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Abstract

Studying representation learning and generative modelling has been at the core of the 3D
learning domain. By leveraging the generative adversarial networks and convolutional neu-
ral networks for point-cloud representations, we propose a novel framework, which can
directly generate 3D objects represented by point clouds. The novelties of the proposed
method are threefold. First, the generative adversarial networks are applied to 3D object
generation in the point-cloud space, where the model learns object representation from
point clouds independently. In this work, we propose a 3D spatial transformer network,
and integrate it into a generation model, whose ability for extracting and reconstructing
features for 3D objects can be improved. Second, a point-wise approach is developed to
reduce the computational complexity of the proposed network. Third, an evaluation system
is proposed to measure the performance of our model by employing various categories and
methods, and the error, considered as the difference between synthesized objects and raw
objects are quantitatively compared, is less than 2.8%. Extensive experiments on bench-
mark dataset show that this method has a strong ability to generate 3D objects in the
point-cloud space, and the synthesized objects have slight differences with man-made 3D
objects.

1 INTRODUCTION

Learning representation of real-world objects is an extremely
essential area of research. Real-world objects are stereoscopic,
where the depth information is also necessary. 2D representa-
tion only reflect the projection of an object onto a 2D plane,
which leads to the loss of depth information. Thus, 2D rep-
resentation cannot completely represent the real-world objects.
Nowadays, 3D representation of real-world objects has become
a core concept for vision, robotics, augmented reality and vir-
tual reality applications, for its powerful geometric represen-
tation ability [1]. In computer vision and graphics, 3D object
modelling can take on various forms of representation [2–4].
Hitherto, most researchers choose the 3D voxel grids or a col-
lection of images to represent 3D object. This data representa-
tion results in unnecessary voluminousness [5, 6]. Therefore, in
this paper, we consider the representation of 3D objects, in the
form of point clouds.

Point clouds are popular for their vectored data representa-
tion, as well as their compact encoding of the shape informa-
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tion, optionally embedded with texture. Moreover, point clouds
are simple and have a unified structure that avoid the combina-
torial irregularities and complexities of meshes, and these make
them easier to be learned. Point clouds have been widely used in
autonomous driving, autonomous disassembly and other prac-
tical tasks. However, the acquisition of point clouds has been
a complex and difficult problem, which limits the application
of data-driven approach (e.g. deep learning) in practical tasks.
There are two main ways to obtain point clouds. One way is
to capture the data with range-scanning devices, like Lidar or
Kinect [7–10]. However, the point clouds captured by range-
scanning devices are often polluted by noise and unable to be
recognized. Another way is to reconstruct point clouds by man-
made, which can ensure that the data is clean, just like the
famous ModelNet40 [11, 12] data set (CAD Model). However,
this method consumes plenty of human resources.

In order to solve the point-cloud acquisition problem, many
researchers have made impressive progress on the design of
generative models via traditional statistical methods [13–15].
Many of these methods synthesize 3D objects by utilizing parts
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FIGURE 1 Examples of point-cloud models in the ModelNet40 data set

of the objects in existing point-cloud data sets, which requires
a great deal of prior knowledge of a certain category. There-
fore, these classical methods look theoretically feasible, but not
realistic.

Recently, deep learning has been found to be a promising
data-driven approach for objects generation. In the applica-
tion where amount of data is available, deep learning can be
employed to achieve better accuracy, compared with those tra-
ditional statistical methods. Different from the traditional meth-
ods, most of the deep learning approaches do not explicitly
model the concept of parts or retrieve a complete object from
an object repository, instead they synthesize new objects based
on learned object representation. Pioneering deep representa-
tions and generative learning models are successful at learning
data representation and generating realistic sample from com-
plex underlying distributions, like Auto Encoders (AEs) [16]
and Generative Adversarial Networks (GANs) [17, 18]. Both
these pioneering methods focus on how to represent and gen-
erate 2D data, regardless of the characteristics of the 3D data.
3D data modelling is still a challenging research, and it is much
more difficult to reproduce the 3D shape of an object because
of higher dimensionality. With the development of deep learn-
ing and the availability of benchmark data sets, like the Model-
Net40 data set [11, 12], there have been some inspiring attempts
in deep generative models based on volumetric space represen-
tation [19, 20]. Some of the methods used GANs for 3D point-
cloud reconstruction, which achieved promising performance.
In [21], a novel framework, namely 3D-GAN, was proposed,
which generates 3D objects from a probabilistic space by lever-
aging recent advances in volumetric convolution networks and
GANs. Yang et al. [22] proposed 3D-RecGAN, which recon-
structs a complete 3D structure in a high-dimensional voxel
space, using GANs. Both these approaches reconstruct 3D
objects via a volumetric space representation, where the detailed
information is unavailable. However, they all provide a novel
approach that GAN can be applied to reconstruct or gener-
ate 3D objects independently, which is an inspiration for our
research.

In this paper, we aim to tackle the problem of generating 3D
objects in the point-cloud space from complex underlying dis-

tributions and discriminating 3D object models based on point
clouds directly. We propose a novel framework, which consists
of a point-cloud generating model and a point-cloud recogni-
tion model. Our approach combines the merits of GANs and
the point-cloud classification network. In our model, the de-
convolution network and spatial transform network [23] are
included in the generative model to improve its ability of data
generation. Our framework is composed of two parts. The first
part is a deep generative network that aims to generate the same
3D point-cloud data as the original 3D point-cloud data. The
second part is a deep discriminative network that aims to distin-
guish between the original 3D point-cloud data and the gener-
ated 3D point-cloud data. Based on the proposed network, we
design a complete generation flow of 3D objects in the point-
cloud space. All of our research subjects come from Model-
Net40 data set, as shown in Figure 1.

