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Abstract: Ocean color sensors, typically installed on polar-orbiting satellites, have been used to
monitor oceanic processes for last three decades. However, their temporal resolution is not considered
to be adequate for monitoring highly dynamic oceanic processes, especially when considering data
gaps due to cloud contamination. The Advanced Himawari Imager (AHI) onboard the Himawari-8,
a geostationary satellite operated by the Japan Meteorological Agency (JMA), acquires imagery
every 10 min at 500 m to 2000 m spatial resolution. The AHI sensor with three visible, one near-
infrared (NIR), and two shortwave-infrared (SWIR) bands displays good potential in monitoring
oceanic processes at high temporal resolution. This study investigated and identified an appropriate
atmospheric correction method for AHI data; developed a model for Total Suspended Solids (TSS)
concentrations estimation using hyperspectral data and in-situ measurements of TSS; validated the
model; and assessed its potential to capture diurnal changes using AHI imagery. Two image-based
atmospheric correction methods, the NIR-SWIR method and the SWIR method were tested for
correcting the AHI data. Then, the new model was applied to the atmospherically corrected AHI
data to map TSS and its diurnal changes in the Pearl River Estuary (PRE) and neighboring coastal
areas. The results indicated that the SWIR method outperformed the NIR-SWIR method, when
compared to in-situ water-leaving reflectance data. The results showed a good agreement between
the AHI-derived TSS and in-situ measured data with a coefficient of determination (R2) of 0.85,
mean absolute error (MAE) of 3.1 mg/L, a root mean square error (RMSE) of 3.9 mg/L, and average
percentage difference (APD) of 30% (TSS range 1–40 mg/L). Moreover, the diurnal variation in the
turbidity front, using the Normalized Suspended Material Index (NSMI), showed the capability
of AHI data to track diurnal variation in turbidity fronts, due to high TSS concentrations at high
temporal frequency. The present study indicates that AHI data with high image capturing frequency
can be used to map surface TSS concentrations. These TSS measurements at high frequency are not
only important for monitoring the sensitive coastal areas but also for scientific understanding of the
spatial and temporal variation of TSS.

Keywords: atmospheric correction; total suspended solids (TSS); satellite-derived TSS; coastal water
quality; geostationary satellite; Himawari-8; diurnal changes

1. Introduction

Ocean color satellites in low altitude polar orbits contribute to the effective monitoring
of the dynamic status of oceans, coasts, and inland water resources [1–3]. Other polar-
orbiting satellites designed for terrestrial applications also contributed to the ocean color
applications, but some limitations are observed [4]. Monitoring of the Total Suspended
Solids (TSS) or Total Suspended Matter (TSM) concentrations for water quality applica-
tion commenced with the widely used historic ocean color sensors, such as Coastal Zone
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Color Scanner (CZCS) [5], Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) [2,6], and the
MEdium Resolution Imaging Spectrometer (MERIS) [7–9]. Many studies successfully re-
trieved a wide range of TSS with the MODerate Resolution Imaging Spectrometer (MODIS),
onboard the Terra and Aqua satellites [8,10–12]. Although each MODIS sensor completed
its planned life span, it is expected to beam down the data beyond 2020 [13]. The Land and
Ocean Color Instrument (OLCI) onboard Sentinel-3 A, launched by the European Space
Agency (ESA) in February 2016 also demonstrated the potential for mapping the TSS dy-
namics in coastal waters [3,14]. Another OLCI sensor onboard Sentinel-3 B recently joined
its twin in April 2018. Landsat sensors from the historic Landsat Multispectral Scanner
(MSS) to the latest Operational Land Imager (OLI) were also widely used in the observation
of TSS concentrations in coastal environments [1,15–18]. The Multi Spectral Instrument
(MSI) onboard the Sentinel-2 mission, with a temporal resolution of 5 days with twin satel-
lites Sentinel-2 A and Sentinel-2 B, also demonstrated significant results for mapping TSS at
20-m spatial resolution [19–21]. Free satellite data available from low earth-orbiting satellite
sensors, such as MSI, OLI, OLCI, and MODIS, display adequate spatial resolutions from
10–20 m, 30 m, 300 m, and 250–1000 m, respectively. Although the temporal resolutions of
MODIS, OLCI, MSI, and OLI sensors, are generally ∼1–2 days, ∼2–3 days, ∼5 days, and
∼16 days, respectively. With these datasets, it is inadequate to monitor diurnal variations
in TSS, although they can still be used to monitor TSS variations at particular time instants
for the coastal and open ocean waters during the cloud-free periods [22]. These sensors
cannot capture the high-frequency changes occurring in the estuaries and coastal areas, as
a result of repeated vertical resuspension and horizontal advection, subject to the impact of
tidal and wind-driven currents. Thompson, et al. [23] reported that resuspension solely due
to tidal currents can vary from 8% to nearly 13% for a small period (<30 min). Therefore,
to better understand the estuarine or coastal processes, it is important to monitor diurnal
variability in TSS concentrations. Satellite sensors capable of capturing several images
per day, presently offered only by geostationary satellite sensors, can be used to monitor
these variations. In addition, recent studies of geostationary satellite sensors show that
high temporal changes in the coastal processes can be well attained with a high temporal
resolution of these sensors, under varying atmospheric conditions. These studies relied on
various sensors including (1) the Spinning Enhanced Visible and InfraRed Imager (SEVIRI)
onboard the European Union’s METeorological SATellite for monitoring TSS [22], Turbidity,
and the light attenuation coefficient [24]; (2) the Geostationary Ocean Color Imager (GOCI)
onboard the Communication, Ocean and Meteorological Satellite (COMS) from South
Korea for monitoring TSS [25], turbidity fronts [26], water transparency [27], harmful algal
blooms [28], and diurnal variability in cyanobacteria [29]; and (3) Advanced Himawari
Imager (AHI), onboard Himawari-8, launched by the Japan Aerospace Exploration Agency
(JAXA) to monitor ocean color [30] and high-frequency changes in floating algae [31]
(please refer to Table S1 for a brief description on the significant characteristics of these
geostationary sensors). Geostationary satellites also have some limitations in terms of
mapping coastal dynamics. For example, SEVIRI applications are limited to the mapping
of TSS at 3.0× 6.5 km spatial resolution, and the shortwave infrared (SWIR) bands required
for high-quality atmospheric correction over highly turbid coastal waters are absent in the
present and planned GOCI sensors [32]. The coverage area of GOCI is also limited.

