccentric distance can result in
a bigger orbit amplitude for the whole rotor mass range.
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