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Abstract

Climate change will be a powerful stressor on ecosystems and biodiversity in the second

half of the 21st century. In this study, we used the satellite-derived Normalized Difference

Vegetation Index (NDVI) to examine a 34-year trend along with the response of vegetation

to climate indicators surrounding the world’s largest megacity: the Pearl River Delta (PRD)

of China. An overall increasing trend is observed in vegetation productivity metrics over the

study period 1982 to 2015. Increase in winter productivity in both natural ecosystems and

croplands is more related to increasing temperatures (r = 0.5–0.78), than to changes in rain-

fall. For growing season productivity, negative correlations with temperature were observed

in cropland regions, and some forests in the northern part of PRD region, suggesting high-

temperature stress on crop production and forest vegetation. However, increased winter

and spring temperatures provide higher opportunities for cropping in winter. During the

decade 1995–2004, vegetation productivity metrics showed a reversal in the upward trend.

The geographical and biological complexity of the region under significant climatic and

development impacts suggests causative factors would be synergistic. These include our

observed decrease in sunshine hours, increasing cloud cover associated with atmospheric

aerosols from industrial and urban development, direct pollution effects on plant growth, and

exceedance of high temperature growth thresholds.

Introduction

The Intergovernmental Panel on Climate Change (IPCC)’s Fifth Assessment Report (AR5),

expresses high confidence that climate change will be a powerful stressor on both natural and

cultivated ecosystems in the second half of the 21st century [1], especially under high-warming

scenarios. The IPCC also cites impacts on global food production such as a potential 10–22%

reduction in the Chinese rice yield [2], and decline in tropical plants which are already nearing

their upper thermal limits [3]. In most cities of the developing world, the surrounding hinter-

lands are intensively cultivated to supply urban markets, therefore more significant impacts of

climate change on food production would be expected.
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In evaluating the impacts of climate change on ecosystems at a global scale, the remote sens-

ing-based Normalized Difference Vegetation Index (NDVI) has been extensively used along

with climate data [4–7]. The NDVI shows a high correlation with vegetation productivity; and

the effectiveness of NDVI is based on the fact that chlorophyll in healthy green leaves strongly

absorbs red radiation, and the spongy mesophyll layer in healthy leaves strongly reflects near

infra-red (NIR) radiation [8]. Changes in vegetation phenology and productivity have become

an important topic in global climate change and ecosystem analysis research. Changes in phe-

nology are expressed as changes in leaf density and photosynthetic activity through growing

seasons [9,10]. Seasonal characteristics of plants, such as emergence and senescence, depend-

ing on the characteristics of the lower atmosphere, including the annual cycle of weather pat-

terns and temperature and precipitation characteristics. For example, Jeong et al., (2011) [11]

measured the start, end and length of vegetative growth from NDVI time series, compared to

climate data over three decades, in the northern hemisphere. They observed that the growing

season had advanced by 3.5 days and growing season length increased by 6.5 days per decade.

De Jong et al., (2013) [6] used NDVI to examine the factors responsible for greening or brow-

ning trends in vegetation activity globally, and found that half of the observed trends were

induced by climatic changes.

Recent studies on climate change impacts on flora and fauna in subtropical and tropical

areas of China have observed an increased incidence of damage from extreme climate events

such as severe spring frosts following unseasonal warm weather which precipitates early tissue

growth [12,13]. Ge et al., (2015) [13] concurred that a higher frequency of frost damage would

favour deciduous species, which are more resilient to frost and in the long run would cause the

disappearance of evergreen forests above 600 m in areas of central China.

As one of the world’s emerging economies, China has experienced rapid development,

industrialization, and urbanization. At present, China is dealing with conflicting issues of miti-

gating climate change in the international arena, while protecting its resources and environ-

ment during a domestic socioeconomic transition. Recently 10 megacities have emerged in

China, among which the Pearl River Delta (PRD) region is the largest cluster of megacities.

Whereas the average global temperature has increased by approximately ~0.8˚C since 1880,

two-thirds of this since 1975 [14], in the largest cities, the urban heat island (UHI) effect has

added 1.72˚C to the global increase [15]. In the PRD region temperature increase due to the

UHI effect in the 1983 to 1993 decade of rapid industrialization and urbanization was 0.4˚C

[16], and air quality deteriorated, with photochemical smog and NOx becoming semi-persis-

tent over the region [17]. In addition, the regional heat dome circulation over PRD suggests

local temperatures will increase further, even without further local developments [18]. Accom-

panying these climatic effects have been dramatic forest and vegetation disturbances, soil ero-

sion, and loss of farmlands, natural ecosystems and biodiversity.

Many site-specific ecological studies have been conducted in the PRD region, but the

impacts of changes in meteorological parameters e.g. seasonal metrics of temperature, precipita-

tion as well as landscape-wide climatic sensitivity, have not been studied. Most climate change

impact studies address either natural or human-modified ecosystems. This study focusses on

determining vegetation responses to different climatic factors across a large, dynamic and

diverse region of rural-to-urban transition. The study determines the spatial patterns of tempo-

ral trends in precipitation, temperature, and vegetation phenology and productivity.