This study examines the potential of the AHI sensor for monitoring the coastal surface
TSS, as the AHI sensor is deployed with suitable wavebands of visible, Near Infrared (NIR)
and Shortwave Infrared (SWIR), and high temporal resolution (every 10 min). The Pearl
River Estuary (PRE) and neighboring coastal waters were selected, showing relatively
strong daily sedimentary and runoff variations [33]. Additionally, the marine ecosystem
adjacent to the PRE is disturbed by the problem of sediment and effluent runoff from rapid
industrial and urban development [34]; high-frequency mapping of TSS is, thus, critical
for monitoring the coastal ecosystem. This study required (i) implementing atmospheric
correction methods for AHI data, using two separate atmospheric correction approaches
i.e., the NIR-SWIR method (based on the NIR and SWIR-I bands) and the SWIR method
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(based on the SWIR-I and SWIR-II bands), (ii) developing a new AHI-based TSS model
using in-situ radiometric and TSS measurements, (iii) cross-validating to evaluate the
capability of the new model to monitor TSS using the atmospherically corrected AHI
data; and (iv) monitoring diurnal TSS changes and turbidity fronts based on the Nor-
malized Suspended Material Index (NSMI) method over the PRE and the neighboring
coastal waters.

2. Materials and Methods
2.1. Study Area

The study area comprises the Pearl River Estuary (PRE) along with the areas farther
along the coast, in the east and west directions (Figure 1). The Pearl River (Chinese name
Zhujiang River), which is 2216 km in length, is the longest river in Southern China and
the third-longest river in China, with a catchment area of 453,000 km2. Its mean annual
runoff, which is 300 billion m3, ranks 2nd in Chinese rivers and is next only to the Yangtze
River [35]. The dry season lasts from October to April and the downstream annual dis-
charge fluctuates significantly, depending on the total rainfall received in the upstream
catchment. Relatively low rainfall, which is approximately 30–40 mm/month, and its
discharge into the PRE, are typically around 1500 m3/s during the dry season [35]. During
the wet season, from May to September, the southwest monsoon brings warm, humid air
from the lower latitudes, causing high rainfall (300–400 mm/month), where the flows can
reach up to 20,000 m3/s. The annual discharge of suspended sediments reaches 87 million
tons, among which more than 90% are discharged during the wet season [36]. In the north-
western estuary, the TSS concentration is as high as 100 mg/L during the wet season [37].
The Pearl and Huangmao River estuaries play an important role in transportation, fisheries,
and aquaculture, and they are also the habitats of rare marine species such as the Chinese
White Dolphin. The development of industries and urbanization in Guangdong during the
last 30 years caused serious environmental degradation, and reduced water quality along
its coastline and in the PRE [38]. Eutrophication is the most serious environmental issue
in the PRE. It caused frequent red tide and harmful algal bloom events in the estuary and
its neighboring coastal waters, since the 1980s, along with significant economic losses [39].
The high concentrations of suspended sediments, red tides, and dissolved material affects
the optical properties of the estuarine waters, which make these waters challenging to
the application of ocean color remote sensing, for the determination of dissolved and
solid components. Since the nutrients responsible for eutrophication mostly originate
from discharged runoff and their concentrations are higher in the surface layer than at the
bottom, they can be detected through Ocean Color Remote Sensing and possible sources
can be identified. Environment protection agencies and local communities have great
concerns with the water quality in the PRE and the neighboring coastal areas, and the
programs designed to improve the water quality are under implementation. Therefore,
remote sensing techniques have potential values for such recovery programs, by providing
dynamic and up-to-date data of TSS.

2.2. Overview of Himawari-8AHI

Himawari-8 is a geostationary meteorological satellite placed at 140.7 ◦E above the
equator, covering the East Asian and Western Pacific regions. It is operated by the Japan
Meteorological Agency (JMA). However, it was launched by JAXA in October 2014, and
from July 2015 it became completely operational [30]. AHI, the primary sensor of Himawari-
8, has 16 spectral bands to observe the earth systems; three visible channels (0.43–0.48,
0.50–0.52, and 0.63–0.66 µm), one NIR (0.85–0.87 µm), two SWIR channels (1.60–1.62
and 2.25–2.27 µm), and 10 thermal infrared (TIR) channels (∼3.7–13.4 µm) [40]. The
instantaneous field of view (IFOV) of blue, green, and NIR channels at the sub-satellite
point (SSP) is 1 km, whereas the red channel captures at 0.5 km. The IFOV of the SWIR
and TIR channels is 2 km. Table 1 shows the specifications of the first six bands of AHI
used in this study. The temporal resolution of Himawari-8 varies depending on different
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sample regions—the full earth disk, two landmark areas, and three target areas [41]. The
temporal resolution for capturing the full earth disk and two target areas (Regions-1 and 2
over Japan) is fixed, every 10 min and every 2.5 min, respectively. However, for the two
landmark areas and one target area (Region-3), the scanning frequency is flexible (from
0.5–2.5 min), to enable prompt reaction to meteorological conditions [41].
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Figure 1. (a) Advanced Himawari Imager (AHI) true-color image of the study area captured on 2 
February 2016 at 10:00 (HKT). All bands were aggregated to a 2-km spatial resolution. Box A cor-
responds to very turbid coastal water (river plume), box B corresponds to moderately turbid wa-
ter, and box C corresponds to the homogenous clearwater area, (b) in-situ hyperspectral data col-
lected during field campaigns in August 2014, January 2018, and January 2019, (c) in-situ hyper-
spectral data collected during field campaigns in May 2018. 
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Figure 1. (a) Advanced Himawari Imager (AHI) true-color image of the study area captured on
2 February 2016 at 10:00 (HKT). All bands were aggregated to a 2-km spatial resolution. Box A
corresponds to very turbid coastal water (river plume), box B corresponds to moderately turbid water,
and box C corresponds to the homogenous clearwater area, (b) in-situ hyperspectral data collected
during field campaigns in August 2014, January 2018, and January 2019, (c) in-situ hyperspectral
data collected during field campaigns in May 2018.

Table 1. Specifications of the first six bands of the Himawari-8 AHI sensor.

Band Number Central Wavelength (µm) Spatial Resolution at SSP * (km)

1 0.47 1
2 0.51 1
3 0.64 0.5
4 0.86 1
5 1.6 2
6 2.3 2

* SSP is the sub-satellite point.