The main contributions of our research are listed as follows:
First, we utilize the benefits of generative adversarial network

and point-cloud recognition model, and propose an effective
generalized network to generate 3D object in the point-cloud
space directly. Futhermore, we integrate the spatial transformer
network with the proposed network to improve the ability of
the generation model to extract and reconstruct features for
3D objects in the point-cloud space, where the generation
model can take point clouds as input directly. Comprehensive
experiments were conducted to evaluate the contributionsof
the spatial transformer network to 3D object generation in
detail.

Second, owing to the large number of parameters in the
proposed network and the limited computing power, the pro-
posed network can only synthesize part of the 3D objects in the
point-cloud space. The problem caused by limited computing
power often arises, and researchers have provided some meth-
ods to solve it, such as using the patch-wise method. In our
research, we develop a point-wise approach based on patch-
wise, which divides point clouds into several groups and sep-
arately trains the groups. By using our approach, a complete 3D
object in the point-cloud space can be generated, and the differ-
ences between the generated objects and the corresponding raw
objects are slight.
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Third, we propose a stepwise evaluation method for object
generation in the point-cloud space. The first part of this evalu-
ation method compares the performance between different cat-
egories, which can assess the generalization of the method; the
second part is utilized to evaluate the performance between dif-
ferent methods, regardless of the influence of 3D object rep-
resentation; the final part measures the difference between the
synthesized objects and the corresponding raw objects.

The remainder of this paper is organized as follows. Section 2
gives an overview of some related works. Section 3 describes
the architectures of our proposed generation and discrimination
networks, the details of the proposed method, and the proposed
evaluation method. In Section 4, we present the experiments
used to evaluate our model and to compare it to other methods
quantitatively and qualitatively. Finally, we give a conclusion in
Section 5.

2 RELATED WORK

2.1 Deep learning on 3D data

A point cloud represents a 3D object as a set of 3D locations
of its surface in the Euclidean coordinate space. From the data-
structure viewpoint, a point cloud is an unordered set of vec-
tors, which cannot be applied to the conventional convolutional
architecture. However, point clouds have their own merits. They
are simple and have unified structures that avoid the combi-
natorial irregularities and the complexities of meshes for rep-
resentation, so they are easier to be learned. Meanwhile, point
clouds can represent real-life objects in detail, which maximizes
the accuracy of data recovery.

There has been a large amount of extended works using deep
learning on 3D data for various tasks. In the field of 3D object
recognition, [12, 24, 25] represent 3D object models based on
the voxelized shapes and apply 3D convolutional neural net-
works (CNNs) for recognizing 3D objects. However, in the
course of space transformation, i.e., from the point-cloud space
to the volumetric space, detailed information is lost, which
restricts the classification accuracy. Li et al. [26] proposed a spe-
cial network, namely FPNN, to deal with the data sparsity prob-
lem. However, the processing ability of FPNN is still limited
owing to the huge size of 3D object in the point-cloud space. In
addition to volumetric representation, many researchers focus
their attention on the multi-view representation of 3D object.
In [27–30], 3D objects are rendered into 2D images, and 2D
CNNs are applied for classification. These methods make full
use of the merits of existing 2D CNNs. Nevertheless, in the
rendering process, information integrity cannot be guaranteed,
which limits the development of 3D object recognition. Com-
pared with the volumetric representation and multi-view repre-
sentation, the point-cloud representation contains more detailed
information about 3D object, and it has been widely used in
many practical tasks, such as VR and AR. With the advances in
3D deep learning and the enrichment of point clouds, an effi-
ciency network, namely PointNet [7, 8], was developed. Point-
Net, with point clouds as its input, was designed end to end for

3D object classification, which takes the permutation invariance
of the input data points into consideration. With a lack of con-
sideration of local information, the network does not perform
well in some categories (e.g. flower_pot), as tested in the Model-
Net data set. However, PointNet can still achieve high accuracy.
This proves that the method of recognizing 3D objects based
on point clouds is feasible, and provide a novel framework to
recognize 3D object in the point-cloud space directly and inde-
pendently.

Based on the discussion of related research on 3D deep
learning, the capability of 3D object representation cannot be
replaced, and it has been widely used in practical task, where the
research of deep learning on point-cloud representation appears
more important.

2.2 3D object generation

In the field of 3D object generation, existing methods can
be divided into two categories: traditional methods and deep
learning methods. Most of the traditional works [31, 32] use
assemble-based methods to build part-based object models.
Zou et al. [33] explored an example-based approach to recon-
struct 3D object from a single-view line drawing. Dou et al.
[34] presented a coupled-dictionary model for parametric facial
shape representation and a two-stage framework for 3D face
reconstruction from a single 2D image by using facial land-
marks. However, these methods can only reconstruct objects
of a specific class with small variations and are computation-
ally intensive, which hinders their use in real-world appliactions.
More importantly, these methods ignore the diversity of 3D
object shapes from different views. The main reason of the
shortcomings above is that the feature extraction and recon-
struction during object generation are driven by manmade, and
the stability cannot be ensured. Chang et al. [11] proposed a con-
volutional deep belief network, namely ShapeNet, to represent
geometric 3D shapes in the 3D voxel grid. Shi et al. [35] intro-
duced a robust representation of 3D shapes, named DeepPano,
which is learned with deep convolutional neural networks on
the panoramic view. Qi et al. [27] also applied multi-view CNNs
for 3D reconstruction. Pang et al. [36] presented a generic unsu-
pervised method to increase the discriminative power of image
vectors obtained from a broad family of deep neural networks
for object retrieval. Konstantinos et al. [37] utilized convolu-
tional neural networks to extract features from 2D panoramic
view representation of 3D models. In addition, the research of
3D object generation also contains task of multi-object gener-
ation. During this kinds of research, traditional methods can-
not realize satisfied performance, owing to the huge amount of
modelling task. For example, [38–40] researched the reconstruc-
tion of smart city based on WebVRGIS, where they proposed
peer-to-peer network to achieve 3D visualization. The peer-to-
peer network can be also recognized as one of the deep learn-
ing methods. All of these methods have two common short-
comings. First, they all use CNNs to extract object features,
which are then used to generate the 3D shapes. However, during
the process of feature extraction, the 3D object information is
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lost. As a result, the generated object cannot represent original
object accurately. Second, as we have introduced in Section 2.2,
the representation methods utilized above still limit the genera-
tion accuracy, which cannot meet the requirement for real-world
applications.

