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Optical coherence tomography (OCT) is a noninvasive cross-sectional imaging technology used to examine the retinal structure
and pathology of the eye. Evaluating the thickness of the choroid using OCT images is of great interests for clinicians and
researchers to monitor the choroidal thickness in many ocular diseases for diagnosis and management. However, manual
segmentation and thickness profiling of choroid are time-consuming which lead to low efficiency in analyzing a large quantity
of OCT images for swift treatment of patients. In this paper, an automatic segmentation approach based on convolutional
neural network (CNN) classifier and l2-lq (0 < q < 1) fitter is presented to identify boundaries of the choroid and to generate
thickness profile of the choroid from retinal OCT images. The method of detecting inner choroidal surface is motivated by its
biological characteristics after light reflection, while the outer chorioscleral interface segmentation is transferred into a
classification and fitting problem. The proposed method is tested in a data set of clinically obtained retinal OCT images with
ground-truth marked by clinicians. Our numerical results demonstrate the effectiveness of the proposed approach to achieve
stable and clinically accurate autosegmentation of the choroid.

1. Introduction

Choroid is the vascular layer located between retina and
sclera. Its inner surface is connected with the retinal pigment
epithelium (RPE) through Bruch’s membrane (BM), and the
outer surface is connected with the sclera. Recent researches
indicated that the changes of the choroidal thickness could
be related to some ocular conditions such as macular degen-
eration and myopia [1–4]. Therefore, segmentation and the
ability to accurately measure the thickness of the choroid
are of clinical importance.

Optical coherence tomography (OCT) is a technique for
obtaining subsurface images of translucent or opaque mate-
rials with high resolution [5, 6]. It uses low-coherence inter-

ferometry and imaging reflections from interior tissues to
generate cross-sectional images. Comparing with traditional
imaging methods, OCT has some obvious advantages of
being nondestructive, high resolution, and minimally inva-
sive, and it has been widely applied in ocular detections for
many years [3, 7, 8]. However, the imaging quality of the
choroid is not good enough in retinal OCT images due to
the shortage of penetration depth [9]. The major challenges
of the choroidal segmentation are from low contrast of the
lower boundary and unknown noise in the images, which will
make the detection result inaccurate and unreliable.

To segment the choroid efficiently, many researchers
studied model-based methods with prior assumptions for
the structure of the input images: A-scan [10, 11], active
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contour [12–15], sparse high order potentials [16], and
2D/3D graph [17–22] methods. The main limitation of these
traditional approaches is their high dependence on the fea-
ture extraction phase for the accurate segmentation. How-
ever, extraction of appropriate image features is difficult for
a definite medical image recognition problem, and the tradi-
tional methods may provide disappointing segmentation
results. In recent years, machine learning-based methods
have achieved excellent performance in computer vision
and medical image analysis. Convolutional neural network
(CNN) is one of the extensive application approaches for
image processing and also effective for multilayer segmenta-
tion in OCT images. Sui et al. used a graph-searching-based
segmentation technique with learning an optimal graph
weight by using CNN architecture [23]. Masood et al. pro-
posed a two-stage segmentation method to segment out the
BM and choroid and calculate the thickness map [24]. A series
of morphological operations were used to segment BM, while
the choroid was segmented using CNN. Fang et al. presented a
novel framework combining CNN and graph search methods
(CNN-GS) to segment nine layer boundaries on retinal OCT
images [25]. Alonso-Caneiro et al. used a fully-convolutional
network (FCN) technique based on graph search theory to
segment the choroidal boundary and obtain the choroidal
thickness profile from OCT images [26]. There are also some
other outstanding networks for OCT image segmentation
such as U-shape convolutional network (U-Net), which is
considered as the most widely applicable architecture for
medical image segmentation [27, 28].