Study area

The PRD region has grown at a breakneck pace, from farmland to urban-industrial in the last

three decades. Although the PRD region contains eight megacities with populations over 10
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million and 123 cities with between 1 and 10 million, almost 63% of the population was still

non-urban in 2015 [19]. If all PRD cities are considered as one entity, the PRD overtook

Tokyo as the world’s largest megacity in both size and population, in 2010 [20]. Accompanying

this growth has been a dramatic deterioration in air quality, although no data indicating long-

term trends are available. The study area comprises the 11 PRD prefectures of Hong Kong,

Macau, Shenzhen, Guangzhou, Dongguan, Shunde, Jiangmen, Foshan, Zhongshan, Huizhou

and Zhaoquing (Fig 1). A land use land cover (LULC) map from the Moderate Resolution

Imaging Spectroradiometer (MODIS) satellite images indicate approximately 9% urban/built-

up, 31% cropland including tree cultivation, and 45% forest (Fig 1). Rice, with two crops a year

occupies 76% of agricultural land, with the early crop from March to July and the late crop

from July to November. Often this will be followed by a vegetable, winter wheat, or rapeseed.

In addition, much of China’s output of sugarcane is produced in the region. Other agricultural

products include sweet potato, vegetables, citrus fruits and tea. With increasing industrializa-

tion, more land has been converted to cash crops and vegetables, and grain production has

intensified recently. This small PRD region, only 0.4% of China’s land area, now accounts for

10% of China’s gross domestic product (GDP). The climate of the PRD is tropical, with hot

and humid summers from June to August, with approximately 2500 mm rainfall between

Fig 1. Location map of the study area and spatial distribution of land use land cover classes [21].

https://doi.org/10.1371/journal.pone.0245467.g001
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April and September, and cool dry winters from November to March. The natural vegetation

consists of tropical and subtropical evergreen forest.

Methods

Data sets and pre-processing

NDVI data and phenology extraction. Coarse-scale GIMMS (Global Inventory Model-

ing and Mapping Studies) NDVI datasets provide the most consistent long-term data of the

earth’s biosphere [22]. Its recent version (NDVI3g.v1; https://ecocast.arc.nasa.gov/data/pub/

gimms/3g.v1/) [23,24] spans more than 34 years from 1981–2015 at 8 km spatial resolution

(Table 1). The datasets are based on 15-day maximum value composites that provide 24 NDVI

composite images a year. For this study, we used 816 fortnightly observations for 34 years

(1982 to 2015) of the NDVI data. The fortnightly Maximum Value Composites (MVC) largely

removed noise, though it includes disturbances caused by cloud contamination, atmospheric

variability, and bidirectional effects, which show as undesirable noise [5], therefore, the NDVI

product is accompanied by a quality assessment (QA) layer which enables pixels to be excluded

or weighted when reconstructing the time series. To avoid this, the Whittaker smoothing

approach was implemented in R to reconstruct a continuous NDVI time-series.

In evergreen ecosystems, changes in vegetation phenology and productivity are driven by

the emergence of new leaves and shedding of older leaves, whereas seasonality in photosynthe-

sis is explained by leaf development and demography [27]. We applied the midpoint pixel

approach to extract the Start of Season (SOS) and End of Season (EOS) time from the

smoothed NDVI time series by scaling the annual cycle between 0 and 1 [28]. This is one of

the most consistent methods for extraction of phenology metrics regardless of vegetation

cover type, and applicable to a variety of ecosystems [7,29]. Then six additional phenology and

vegetation productivity metrics (length of growing season (LOS), position of season peak

(POP), position of season trough (POT), mean growing season NDVI (MGS), maximum sea-

sonal NDVI (Peak), and minimum seasonal NDVI (Trough)) were determined using the Phe-

nologyRaster() function in the R package ‘green-brown’. Further analysis was confined to

pixels showing significant seasonality where the mean annual NDVI amplitude was greater

than 0.1 [29]. Description and ecological meanings of the phenometrics are given in the sup-

plementary S1 Table.

Seasonal climate variables from satellite-based precipitation and temperature data.

Temperature and precipitation are considered representative climate variables. Station-based

point measurements cannot capture a continuous spatial distribution of precipitation and

temperature [30]. Therefore, to compare the spatial and temporal variability of precipitation

with the NDVI data, the CHIRPS (Climate Hazards Group Infrared Precipitation with Station)

data set, developed by the United States Geological Survey (USGS) in collaboration with Earth

Resource Observation and Science (EROS) centre is used [25]. CHIRPS is generated by inte-

grating satellite imagery and in-situ gauge collected observations. The daily rainfall data are

distributed at 0.5˚ (~5 km) spatial resolution. In this study, we used the daily CHIRPS data

Table 1. Datasets used for the study.

