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Abstract: In this study, we addresse traffic congestion on river-crossing channels in a megacity
which is divided into several subareas by trunk rivers. With the development of urbanization,
cross-river travel demand is continuously increasing. To deal with the increasing challenge, the urban
transport authority may build more river-crossing channels and provide more high-volume public
transport services to alleviate traffic congestion. However, it is widely accepted that even though
these strategies can mitigate traffic congestion to a certain level, they are not essential approaches
to address traffic congestion. In this study, we consider a channel toll scheme for addressing this
issue. Additional fares are applied to private vehicles, that an appropriate number of private vehicle
drivers are motivated to take public transport or switch to neighboring uncongested river-crossing
channels. To minimize the toll surcharge on both neighboring channels, while alleviating the traffic
flow to a certain level, in this study, we provide a bi-objective mathematical model. Some properties
of this model are discussed, including the existence and uniqueness of the Pareto optimal solution.
To address this problem, a trial-and-error method is applied. Numerical experiments are provided to
validate the proposed solution method.

Keywords: bi-objective optimization; congestion pricing; road transportation management; trial-and-
error

1. Introduction

Many megacities have developed along trunk rivers, such as Minneapolis, St. Louis,
Vienna, Shanghai, and Nanjing. Although trunk rivers provide convenient shipping condi-
tions and boost economic development, they divide a city into several subareas. Travelers
between subareas have to take a river-crossing channel to visit each other. With the rapid
development of the economy and urbanization, the limited river-crossing channels become
a bottleneck in the urban transport network. For instance, approximately 400,000 private
vehicles and 600,000 commuters in Nanjing travel across the Nanjing Yangtze river bridge
each day [1]. In the commuting peak period, cumulative commuters from both sides of
the river travel across the bridge, such that the travel demand on the bridge is excessively
high. High demands cause serious congestion on the bridge, which is shown by the
over-congested scenario in which vehicles with limited headway repeatedly stop and go
on the bridge during peak hours. To mitigate serious congestion on a channel, a large
number of transport policies are assigned at a bridge to organize traffic flow during peak
hours [2]. Road traffic signals, upstream of the bridge, are also adjusted to control on-bridge
traffic volume to a certain level. However, this strategy can only relieve the congestion
on the bridge. During peak hours, cumulative river-crossing traffic demands stop under
the bridge and wait for the pass signal. As the queuing length grows, traffic congestion
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gradually spreads througout the entire road network. Investigations have shown that a
traveler should take an average of 1 h to pass a bridge during peak hours, about 4.6 times
longer than the ordinary situation.

More sustainable strategies for addressing this problem are to build more river-
crossing channels and promote public transport. These strategies both have their lim-
itations. On the one hand, constructing more channels is a long-term solution rather than
an effective method that can have an effect in a short period of time. On the other hand,
alternative river-crossing channels are located at least several kilometers away from the
original one and travelers have to take a detour and drive further which largely under-
mines their interest in choosing new channels. Public transport is efficient concerning
accommodating passengers, however, the in-carriage congestion, inflexible scheduling,
and travel path also limit the promotion of public transport. New approaches are needed
to address this issue.

Recently, ref. [3] proposed a novel and efficient trial-and-error train fare design scheme
for addressing boarding/alighting congestion at Central Business District (CBD) stations.
In their study, an additional train fare scheme was implemented at the congested train
station to motivate an appropriate number of passengers to board/alight at the neighboring
uncongested stations on the railway line. Their study provides a new method to deal with
congestion on large river-crossing channels.

It has been widely observed that even for neighboring river-crossing channels, the
congestion level can be quite different. For instance, in Nanjing, with the rapid development
of urbanization, more river-crossing travel demands have been generated. In the early
1990s, the daily travel volume crossing the Nanjing Yangtze river bridge was around 20,000,
while nowadays, the daily river-crossing volume on the Nanjing Yangtze river bridge
exceed 100,000, which cannot meet the surging demand of travelers [4]. Therefore, by
charging an appropriate amount of tolls to congested channels or equivalently providing
credits to uncongested channels, we can move part of the river-crossing traffic flow from
the congested channels to the adjacent uncongested channels or alternative public transport
modes. Compared with the abovementioned methods that spread peak demand over time,
shift demand to an adjacent channel or alternative travel mode is more reasonable for
inflexible daily commuting.