2.3. Satellite Data Used and Atmospheric Correction Approaches
2.3.1. Satellite Data

The AHI Himawari level 1 Gridded data (NetCDF4 format) of the study area were
obtained from JAXA’s Himawari P-Tree system. Using the P-Tree system, the cloud
cover extent could also be assessed visually, prior to downloading the data. Images at
every 10 min interval, from 10:00 to 15:00 HKT, were acquired during the winter season
(December, January, February) from 2016 to 2019 (Table 2). The data for cloud-free clear
days in winter months were selected, as sun-glint is substantial over the study area during
the afternoon in summer months.
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Table 2. AHI data used in this study.

Date Time Timestep

25 January 2016 10:00–15:00 every 10 min
7 February 2016 10:00–15:00 every 10 min
8 February 2016 10:00–15:00 every 10 min

19 December 2016 10:00–15:00 every 10 min
27 January 2017 10:00–15:00 every 10 min
11 January 2018 10:00–15:00 every 10 min
12 January 2018 10:00–15:00 every 10 min
16 January 2018 10:00–15:00 every 10 min
23 January 2019 10:00–15:00 every 10 min

2.3.2. AHI Water-Leaving Reflectance Processing

Cloud free images of three visible, one NIR, and two SWIR bands were used. All
bands were aggregated to a uniform spatial resolution of 2 km by the JAXA [42]. The
albedo of these bands was converted to the top of atmosphere reflectance (ρtoa) by diving
the albedo with the solar zenith angle (θ0), using Equation (1). Full disk data were clipped
to the study area, to expedite processing.

ρtoa (λ) =
Albedo (λ)

Cosθ0
(1)

where Albedo is the recorded albedo in the respective band (λ). The ρtoa(λ) can be divided
into the following components, as shown in Equation (2), to understand the atmospheric con-
tributions in ρtoa(λ) [22,43]. For notational simplicity, the (λ) notation is dropped hereafter.

ρtoa = ρa + ρr + ρra + ρg + TvT0(ρwc + ρw) (2)

where ρa is aerosols scattering reflectance, ρr is Rayleigh scattering reflectance by air
molecules, and ρra is the contribution due to coupling between air molecules and aerosols.
Usually, ρra is incorporated into the ρa calculations, so it can be omitted in Equation (2).
The contribution of sun-glint is represented by ρg , Tv and T0 are total diffuse transmittance
along the viewing direction and incident direction, ρwc is reflectance that occurred as a result
of white caps, and ρw is the water-leaving reflectance of the water surface. ρg is substantial
only if the relative azimuth angle (∆ϕ = |solar azimuth (ϕ0)− satellite azimuth (ϕv)|) is
near 180◦ and the satellite zenith angle (θv) is near θ0 [43]. For this study region, from
May to August on/after 14:00 HKT, ρg is substantial (Figure S1 of Supplementary data) as
θv is close to θ0 and ∆ϕ = |ϕ0 − ϕv| is close to 180◦, for these months. Therefore, in this
study, only cloud-free images captured from 10 a.m. to 3 p.m. in winter are investigated.
For all images captured for the study region, the θv ranges from 38 to 42◦ and ϕv ranges
from 3◦ to 54◦ and from 246◦ to 295◦ during 10:00–12:30 and 13:00–16:00 HKT (UTC + 8 h),
respectively. Therefore, ρg was considered to be insignificant in Equation (2). Moreover, ρwc
for the study area was also considered to be insignificant, as the wind speed was less than
10 m s−1 on the dates considered in this study, as the ρwc should be considered during the
atmospheric correction only when the wind speed is higher than 10 ms−1 [44]. Hence, after
considering the insignificant influences of sun-glint reflectance and white caps reflectance,
Equation (2) could be reduced as:

ρtoa = ρa + ρr + T0Tvρw (3)

The Rayleigh corrected reflectance (ρRe) could be calculated if ρr is known a priori, as
shown in Equation (4)

ρRe = ρtoa − ρr = ρa + T0Tvρw (4)

ρr, T0 and Tv are the unknown parameters in Equation (4) and these were produced
as a look-up-table (LUT) utilizing the 6SV v1.1 [45] for the first six AHI bands, using the
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parameters shown in Table S2. 6S was modified for AHI by applying the spectral response
function (SRF) of all AHI bands in the original 6S model. While generating LUT, the values
of satellite geometry, θv and ϕv, were kept constant at 40.1◦ and 127.5◦, respectively; these
were the average values of θv and ϕv for the study area. Additionally, both θv and ϕv varied
by only ∼2◦ for the entire study area. As the Solar Zenith angle (θo) and Solar Azimuth
angle (ϕo) vary during the day; the values were obtained from the image metadata file.
Only the water vapor and the ozone concentration vary in the atmospheric model, as these
two quantities are proven to show higher temporal and spatial inconsistency than other
gases, which are believed to be fairly mixed in both the temporal and spatial scales [46].
The ozone Total Column (DOAS) data product (OMDOAO3e v003) and Aerosol Optical
Depth 550 nm: Dark Target (MOD08_D3 v6.1) were obtained from Giovanni [47]. The
water vapor content, high in the NIR, was considered based on the total precipitous water
vapor content (PWC). PWC was quite variable throughout the day, so the hourly values
were obtained from the MERRA-2 Model M2T1NXSLV v5.12.4 (Table S3). In addition, a
tropical aerosol model acted as the aerosol model needed in 6SV v1.1. AHI SWIR band 5,
with a threshold of ρ5

Re > 0.0215, was used for the land and cloud masking in this study, as
this band is proven to be efficient in differentiating land, cloud, and floating objects from
the water pixels, even in extremely turbid waters [48].