No. Data/Product Data Type Time Range Spatial Resolution Temporal Resolution

1 NDVI GIMMS3g [23,24] Raster 1982–2015 ~8 km 15 Days

2 CHIRPS Precipitation [25] Raster 1982–2015 ~5 km Daily

3 ERA5 (mean_2m_air_temperature) [26] Raster 1982–2015 ~25 km Daily

4 MODIS LCLU product (MCD12Q1) [21] Raster 2001–2015 ~0.5 km Annual

https://doi.org/10.1371/journal.pone.0245467.t001
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from 1981 to 2015. Similarly, temperature data were derived from the gridded ERA5, the 5th

generation Reanalysis data of the European Centre for Medium-Range Weather Forecasts

(ECMWF), temperature product (mean_2m_air_temperature) provided by the Copernicus

Climate Change Service (C3S) [26]. The daily average temperature datasets are available from

1979 to ‘within 5 days of real time’ at a spatial resolution of 0.25˚. To examine the functional

relationship between the climate variables and the phenology metrics as well as to explain the

year-to-year variation in vegetation dynamics, the climate variables (temperature and precipi-

tation) were converted to seasonal and annual composites. Layers of annual and seasonal (four

seasons) variables for precipitation (accumulative) and temperature (average) were created.

The winter season comprises December, January, and February (DJF), spring comprises

March, April, May (MAM); summer is June, July and August (JJA), and autumn includes Sep-

tember, October and November (SON).

Land use land cover data. The LULC map of the study area was prepared from a MODIS

land cover type product (MCD12Q1, version 6 product) for 2001 and 2015, at 500 m spatial

resolution. The data was retrieved from the NASA EOSDIS Land Processes Distributed Active

Archive Center (LP DAAC, https://lpdaac.usgs.gov). Both LULC maps of 2001 and 2015 were

overlaid to remove pixels showing change over the period, and the remaining persistent pixels

were resampled to 8 km resolution using a majority filter to match the spatial resolution of the

GIMMS NDVI data. The analysis was performed on pure pixels i.e. those of the 8 km pixels

having over 80% of internal sub-pixels belonging to the same class [31], out of the four general-

ized vegetation classes in the study area, viz., Forest (F), Shrubland (SH), Cropland (CL), and

mosaic of Farmland/Cropland/Forest (Mix).

Temporal trend in phenology and climatology

Temporal trends in phenology metrics over the 34 years 1982–2015, were determined on a

pixel by pixel basis. The trends in NDVI series were determined using linear regression on sea-

sonally adjusted time-series as well as on annually aggregated time series [32]. The values of

slope (trend) were masked where the p-value was greater than 0.05 (95% confidence level) to

obtain only significant NDVI time series trends. For a comprehensive overview of the LULC

specific changes in the vegetation and climate variables, all variables were spatially averaged

over the LULC classes and linearly regressed along time. In addition to LULC classes, the vari-

ables were also averaged for pixels indicating greening and browning trends over time. From

the fitted linear models, correlation coefficients, slope, the significance of slope and the total

amount of change (multiplying slope of the fitted model by the length of the time series) were

determined [6]. These trends were also fitted using a Local Polynomial Regression Fitting

(loess) algorithm to show the overall changes over time.

Spatial correlation of climate variables with seasonal phenology metrics

The functional relationships between NDVI-based phenology metrics and the ten environ-

mental variables (seasonal and annual measures of precipitation and temperature) were exam-

ined to explore inter-annual variation in phenology. Partial correlation analysis was used to

explain the variation in each phenology metric against changes in temperature and precipita-

tion variables. Thus the confounding effects of temperature were eliminated while computing

the partial correlation with each of the precipitation variables, and vice versa for temperature

[33]. Insignificant pixels (p> 0.05) were masked out. The results of partial correlations analy-

sis were also spatially aggregated by homogenous patches of LULC classes to understand the

vegetation responses across different LULC classes.
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Lag time analysis

The lag times of NDVI to precipitation and temperature were determined by performing cor-

relation analysis. For this, the datasets were transformed to Vegetation Condition Index (VCI)

[34], Precipitation Condition Index (PCI) [35], and Temperature Condition Index (TCI) (Eqs

1–3). These transformations are pixel-based normalization of the datasets to control local dif-

ferences for an integrated raster-based analysis in which short signal of changes in the variables

are filtered by separating them from the long-term ecological and climate signals. The cross-

correlation coefficients of VCI with PCI and TCI were determined using Pearson’s cross-cor-

relation function (Eq 4) at different lag-time scales (0, 15, 30, . . ., 150 days). The analysis was

performed up to the 10th lag, in 15-day intervals up to 150 days [36].

For each lag, two rasters comprising correlation coefficients and significance values of the

correlation were obtained. Each correlation raster layer was masked by pixels with significant

correlation (p< 0.05), and insignificant pixels were removed for subsequent analysis. Overlay

analysis of all the correlation raster layers was performed to find the highest correlation value

of each pixel, then gave the lag time corresponding to the maximum correlation value for

every pixel [37]. This resulted in two layers representing maximum correlation, as well as lag

time for the maximum correlation.