In this paper, we study the problem in the context of two neighboring river-crossing
channels. Additional tolls are determined on the congested channel to shift an appropriate
part of traffic demands to the neighboring channel or public transport modes. In this
study, we apply the methodology proposed by [3]. We assume the traffic congestion on the
channels is an equilibrium state and travelers make their travel decisions such as travel
modes and routes at home, based on their perceived generalized travel cost. The role
of additional river-crossing toll is to shift travelers’ modal split/route choice from one
equilibrium state to another. Travelers have multiple travel chooses, such as park-and-ride.
Travelers can drive from home, park their car at a parking site, and ride through the channel.
Given public acceptability, the objective of this problem is to minimize the toll surcharge
at the congested channels, while alleviating the traffic congestion to an appropriate level.
The main challenge of solving this model is that the relation between toll and travelers’
responses (demand function) is hard to calibrate in practice. In other words, the exact
formulation of demand function is hard to establish. Therefore, a trial-and-error scheme is
adopted which guarantees the optimal toll pattern without requiring specific forms of the
demand function. The toll patterns are iteratively adjusted in which each adjustment is
based on the information obtained from previous observations. The optimal toll pattern
can be efficiently obtained within a limited number of trials.

This paper is organized into six sections. In Section 2, we summarize the related
literature. In Section 3, the bi-objective optimization problem is proposed, together with
the necessary assumptions and properties used in this study. A trial-and-error method is
proposed and explained in Section 4. In Section 5, we present an illustrative example to
validate the proposed model and method and in Section 6, we provide our conclusions.
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2. Literature Review

The traffic congestion management problem belongs to the class of demand manage-
ment problems. Numerous studies have been devoted to this area, such as providing new
and novel public transport service modes [5–9] and congestion pricing schemes [10–19].
Congestion pricing is widely accepted as a potential approach to mitigating congestion
in a transportation system. These studies have mainly focused on the general transport
networks. The cost difference between the marginal social cost and the marginal private
cost is externalized as a pricing scheme [19]. Travelers’ behaviors are expected to adjust
to achieve the optimum system. The studies in other fields, for example, a neighboring
bottleneck system, are relatively sparse. [3] proposed a novel pricing approach to retain the
boarding/alighting flow within the predetermined/designed threshold by spreading the
boarding/alighting demand over space. An efficient trial-and-error method was developed
to search the Paretooptimal solution that did not rely on the specific expression of the
demand function.

The studies of the trial-and-error method with unknown demand functions can be
classified into three categories. The first line of research aims to find the system optimum
flow by link tolls based on the trial-and-error method. Refs. [20,21] were the initial studies
that apply the trial-and-error method to address the problem without specific formulation
of demand functions. Ref. [22] proposed a bi-section trial-and-error method to realize the
idea of trial-and-error on a single road segment, which was later extended by [23] to the
transport networks. They iteratively adjusted the marginal-cost toll scheme based on the
method of successive averages and proved its convergence. Based on [23,24] proposed
a trial-and-error method for the second-best congestion pricing scheme under the user
equilibrium conditions. Refs. [25–27] further extended the method to more general cases.

The second line of research is to control link flow within a certain threshold with
unknown demand functions, link travel time functions, as well as users’ value of time.
Ref. [28] searched the optimal link toll pattern to retain the link flow within the environ-
mental capacity constraints based on a trial-and-error scheme. Ref. [29] extended their
work by developing a prediction-correction method to allow non-separable, asymmetric
link cost functions, and achieved a better convergence rate. Ref. [30] extended the method
of [29] to allow traffic flow to be inaccurately observed. Ref. [18] applied the concept of the
trial-and-error method to the field of cordon-based congestion pricing. Ref. [31] proposed
a new framework for the trial-and-error method to satisfies both system optimum and
capacity constraint conditions.

The third line of research is applying the trial-and-error method to study the day-to-
day dynamics of network flows. Ref. [32] proposed a trial-and-error method to address the
first-best congestion pricing problem. Ref. [33] proposed a day-to-day toll method under
the concept of the discrete rational adjustment process to achieve the restraint target of
traffic flows. Ref. [34] proposed a realistic trial-and-error method in which the tolls could be
updated at any arbitrary time interval. Ref. [35] proposed a new trial-and-error congestion
pricing method by incorporating the day-to-day dynamic flow adjustment process with
heterogeneous inertia patterns. Compared to existing trial-and-error applications, in this
paper, we consider a bi-objective optimization model to address the traffic congestion on
river-crossing channels.