It is worth noting that a major disadvantage of many
machine learning-based methods, such as CNN-GS, FCN-
GS, and U-net, is their reliance on the availability of a large
supervised/marked data set. However, marking medical
images manually requires highly professional technique,
which leads to the lack of accurately labeled data in great
quantity. In addition, the number of negative samples is far
more than the number of positive samples, i.e., the pixels
within a single OCT image are largely labeled as “0” (not con-
tained in the Choroidal-Scleral interface boundary) as
opposed to being positively labeled as “1” (contained in the
Choroidal-Scleral interface boundary), which may affect the
training results. In extreme cases, the loss of negative samples
will dominate in the training process and may lead to a high
accuracy even when the model predicts all the samples to be
negative. Taking these into considerations, we propose an
improved CNN model-based method which performs well
on a small data set and reduces the adverse impact of unbal-
anced samples.With the choroid boundaries obtained by neural
network, we further adopt a l2-lq (0 < q < 1) regressionmodel to
fit the choroidal layer curve. Thismodel ensures not only the fit-
ting accuracy but also the simplicity of fitting function, leading
to a better generalization segmentation result.

This paper is organized as follows. In Section 2, we
describe the details of the proposed method including
segmentations of the BM and Choroidal-Scleral interface.
Experimental evaluation and comparison with other
methods are discussed in Section 3. Concluding remarks
are given in Section 4.

2. Materials and Methods

2.1. OCT Data. OCT images were obtained in Chinese
schoolchildren aged 8-13 years using spectral domain OCT
(SD-OCT, Spectralis HRA+OCT, Heidelberg Engineering,
Germany) in Optometry Research Clinic of The Hong Kong
Polytechnic University. Consents were obtained from both
children and their parents/guardians. The study protocol
has been approved by the Human Subjects Ethics Subcom-
mittee of The Hong Kong Polytechnic University and met
the tenets of the Declaration of Helsinki. Cross-sectional
OCT images with axial resolution of 3.9μm and transverse
resolution of 14μm were obtained using a light source (peak
wavelength of 870nm) together with a scanning speed of
40000 A-scan/sec. In order to better capture the boundary
of choroid, an enhanced depth image scanning mode was
adopted. Choroid was then manually segmented using the
built-in software in SD-OCT by trained clinicians. There
are 146 marked retinal OCT images from 108 patients in
total, and we divide them into a training set of 70 images,
while the rest are categorized as in the testing set. In our
experiments, all the OCT images are preprocessed as grey
images with the size of 150 × 600 (height × width) pixels.

2.2. Overview. The proposed approach is divided into two
parts: BM segmentation and Choroidal-Scleral interface seg-
mentation. Physiological tissues mentioned in this work are
visualized by diverse colors in Figure 1, and red curves mark
the known ground-truth provided by clinicians. For BM seg-
mentation, we start by recognizing the approximate position
of RPE, which is the brightest layer in retinal OCT images.
We then identify the BM by its physiological feature in the
vicinity of RPE. After the extraction of the BM, we consider
to segment the Choroidal-Scleral interface by a two-stage
process:

(1) Partition the OCT image into small patches and
input them into the CNN based classifier. The likeli-
hood of the Choroidal-Scleral interface passing
through the patch increases with the predicted value’s
proximity to 1.

(2) Generate a heat map according to the predicted
values of patches. Choose appropriate points in the
heat map and fit these points to obtain the curve of
the Choroidal-Scleral interface.

The details will be discussed in the later sections.
Our numerical experiments in this paper are imple-

mented in Tensorflow 1.13.1, Python 3.6.6, and Cuda 9.0,
running on a server with 2 Tesla P100-PCIE GPU with
16GB memory at 1.3285GHz and an operating system of
64 bits in the University Research Facility in Big Data Analyt-
ics (UBDA) of the Hong Kong Polytechnic University.
(UBDA website: https://www.polyu.edu.hk/ubda/.)

2.3. Retinal Pigment Epithelium Recognition. Since RPE is the
brightest part in all retinal OCT images after the reflection of
light, we can locate the approximate position of RPE. Regard-
ing the OCT image as a 150 × 600 matrix, the point with the
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largest pixel value in each column can be found and denoted
by Pi, i = 1,⋯, 600. Fitting the points fPi, i = 1,⋯,600g and
then we can obtain a curve CRPE lying in the region of RPE.
Here, we adopt the cubic regression method in consideration
of the simplicity of the RPE curve and the high accuracy of
extracted points.