VCI ¼
ðNDVI � NDVIminÞ

ðNDVImax � NDVIminÞ
ð1Þ

PCI ¼
ðRainfall � RainfallminÞ

ðRainfallmax � RainfallminÞ
ð2Þ

TCI ¼
ðTemperature � TemperatureminÞ

ðTemperaturemax � TemperatureminÞ
ð3Þ

where max and min represent the maximum and minimum values of corresponding variables

during the study period.

PCC¼

XL� 1

t¼0

TSat � TSa
t

� �
� TSbt� lag � TSb
� �h i

XL� 1

t¼0

ðTSat � TSat Þ
� �2

 !0:5

�
XL� 1

t¼0

ðTSbt� lag � TSbÞ
h i2

 !0:5
ð4Þ

where TSat and TSbt b corresponds to VCI and PCI (or TCI), respectively; L is the length of time

series, lag is the length of temporal shift applied before the correlation, and t refers to the single

time step of the time series.

Results

Spatial differences in trends in annual temperature and rainfall during

1982–2015

Temporal trend maps of temperature and rainfall indicate that over the study period, the

whole PRD region has undergone a significant increase in temperature, with an increase in

mean annual temperature of 0.05–0.06˚C per year, amounting to 1–1.2˚C over the study

period (Fig 2). Spring temperatures show the greatest increase, of almost 2˚C. Winter and

summer temperatures show an increase of approximately 0.7˚C over the study period. Rainfall,

on the contrary, shows little change except in the northeast forested region of ZhaoQuing
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where a small increase is observed over the whole 34 years study period. These image data

showing temperature increase distributed evenly over the whole PRD region, are supported by

climate station temperature data (S1 Fig) and the rainfall observations are supported by a

recent study by Nguyen et al. (2018) [38], who did not observe any significant rainfall trend in

this region of China.

Rapid urban sprawl, deforestation and browning trends

Synchronous to these climatic changes has been a dramatic increase in urbanization in the

PRD region. Nighttime lights imagery from the NASA’s National Polar-orbiting Partnership

satellite show an increase of 340 to 519 million km2 in illuminated areas in just 20 years from

1992 to 2012 (Fig 3A). This rapid urbanization trend is also evident from browning trends in

NDVI and vegetation productivity metrics (Fig 3B and S2 and S3 Figs). Over the past three

decades, urban areas in the PRD region quadrupled, with the accelerated growth of small

towns into cities and megacities [39]. The amount of urban area grew from 0.5% in 1979 to

10.8% in 2009 [40] by conversion of cropland into urban areas. Displacement of these farm-

lands to relatively infertile hilly land away from city centers also resulted in accelerated defor-

estation [39,40]. On the maps, these deforestation patches are indicated by pixels showing

browning trends (Fig 3B). These regions are adjacent to the urban areas of Huizhou, Dong-

guan and Guangzhou, which themselves show significant urban heat island effects [41] in

addition to greenhouse-induced warming. This may partly explain the up to 2˚C increase in

temperatures noted above, which is well above the global background warming rate of approx-

imately 0.7˚C.

Fig 2. Spatial patterns of trends in seasonal and annual temperature and rainfall. Insignificant pixels (p> 0.05) are masked out in grey.

https://doi.org/10.1371/journal.pone.0245467.g002
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Trends in land cover specific vegetation productivity

Fig 4 shows the trends of the phenology and productivity metrics, grouped by the individual

LULC class, for those metrics showing significant trends over the study period (Table 2).

These are the Mean Growing Season NDVI (MGS), the maximum NDVI in the season (Peak),

and the minimum NDVI in the season (Trough). When measured over the whole 1982–2015

period, all have increased, and the End of Season (EOS) has become significantly delayed. Spa-

tial distribution of trends in monthly NDVI and phenometrics, as well as graphical summaries

of phenometrics, are given in S2–S4 Figs.

For cropland, MGS is the most meaningful indicator of crop production and greenness,

and this has increased with a significant upward trend of NDVI from 0.55 to 0.62, (r = 0.46)

during 1982–2015 (Fig 4). Notably, Trough for cropland areas has increased very significantly

from 0.38 to 0.48 (r = 0.78) (Fig 4), suggesting increasing opportunities for crops to be grown

in some areas in the winter season.

Both forest and cropland show significantly increasing NDVI for those phenology variables

MGS, Peak and Trough, which measure vegetation greenness and/or productivity. Both also

show significant lengthening of the growing season over the study period, with a delayed EOS

by 15–20 days (all ecosystem types), with advanced SOS by 6–7 days (for forest) and advanced

SOS by 10 days for cropland (Table 2). The effective EOS in the southern China region is Feb-

ruary to March, the coldest month and dry season. As discussed above (Fig 2), winter and

spring temperatures have increased significantly thus these increased winter and spring tem-

peratures are already significantly affecting vegetation productivity of the PRD region.