3. Problem Statement

In this section, we briefly introduce the mathematical formulation and discuss some
necessary properties of the model. We note that the exact expression of demand functions
is unknown. In this paper, we study the problem in the context of four neighboring
river-crossing channels which are shown in Figure 1. We assume the travelers on the
congested channel can switch to the neighboring channels or the public transport modes
after imposing certain tolls. We note that travelers’ mode choice is made at home. Travelers
make their travel decisions based on their perceived generalized travel cost. In addition,
traffic congestion is an equilibrium state. Namely, travelers have full information about
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the travel impendence of alternative travel modes and routes. Due to the heterogeneity of
travelers, some of them will switch to alternative travel modes or routes, such as public
transport. The dotted lines shown in Figure 1 indicate the travelers who changed their
travel decisions based on the given toll pattern.
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3.1. Demand Function

In this study, the neighboring river-crossing channels are considered which are de-
noted as S1, S2, S3, and S4. S1 and S2 are the channels that may be congested. Let q1 and
q2 denote the travel demands, C1 and C2 denote the service capacity, x and y denote the
toll fares of S1 and S2, respectively. Service capacity means the planned traffic volume
that a channel can service per hour. When the observed traffic flow exceeds the service
capacity, the congestion happens. The values of x and y are to be determined. Considering
the public acceptability, the upper bounds x and y are imposed on the channel toll increase
as follows: (x, y) ∈ [0, x]× [0, y]. The traffic demand on channel S1 can be categorized into
the following four types: (i) travelers who may shift to S3, (ii) travelers who may shift to
public transport modes, (iii) travelers who always use S1, and (iv) travelers who may shift
to S2. Let a1, b1, c1, d1 denote the potential demand of the four categories travelers at S1.
According to the flow conservation condition, we have:

a1 + b1 + c1 + d1 = q1. (1)

Similarly, travelers on channel S2 can also be categorized into the following four types:
(i) travelers who may switch to S4, (ii) travelers who may switch to public transport modes,
(iii) travelers who always use S2, and (iv) travelers who may switch to S1. Assume the
potential demand of the three categories travelers are a2, b2, c2, d2, respectively. Then, we
have the following:

a2 + b2 + c2 + d2 = q2. (2)

Let f1(x) denote the probability of travelers on S1 in the first category who will still
choose S1, and f2(y) denote the probability of travelers on S2 in the first category who
still choose S2. Let g1(x) denote the probability of travelers on S1 in the second category
who will still choose S1, and g2(y) denote the probability of travelers on S2 in the second
category who will still choose S2. Similarly, we let h1(x− y) denote the probability of
travelers on S1 in the fourth category who will still use S1, i.e., d1(1− h1(x− y)) travelers
will switch to S2. Let function h2(y− x) denote the probability of travelers on S2 in the
fourth category who still choose S2. We note that f1(x), f2(y), g1(x), g2(y), h1(x− y),
h2(y− x) are the demand functions that depict the relationship between travel demand
and channel tolls. The explicit expression of the demand function is hard to be precisely
calibrated in the real world, due to the scattering features of the traffic flow. In other words,
the detailed expression of demand function is absent in practice. The only information we
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know is that some travelers may switch to neighboring channels or public transport modes
after exerting a certain amount of toll on the congested channel.

Therefore, we assume the demand functions, f1(x), f2(y), g1(x), g2(y), h1(x− y),
h2(y − x) have the following properties: (a) f1(x) is continuous and monotonically de-
creasing over [0, x], f1(0) = 1, 0 ≤ f1(x) ≤ 1, x ∈ [0, x]; (b) g1(x) is continuous and
monotonically decreasing over [0, x], g1(0) = 1, 0 ≤ g1(x) ≤ 1, x ∈ [0, x]; (c) h1(x− y) is
continuous and monotonically decreasing over x− y ∈ [0, x], h1(x− y) = 1, x− y ∈ [−y, 0],
0 ≤ h1(x − y) ≤ 1, x − y ∈ [0, x]; (d) f2(y) is continuous and monotonically decreasing
over [0, y], f2(0) = 1, 0 ≤ f2(y) ≤ 1, y ∈ [0, y]; (e) g2(y) is continuous and monotonically
decreasing over [0, y], g2(0) = 1, 0 ≤ g2(y) ≤ 1, x ∈ [0, y]; (f) h2(y − x) is continu-
ous and monotonically decreasing over y − x ∈ [0, y], h2(y − x) = 1, y − x ∈ [−x, 0],
0 ≤ h2(y− x) ≤ 1, y− x ∈ [0, y].