2.4. Bruch’s Membrane Segmentation. From Figure 1, we can
observe that the BM is at the boundary between RPE and the
choroid, and below the curve CRPE extracted in the previous
step. Therefore, we intend to find appropriate points Qi, i =
1,⋯, 600 in the lower neighborhood of CRPE, where Qi is
with the largest difference in magnitude in the ith column.
In our experiments, the set fQi, i = 1,⋯,600g is obtained in
the region between CRPE and CRPE−5; CRPE−5 represents the
curve whose point in each column is 5 pixels lower than the
corresponding point in CRPE. The width of gap between
two curves is decided by the observation that the thickness
of RPE is about 5 pixels in OCT images. Finally, the curve
acquired by fitting points fQi, i = 1,⋯,600g is regarded as
the BM. Some results of BM segmentation are shown in
Figure 2; we can find that our result (green curve) and
ground-truth of BM (red curve) coincide with each other.
The error for each image is calculated by

1
600〠

600

i=1
BM ið Þ − dBM ið Þ
��� ���, ð1Þ

where BMðiÞ and dBMðiÞ represent the corresponding num-
bers of row for ith column in our result and ground-truth
of BM, respectively. The average error and variance for 76
test images are 1.5189 and 1.1325.

2.5. Choroidal-Scleral Interface Segmentation. In this section,
we present the details of the method based on CNN classifier
and l2-lq (0 < q < 1) fitter to segment the Choroidal-Scleral
interface.

2.5.1. Data Preprocessing and Clipping. In order to improve
the recognition accuracy of the lower choroidal boundary,
we first remove the irrelevant information in the OCT images
above the BM. A large size of patch may lead to a small
number of samples, while a small size of patch will result in
the lack of features in samples. In our proposed approach,
we cut images from the training set into a group of square
patches with 32 × 32 pixels from left to right, top to bottom
with a step-size of 8.

For each 32 × 32 minipatch, if the marked ground-truth
passes through its 6 × 6 center area, this minipatch will be
labeled as “1” (positive sample) and as “0” (negative sample)
otherwise. As shown in Figure 3, the minipatch in red is
labeled as “1,” and the minipatch in yellow is labeled as “0.”
The blue frame in the center is the recognition area with a
size of 6 × 6 pixels. In [24], the criterion to define positive
samples is the marked ground-truth passes through the 32
× 32 patch, otherwise is a negative sample. Thus, the number
of positive samples made in [24] is more than ours, and the
ratio of positive and negative samples is relatively balanced.
However, the positive samples whose edges are passed
through by the marked ground-truth may impact the extrac-
tion of features in training process. Therefore, we set the 6 × 6
recognition area in our samples to avoid this problem. After
finishing the labeling, the layer segmentation problem is
converted into a binary classification problem.

2.5.2. CNN Training. The structure of the neural network
used in our work is the Lenet-5 model [29]. It includes 3 con-
volutional layers and 3 fully connected layers, which is shown
in Table 1. Each convolutional layer consists of a layer of
convolution and function of local response normalization.
The purpose of 3 continuous convolutional layers is to
extract features and map the original data into a feature
space. The kernel size in each convolution layer is 3 × 3. After
the process of feature extraction, 3 fully connected layers are
arranged to provide a classification.

Before applying this CNN model to segment the choroid,
it is necessary to pretrain it by using training data. After data
preprocessing and clipping, we can get 260000 patches with
label as a revised training set. Among these patches, about
24000 samples are on-line samples with label 1, while the
other 236000 patches are off-line samples with label 0. Note
that the ratio of positive and negative samples is about 1 : 11
due to the way of making samples and specialty of images.
As mentioned earlier, unbalanced samples will have a nega-
tive effect on the training result, and it is necessary to provide
a reasonable solution. For clear display, we use f θCNN
: ℝ32×32 → ð0, 1Þ to represent the CNN model; then, the
relationship between the input patches imgi and the output
values pi can be denoted as

pi = f θCNN imgið Þ, ð2Þ

where imgi is the ith patch of our input and θ is the set of

RPE
Bruch’s Membrane

ChoroidChoroid-Sclera Interface

Figure 1: Physiological structure of BM, RPE, choroid, and Choroidal-Scleral interface. Red curves are the ground-truth marked by clinicians.
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parameters in the CNN model. The problem of unbalanced
samples, the ratio of on-line samples, and off-line samples
is about 1 : 11 and is treated by our adoption of a loss function
called Focal Loss [30]:

FL pi,lið Þ
= −αli 1 − pið Þγ ln pið Þ − 1 − αð Þ 1 − lið Þpγi ln 1 − pið Þ,

ð3Þ

where li is the label of the corresponding patch, α ∈ ð0, 1Þ
ensures a higher weight for the rare online samples, and γ
≥ 0 provides a higher weight for samples hard to be
classified.

The Focal Loss, a dynamically scaled cross-entropy loss
function, is proposed for dealing with samples’ imbalance
in [30]. From formula (3), we can find that the value of loss
function is reducing with a higher pi, which means the class
with lower accuracy will dominate in network training.

Next, we need to minimize FLðpi, liÞ. Let giðθÞ = f θCNNði
mgiÞ, and the problem can be formulated as

arg min
θ

1
I
〠
I

i=1
FL gi θð Þ, lið Þ, ð4Þ

where I denotes the total number of input patches. To pre-
vent overfitting in CNN, Dropout and l2 regularization have
been used [31–33]. In our numerical experiments, we add l2

regularization in the objective function to prevent overfitting;
hence, the regularized problem is written as

arg min
θ

J θð Þ≔ 1
I
〠
I

i=1
FL gi θð Þ, lið Þ + μ

2 ∥θ∥
2
2: ð5Þ

Adaptive Moment Estimation (Adam) optimizer [34] is
applied to solve problem (5).

After finishing the training of the CNN model, we then
apply it to segment choroid. Let M ∈ℝ150×600 be a matrix
for the storage of output values corresponding to the image
matrix. At the first stage, we need to implement the following
operations:

(1) Cut the input OCT image into a group of patches
with size of 32 × 32 from left to right, top to bottom
with a step-size 3. Every patch matches a submatrix
of M with a size of 6 × 6,

(2) Input these patches into the trained CNN model one
by one and obtain the corresponding predicted value,
denoted by pi for the ith patch, i = 1,⋯, 7600. All the
values of elements in the corresponding submatrix
are pi,

(3) The element value of M corresponding to the ith
patch is replaced by 255 × pi. The element value of
M in the overlaps of two or four patches is replaced
by a weighted average value. For example in

(a)

(b)

(c)

(d)

Figure 2: Green curves are BM segmentation results, red curves are ground-truth of BM and Choroidal-Scleral interface marked by clinicians.
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Figure 4, if it lies on the overlaps of four patches: the ij
th patch for j = 1, 2, 3, 4, its element value is ð255 ×
∑4

j=1pijÞ/4,
(4) Find the second largest element (i.e., the center

element of three continuous largest elements) in each
column of matrix M as the desired point.

The results of the above process are shown in Figure 5,
which is a special example with a lot of noises and mistaken
points. Hence, we need to further recorrect the data.

2.5.3. Data Recorrection. From the above results, we notice
that the major area of the choroid can be accurately detected.
However, there may be some misjudgments because of the
interference information in the image, and these errors will
make a negative influence on the segmentation result if we
directly fit all the sample points without filter. For this reason,
the random sample consensus (RANSAC) algorithm [35] is
applied to recorrect the detected points. RANSAC algorithm
estimates parameters of a mathematical model from a set of
observed data that contains “outliers” by iterations. Basic
assumptions of RANSAC are in the following:

(i) Data consist of “inliers”, i.e., the distribution of data
can be explained by some set of model parameters.

(ii) “Outliers” do not fit the model.

(iii) Other data are regarded as noise data.

For RANSAC, it is also assumed that there exists a
process of estimating model parameters for a set of given
“inliers,” and this model can optimally explain or fit the data.

In addition, a shape constraint rule is enforced to help
identifying the outlines, namely, the location of the choroid
is always below the BM.