2.3 Generative adversarial network

With the advances in CNNs and the gradual improvement of
GANs, now, more research is moving to use GANs for 3D
object generation and reconstruction. Goodfellow et al. [17]
proposed GAN, which incorporates an adversarial discrimina-
tor into the procedure of generating objects. The framework has
two models: a generative model G that captures the data distri-
bution, and a discriminative model D that estimates the prob-
ability that a sample comes from the training data, rather than
generated by G. Subsequent studies have witnessed the effec-
tiveness of GAN for different tasks. Recently, more improved
versions of GAN have been proposed. Radford et al. [18] intro-
duced a class of CNN, called deep convolutional generative
adversarial networks (DCGAN), with the use of deconvolu-
tion nets. Experiments demonstrated convincing evidence that
DCGAN learns a hierarchy of representations from the object
parts of a scene in both the generator and the discriminator.
The above GANs and related frameworks are all powerful mod-
els in object generation, but they all suffer from training insta-
bility, i.e., Nash equilibrium is hard to meet. In order to solve
the training problem, Ishaan et al. [41] applied a novel weight-
clipping method to GAN, named WGAN, which enables stable
training of a wide variety of GAN architecture, with almost no
hyper parameter tuning required. Furthermore, Youssef et al.
[42] introduced a new family of integral probability metrics for
training GAN. These two methods make it feasible to train
GANs. All the introduced research in this section above are
only performed on 2D object generation, without consider-
ation of 3D object generation. Later, some promising works
have employed GAN for 3D generation and reconstruction.
Wu et al. [21] proposed a novel framework, named 3D-GAN,
which generates 3D objects from a probabilistic space by lever-
aging the recent advances in volumetric convolutional networks
and GANs. Yang et al. [22] proposed an approach, namely 3D-
RecGAN, which reconstructs the complete 3D structure of a
given object from a single arbitrary depth view using GAN.
However, all these methods are constrained by the size of the
object, so they require the 3D point clouds to be transformed
into the volumetric space, where the detailed information about
the 3D object is lost. In the latest studies, researchers began
to investigate the 3D object retrieval in the point-cloud space.
Panos et al. [43] introduced a deep Auto Encoders (AE) network
with state-of-the-art reconstruction and generalization ability,
but this method cannot realize 3D recognition tasks without
previous shape editing. The autoencoder is also applied in [44],
generating high-quality objects. But during the process, the 3D
information is transferred into 2D grid information, where the
information is lost. Li et al. [45] explored the constrained rela-
tionship between point clouds and GANs, and proposed a hier-

archical and interpretable sampling process to achieve the direct
application of existing GAN algorithm in the point-cloud space.
However, the generalization ability still depends heavily on the
sampling effect. The main contribution of [46] is that it first
uses an reinforcement learning agent to find the correct input
to the GAN to generate the best suitable latent space represen-
tation of point clouds, but it neglects the defects of the GAN
itself in the generation and reconstruction of 3D object in the
point-cloud space. Based on the above discussion, a common
shortcoming of the GAN-based methods is that they lack the
ability to extract and reconstruct feature from 3D objects in the
point-cloud space directly.

From all the cited related work, we can draw the follow-
ing conclusions. First, the representation of 3D objects in the
point-cloud space has been widely used in many practical tasks,
and the deep learning model on 3D object in the point-cloud
space can avoid the influence of information loss. Second, 3D
object generation in the point-cloud space driven by deep learn-
ing performs better than manmade methods. Third, GANs and
related framework provide sufficient evidence that GANs can
be applied to generate 3D object. In our research, we explore
the method of 3D object generation in the point-cloud space,
where the 3D object feature need to be extracted and recon-
structed in the point-cloud space directly and independently.

3 THE ARCHITECTURE AND
TRAINING OF PROPOSED NETWORK

3.1 Overview

In this section, we will introduce the design principle of neural
networks and the architecture of our generator and discrimina-
tor models in detail.

Considering the advantages of using point clouds to rep-
resent 3D real-world objects, we took point clouds from the
output of our generator model as the input of our discrimi-
nator model. However, GAN cannot extract and reconstruct
features from point clouds directly due to three properties.
First, different from pixel arrays in 2D image or 3D voxel grids,
a point cloud is a set of point coordinates without a specific

order. For instance, a point cloud (P11, P12, P13
Q11, Q12, Q13

) and a point

cloud (Q11, Q12, Q13
P11, P12, P13

), where ( P11, P12, P13 ) and ( Q11, Q12, Q13 ) rep-

resent two 3D points, which are in a different order, represent
the same object. A network, which is input with N 3D data
points directly, needs to have the ability to recognize N! point
clouds. This greatly increases the computational demand in the
generation process and discrimination process for the training
samples. Second, data points are not isolated. Neighbouring
data points also form local features that represent the geometric
characteristic of an object, which requires high capability of
local feature extraction and reconstruction of the discrimination
and generation network. Third, for real-world objects, spatial
transformation, such as rotation and translation, does not
change their geometric shapes. This requires the network to
perceive the object’s spatial information autonomously. From
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discussion above, a key factor of generating point-cloud model
is to improve the network ability of consuminga point clouds
directly. Inspired by the point cloud recognition framework in
[7] and spatial transformer network [23], where the approx-
imation theory and spatial transformer theory are the main
theoretical bases, we propose a novel network that generate 3D
object model in the point-cloud space directly. The improved
application of two main theories are as follows:

Approximation theory of functions: In order to make our
model have the ability to consume 3D point clouds directly, we
applied a symmetric function to aggregate the information from
all data points. The universality theorem [7] is well known for
neural networks, which states that neural networks have a kind
of universality. A neural network can approximate any function
with a sufficient number of neurons. This universal approxima-
tion theory provides the theoretical basis. We defined an approx-
imate function f (…), such that data points can be input directly
to a deep network. We used two different functions, g(…) and
h(…), to compute the approximate function, i.e.

f ({x1, … xn}) = h(g(x1), … g(xn )) (1)

where the function f (…) maps n 3D data points to a single value.
The g(…) function maps a 3D data point to a single value, and
the h(…) function maps the n values to a single value. xi repre-
sents the ith input data point, which contains three coordinates.
For the whole function, g(…) realizes feature extraction from 3D
point clouds, and h(…) is to perform feature integration. In our
designed model, the function of g(…) and h(…) are realized by
a set of convolutional layers. This function model outperforms
the state-of-the-art methods and the classification performance
of our proposed method will be evaluated in the experiment
section.

3D spatial transformer network: convolutional neural net-
works lack the ability to be spatially invariant to the input data
in a computational and parameter-efficient manner. Jaderberg
et al. [23] proposed a learnable module, named classical spatial
transformer network, which allows the spatial manipulation of
data within the network. In this paper, we improved the spatial
transformer network on 3D point-cloud space and applied it to
resolve the spatial alignment problem, caused by the properties
of unordering and spatial invariance of 3D data points. In a 3D
point cloud, the pointwise transformation is as follows:
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i ]T and [ xs

i
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i

zs
i ]T are the target point

coordinates and the source point coordinates, respectively, of
a point in a 3D point cloud, and T is an affine transforma-
tion matrix, which is produced by the localization network. In
our transformer network, we only replaced the transformation
matrix in the classical spatial transformer network with our pro-
posed matrix T. In the network design, we followed the classi-
cal transformer network, and the details of the network can be

found in [23]. In the next subsection, we will describe our pro-
posed 3D spatial transformer network in detail.

3.2 Architecture design

Equation (1) was first used in the design of discrimination
model, combined with convolutional neural network, which
aimed to extract features from point clouds. Next, in order
to improve the ability of consuming point clouds directly, we
proposed input alignment model and feature alignment model
based on 3D spatial transformer network, and applied them to
discrimination model. After the design of discrimination model,
we designed generation model based on the mirror discrimina-
tion model, which has been proved effective in [21]. While the
contribution of 3D spatial transformer network to discrimina-
tion model can be seen in [7], we mainly focused on the con-
tribution of 3D spatial transformer network (input alignment
model and feature alignment model) to generation model in our
experiments. In this paper, four networks were proposed to con-
firm the contribution of each alignment model: without input
alignment and feature alignment (Basic-GAN); with input align-
ment (Input-GAN); with feature alignment (Feature-GAN);
with input alignment and feature alignment (Input & Feature-
GAN). The main differences between them are whether pro-
posed network uses alignment model.

Figure 2 shows the basic framework of our proposed network
(Basic-GAN). This network consists of a generator (shown in
the red frame) and a discriminator (shown in the green frame).
The discriminator aims to classify real objects and fake objects
synthesized by the generator, and the generator attempts to pro-
duce fake objects indistinguishable from real objects. In pro-
posed network, the generator G is used to create point-cloud
data to represent a 3D object based on a complex underly-
ing distribution, e.g. Gaussian distribution. The discriminator
D outputs the probability of whether the input comes from a
real object or a fake object. In the design of our model, two
issues are considered. The first one is that the generation pro-
cess is very difficult, due to the complexity of the 3D data struc-
ture. Another issue is that training a GAN is notoriously hard
and unstable, where the Nash equilibrium is required to be met.
In our method, we employed de-convolutional networks, batch
normalization, and the leaky ReLU activation to boost the effec-
tiveness and efficiency in training the model.

In Figure 2, ‘Dense (a, b… c)’ means a set of fully connected
layers, where (a, b… c) represents the size of the respective lay-
ers in the fully connected layers. ‘Deconv(x, y… z)’ means a
set of de-convolutional layers, where (x, y… z) represents the
height of the output maps (the width of the output maps always
equals 1024). ‘Conv(x, y… z)’ represents a set of convolutional
layers, where (x, y… z) also represents the height of the out-
put maps (the width of the output maps always equals 1024).
All the layers are followed by the leaky ReLU activation func-
tion and a batch normalization layer [47], except for two of the
layers that are particularly annotated with the sigmoid activa-
tion function. In order to avoid excessive discretization of the
generated data, we applied the sigmoid activation function
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FIGURE 2 The architecture of the proposed network (Basic-GAN)