The aerosol, ρa, correction in Equation (4) was achieved by two different aerosol
reflectance assessment approaches—(1) NIR-SWIR and (2) SWIR. In the NIR-SWIR method,
one NIR band (860 nm: band 4 of AHI) and one SWIR band (1609 nm: band 5 of AHI)
were used, whereas SWIR band 5 and SWIR band 6 (2257 nm) were used when the SWIR
method was adopted. In the SWIR bands, the absorption by water surface was high and
ρw was negligible in the SWIR bands, even for the high turbid water types [4,49]. In turbid
waters, ρw in the NIR band was significant. However, in the case of clearwater, pixels ρw
could be assumed to be nearly zero, even in the NIR bands. With ρw = 0 in band 4, 5, and 6,
Equation (4) could be rewritten for these bands as follows:

ρ4
Re = ρ4

toa − ρ4
r =ρ4

a; ρ5
Re = ρ5

toa − ρ5
r =ρ5

a; and ρ6
Re = ρ6

toa − ρ6
r =ρ6

a (5)

In the above-mentioned atmospheric correction methods, the aerosol reflectance ratio
(ε), ε(4,5) for AHI bands 4, 5, and ε(5,6) for AHI band 5, 6 was needed, and could be calculated
by Equation (6), as given below:

ε(4,5) =
ρ4

a

ρ5
a
=

ρ4
c

ρ5
c

; and ε(5,6) =
ρ5

a

ρ6
a
=

ρ5
c

ρ6
c

(6)

Aerosol reflectance ratios ε(4,5) and ε(5,6) were calculated for every image above the
clear seawater area (box C in Figure 1) by applying Equation (6). The location and dimen-
sion of box A and box C varied constantly, due to the cloud cover. The distribution of ε was
found to be normal (Figure 2), hence it was assumed that the ε was spatially consistent for
the study area, the median values of ε(4,5) and ε(5,6), calculated from every scene, were used
to correct AHI data. Moreover, one standard deviation (STD) of corresponding ε(4,5) and
ε(5,6) values were considered as the ambiguities in the aerosol reflectance ratio. The value
of ε(4,5) and ε(5,6) was 1.96 ± 0.145 and 1.72 ± 0.142, considering all available AHI data.

By replacing ρa with ρ4
a and ρ5

a for band 4 and band 5 for the NIR-SWIR and SWIR
method, Equations (4) and (6) could be combined to calculate the atmospherically corrected
ρ4

w and ρ5
w, as follows:

ρ4
w =

ρ4
Re − p4

a

T4
0 T4

v
=

ρ4
Re − ε(4,5)p5

a

T4
0 T4

v
(7)

ρ5
w =

ρ5
Re − p5

a

T5
0 T5

v
=

ρ4
Re − ε(5,6)p6

a

T5
0 T5

v
(8)
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In both atmospheric correction methods, ρi
w (i = other bands) could be calculated using

Equations (9) and (10), with the known reflectance from aerosols in longer wavelengths
(ρ5

a and ρ6
a).

NIR− SWIR : ρi
w =

ρi
Re − ε(i,5)p5

a

Ti
0Ti

v
(9)

SWIR : ρi
w =

ρi
Re − ε(i,6)p6

a

Ti
0Ti

v
(10)

where ε(i,5) and ε(i,6) could be obtained through exponential extrapolation [50], as follows:

ε(i,5) =
(

ε(4,5)
)δi

; δi =
λ5 − λi
λ5 − λ4

(11)

ε(i,6) =
(

ε(5,6)
)δi

; δi =
λ6 − λi
λ6 − λ5

(12)

2.4. In-Situ Hyperspectral Data

Two field datasets were used in this study. Radiometric measurements were collected
using the ASD FieldSpec Spectroradiometer, during the cruise surveys in August 2014.
Whereas the TriOS RAMSES Spectroradiometer were used during the cruise surveys
conducted in January and May 2018, and January 2019. Water samples were collected
simultaneously during all field campaigns and analyzed in the laboratory, using the
standard methods explained in Section 2.5.

2.4.1. ASD FieldSpec Spectroradiometer Data

Radiometric measurements were carried out at seventeen stations in the PRE during
8–15 August 2014 (green dots, shown in Figure 1). ASD FieldSpec Spectroradiometer with
a spectral range of 350 to 1050 nm (1-nm resolution) was used to measure the above-water
upwelling radiance (Lw), using the National Aeronautics and Space Administration U.S.
(NASA) protocol [51]. To limit the boat shadow and sun-glint effects, the radiometric
sensor was mounted at an azimuth angle of 135◦ to the plane of incident radiation. The
total upwelling radiance from the water surface (Lup) was measured at 40◦ from the zenith
direction. Skylight radiance (Lsky) was measured with the radiometer looking upward. The
downwelling irradiance, Ed (0+), was calculated using measurements of radiance from a
30% reflecting gray reference (Lp), with a known calibration coefficient (ρ):

Ed(0
+) = πLp/ρ (13)
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2.4.2. TriOS RAMSES Spectroradiometer Data

During field campaigns in January and May 2018, and January 2019, TRiOS RAMSES
Spectroradiometers were used with a spectral range of 320–950 nm (3.3-nm resolution). In
total, thirty-seven measurements were collected in the coastal waters of Hong Kong during
these field campaigns (red and pink dots in Figure 1). Three inter-calibrated radiometers,
one ACC for irradiance, and two ARC for radiances, were used to measure Lup, Lsky, and Ed
(0+). The sensor view followed the mounting description of Ruddick, et al. [52]. The sensors
were mounted such as the relative azimuth angle between Lup and Lsky with reference
to sun it was 135◦, and Lup was detected at a zenith angle of 45◦ from nadir. Ed (0+)
was also measured on-site in this case. All radiometers operated simultaneously, and ten
measurements were collected for every station and averaged, after filtering out the noisy
data. Moreover, measurements were collected within a 4-h interval (10:00 a.m.–2:00 p.m.)
to avoid the potential impact of sun-glint at low sun angles. The remote-sensing reflectance
(Rrs) was calculated at each sampling station as:

Rrs = Lw/Ed(0
+) (14)

Lw = Lup − r Lsky (15)

where r is the air–water interface reflection coefficient, generally varying from 0.022 and
0.028 [53]. We calculated the r values using HydroLight, with an average of 0.026 (±0.003)
for the PRE. In-situ Rrs spectra were weighted by spectral response functions SRF(λ) of
AHI bands, thus, deriving a multi-spectral data comparable to atmospherically corrected
AHI-reflectance from image as:

Rrs, (situ)(λi) =

∫
k Rrs∗(λ)× SRF (λ)dλ∫

k SRF (λ)dλ
(16)

where Rrs, (situ)(λi) is the AHI reflectance simulated from in-situ reflectance, k is the
bandwidth (nm), λi is the central wavelength of spectral band, i is the number of AHI
spectral band, and SRF is the spectral response function of AHI applied to the in-situ
hyperspectral remote-sensing reflectance. Figure 3a,b shows the remote-sensing reflectance
data collected during August 2014 and May 2018, January 2018 and 2019, respectively.
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Figure 3. (a) In-situ ASD measured Rrs collected during August 2014 campaign in the Pearl River
Estuary (PRE), and (b) in-situ TriOS measured Rrs collected during January 2018, May 2018 and
January 2019 campaigns. The range of total suspended solid (TSS) is 18.5–114 mg/L in (a) and
0.6–70 mg/L in (b).