2.5.4. l2 − lq Fitter. This step sketches out the outer boundary
of the choroid with recorrected data. Through the observa-
tion of the ground truth, a high-order polynomial gðxÞ = βn
xn + βn−1x

n−1 ⋯ +β1x + β0 is applied for curve fitting to
improve accuracy. Moreover, to avoid the fitting function
being too complicated for stability, we preferably set a rela-
tively sparse group of coefficients fβn,⋯,β1, β0g. In recent
years, lq ð0 < q < 1Þ regularization attaches attention and has
advantages over smooth, convex regularization for variable
selection. Motivated by this, a regression model consists of
a l2 data fitting term and a lq regularization term is used to
ensure the sparsity of polynomial coefficients in this paper.
The l2 − lq regression model is as follows:

min
β

ϕ βð Þ≔∥Xβ − y∥22 + λ∥β∥qq, ð6Þ

where

X ≔

xn1 ⋯ x11 1
xn2 ⋯ x12 1
⋮ ⋱ ⋮ 1
xnm ⋯ x1m 1

0BBBBB@

1CCCCCA, y≔

y1

y2

⋮

ym

0BBBBB@

1CCCCCA, ð7Þ

fðxi, yiÞ, i = 1,⋯,mg (m ≤ 600) denotes the set of recor-
rected coordinate points, β = ðβn, βn−1,⋯,β1, β0ÞT ∈ℝn+1 is
the vector consists of the fitting polynomial coefficients, ∥β
∥qq =∑n

i=0jβijq, and λ > 0 is a parameter.
Some existing methods such as iteratively reweighted l1

(IRL1) and l2 (IRL2) minimization algorithms have been
widely studied for solving problem (6), see [36–39] and refer-
ences therein. We adopt the hybrid orthogonal matching
pursuit-smoothing gradient (OMP-SG) based on lower

0

Data Set

Label 1

Step = 8 Pixels

On-line

Off-lineCSI passes through
center area?

Figure 3: Red curve: Ground-truth. Yellow minipatch: off-line patch with label “0.” Red minipatch: on-line patch with label “1.” Blue center-
patch: recognition area with size of 6 × 6.
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bound theory in [36] to solve problem (6). First, we use the
OMP method to generate an initial point β0 and its support
set; then, the SG method is employed to further reduce the
objective value of (6), and finally, the numerical solution is
purified by deleting its entries with small values. The
framework of the hybrid OMP-SG algorithm is given in
Algorithm 1, where jΛj denotes the number of elements in
the set Λ.

We refer the interested readers to [36] for more details on
the OMP-SG algorithm. Moreover, the smoothing function
used in the SG method is

eϕ βð Þ = Xβ − yk k22 + λ〠
n

i=0
sξ βið Þ� �q, ð8Þ

where

sξ tð Þ =
tj j, tj j > ξ

t2
2ξ + ξ

2 , tj j ≤ ξ

8><>: : ð9Þ

ξ > 0 is a smoothing parameter. It is easy to verify that eϕ is
continuously differentiable for any fixed ξ > 0.

Since ϕðβÞ ≥ λkβkqq, the objective function ϕðβÞ is
bounded below and ϕðβÞ→∞ if ∥β∥q →∞. Moreover, the
set of local minimizers of problem (6) is nonempty and
bounded. According to Theorem 2.2 in [36], for any local
minimizer β∗ of problem (6) satisfying ϕðβ∗Þ ≤ ϕðβ0Þ, a
lower bound theory of nonzero entries and an upper bound
of kβ∗k0 = #fβ∗

i ≠ 0, i = 0, 1,⋯, ng are presented as follows.

Theorem 1. Let β∗ be a local minimizer of problem (6) satis-

fying ϕðβ∗Þ ≤ ϕðβ0Þ for an arbitrarily given point β0. Let L

= ðλq/2∥X∥2
ffiffiffiffiffiffiffiffiffiffiffi
ϕðβ0Þ

p
Þ1/1−q; then, we have β∗

i ∈ ð−L, LÞ⇒ β∗
i

= 0, for i ∈ f0, 1,⋯,ng: Moreover, the number of nonzero
entries in β∗ is bounded by kβ∗k0 ≤min ðm, ðϕðβ0Þ/λLqÞÞ:

From the upper bound in Theorem 1, the number of non-
zero elements of β∗ is less than ϕðβompÞ/λLq. The sparsity of
β∗ is dependent on the choice of λ. A sufficient condition on
λ for minimizers of problem (6) to have desirable sparsity can
be found in [40].