The number of travelers using S1 after the pricing implementation is a function of
(x, y), denoted by X(x, y). Then, we have the following:

X(x, y) = a1 f1(x) + b1g1(x) + c1 + d1h1(x− y) + d2(1− h2(y− x)). (3)

Similarly, the number of travelers using S2 after the pricing implementation is also a
function of (x, y), denoted by Y(x, y) which can be expressed as:

Y(x, y) = a2 f2(y) + b2g2(y) + c2 + d1(1− h1(x− y)) + d2h2(y− x). (4)

According to the abovementioned properties of the demand function, we can infer
that X(x, y) and Y(x, y) are continuous with respect to x and y. Fixing x, X(x, y) increases
in y and Y(x, y) decreases in y. Besides, simultaneously increasing x and y by the same
amount of toll will not shift travelers between S1 and S2, but will motivate travelers to shift
to S3, S4, and the public transport modes.

3.2. Mathematical Model

In this section, a bi-objective optimization model is proposed to minimize the value of
tolls on both channels, i.e., M1, as follows:

min
x ∈ [0, x]
y ∈ [0, y]

(
x
y

)
(5)

s.t.
X(x, y) ≤ C1 (6)

Y(x, y) ≤ C2 (7)

The objective function (5) aims to simultaneously minimize (x, y). Constraints (6) and
(7) ensure the traffic flow does not exceed the designed service capacity. We note that M1
is a bi-objective optimization model. The solution (x′, y′) of M1 is Pareto optimal if and
only if for any feasible solution (x′′ , y′′ ) such that x′′ ≥ x′, y′′ ≥ y′, and at least one of the
two inequalities is strict binding. The proposed model is essentially an application of the
methodology proposed by [3]. According to Theorem 1 in [3], model M1 is equivalent to
M2 as follows:

min
x ∈ (0, x]
y ∈ (0, y]

(
x
y

)
(8)

s.t.
X(x, y) = C1 (9)

Y(x, y) = C2. (10)
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According to Theorem 3 in [3], model M2 has only one unique feasible solution. That
means, its equivalent model (M1) also has only one feasible solution and this unique
solution is also the Pareto optimal solution of model M1. Therefore, the problem of finding
the Pareto optimal solution of M1 becomes the problem of finding the unique feasible
solution.

4. The Trial-and-Error Toll Design Method

This section discusses a trial-and-error method to search the Pareto optimal solution
of model M1. Due to the specific expression of demand function is unknown, we can only
obtain some necessary information from the trial. Therefore, a trial-and-error scheme is
an essential way to solve the model M1. The nature of the trial-and-error scheme is to
identify a toll adjustment mechanism so that the information obtained from each trial can
be efficiently utilized.

Ref. [3] proposed a trial-and-error method to address this kind of bi-objective problem.
The basic idea of their method is to find a feasible solution (x, y) that satisfying X(x, y) = Q
and Y(x, y) = Q, where Q denotes the service capacity of the train station in their model.
They discover that after implementing a trial (x, y), the response of travelers, i.e., the traffic
volume, can be observed and provide some information to identify the infeasible region.
The infeasible regions can be iteratively identified and eliminated until the unique feasible
solution is identified.

In this study, we apply the trial-and-error methodology proposed by [3] to address
the model M2. For completeness, we briefly introduce the procedure of this algorithm as
Algorithm 1:

Algorithm 1: A trial-and-error algorithm

1 Set the iteration counter n= 0. Set the initial upper
bound of x and y, i.e., x and y. Let xu,n and xl,n denote the adjusted lower and upper bound
of x in nth iteration. Let yu,n and yl,n denote the adjusted lower and upper bound of y in nth
iteration. Set xu,n = x, xl,n= 0, yu,n = y, yl,n = 0. Set the error gap ε > 0.