As the AHI data was available after September 2015, data collected only on 11 January
2018, and 23 January 2019 was used as a validation dataset for validating the AHI-derived
water-leaving reflectance. Data collected during May 2018 was not considered due to the
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land adjacency problem and low spatial resolution of AHI. To obtain the match-up data
corresponding to the AHI datasets, we selected the Rrs, (situ) data within ±5 min, w.r.t AHI
overpass. In total, we selected 16 TriOS and AHI-derived matchup pairs to cross-validate
the AHI-derived Rrs. Atmospherically corrected AHI water leaving reflectance (ρw) in the
visible bands were converted to AHI-derived Rrs as: Rrs = ρw

π .

2.5. Water Analysis

Marine water samples were collected simultaneously, while measuring radiometric
data, and were later analyzed in the laboratory. For 2014 field campaigns in the PRE,
suspended solids concentrations were estimated gravimetrically on Whatman GF/F fil-
ters (pre-combusted at 450 ◦C for 4 h), which were dried and weighted to calculate the
concentrations of TSS. Chlorophyll-a concentration (Chl-a) was determined by the spec-
trophotometric method following Strickland and Parsons [54]. The American Public Health
Association (APHA) 22ed 2540D weighing technique based on an in-house GL-PH-23
method was adopted to assess the in-situ TSS concentrations (mg/L). The APHA 20ed
10200H 2 spectrophotometric technique based on an in-house GL-OR-34 method [55] was
adopted to measure Chl-a concentration for water samples collected during 2018 and 2019
field campaigns in the coastal waters of Hong Kong. Turbidity was measured on-site by
the OBS-3 turbidity sensor linked to a SEACAT 19+ CTD and Water Quality Profiler [55].
Maximum TSS concentration in the PRE was 114.8 mg/L during August 2014 and the
maximum recorded Chl-a concentration was 3.3 (µg/L) (Table 3). The Port Shelter waters,
one of the marine water quality zones, were relatively clear coastal waters with maximum
TSS = 4.0 mg/L and maximum turbidity = 1.19 NTU. In the Northwestern buffer and
neighboring area, TSS concentration was relatively high (max TSS = 70 mg/L), however,
Chl-a concentration was low (Table 3). A detailed map of marine water quality zones can
be drawn from the research that we conducted before [56].

Table 3. Statistics of water sample analysis including TSS, Turbidity, and Chl-a.

Area Water Quality
Parameter Range (Min–Max) Mean ± S.D.

Port Shelter Suspended Solids (mg/L) 0.6–4.0 1.76 ± 0.95
Turbidity (NTU) 0.02–1.19 0.32 ± 0.38

Chlorophyll-a (µg/L) 0.2–1.9 1.19 ± 0.53

North Western Buffer and
the neighboring area Suspended Solids (mg/L) 11.0–70.0 24.46 ± 16.05

Turbidity (NTU) 5.1–25.8 9.97 ± 5.65
Chlorophyll-a (µg/L) 0.9–2.6 1.59 ± 0.59

Pearl River Estuary (PRE) Suspended Solids (mg/L) 18.5–114.8 47.19 ± 26.03
Turbidity (NTU) - -

Chlorophyll-a (µg/L) 0.69–3.33 1.35 ± 0.64

2.6. TSS Algorithm

A new regional TSS model was developed using in-situ hyperspectral data and in-situ
TSS concentration. In-situ hyperspectral data were first transformed to the respective AHI
bands, using AHI’s spectral response function (SRF), as described in Section 2.4.2. The
study area shows a wide range of TSS concentrations, with higher values in the PRE and
the western coastal waters of Hong Kong (11–114 mg/L) and lower values in the eastern
coastal waters of Hong Kong (0.6–4.0 mg/L). The value of the red band (640 nm) was used
to divie the dataset for developing two linear regression equations. Threshold value of
Rrs, (situ)(640 nm) < 0.01 sr−1 was selected, as where Rrs, (situ)(640 nm) < 0.01 sr−1 , the
green band (510 nm) correlated more with in-situ TSS concentrations. Whereas, when
in-situ TSS concentrations were high, >10 mg/L, the red band correlated more with TSS
concentrations. For model calibration and validation, 80–20% split was used, 80% data
were used for model development and 20% data were used for model validation.



Remote Sens. 2021, 13, 336 10 of 20

2.7. Cross-Validation of TSS Algorithm Using AHI Derived Rrs

In-situ TSS data, collected, analyzed, and archived by Environment Protection De-
partement (EPD), Hong Kong, and same-day atmospherically corrected AHI images were
used for validation of the developed regional TSS model. Figure S2 shows the location
of EPD sations and Table S4 includes numbers of in-situ TSS samples and the date of
respective AHI image considered for validating the AHI-based TSS concentrations. At-
mospherically corrected AHI images with ρw values were first converted to Rrs and then
further used to derive AHI-based TSS maps.

2.8. Validation of Diurnal Variability of TSS and Turbidity Front Tracking

For mapping diurnal variability retrieved from AHI data, cloud-free AHI images at
10 min interval were processed between 10:00 HKT–15:00 HKT. The 10-min data were
averaged to hourly intervals, to assess diurnal variation in TSS. Further, the Normalized
Suspended Material Index (NSMI) proposed by Montalvo [57] (Equation (17)) was adopted
to track the diurnal variability of TSS. The value of NSMI ranges from −1 to +1. As the
amounts of TSS are usually linearly related to turbidity, this index can be considered as an
ideal indicator for tracking turbidity fronts in coastal areas and estuaries.

NSMI =
(ρred) + (ρgreen)− (ρblue)

(ρred) + (ρgreen) + (ρblue)
(17)

2.9. Accuracy Evaluation

For the assessment of accuracy, AHI derived ρw and TSS concentrations were com-
pared with in-situ ρw and TSS concentrations and comprised—(1) absolute relative error
(ARE), (2) mean absolute error, (3) root mean square error (RMSE), (4) average absolute
(unsigned) percent difference (APD), (5) correlation coefficient (R), and (6) coefficient of
determination (R2), as given in Equations (18)–(23).