With the output result by Algorithm 1, we can obtain a
high-order polynomial whose coefficient vector is β∗ to fit
the curve as shown in Figure 6(a). The red part is the scatter
of recorrection points, i.e., fðxi, yiÞ, i = 1,⋯,mg, and the fit-
ting curve is shown in green. In Figure 6(b), we compare
the fitting result and ground-truth in green and red, respec-
tively. Figure 7 shows some of the choroid segmentation
results with images in the testing set. These examples display
that the regression fitting is visually reasonable and conforms
to the ground-truth.

2.6. Summary. In our experiments, we set λ = 1, q = 0:1, μ =
0:1, α = 0:9, and γ = 2. For achieving amore stable fitting result,
we choose the value of n in (6) according to the recorrection
data fxi, i = 1,⋯,mgðm ≤ 600Þ of the given image as following:

(i) n = 10, if x1 ≤ 50 and xm ≥ 570,
(ii) n = 3, if x1 ≥ 100 or xm ≤ 500,
(iii) n = 6, if the above two conditions are not satisfied.

In Figure 8, we give a flowchart to show the process of our
choroid segmentation method. The RPE and BM are recog-
nized first by their physiological characteristics. The labeled
patches cut from OCT images are used to train a CNN
classifier. Then, the input image can be transferred into a

Table 1: Structure of CNN model used in this paper.

Type Filter size Stride Filter number Padding

Layer 1 Convolution 3 × 3 × 1 1 × 1 128 1

Layer 2 ReLU — — — —

Layer 3 LRN — — — —

Layer 4 Convolution 3 × 3 × 128 1 × 1 64 1

Layer 5 ReLU — — — —

Layer 6 LRN — — — —

Layer 7 Convolution 3 × 3 × 64 1 × 1 32 1

Layer 8 ReLU — — — —

Layer 9 LRN — — — —

Layer 10 Fully connected 32 × 32 × 32 — 4096 —

Layer 11 ReLU — — — —

Layer 12 Fully connected 1 × 1 × 4096 — 1024 —

Layer 13 ReLU — — — —

Layer 14 Fully connected 1 × 1 × 1024 — 2 —

Layer 15 Softmaxloss — — — —

6 Computational and Mathematical Methods in Medicine



Step = 3 Pixels

CNN Model

Prediction
Value

Pixel Value

µm

“offline”
“online”

Figure 4: An example for the calculation of element value in M.
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Input:X ∈ℝm×ðn+1Þ, y ∈ℝm.

Step 1. Use the OMP method to obtain βomp, Λ = supportðβompÞ, Y = XΛ ∈ℝm×jΛj, L = ðλq/2kXk2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕðβompÞ

p
Þ1/1−q:

Step 2. Use the SG method with βomp
Λ as an initial point to solve min kYβ − yk22 + λkβkqq,

where β ∈ R∣Λ∣. Let β∗ be the output of the SG method.

Step 3. Output a numerical solution β∗ satisfying β∗
j =

β∗
j , jβ∗

j j > L, j ∈Λ
0, otherwise:

(

Algorithm 1. Hybrid OMP-SG approach for problem (6).

(a)

(b)

(c)

Figure 5: (a) The original image. (b) The image decoded by matrix M. (c) The vertical brightest area in each column of matrix M.

(a)

(b)

Figure 6: Curve fitting result by l2 − lq regression model with λ = 1, ϵ = 0:1, n = 10, q = 0:1. (a) Red part is a scatter of recorrected points.
Green part is the fitting result by the obtained high-order polynomial. (b) Red curves are ground-truth of BM and Choroidal-Scleral
interface marked by a clinician. Green curve is fitting result.
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group set of points with a high predicted value by the trained
CNN model. After data recorrection by the RANSAC
method, the residual points are fitted by a l2 − lqð0 < q < 1Þ
regression model, and the fitting curve is the desired outer
interface of the choroid. Thus, we obtain the segmentation
results of the choroid.