FIGURE 3 The architecture of the proposed network (Input-GAN). Compared with Basic-GAN network, Input-GAN network adds one input alignment on
the penultimate layer in generator model. The other settings are all the same as Basic-GAN

to adjust their scope. In the discriminator model, the sig-
moid function was used to solve the two-classification problem
(Fake-Label or Real-Label). Here, we can also use the softmax
function to solve the two-classification problem. However, in
order to maintain a mirror image generated by the generator
model, which is beneficial to GAN training, we replaced the
softmax function with the sigmoid function. In our model, the
kernel size and stride size are (1, 1) and (2, 1), respectively.
Except for when specially annotated, ‘Conv K = (1, 3) S = (1,
1)’, where Conv represents a convolutional layer, K represents
kernel size, and S represents stride size, means that the height
and width of the kernel in the convolutional layer are 1 and 3,
respectively, and the vertical and horizontal strides in this con-
volutional layer are both equal to 1. The generator, as shown in
the red frame in Figure 2, which aims to synthesize new objects,
is composed of three fully connected layers and fifteen decon-
volution layers. The input to the generator is a 200D Gaussian
noise vector. The output is a series of data points, with a size
of m (data capacity). The best result is achieved when the data
capacity (m) exceeds the number of data points required to rep-
resent an object. However, in considering the huge amount of
proposed network and existing computing power, we set m to
1024 in our experiments. The setting of the parameter m is the
same as PointNet [7], which has achieved convincing classifi-
cation performance. In addition, the width of output maps is

also the same as m, which represents the number of synthesized
points of our proposed network.

The discriminator aims to distinguish whether the 3D point-
cloud data is plausible or not. As shown in the green frame
in Figure 2, the discriminator mostly mirrors the generator,
and was designed as a binary discriminator to classify fake
data against real data. The discriminator takes real point-cloud
data and synthesized point-cloud data as the input, and out-
puts the classification label. Based on the label, our discrimi-
nator can differentiate the data source. In our experiments, we
set label ‘1′ to represent real data and label ‘0′ for synthesized
data.

Based on the proposed Basic-GAN, we then applied input
alignment model and feature alignment model to Generator
model in Basic Network, and proposed three networks: Input-
GAN (as shown in Figure 3), Feature-GAN (as shown in
Figure 4) and Input & Feature-GAN (as shown in Figure 5).

In the four networks above, ‘Feature alignment’ and ‘Input
alignment’, which are named as 3D alignment networks col-
lectively, are all achieved by using the spatial transformer
networks. The 3D alignment networks are designed on the
basis of the 3D spatial transform networks, as mentioned
above. Here, we use the input alignment network, as shown in
Figure 6, as an example to illustrate the architecture. The
structure of the feature alignment network is similar to the input
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FIGURE 4 The architecture of the proposed network (Feature-GAN). Feature-GAN network adds one feature alignment on the penultimate third layer in
generator model of Basic-GAN network. The other settings are all the same as Basic-GAN

FIGURE 5 The architecture of the proposed network (Input and Feature-GAN). Input and Feature-GAN network adds one input alignment and one feature
alignment on the penultimate and penultimate third layer in generator model of Basic-GAN network. The other settings are all the same as Basic-GAN

alignment network. In the feature alignment network, we only
changed the size of the transformation matrix T.

As shown in Figure 6, the alignment network mainly con-
sists of three modules: localization network, 3D parameterised
sampling network, and 3D sampling network. The localization
network, as shown in the red frame, is a regression network,
composed of several convolutional layers and fully connected
layers, followed by ReLU activation. The function of this mod-
ule is to calculate K × K angle values (e.g. 𝜃11, 𝜃12, …). The 3D
parameterised sampling network, shown in the purple frame in
Figure 6, uses the K × K angle values to compute the trans-

FIGURE 6 The architecture of the alignment network

formation matrix T, which has been mentioned in Section 3.1.
During training, the transformation matrix can be optimized by
using a final regression layer in our model. Finally, the aligned
data points can be obtained by projecting the original data
points into the optimized transformation matrix. The training
of alignment network is integrated with the complete network.

3.3 Training details

The training details in four proposed networks are the same as
each other. We adapted an end-to-end training procedure for
the whole model to synthesized object in the point-cloud space
from a 200D vector following a Gaussian distribution over 0 to
1. As we have mentioned previously, GAN belongs to a zero-
one game model, where the aim of the G and D modules are
opposite. The generator aims to synthesize fake data that cannot
be distinguished by the discriminator. Meanwhile, the discrimi-
nator was dedicated to classifying real data and fake data. Based
on the targets of the G and D modules, the objective function
was set as Equation (3). The optimization criteria are to mini-
mize the loss in training the generator and maximize the loss in
training the discriminator.

Loss = log D(r ) + log(1 − D(G (z ))) (3)
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FIGURE 7 The flow diagram for one round of training

where r is a real object in the point-cloud space, and z is a ran-
domly sampled noise vector from a 200D vector following a
Gaussian distribution over 0 to 1, and D() and G() represent the
output of the generator and discriminator model, respectively.
The objective function has two parts with completely opposite
training target, which is hard to optimize in a single function.
The loss function was separated for G and D, as shown in Equa-
tions (4) and (5), respectively. The loss can be optimized in an
end-to-end manner for the network, as follows:

LossG = − log(D(G (z ))) (4)

LossD = − log(D(r )) + log(D(G (z ))) (5)

In training the model, the LossG for the G network and the
LossD for the D network were minimized. Both the generator
and the discriminator were trained with the same batch. How-
ever, during training, we found that the discriminator usually
learns faster than the generator, possibly because generating
3D point-cloud data is more complicated than differentiating
between real and synthesized objects, as illustrated in [17, 18,
21]. In order to tackle this problem, we updated G twice, but D

only once, in each round of training. The flow diagram is shown
in Figure 7.