The loess fitting of these four significant phenology metrics (Fig 4) shows an interesting

reversal in the upward trend for the NDVI variables MGS and Peak, for all ecosystem types in

the middle period from 1995 to 2004, followed by a continued rise up to 2015. It is also notable

that the the Maximum NDVI in season Peak shows a much greater trend reversal than the

Minimum NDVI in season Trough, suggesting that the reduced NDVI in this middle period

1995 to 2004, may be related to summer, rather than winter conditions. The time of Peak

NDVI (POP) for all ecosystem types was also delayed by approximately 5 days in the middle

period (Table 1, S5 Fig). Fig 5B shows the loess fitting of the average trend of sunshine hours

in the PRD region, which also indicates a significant decline during the late 1990s and early

2000s. This was accompanied by increased summer rain (Fig 5A), and by a period of increased

cloudiness over China [42] and southwest China [43]. A decrease in sunshine hours reported

Fig 3. Urbanization and farmland reclamation. a) trend of urban area increase (1992–2012) in the PRD based on

nightlight imagery b) annual trend of seasonally aggregated NDVI time series. Orange represents browning pixels

while greening pixels are in green, and grey colour shows pixels with insignificant trends (p> 0.05).

https://doi.org/10.1371/journal.pone.0245467.g003
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for China between 1960–1990 [44] was found to be greater over urban areas. The loess graphs

also show increased winter and spring temperatures in the 1995–2004 period, and this is usu-

ally consistent with increased cloud cover due to the insulating effects of clouds in cold

weather.

Response of vegetation to seasonal and annual changes in precipitation and

temperature

As the NDVI is expected to be related to both temperature and rainfall, we performed partial

correlation analysis to control the confounding effects. As most of the mapped variables were

not significant (S6 and S7 Figs), only significant variables are shown in Fig 6. It is interesting

that the MGS shows a moderate (r = ~-0.6) negative correlation with temperature, especially,

but not confined to, crop-growing areas, for all seasons of the year. Peak NDVI also shows a

negative correlation with temperature (r = ~-0.6) over cropland as well as over some forested

regions for all seasons. On the other hand, Trough (NDVI in February) in both forest and

Fig 4. Trends in phenometrics of different LCLU classes with loess fitting and confidence intervals. Only the metrics showing significant trends in most land cover

classes; correlation coefficient (r), slope, significance (p) and total change (TC) is obtained by linear regression analysis of the variables over time.

https://doi.org/10.1371/journal.pone.0245467.g004

PLOS ONE Climate and vegetation trends in the Pearl River Delta

PLOS ONE | https://doi.org/10.1371/journal.pone.0245467 February 24, 2021 9 / 20

https://doi.org/10.1371/journal.pone.0245467.g004
https://doi.org/10.1371/journal.pone.0245467


shrubland regions is positively correlated with temperature (r = 0.5–0.7) for all seasons of the

year. This significant positive correlation of ecosystem productivity with temperature in the

non-growing season (Trough) represents a positive impact on forest growth from the

Table 2. Summary statistics of trends in phenometrics according to LULC class, greening, and browning pixels.

Metric Class r slope p-value TC Metric Class r slope p-value TC

Mean Growing Season (MGS) Greening � 0.75 0.0022 0.0000 0.07 Position of Trough (POT) Greening� 0.31 0.370 0.0726 12.58

Browning� -0.88 -0.0042 0.0886 -0.14 Browning� 0.34 0.560 0.0465 19.04

Forest� 0.47 0.0009 0.0053 0.03 Forest -0.03 -0.040 0.8620 -1.37

Mixed� 0.54 0.0011 0.0010 0.04 Mixed 0.21 0.244 0.2400 8.30

Cropland� 0.46 0.0009 0.0064 0.03 Cropland� 0.54 0.617 0.0009 20.98

Shrubland� 0.64 0.0014 0.0000 0.05 Shrubland 0.23 0.280 0.1870 9.52

Maximum NDVI in Season (Peak) Greening � 0.66 0.0018 0.0000 0.06 Start of Season Greening 0.16 0.192 0.3690 6.53

Browning� -0.87 -0.0049 0.0674 -0.16 Browning� 0.30 0.363 0.0799 12.34

Forest� 0.4 0.0009 0.0206 0.03 Forest -0.16 -0.225 0.3740 -7.65

Mixed� 0.44 0.0009 0.0100 0.03 Mixed -0.04 -0.037 0.8460 -1.27

Cropland� 0.37 0.0008 0.0316 0.03 Cropland� 0.37 0.303 0.0329 10.30

Shrubland� 0.54 0.0011 0.0010 0.04 Shrubland 0.06 0.072 0.7410 2.43

Maximum NDVI in Season (Trough) Greening� 0.81 0.0031 0.0000 0.11 End of Season (EOS) Greening� 0.66 1.120 0.0000 38.08