3. Results and Discussion

In this section, we discuss the experimental analysis based on
thickness evaluation. We give the measurement criteria of
thickness, and then compare the average error, maximal
error, and Dice coefficient of our experimental results with
the results by the method in [24].

3.1. F Hypothesis Testing and T Hypothesis Testing. We use
the Anderson-Darling test to verify both the average thick-
ness marked by clinicians and predicted by our model with
approximate normal distribution. Therefore, we can adopt
F Hypothesis testing and T Hypothesis testing to analyze
the thickness results obtained by our method.

By F Hypothesis testing, we can compute the confi-
dence level of the thickness results. Denote X0 = fx0i , i = 1
,⋯,hg by the thickness sample set in which the element
represents an average thickness of choroid given by medi-
cal staff in one OCT image. X1 = fx1i , i = 1,⋯,hg is the
thickness sample set given by our proposed method. First,
we use the F-test to verify whether the variances between

the given thickness samples X0 and our thickness results
X1 are similar.

(i) H0: there is no significant difference in the variance
between the given sample and our result sample

(ii) H1: there is a significant difference in the variance
between the given sample and our result sample

Value of F-testing is

F = S20
S21

, ð10Þ

where S0 and S1 are the variances of samples in X0 and X1,
respectively. The P value of F-test is 0:2092 > 0:05, i.e., H0
can not be rejected. In other words, it can be ensured that
the results by our proposed method are not significantly
different from the ground-truth.

After verifying the variance, the next step is to verify
whether there is a significant difference between the mean
values of the two sample sets.

(i) �H0: there is no significant difference in the average
value between the given sample and our result sample

(ii) �H1: there is a significant difference in the average
value between the given sample and our result sample

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7: Green curve: segmentation results by the proposed method. Parameters are consistent with the parameters in Figure 6. Red curve:
ground-truth.
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Value of T-testing is

T =
�X0 − �X1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑ x0i
� �2+∑ x1i

� �2/2h − 2
q

× 2/hð Þ
, ð11Þ

where �X0 and �X1 are mean values of samples in X0 and X1,
respectively. The P value of T-test is 0:2898 > 0:05, i.e., �H0
can not be rejected. Therefore, the mean value of our results
is not significantly different from the data given by
optometrists.

3.2. Minimum Distance Method. In this part, we compare the
results of our proposed method and other methods in detail.
Since finding the minimum distance point directly in the image
will produce a zigzag error, we calculate the distance based on
the regression functions of the BM and choroid. Define the
set of horizontal ordinate in the result image as S = fx, 1 ≤ x
≤ 600g; CSIðxÞ and BMðxÞ represent the regression function
value at x, respectively. The minimum distance method starts
from a point ðx, CSIðxÞÞ on the choroidal curve, then finding
the corresponding point ðy, BMðyÞÞ on the BMwhich is closest
to point ðx, BMðxÞÞ, and calculating the distance between these
two points. As shown in Figure 9, the length of the yellow line is
desired.

(yx, BM (yx)

I (x)

(x, CSI (x))

Figure 9: Minimum distance method.

OCT images RPE recognition BM layer segmentation

Ground truth

Training set

Data pre-processing and clipping

Test set
Data pre-processing and clipping

Result comparison

Proposed method result

Label
On-line set

On-line or Off-line?
Off-line set

Training
Convolution neural network

Prediction value

Hotspot matrix M

Data re-correction
l2-lq regression

min ‖X𝛽 − Y‖2
2𝛽
+ 𝜆‖𝛽‖qq,

Figure 8: Summary of our proposed choroid segmentation method.
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The thickness function lðxÞ at point x ∈ S is defined as
follows:

l xð Þ ≔∥ x, CSI xð Þð Þ − yx, BM yxð Þð Þ∥2,
yx ≔arg min

y∈S
∥ x, CSI xð Þð Þ − y, BM yð Þð Þ∥2:

ð12Þ

Using this minimum distance method, we can obtain the
thickness results by our proposed method. Next, we would
like to present some measurements to compare our results
with those by other methods.