ARE =
|x− y|

y
× 100 % (18)

MAE =
1
n

n

∑
i=1
|yi − xi| (19)

RMSE =

√
∑n

i=1 (xi − yi)
2

n
(20)

APD = 100
1
n

n

∑
i=1

|xi − yi|
yi

(21)

R =
n ∑ xiyi ∑ xi ∑ yi√

n ∑ x2
i
(
∑ x2

i
)√

n ∑ y2
i (∑ y2

i )
(22)

R2 = 1− ∑n
i=1 (xi − yi)

2

∑n
i=1 (xi − xi)

2 (23)

where yi denotes the AHI-based ρw or TSS concentrations, xi is either one of the in-situ
ρw/TSS, and “n” denotes the total number of samples.

3. Results
3.1. Comparison of Two Atmospheric Correction Approaches

Table 4 shows the comparison of the ρw derived on the basis of the SWIR and NIR-
SWIR approaches and the mean and standard deviation (STD) of all 48 hourly AHI images,
from 2016 to 2018. For each AHI image, the mean and STD were calculated for all sub-scene
within box A, B, and C. The ρw was lower when the NIR-SWIR method was adopted over
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the SWIR method for all AHI bands. Figure 4 shows the overall comparison of ρw when
the SWIR and NIR-SWIR were adopted for box A and B. In comparison to the NIR-SWIR
method, the SWIR method yielded higher ARE, which worked out from the ρw for AHI
band 1 (13.0–66.6%) in all three regions (A, B, and C). Similarly, ARE value of other bands
showed that, the SWIR method resulted in higher ρw than the NIR-SWIR method, by
9.3–29.9% and 13.3–208.5% in bands 2 and 3, respectively, in all three regions. Resultant
ρw in the NIR band were also higher in box A and B (ARE 59.9–97.6%), whereas box C
was not considered for calculating the NIR reflectance, as both methods within box C
yielded multiple negative values over clearwater. Results showed that ρw worked out
by applying the SWIR method were slightly higher (directly above the 1:1 line), with an
average RMSE of 0.0046 (Figure 4). The underestimation of ρw by the NIR-SWIR approach
might be associated with higher aerosol reflectance ratio and ρa estimation, by the NIR-
SWIR approach.

3.2. In-Situ Validation of Water-Leaving Reflectance

Validation of AHI-derived water leaving reflectance (AHI-ρw) in visible bands, using
both atmospheric approaches, was performed using in-situ TriOS hyperspectral data that
were collected within ±5 min of the AHI image acquisition time. The AHI pixel was
selected after matching the geographical location of in-situ data with the closest pixel of the
AHI image. For accuracy assessment, R, RMSE, and APD were used for AHI-ρw validation.
The validation results are shown in Table 5, for AHI band 1 (blue-470 nm), 2 (green-510 nm),
and 3 (red-640 nm). The correlation coefficient, R, for the green and red band, shows a
reasonable correlation (>0.5) for both the NIR-SWIR and SWIR methods. However, the
SWIR method shows better results than the NIR-SWIR method for the blue band. The
NIR-SWIR method underestimated the blue band by 124%. The overall reasonable value
of R suggests that these methods could be used to derive AHI-ρw when water reflected
reasonably in visible bands. For instance, the highest in-situ values of reflectance in blue,
green, and red bands were 0.09, 0.1, and 0.08. Dorji, et al. [58] showed in their study that
AHI could not be used reliably at low reflectance values (clear seawater). The R, APD, and
MSRE results suggest that the SWIR method outperformed the NIR-SWIR method in all
visible bands (Table 5). The lowest RMSE of 0.014 and the highest R of 0.87 was observed
for band 3, as compared to the other two visible bands that were corrected using the same
approach. Figure 5 shows the scatter plot between in-situ ρw and AHI-ρw.

Table 4. The AHI water leaving reflectance (ρw) in bands 1, 2, 3, and 4 was computed for NIR-SWIR
and SWIR atmospheric correction approaches. The mean and STD of ρw outcomes were finalized
from box A, B, and C for all available AHI data.

Band ρw Box A Box B Box C

SWIR NIR-
SWIR SWIR NIR-

SWIR SWIR NIR-
SWIR

1 Mean 0.0400 0.0306 0.0384 0.0340 0.0140 0.0111
STD 0.0085 0.0063 0.0078 0.0062 0.0062 0.0050
ARE 23.3% 13.0% 66.6%

2 Mean 0.0583 0.0494 0.0520 0.0478 0.0185 0.0158
STD 0.0081 0.0058 0.0090 0.0081 0.0066 0.0052
ARE 15.3% 9.3% 29.9%

3 Mean 0.0612 0.0534 0.0313 0.0277 0.0048 0.0019
STD 0.0184 0.0161 0.0180 0.0174 0.0036 0.0025
ARE 13.3% 16.5% 208.5%

4 Mean 0.0120 0.0062 0.0058 0.0032
STD 0.0085 0.0070 0.0054 0.0044
ARE 59.9% 97.6%
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Table 5. In-situ validation of the water-leaving reflectance (ρw) derived from the AHI in visible bands
corrected using the NIR-SWIR and SWIR approaches.

Band 1 (440 nm) Band 2 (510 nm) Band 3 (640 nm)

ρw NIR-SWIR SWIR NIR-SWIR SWIR NIR-SWIR SWIR

R 0.43 0.66 0.55 0.72 0.86 0.87
MAE 0.031 0.016 0.030 0.016 0.012 0.012

RMSE 0.034 0.02 0.032 0.019 0.014 0.014
APD 124% 47% 71% 31% 94% 38%
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3.3. Calibration and Validation of the Regional TSS Model

A new regional TSS model was developed on the basis of the AHI red and green
band. First, the AHI red band threshold value, Rrs(640 nm) ≥ 0.01 sr−1, was used to
classify water in two different water classes, low TSS water class, and moderate-high TSS
water class. [59] also used this threshold value for Rrs(740 nm) to classify water in different
water-types, before developing the TSS model. In this study, the threshold was selected
based on in-situ hyperspectral data and corresponding TSS concentrations. When TSS
concentration was low, Rrs(640 nm) < 0.01 sr−1, the green band was more significant to
estimate the TSS, and as TSS concentration increased, the red band became more significant
for estimating the TSS. Figure 6a shows the correlation between AHI-green band and
in-situ TSS and Figure 6b shows correlation between AHI-red band and in-situ TSS. Where,
Rrs(640 nm) < 0.01 sr−1, AHI’s green-band-based linear model (Equation (24)) was used
to estimate TSS, and where Rrs(640 nm) ≥ 0.01 sr−1, AHI’s red-band-based linear model
(Equation (25)) was used to estimate TSS. About 80% and 20% split was used to develop
and validate the regional model, respectively. Figure 6c shows the model validation.
Within the validation dataset, the developed model estimated low and high TSS with
reasonable accuracy, resulting in an MAE of 0.2 mg/L, RMSE of 0.2 mg/L, and APD of
11% for TSS < 10 mg/L, and MAE of 3.1 mg/L, RMSE of 4.3 mg/L, and APD of 10% for
TSS > 10 mg/L. Overall, the models performed well, exhibiting a determination coefficient
R2 of 0.86 and an overall MAE of 2.2 mg/L, RMSE of 3.6 mg/L, and APD of 11%.