Browning� -0.39 -0.0007 0.0233 -0.02 Browning� -0.39 -0.513 0.0237 -17.44

Forest� 0.4 0.0011 0.0207 0.04 Forest� 0.44 0.593 0.0085 20.16

Mixed� 0.61 0.0017 0.0001 0.06 Mixed� 0.59 0.716 0.0002 24.34

Cropland� 0.78 0.0023 0.0000 0.08 Cropland� 0.41 0.469 0.0169 15.95

Shrubland� 0.71 0.0022 0.0000 0.08 Shrubland� 0.44 0.616 0.0101 20.94

Position of Peak (POP) Greening 0.01 0.0055 0.9820 0.19 Length of Season (LOS) Greening 0.17 0.238 0.3460 8.09

Browning� -0.43 -0.5790 0.0119 -19.69 Browning� -0.50 -1.010 0.0024 -34.34

Forest -0.09 -0.1460 0.6070 -4.96 Forest 0.11 0.141 0.5390 4.79

Mixed -0.05 -0.0589 0.7930 -2.00 Mixed 0.14 0.144 0.4330 4.90

Cropland -0.04 -0.0349 0.8140 -1.19 Cropland -0.17 -0.191 0.3390 -6.49

Shrubland -0.06 -0.0788 0.7460 -2.68 Shrubland -0.03 -0.0474 0.8680 -1.61

TC shows total change obtained by multiplying slope of the fitted model by the length of the time series).

� denotes a significant trend.

https://doi.org/10.1371/journal.pone.0245467.t002

Fig 5. Trends of summer rainfall and sunshine hours in the PRD. (a) Spatially averaged summer rainfall, (b) annual average time

series of sunshine hours.

https://doi.org/10.1371/journal.pone.0245467.g005
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increased winter temperatures in the PRD region as noted above. For growing season, on the

other hand, the negative correlations of cropland with temperature for growing season MGS

and Peak NDVI are difficult to explain, especially given overall greening trends over the study

period.

Lag time analysis of NDVI with precipitation and temperature

In correlating the NDVI time series with temperature and rainfall, correlations were calculated

for different lag times for each ecosystem type, in 15-day intervals up to 150 days. Results

Fig 6. Maps of partial correlation of temperature and rainfall with vegetation productivity metrics by season.

Pixels with significant correlation (p� 0.05) are shown while insignificant pixels are removed.

https://doi.org/10.1371/journal.pone.0245467.g006
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represent the sensitivity of vegetation productivity to changes in the respective climatic vari-

able on a seasonal basis, and this would suggest the potential time frame of vegetative response

to an extreme event such as drought, heatwave or extreme cold. In all ecosystem types, signifi-

cant lag times are observed (Fig 7), although those for cropland will be strongly influenced by

planting patterns and the initially lower vegetation productivity. Cropland shows higher

responses to both rainfall and temperature, than do the natural ecosystems, no doubt because

planting is timed to coincide with a favourable climate, and the lag times for cropland are no

doubt controlled by the time taken for crop development under the favourable rainfall and

Fig 7. Lag time of NDVI to precipitation and temperature. Lag times for (a) rainfall and (b) temperature to NDVI, of different LUCL classes, the pixel-wise lag

time for maximum correlation of (c) rainfall and (d) temperature with NDVI.

https://doi.org/10.1371/journal.pone.0245467.g007
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temperature regimes. Cropland shows a higher response to temperature (r = 0.77) and shorter

lag time (30 days), than rainfall (r = 0.48) and 60 days lag time. The natural ecosystems also

show a higher response to temperature, with a 75 days lag time for forest (r = 0.63) than to

rainfall with 120 days for forest (r = 0.43). Shrubland’s response is approximately between

those of forest and cropland in both the level of correlation as well as lag time. The natural eco-

systems show almost no response to present rainfall ie. zero lag time, (r< 0.15), but their

response to temperature at zero lag time is higher, ranging r between 0.2 and 0.4.

Discussion

This study demonstrates significant medium-term changes in vegetation productivity over the

region incorporating the world’s largest megacity, the PRD region of southern China. We

observed increasing productivity in both natural and agricultural ecosystems over the 34-year

period 34 1982–2015, especially in the winter season. However, a reversal in the upward trend

for seasonal climate indicators MGS and Peak for the middle period between 1995 and 2004

suggests the operation of factors other than temperature.