We set both the learning rate of G and D to 10–3, and used
RMSProp [48] for optimization with the rate= 0.99. As the pro-
cess of 3D point-cloud data generation and the discrimination
between fake and real data are very complicated, the model is
huge, taking up 10.6G of graphics memory, which limits our
batch size to 1.

3.4 3D object generation in point-cloud
space

In Section 3.3, we have introduced the principle and architecture
of our proposed network. However, there are still three strait-
ened circumstances in generating a complete 3D point-cloud
object, regardless of the application of 3D alignment networks.

First, in consideration of the distribution of real point-
cloud data, it is hard to directly synthesize point clouds with
the real distribution. Here, we proposed a new regularization
scheme based on the principles of averaging and regulariza-
tion, as shown in Equations (6)–(8), to preprocess the real data

points.
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s
i ) are the coordinates of the ith source 3D point,

m represents the number of data points, and (xt
i , y

t
i , z

t
i ) are the

coordinates of the ith processed data point. In Equations (6)–
(8), the processed data point (xt

i , y
t
i , z

t
i ) is generated from the

corresponding source data point, by shifting it by the mean of
all the source data points, makes each of the coordinates of
(xt

i , y
t
i , z

t
i ) have its value between [0, 1]. This can solve the prob-

lem, if the data span is too huge, and can help speed up the
training.

Second, due to the limitation of the graphics memory, we can
only generate m (m = 1024) point-cloud data points, which can-
not reproduce the real point-cloud data in the ModelNet40 data
set, where the size of each point cloud is well over m. In order
to tackle this issue, we designed the point-wise approach based
on patch-wise and for training. We first randomly divided the
real data into 100 groups, with each group containing m points.
Based on this point cloud of m real points, we synthesized m

fake data points. Finally, we combined these 100 groups of data
to form a synthesized point cloud model.

Thirdly, the synthesized data lies between 0 and 1. After
obtaining the entire synthesized data, we performed reverse reg-
ularization, using Equation (9). As we have described in Equa-
tion (6), sigmoid regularization was applied to the input data.
The synthesized data can be fully recovered as follows:

fi = log(si ) − log(1 − si ) (9)

where si = (xs
i , y

s
i , z

s
i )T , i.e. the three coordinates of the ith data

point synthesized by proposed network, and fi is the final data
point generated by our proposed method. Equation (9) is the
reverse process of sigmoid regularization.

The complete flow of generating a 3D point cloud object is
composed of data regularization, grouping, proposed network,
combination, and data recovery. As shown in Figure 8, the pro-
cedure is divided into two modules: training module and infer-
ence module. The aim of training module is to train the pro-
posed generative adversarial network (as we have illustrated in
Section 3.2), and then the trained network is used in inference
module to generate point cloud model. The detailed procedure
is as follows:

In training module, the original 3D point cloud data is ran-
domly divided into 100 groups, where each group has m data
points. Next, for the m points in each group, regularization is
performed, based on Equations (6)–(8), to promote the mod-
elling capability. Then, the normalized data and Gaussian noise
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FIGURE 8 The flow chart of point-cloud model generation

are fed to the proposed network to train the proposed genera-
tive adversarial network (as we named GANi in the green circle
of Figure 8). During training, the output of each proposed net-
work is point clouds containing 1024 points (as we named Point
Seti in the green circle of Figure 8). After training, the trained
proposed networks are transferred to inference module (as we
named Point Seti in the red circle of Figure 8) respectively to
synthesize point clouds (as we named Point Seti in the red cir-
cle of Figure 8), and then the synthesized point clouds from all
the groups are combined. Finally, the synthesized point clouds
are recovered by using Equation (9). After the above generating
procedure, a new 3D point cloud model is synthesized. This can
expand the data capacity of the original data set.

3.5 Evaluation criteria

An important contribution of this paper is that we proposed a
new evaluation system, which includes three aspects. The eval-
uation system can be used to compare proposed networks’ per-
formance between different categories, different existing meth-
ods, and it can be also applied to measure the morphological
difference between synthesized data and raw data.

In the evaluation system, we first proposed a measure, aiming
at comparing the performance difference between different cat-
egories for one network. In our work, the size of point clouds
representing synthesized object is different with the size of
point clouds representing raw object, where JSD [43] and D2F

[45] which lack the ability to compare point clouds with differ-
ent size cannot be used. Here, 95% Hausdorff distance, denoted
as dH ,r (R, S ), was proposed. Following is a brief description of
how the 95% Hausdorff distance is calculated:

Step1: Calculate the directed 95% Hausdorff distance from
raw data points to synthesized data points, denoted as

→

d
H ,r

(R, S ), which is the 95th percentile distance over all

the distances from every raw data point to the corre-
sponding closest synthesized data points. This distance
is calculated as follows:

→

d
H ,r

(R, S ) = Kr

(
min
y∈S

d (x, y)

)
, ∀x ∈ R. (10)

Step2: Calculate the directed 95% Hausdorff distance from
synthesized data points to raw data points, denoted as
→

d
H ,r

(S ,R), which is the 95th percentile distance over all

distances from every synthesized data point to the cor-
responding closest raw data points. This distance is cal-
culated as follows:

→

d
H ,r

(S ,R) = Kr

(
min
x∈R

d (y, x )
)
, ∀y ∈ S . (11)

In Equations (10) and (11), Kr represents the 95% percentile
distance, d (, ) represents the Euclidean distance, R represents
the set of all the raw data points, and S represents the set of all
the synthesized data points.