TSS = 324.38 × Rrs(510) (24)

TSS = 2214.8 × Rrs(640) (25)
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3.4. Validating TSS Model Using AHI Data

Before using the developed TSS model to map hourly TSS concentrations, The TSS
model was evaluated using atmospherically corrected AHI data. Section 3.2. shows that
the SWIR atmospheric correction approach outperformed the NIR-SWIR approach, when
validated with in-situ water leaving reflectance with respect to the AHI bands. Therefore,
the cloud-free AHI images from 2016–2019, corrected using the SWIR approach and same–
day-station-based TSS data collected by EPD, Hong Kong, was used for validation of
the TSS model. The regionally tuned model estimated TSS ≥ 10 mg/L better (R = 0.83,
MAE = 4.9 mg/L, RMSE = 4.9 mg/L, and APD = 19% ) than TSS < 10 mg/L (R = 0.53,
MAE = 1.8 mg/L, RMSE = 2.1 mg/L, and APD = 38%). Overall determination coefficient
R2 of 0.85 with MAE of 3.1 mg/L, RMSE of 3.9 mg/L, and APD 30% was observed between
the in-situ and AHI-derived TSS measurements (Figure 7).
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3.5. Hourly TSS Concentration Mapping

Hourly TSS concentrations were mapped using atmospherically corrected AHI data
over the study area on 19 December 2016 from 10:00–15:00 (HKT), at a spatial resolution
of 2 km (Figure 8a). From the hourly spatial distribution maps, it was found that the TSS
concentrations decreased along the PRE from 10:00–15:00 HKT. The hourly average TSS
graph showed that the TSS concentration was around 50 mg/L in the Western Huangmao
River estuary in the morning and increased to 57 mg/L in the afternoon at 13:00 HKT and
decreased to 53 mg/L in the late afternoon at 15:00 HKT (blue line in Figure 8b). Likewise,
TSS concentrations increased along the lower reach of the PRE from 20 mg/L to 26 mg/L
from 10:00–15:00 HKT (red line in Figure 8b). However, the diurnal changes in TSS over
clear sea water that the model detected were minimum (green line in Figure 8c). The
average TSS difference observed over clear seawater was only 0.3 mg/L from 10:00–15:00
HKT. However, the difference was significant in the coastal areas. This might suggest that
the changes in water reflectance were due to changes in the TSS concentration rather than
changes in solar geometry throughout the day.

3.6. Validation of Diurnal Variation in Turbidity Front

Diurnal variation in turbidity fronts due to the wind, tides, and upwelling could also
be monitored using the NSMI [20]. In this study, the NSMI values were assessed and an
NSMI value >= 0.14 was further used as the threshold value for tracking the changes in
the turbidity front, as the NSMI value 0.14 corresponded to the TSS value 20 mg/L. The
value of NSMI increased as the suspended material increased. Figure S3 of supplementary
data shows the variation in NSMI during daytime from 10:00–15:00 HKT, with a half-
hourly difference. It was found that the noise in the clear water regions increased in the
afternoon. Vanhellemont, et al. [60] also mentioned that the remote-sensing reflectance (Rrs)
became the highest at local noon when considering pure water (TSS Min = 0.0 mg/L). They
further concluded that in the geostationary satellites, variation in Rrs as a result of varying
satellite-solar geometry was minimal for highly turbid waters. Therefore, we expect that
the changes observed in the turbidity fronts (Figure 9) were the results of the actual changes
in turbidity rather than the diurnal variation in water reflectance caused by the changes in
solar zenith and azimuth angles, during the daytime. Figure 9 shows the changes in the
turbidity front (TSS contour of 20 mg/L) observed from the AHI data during the daytime.
This part of the study concluded that AHI data could be used for monitoring diurnal TSS
changes, as the clouds have a great impact on the data available from other ocean color
satellites; thus, data gaps in ocean color satellites due to cloud cover can also be filled by
the AHI images.
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4. Discussion

In this study, we investigated the mapping of TSS concentrations with Himawari-
8’s AHI sensor in the Pearl River estuary (PRE) and adjacent coastal waters. The study
evaluated the possibility and limitations for mapping high temporal variation in TSS con-
centrations in the study area. AHI can capture multiple images per day. However, changing
solar geometry (solar zenith and solar azimuth angle) throughout the day have substantial
impacts on the collected satellite radiance (Ltoa). A previous study by Dorji, et al. [58] shows
that the Ltoa in the AHI red band decreased by 31.9% (from 13.2 to 9.0 W m−2 µm−1 sr−1)
from 10:00 to 15:00, in the Australian coastal waters. Thus, it is critical to consider the
solar geometry when performing atmospheric correction of AHI. Otherwise, such a large
variation would result in a high relative error in the AHI water-leaving reflectance (ρw)
data and thus in the final resulting TSS product. In the current study, which studied the
varying solar geometry, two separate atmospheric correction approaches—the NIR-SWIR
approach (using band 4 and 5) and the SWIR approach (using band 5 and 6), were used to
derive the ρw differently. For the three test regions, ρw in AHI (bands 1 to 3) retrieved by
the SWIR atmospheric correction approach outperformed the NIR-SWIR approach. The
NIR-SWIR atmospheric correction approach was established on the hypothesis that ρw in
the NIR band was nearly zero; however, visual collection of clear seawater data from box C
could have caused the presence of pixels with ρw greater than zero, and thus potentially in-
creased the estimation of the aerosol reflectance ratio ε(4,5). Moreover, the use of a median
value of ε for the whole image could also have contributed to the lower accuracy of the
NIR-SWIR approach as ε can be changed for each pixel, as ρa was not necessarily spatially
homogenous, especially near the coast, where the water turbidity was more variable. The
median value of ε(4,5) was also always higher than the Median values of ε(5,6) for the
available data in this study. Neukermans, et al. [22] and Vanhellemont and Ruddick [4] also
proved that the combination of shorter and longer wavelengths (NIR-SWIR) resulted in
higher values of ε than the combination of longer wavelengths (SWIRs) for SEVIRI and OLI,
respectively. Vanhellemont and Ruddick [4] also found that in areas of high turbidity, the
SWIR method gave higher and more reliable TSS values than the VIR-NIR approach, as the
resulting ρw was higher using the longer wavelength as compared to that using shorter NIR
wavelengths. Our study also showed similar results by estimating higher ρw by the SWIR
approach than the NIR-SWIR approach. Due to the lower ρw estimation by the NIR-SWIR
atmospheric correction approach, the derived TSS concentrations were also lower than
TSS, which was derived by the SWIR atmospheric corrected data as input. Overall, a
lower accuracy was found for the NIR-SWIR approach than for the SWIR approach, when
compared to the in-situ spectral data. The correlation coefficients, R, for the red band were
the highest for both atmospheric correction approaches.