2
Adjust the tolls with the following formula:
xn = (xu,n + xl,n)/2
yn = (yu,n + yl,n)/2

3
Observe the Xn and Yn.
If Xn ∈ [C1 − ε, C1 + ε], Yn ∈ [C2 − ε, C2 + ε], the Pareto-optimal solution has obtained.

4
Remove the infeasible region according to the observed Xn and Yn and update the lower and
upper bound xu,n, xl,n, yu,n, yl,n of x and y, respectively.

5 Let n = n + 1. Go back to Step 2.

We note that the trial-and-error algorithm introduced above clarifies the procedures
of adjusting the tolls x and y. However, the mechanism of removing the infeasible region is
unclear. Therefore, we proceed to introduce the mechanism of identifying the infeasible
region according to the observed Xn and Yn, which is summarized in Table 1.

As shown in Table 1, the shadow part represents the infeasible region and the normal
part represents the feasible region. Given an arbitrary trial of (xn, yn) at iteration n, there
exist six scenarios and different scenarios have different infeasible regions. The remaining
domain obtained from Table 1 is still a rectangle, thus, the infeasible regions could be
repeatedly identified according to Table 1 until the Pareto optimal price (x∗, y∗) is found.
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Table 1. Infeasible regions of the domain.

Potential Cases (Infeasible Regions Are Indicated by the Shadow Segment)

(i) Xn ≥ C1, Yn ≥ C2, Xn + Yn > C1 + C2.
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5. Numerical Experiments

In this section, we perform several numerical experiments to verify the applicability
and effectiveness of the proposed model and solution method.

Suppose S1 is a four-lane dual carriageway channel, S2 is a six-lane dual carriageway,
S3 and S4 are eight-lane dual carriageway channels, respectively. The design service
capacity of a lane is 1280 vehicles/hour. Then, the one-way service capacity of S1, S2, S3,
and S4 should be C1 = 1280× 2 = 2506, C2 = 1280× 3 = 3840, C3 = C4 = 1280× 4= 5120
vehicles/hour. If the actual demand is larger than the designed ability, the service capacity
will drop. If the excessive demand can not be well controlled, the capacity drop may spread
to the whole network. The unknown demand functions in Table 2 are used to simulate the
response of travelers after imposing tolls. As abovementioned, x and y are the toll upper
bound of S1 and S2 imposed by the transport authority.
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Table 2. Unknown demand functions.

Unknown Demand Functions:

f1(x) = 0.3 exp(−0.3x), 0 ≤ f1(x) ≤ 1, x ∈ [0, x].
g1(x) = 0.7 exp(−0.3x), 0 ≤ g1(x) ≤ 1, x ∈ [0, x].

h1(x− y) =

{
1, −y ≤ x− y ≤ 0

1− (x− y)2/x2, 0 < x− y ≤ x.

f2(y) = 0.5 exp(−0.2y), 0 ≤ f2(y) ≤ 1, y ∈ [0, y].
g2(y) = 0.9 exp(−0.2y), 0 ≤ g2(y) ≤ 1, y ∈ [0, y].

h2(y− x) =

{
1, −x ≤ y− x ≤ 0

1− (y− x)2/(2y2), 0 < y− x ≤ y.

We first consider the situation that both S1 and S2 are congested (Case 1). In detail,
a total number of 4360 vehicles per hour desire to pass through S1 with four categories,
i.e., a1 = 1060, b1 = 1500, c1 = 1000, d1 = 800, and a total number of 4980 vehicles per
hour desire to pass through S2 with four categories, i.e., a2 = 1380, b2 = 1500, c2 = 1000,
d2 = 1100. S3 and S4 are assumed to have sufficient capacity to accommodate additional
traffic demands. We apply the trial-and-error scheme to address this example. We note that
the objective of this problem is to minimize the toll surcharge on S1 and S2, while controlling
the traffic demand on congested channels to an acceptable level. The upper bound of tolls is
set as x = y = 5. The error gap is set as ε = 10. Namely, once the adjusted travel demands
X(x, y) and Y(x, y) are within the range [C1 − ε, C1 + ε], [C2 − ε, C2 + ε], respectively, we
consider the Pareto optimal solution has gotten and the algorithm terminates. The trail-
and-error toll adjustment process is reported in Figure 2 and Table 3.Sustainability 2021, 13, x FOR PEER REVIEW 9 of 13 
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In Figure 2, the adjustment process of tolls on S1 and S2 during the trial-and-error
procedure is presented by the dashed polylines x and y, respectively.