Step3: Calculate the undirected 95% Hausdorff distance
dH ,r (R, S ), as follows:

dH ,r (R, S ) =

→

d H ,r (R, S ) +
→

d H ,r (S ,R)

2
(12)

After the comparison on different categories, we took full
advantages of the relationship between generation model and
discrimination model in GAN, and proposed an unsupervised
classification model to evaluate proposed method’s ability of
generating 3D objects, which can be used to compare with
different existing methods. In the process of designing GAN,
the relationship between generation model and discrimina-
tion model is mutual game, and the target of training GAN
is to reach a balance point where generation model has the
strongest object generation ability and discrimination model has
the strongest object classification ability. Inspired by the princi-
ple of GAN, we applied discrimination model of proposed net-
work to extract feature for an input 3D object, and the last three
fully connected layers were removed, replaced by a linear SVM
for classification. The inspiration of this approach is from [21,
43, 45]. The classification accuracy reflects the generation ability.

Finally, in order to verify the difference between synthesized
objects and raw objects when used (e.g. recognition, reconstruc-
tion, etc.), we applied the state-of-the-art point cloud recog-
nition models (PointNet [7] and PointNet++ [8]) to confirm
proposed networks’ ability. The work is as follows: we trained
point cloud recognition models on train data of ModelNet40
data set. Next, we tested trained recognition models on test
data of ModelNet40 data set and synthesized data, recorded the
accuracy of these two methods as well. At the same time, we
trained point cloud recognition models on synthesized data and
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test trained recognition models on test data of ModelNet40 data
set.

4 EXPERIMENTS AND COMPARISON

Experiment set-up, analyses and experiment results are given in
this section. First, we explored the contribution of input align-
ment and feature alignment in proposed network, and deter-
mined the most effective network among proposed. Then, we
compared the difference based on different values of group.
In the next three subsections, we evaluated the performance of
proposed network and method in three aspects, as illustrated in
Section 3.5.

4.1 Experiment data

As we have mentioned in the Section 1, all of experiment data
come from ModelNet40 data set. The ModelNet40 data set
provides a comprehensive collection of clean 3D object mod-
els, containing 40 categories of object models, and has become
the most popular data set in the field of 3D deep learning.
The ModelNet40 data set record 3D spatial coordinates, as
well as the edge point coordinates of each plane for each 3D
model.

4.2 Contribution of 3D alignment network

As we have mentioned in Section 3, we proposed four different
networks: Basic-GAN, Input-GAN, Feature-GAN, and Input
& Feature-GAN. The main difference of these four networks
is the application of 3D alignment network (feature alignment
model and input alignment model). In this part, we explored the
contributions of these models to object generation. The experi-
ment setting of these four networks all follows Section 3.3. We
first trained our networks, and then tested the four networks on
each category in the data set, separately. Next, we recorded the
95% Hausdorff distance, and compared the difference between
four networks for each category, as shown in Table 1 and
Figure 9. In our paper, we random select 10 categories to illus-
trate experiment results.

Table 1 quantitatively shows the point-generation abil-
ity of four different proposed networks on different cate-
gories in terms of the 95% Hausdorff distance. The average
value of Input & Feature-GAN is the lowest (20), and the
value of Input-GAN (33.9) and Feature GAN (34.4) occu-
pies the middle level, the value of Basic-GAN is the high-
est (53.8). In Figure 9, we can see that the values of Input
& Feature-GAN is lower than the other three networks in
all the categories. Based on the comparison above, we con-
firmed that the application of 3D alignment model is effec-
tive, and the Input & Feature-GAN performs best, which was
determined as the final version of proposed network in our
experiment.

TABLE 1 The 95% Hausdorff distance of each proposed network on ten
categories

Basic-

GAN

Input-

GAN

Feature-

GAN

Input &

Feature-GAN

airplane 100 52.3 55.7 44.7

bench 88.8 62.4 58.1 33.8

car 101 101 66.6 52.3

chair 12.8 12.8 8.23 2.09

cup 14.8 14.8 9.67 4.17

curtain 240 170 190 102

lamp 34.3 13.3 15.4 7.86

laptop 395 281 303 220

sofa 40.9 11.5 12.3 5.88

table 11.5 16.9 9.87 4.72

ModelNet40 53.8 33.9 34.4 20

FIGURE 9 The comparison of 95% Hausdorff distance on different pro-
posed networks

4.3 3D object generation in point-cloud
space

In the former section, we evaluated the performance of four dif-
ferent networks on each category, and determined the structure
of proposed network (Input & Feature-GAN). In this part, we
first analysed the point clouds generated by proposed network,
as shown in Figure 10. And then, we compared the output of
proposed method (illustrated in Section 3.4) with raw object in
ModelNet40 data set, as shown in Figure 11.

Figure 10 records the point coordinates synthesized by pro-
posed network, which can only synthesize part of the raw object.
As shown in Figure 10, the shape of synthesized object by pro-
posed network for one time cannot represent the raw object,
and be recognized by any existing method, which is mainly
because the size of synthesized points (m = 1024) is lower than
that of raw object in the point-cloud space. In addition, based
on the comparison of two examples of synthesized points for
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FIGURE 10 The shape of synthesized point clouds by Input & Feature-GAN

each category, we found that the points generated by proposed
network are different each time, and they are all a small fraction
of the 3D object. In order to tackle this issue, we introduced
a new approach based on the proposed network, as illustrated
in Section 3.4. The input of the introduced approach are the
set of synthesized points, as shown in Figure 10. The synthe-
sized objects in the point-cloud space by proposed approach
are shown in Figure 11.

As shown in Figure 11, the synthesized objects can be eas-
ily classified, and the synthesized objects can represent the 3D
object completely. In addition, the synthesized objects for each
category are different from each other, which confirm that the
mechanism of proposed network and method is learning and
prediction rather than memory, which is a significant improve-
ment of our research compared with existing methods. Next,
the quantitative evaluation between raw objects in ModelNet40
data set and synthesized objects was carried out based on pro-
posed evaluation system.