A wide range of in-situ TSS data (0.6–114 mg/L) was used, along with spectral data to
develop a new regional AHI-based TSS model, using the green and red bands of AHI. We
validated the algorithm for the study area, and the results showed a good agreement across
the TSS range of 1.0–50.8 mg/L. The AHI-based TSS validation using atmospherically
corrected AHI data produced an overall R2 of 0.85, MAE of 3.1 mf/L, RMSE of 3.9 mg/L,
and APD 30%. Atmospherically corrected AHI data also displayed diurnal variation in
TSS. It was found that the AHI-based TSS maps could be produced at high frequency with
acceptable precisions for TSS≤ 114 mg/L. Nonetheless, TSS occasionally crossed this upper
limit [61]. In the study area, total inorganic particles and turbidity were proportional to
TSS [61]. However, organic substances also contributed to TSS [62], and optical properties
were also affected by Color Dissolved Organic Matter (CDOM) [63]. Moreover, normally
Chl-a concentration has a much smaller variation than TSS, with an average value of
3.11 mg/m−3 [62], thus affecting only the blue and green portions of the electromagnetic
spectrum. TSS concentrations in the estuarine area were usually moderate-high and the
water reflected significantly in the red band. Therefore, the regional TSS algorithm relies on
the AHI’s red band. Absorption effects of CDOM largely weakens in red and NIR bands [63]
and the best correlation band shift from red to NIR with increasing TSS concentration [64].
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Therefore, there is a need to study changes in the spectral combination of red and NIR
band due to high TSS concentrations where the red band becomes saturated.

The AHI is featured by a higher temporal resolution (10 min for the whole earth disk)
and it covers a spatial area much greater than the only available geostationary ocean color
sensor, GOCI. When the ultra-high image capturing frequency is adopted, AHI is capable of
divulging the diurnal variation of TSS in turbid estuarine plumes. This study demonstrates
that applying a suitable atmospheric correction method to AHI images can provide useful
information on the diurnal dynamic of TSS concentrations. Such information would help
improve the environmental monitoring and management of coastal waters within the
target region of Himawari-8.

Himawari-8 is a meteorological satellite by design and AHI onboard Himawari-8 is not
formerly constructed to study water quality parameters. Therefore, the signal-to-noise ratio
(SNR) for the visible-Short wave infrared bands of AHI is inferior to that of the specially
constructed ocean color sensors. This low SNR might also add discrepancy between the
TSS derived from the AHI and the in-situ measured TSS concentrations. However, previous
studies by Vanhellemont, et al. [60] showed that the noise equivalent errors in TSS due to
SNR in geostationary satellite data could be reduced by temporal averaging 10 min data
to the hourly interval, without losing the temporal changes of TSS concentrations due to
tidal variations. Furthermore, the current AHI processing, proposed in this study and
the TSS algorithm used, still needs to be further investigated with the aid of large in-situ
water leaving reflectance data and diurnal in-situ TSS data. However, this study shows
that there is a potential for using AHI data to establish operational implementation and
near-real-time data analysis for TSS mapping.

5. Conclusions

This study demonstrates the ability of the Himawari-8 AHI sensor in monitoring Total
Suspended Solids (TSS) concentrations in moderately turbid to highly turbid coastal waters
of the Pearl River Estuary and adjacent coastal areas. The NIR-SWIR and SWIR atmospheric
correction approaches were adopted in this paper for the atmospheric correction of AHI
data to study the ocean color. AHI-derived remote-sensing reflectance (Rrs), using the SWIR
approach, in the red band (640 nm) and the green band (510 nm) shows a high correlation
with in-situ Rrs. The Rrs in the red band results in the lowest RMSE, when corrected
using the NIR-SWIR and SWIR atmospheric correction methods. The regional AHI-based
algorithm was developed for the TSS retrievals. This locally tuned TSS model performed
well within the validation dataset, exhibiting a determination coefficient R2 of 0.86 and
returning RMSE values of 3.6 mg/L. AHI-derived TSS concentrations were also consistent
with in-situ TSS concentrations, producing R2 = 0.85, MAE = 3.1 mg/L, RSME = 3.9 mg/L,
and APD = 30%. AHI can provide more data for mapping diurnal TSS variations. Thus,
atmospherically corrected AHI data based on the SWIR method can be used to capture
the diurnal pattern of TSS concentrations and changes in turbidity at ultrahigh temporal
resolution (every 10 min). TSS concentrations up to 114 mg/L can be mapped with high
accuracy. Moreover, this can be done for fairly low TSS concentrations from ∼1.0 mg/L
upwards (TSS∼114 mg/L). In summer afternoons, only TSS concentrations before 1:00
pm HKT could be derived over the study area, due to high sun-glint afterwards. These
TSS measurements at high frequency provide not only detailed information for efficient
environmental monitoring but are also important for gap filling in ocean color satellite
data, and help researchers to better understand the TSS dynamics in sensitive coastal and
estuarine environments.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072
-4292/13/3/336/s1. Figure S1: (a) Himawari-8 image (2nd June 2016 (10:00 HKT) and (b) Sun
glint affected Himawari-8 image 2nd June 2016 (14:00 HKT), Figure S2: In-situ station used for
TSS algorithm validation, Figure S3: Half hourly variation in turbidity derived from Normalized
Suspended Material Index (NSMI), Table S1: Characteristics of geostationary satellites, Table S2:
Ozone and aerosol optical thickness values used in generating the LUT using 6SV1.1, Table S3:
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Hourly Total precipitable water vapor content (PWC) used in generating the LUT using 6SV1.1, Table
S4: AHI image date and same day EPD data used for TSS model validation.
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