The observed negative correlations between cropland and summer-time temperatures

accord with warnings [2,45] that rising global temperatures may impose stress on tropical crops

grown in summer such as rice, which occupies 76% of agricultural land in PRD. The overall

greening trend may also be associated with other factors such as CO2 fertilisation or intensified

farming. However, the observed increased in warming (Fig 2) and its negative influence on

cropland greening and positive association with natural vegetation (Figs 4 and 6) is profound

and corresponds with other global and regional studies [2,45–47]. For vegetation growth and

high grain yield, rice needs daytime air temperatures between 25˚C and 32˚C, but lower tem-

peratures between 20˚C and 25˚C for grain filling and ripening [48]. However, summer daytime

temperatures in the region have recently exceeded this regularly, as mean daily temperatures for

June to September in Hong Kong are now around 28˚C [49]. Rice is Asia’s foremost staple food

crop, and climate change predictions for rice production vary according to models used as well

as with or without CO2 fertilization effects [50]. Wassmann et al. (2009) [51] explained that in

many parts of Asia including China, current temperatures in July and August are already

approaching critical levels for rice production during the critical growth stages, and this is sup-

ported by Tao et al. (2013) [52], who found that rice yield in eastern China was reduced by 3.4%

due to increase in mean temperature during the vegetation growth period. Furthermore, Tao

and Zhang (2013) [47] explained that rising temperatures accelerate the growth of rice, leaving

less time for grain development. Lesk et al. (2016) [53] found that extreme temperature stress

during the growing season had reduced global cereal yields by 9–10% between 1964 and 2007,

thus our finding should not be unexpected. It is important to note that the crop greening or

extension of growing season may not necessarily show a direct correlation with crop yield, espe-

cially under mixed or heterogenous cropping system [54]. Crop yield may vary non-linearly

with increasing NDVI or greenness indicators as NDVI may not indicate a direct relation with

crop biophysical parameters [55]. For example, the relationship between NDVI and Leaf Area

Index (LAI) becomes non-linear in crops with highly dense canopy [56].

Besides croplands, some forest and shrubland regions in the northern parts of Huizhou and

Guangzhou prefectures also show a negative correlation with temperature (r = -0.6), and the

dissociation between temperature and forest greening has been noted in other studies. For

example, deciduous needle-leaf forest in Russia showed negative response to warming [46]

which is counter-intuitive to the observed increase in plant growth in northern high latitudes

due to rising temperatures [46,57–59]. Guo et al. (2018) [57] showed that between 1982 and

2012, only 20% of the non-tropical northern hemisphere showed a strong positive relationship
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between temperature and NDVI, which shrunk from 32% in 1982, and NDVI trends were sup-

ported by tree ring evidence. Since nowhere in the PRD region is too cold for plant growth, ris-

ing temperatures would not necessarily generate increased productivity, and the observed

negative correlations may, as suggested by Corlett, (2011) [3] be a sign of an upper temperature

threshold being reached. These may be reached earlier under conditions of moisture stress

from increased evapotranspiration in a warming climate. The result is reduced carbon uptake

with decreased productivity, rather than direct damage to leaf tissues.

The correlation and lag time maps could provide inputs in developing specific models for

vegetation response to climate predictors by considering temporal lag dynamics. For example,

during the spring drought during 2009–10 in Yunnan, the southwestern province of China, it

was observed that lag time response of vegetation to rainfall deficiency was 90 days for the

evergreen forest while Cropland and Shrubland became stressed earlier (64 days). This indi-

cates varying resistance capacities of different vegetation regimes in an ecosystem [60,61].

However, resistance to extreme climate events may also change due to species composition of

plant communities within a particular land cover type. For example, Abbas et al., (2017) [12]

observed that tropical species suffered more than sub-tropical species during the extreme cold

event in January 2016 in the degraded tropical secondary forest of Hong Kong. Apart from

temporal lag, vegetation response to climate variability can also vary in an ecosystem. For

example, Bégué et al. (2011) [62] divided the study area into three eco-climatic zones based on

the NDVI and rainfall relationship (positive, negative and neutral). Thus, the nature of vegeta-

tion response to climate variability and inputs from lag time maps may enhance mapping and

understanding of intricate responses of dynamic land cover regimes to climate indicators.

The observed reversal in the upward trend in productivity during the decade 1995–2004

corresponds to a period of rapid urbanization and industrialization, deteriorating air quality

and exceptionally warm years. Studies from other regions using GIMMS NDVI have also

reported a reversal in greening trends around the same period, from the mid-1990s to mid-

2000s. For example, Liu et al (2005) [63] found trends of greening-browning-greening for the

periods 1982–1994, 1995–2004, and 2005–2012 respectively over the globe, with browning in

the middle period in many regions. While they do not provide any overall explanation, other

researchers working in specific regions give climatic or other explanations. For example, Park

and Sohn (2010) [64] observed a browning period from 1997 to 2006 in northern East Asia

around 50˚N, explained as reduced rainfall combined with continued warming creating mois-

ture stress. Piao et al. (2014) [65] also attributed a weakened relationship between temperature

and productivity after 1997 in northern Eurasia, to increased drought under rising tempera-

tures. Weakening relationships between productivity and temperature over recent decades

were also observed by de Jong et al. (2013) [46], attributed to large scale climatic catastrophes

accompanying climate change. The complexity of the PRD region precludes a simple explana-

tion for a decadal decline in productivity. However, ongoing massive urbanization and indus-

trialization in the PRD during the study period suggests that our observations of declining

sunshine hours in the late 1990s to early 2000s are at least partly due to dimming from atmo-

spheric aerosols. Higher temperatures during this period may also be partly responsible for the

productivity decline, as agricultural and forest plants meet upper temperature thresholds. This

is supported by our correlation analysis (section 3.4), with negative correlations between tem-

perature and MGS and Peak. In particular, the main staple crop rice may not support the

higher summer temperatures observed over recent decades.