3.3. Average Error and Maximal Error. In order to evaluate
the thickness results, the average error and maximal error
in an image are calculated to compare. The average error er
r1 is calculated by

err1 =
1
W

〠
W

i=1
∣l xið Þ − ltruth xið Þ∣, ð13Þ

where xi = i for i = 1,⋯,W represents the horizontal coordi-
nate in each image, lðxÞ is the thickness function defined in

(12) by our proposed method, ltruthðxÞ is the thickness
function provided by the ophthalmologists, and W is the
image width (W = 600 in this paper). The maximal error er
r2 is

err2 = max
i∈ 1,2⋯,Wf g

∣l xið Þ − ltruth xið Þ∣: ð14Þ

3.4. Dice Coefficient. Dice coefficient, a metric function in set
comparing, is considered to measure the similarity between
the segmentation result of the proposed method and the
ground truth. It is defined as

D =
2 ∣ Spro ∩ Struth ∣
∣Spro∣+∣Struth ∣

, ð15Þ

where sets Spro and Struth consist of the pixels in the
segmented choroidal region by our proposed method and
the manually labeled choroidal region by experts, respec-
tively. ∣S ∣ denotes the number of elements in the set S.

4. Discussion

The details of the comparison in err1, err2, and Dice coeffi-
cient over the whole testing set (76 images) are given in

1

0.95

0.9

Dice Coefficient

Average Dice Coefficient of Two-stage Segmentation
Average Dice Coefficient of our proposed method
Dice Coefficient of Two-stage Segmentation
Dice Coefficient of our proposed method

0.85

0.8

0.75In
de

x

0.7

0.65

0.6

0.55

0.5

Image number
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75

Figure 10: Dice coefficient comparison of all 76 test image results.

Table 2: Comparison in err1, err2, and Dice coefficient.

Method
Average error Maximum error Dice coefficient

Average Standard deviation Average Average Standard deviation

Proposed method 2.0673 1.2348 7.1580 0.9035 0.0547

Two-stage segmentation [24] 3.8239 2.0488 8.7801 0.8294 0.0893
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Table 2. The two-stage segmentation is the method proposed
in [24] which is verified that it performs better than some
classical approaches such as Graph cut [41], k-means [41],
and Graph Search Theory [26]. From Table 2, we can find
that our proposed method possesses a smaller average error
and larger Dice coefficient than the two-stage segmentation,
which implies the effectiveness of the l2-lq regression model
and other improvements in our method. The comparison
in Dice coefficient is visually shown in Figure 10. Yellow
and red points represent the average Dice coefficient of our
proposed method and the two-stage segmentation, respec-
tively. It is clearly displayed that the Dice coefficient data
obtained by our proposed method is generally superior to
the data generated by the two-stage segmentation.

5. Conclusion

In this paper, we propose and implement an automated seg-
mentation method based on CNN classifier and l2-lq fitter to
detect the region of the choroid. The BM, next to the inner
surface of the choroid, is segmented by its physiological char-
acteristic with the recognition of RPE. The extraction of the
Choroidal-Scleral interface curve, outer surface of the cho-
roid, is divided into two steps. First, we cut the images into
small patches with label “on-line” or “off-line” to train the
CNN classifier. The Focal Loss function and ADAM opti-
mizer are used in the process of training the CNN model.
Then, a binary classification problem is solved by using this
CNN model with input test images. After obtaining the clas-
sified data with predicted values, we filter the mistake and
noise points by the RANSAC method. In the second step,
we adopt a l2-lq (0 < q < 1) regression model to fit the discrete
and filtered points to generate the desired curve. The hybrid
OMP-SG algorithm is employed to solve the l2-lq minimiza-
tion. Segmentation results in some test images are given in
Figure 7. Finally, we discuss and evaluate the experimental
results in the aspects of average error, maximal error, and
Dice coefficient. Comparison details with other methods are
shown in Table 2 illustrating the effectiveness of the proposed
method. With the help of the proposed method in autoseg-
mentation of choroid from OCT images, the changes of
choroidal thickness in response to experimental treatment
or diseases could be effectively and accurately evaluated.
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