4.4 Performance evaluation

In the previous section, we analysed the experimental perfor-
mance from the perspective of visual effect, where the quanti-
tative analysis is needed. As we have illustrated, the generation
process is a two-stage framework: proposed network (Input &

TABLE 2 Comparison of the classification accuracy of proposed network
and other state-of-the-art methods

Method Representation Accuracy

T-L Network [19] Volumetric space 74.4%

VConv-DAE [49] Volumetric space 75.5%

3D-GAN [22] Volumetric space 83.3%

FoldingNet [44] Point-cloud space 88.4%

Point-Cloud GAN [45] Point-cloud space 87.5%

Proposed network Point-cloud space 88.9%

Feature-GAN) and proposed method (Figure 8). In this section,
we evaluated the performance of these two aspects, respectively.

First, the evaluation of proposed network was carried out. We
applied unsupervised classification accuracy to demonstrate the
generation ability, and the detailed information has been intro-
duced in Section 3.5. This evaluation method enables our pro-
posed network to be compared with existing methods, which
is very important. At the same time, this kind of method
eliminates the barrier when comparing existing methods,
where the format of synthesized object are different, such as
volume-space.

Table 2 compares the unsupervised classification accuracy
with five the state-of-the-art methods tested on ModelNet40
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FIGURE 11 The comparison between synthesized objects by proposed method and raw objects in ModelNet40 data set

data set. These can be divided into two parts. The object
representation of first part (T-L Network, VConv-DAE and
3D-GAN) is volumetric space, where the highest classifica-
tion accuracy is 83.3%. The second part synthesized object in
the point-cloud space, and our proposed network achieved the
highest classification accuracy (88.9%) in two kinds of represen-
tation. As we have introduced in the relationship between gener-
ator model and discriminator model in GAN, the highest unsu-
pervised classification accuracy also means that our proposed
network performs better than the state-of-the-art methods in
terms of object generation. However, the unsupervised classifi-
cation accuracy only reflects the performance of our proposed
network (Input & Feature-GAN), and the synthesized point
clouds cannot represent a complete 3D object in the point-
cloud space, where more processes are needed, as shown in
Figure 8.

In this part, we mainly compared the difference between
complete synthesized object and raw object based on the

achievements of point-cloud recognition. In the field of point-
cloud recognition, PointNet [7] and PointNet++ [8] have
attracted great attention, and they have been accepted as the
effective point-cloud recognition methods. In our research, we
first made a point-cloud model data set by proposed method.
The settings of this data set is the same as ModelNet40 test
data set. And then, we designed three experiments based on
PointNet and PointNet++. The experiment settings are as
follows:

First, we trained PointNet and PointNet++ on Model-
Net40 train data set, and then evaluated classification accu-
racy of PointNet and PointNet++ on ModelNet40 test data
set (Experiment-1), which is also the benchmark test of utilized
framework. Second, we trained PointNet and PointNet++ on
ModelNet40 data set, and then evaluated their performance on
synthesized data set (Experiment-2). Third, we trained Point-
Net and PointNet++ on synthesized object data set, and
then evaluated their performance on ModelNet40 test data set
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TABLE 3 The comparison between synthesized objects and raw objects
based on the classification accuracy of the state-of-the-art methods

Method Experiment-1 Experiment-2 Experiment-3

PointNet 89.2% 90.3% 86.4%

PointNet++ 91.9% 92.2% 89.9%

FIGURE 12 The classification accuracy based on PointNet

(Experiment-3). All the experiments setting are the same as the
original experiments setting (given by [7, 8]).

Table 3 compares the mean classification accuracy between
three different experiments based on the PointNet and
PointNet++. In terms of PointNet, the classification accu-
racy are very similar, and the maximum difference between
these three accuracy is 3.9%. In terms of PointNet++, the
classification accuracy are also similar, and the maximum dif-
ference between these three accuracy is 2.3%. The values of
these differences are within the normal range of fluctuation. At
the same time, by comparing the accuracy difference between
Experiment-1 and other two experiments, we can find the max-
imum difference is 2.8%, which proves that synthesized object
by our method has a high degree of similarity to the raw object.
In addition, we also compared the accuracy differences in each
category, as shown in Figures 12 and 13. Figures 12 and 13
compare the classification accuracy of three different experi-
ments in ten categories based on PointNet and PointNet++,
respectively. The highest differences are 0.07 and 0.05, confirm-
ing that synthesized objects are similar to raw objects for each
category.

The comparison of the three experiments demonstrates that
the objects generated by our proposed method in the point-
cloud space have slight difference with man-mad 3D object in
the point-cloud space, and the synthesized objects can also be
applied for 3D deep learning. Our proposed method has excel-
lent performance.

FIGURE 13 The classification accuracy based on PointNet++

5 CONCLUSION

In this paper, we have proposed a new method for 3D object
generation in the point-cloud space, which combines and
improves the generative adversarial networks, spatial trans-
former networks and the point-cloud recognition network.
We have shown that our method can synthesize 3D objects
from a complex underlying distribution, and the synthesized
objects are highly lifelike. We also proposed a comprehensive
evaluation system, which can be applied to evaluate the perfor-
mance of various generating methods from three aspects. From
the experiment results, we can draw the three conclusions:
the application of 3D spatial transformer networks improves
the capacity of object generation in the point-cloud space,
our proposed method can generate more accurate 3D object
than the state-of-the-art methods in the point-cloud space, and
proposed evaluation system can fully quantify the performance
of object generation method.
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