Others have noted trends in solar radiation, rather than in temperature and rainfall, affect-

ing plant productivity. Nemani et al., (2003) [66] observed an increase in Net Primary Produc-

tivity (NPP) in tropical ecosystems between 1982 and 1999, which was primarily attributed to

decreased cloudiness and increased solar radiation. Wei et al. (2018) [67] found that reduced
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radiation, rather than temperature or rainfall anomalies, explains reversals in greenness in

North Central Asia. Piao et al. (2013) [68] found that solar radiation limited productivity in

the northern regions. In addition to increased cloud cover, our observed reduced sunshine

hours from the late 1990s to early 2000s may be associated with the PRD region’s accelerated

urbanization and industrial development especially during the 1995 to 2004 period [69] with

low efficiency in energy use, and consequently increased aerosols/pollution [43,44]. Wang

et al. (2017) [44] found that in China, the ratio of rural to urban dimming increased from 0.39

to 0.87 with increasing urbanization, and reached a maximum when urbanization reached

50% or population exceeded 250 persons/km2. In PRD region, air pollution produces a fog-

like haze, which reflects and absorbs solar radiation, and this effect has been reported from

other parts of China [70,71] and Asia [72,73].

Therefore, the reduction in vegetation productivity observed during the late 1990s and

early 2000s observed here could, in addition to reduced sunshine hours due to increased cloud

cover, result from dimming due to aerosols (Fig 5A). Aerosols act as condensation nuclei in

cloud formation and may increase rainfall (Fig 5B). Aerosols also scatter sunlight, enhancing

planetary albedo, thus reducing received radiation. Additionally, exposure to high surface

ozone and SO2 concentrations common in the PRD [74] can stunt or damage plants [75].

Indeed, tree ring analysis of Pinus massoniana, a common tree in the PRD region indicates

growth reduction in the late 1990s to mid-2000s coincident with increased air pollution, spe-

cifically at polluted sites compared to control sites [76].

An alternative, or parallel explanation for the reduced productivity in the 1995 to 2004

decade may be related to temperature stress, as He & Yang (2011) [77] observed that for the

period 1996 to 2005, temperatures in PRD were above the 30-year average of 1981–2008 (and

see also S1 Fig showing increased temperatures for Zhongshan and Zhuhai meteorological sta-

tions in PRD). This is supported by our findings in section 3.4 of negative correlations between

growing season productivity indicators and temperature.

Studies in different parts of the world [58,59,78] and northern China [31] have reported an

increase in growing season length due to an earlier SOS and /or delayed EOS, but our results

did not indicate significant trends in SOS, EOS and LOS when the whole period 1982–2015 is

considered. Most regions with increasing growing season length are non-tropical, where sea-

sonal phenology is affected by freeze-thaw cycles, whereas nowhere in the PRD region is too

cold for plant growth.

Conclusion

In this study, we examined a 34-year trend in vegetation productivity, precipitation and temper-

ature as well as the response of vegetation to seasonal climate indicators in the Pearl River Delta

region of southern China. An overall increasing trend in productivity metrics was observed

over the study period (1982–2015) which is more related to increasing temperature in autumn

and winter, rather than to changes in the rainfall. This is contrary to the northern parts of

China and other high latitude regions, where extension in growing season length due to

advancement in green-up and/or delay in senescing dates is the primary factor for the higher

seasonal productivity. In the PRD region, negative correlations between temperature and grow-

ing season productivity indicators for croplands, suggest that rising summer temperature dur-

ing the critical crop development stage, have negative implications for rice production in the

region. Some forested regions in the north of the PRD also show negative correlation with tem-

perature for the main growing season productivity indicators. Although longer-term research is

required to understand the impacts of warming on tropical forests, results suggest that increased

warming would have adverse impacts on forests in the PRD region.
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A reversal in the 3-decade trend of increasing growing season and peak productivity was

observed between 1995 to 2004, accompanied by a period of decreased sunshine hours over

PRD. This corresponds to a period of accelerated urbanisation and industrialisation, with

aerosols contributing to solar dimming across the region, potentially with plant tissue damage

from high pollutant concentrations. Along with this reduced radiation, higher summer tem-

peratures during this period may explain the reverse productivity trend, as crops and forest

species meet upper temperature thresholds.

The main finding of this study is overall increased vegetation productivity during the last 3

decades over the PRD associated with winter warming. However, our observed broad-scale,

decade-long decline in productivity and negative correlations of summer growth with temper-

ature, also have implications for crop production, the health of natural ecosystems and global

climate modelling. The study presents the trends, but more research is needed to thoroughly

explain these trends affecting this important region.
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