After each trial, the shift of travel demand on S1 and S2 are observed and plotted as
solid polylines X and Y. Figure 2 demonstrates that both polylines X and Y are convergent
to the designed capacity C1 and C2 after nine iterations. In the ninth iteration, the controlled
X and Y are 2560.52 and 3832.6, which satisfy the required precision requirement. The
corresponding toll increases are 1.8359875 and 0.8984375 which can be identified as the
Pareto optimal solutions. In Table 3, more detailed results of the calculation process are
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presented. Column n records the number of iterations. Columns x, y, X, and Y in Table 3
are consistent with polylines x, y, X, and Y in Figure 2. The columns x, x, y, and y represent
the boundaries, i.e., upper bound and lower bound, of the feasible region. The gap between
x and x, y, and y are iteratively contracted along the iteration process which means the
feasible region is iteratively contracted by observing the response of travelers, i.e., X and Y.
Table 3 indicates the cases/mechanism of removing infeasible regions.

Table 3. Detailed calculation process of the trial-and-error algorithm.

n x y X Y x
—

—
x y

—

—
y Case

1 2.5 2.5 2446.19 3337.32 0.0 2.5 0.0 2.0 (ii)
2 1.25 1.25 2740.21 3688.75 1.25 2.5 0.0 2.5 (iii)
3 1.25 1.25 2566.96 3701.25 1.25 2.5 0.0 1.25 (vi)
4 1.875 0.625 2529.46 3950.29 1.25 2.5 0.625 1.25 (v)
5 1.875 0.9375 2551.33 3819.34 1.25 1.875 0.625 0.9375 (ii)
6 1.875 0.78125 2636.54 3864.43 1.5625 1.875 0.78125 0.9375 (i)
7 1.5625 0.859375 2593.23 3841.48 1.71785 1.875 0.859275 0.9375 (i)
8 1.71875 0.8984375 2572.11 3830.31 1.796875 1.875 0.859375 0.9375 (iii)
9 1.796875 0.8984375 2560.52 3832.60 1.796875 1.875 0.859375 0.8984375 (vi)

We proceed to study another case (Case 2) which is also frequently happening. When
a channel is just starting use, many travelers are not willing to switch to the new channel
due to the inaccurate estimation of travel impedance or conservative driving habits. In
this case, only one channel is congested and we can still use this strategy to spread a part
of travel demand to the nearby channels or public transport modes. Here, we suppose
S1 is congested and the travel demand before demand management is q1 = 7800 vehicles
per hour, which can be classified into the following four categories: a1 = 1600, b1 = 1800,
c1 = 1200, d1 = 3200. The travel demand on S2 is set as q2 = 2680 which can be classified
into the following four categories: a2 = 700, b2 = 280, c1 = 1200, d1 = 500. The upper
bound of x and y are set as x = 20 and y = 10, respectively. Other assumptions and
parameters are consistent with Case 1. We apply the trial-and-error method to address this
case. The trail-and-error toll adjustment process is reported in Figure 3 and Table 4.
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Figure 3 shows that the proposed trial-and-error is capable of addressing the situation
that only one channel is congested. With the increasing toll on S1, an increasing number
of travelers are shifted to adjacent channels and alternative transport modes. The travel
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demand on S2 gradually increases. When the travel demand on S2 over its service capacity,
the toll on S2 also increases to spread part of travel demand. Table 4 shows the detailed
calculation process of the trail-and-error scheme in Case 2, which demonstrates that the
applied algorithm can rapidly converge to the desired accuracy level within a few iterations.
At least half of the domain is identified as infeasible during each iteration. The infeasible
regions iteratively identified and eliminated until the approximated Pareto optimal solution
is found.

Table 4. Detailed calculation process of trial-and-error algorithm in Case 2.

n x y X Y x
—

—
x y

—

—
y Case

1 10 5 4286.62 2121.46 10.0 20.0 0.0 10.0 (iii)
2 15 5 3619.32 2721.46 10.0 20.0 0.0 5.0 (vi)
3 15 2.5 3169.32 3315.13 15.0 20.0 0.0 5.0 (iii)
4 17.5 2.5 2609.13 3865.13 17.5 20.0 2.5 5.0 (i)
5 18.75 3.75 2606.27 3784.36 17.5 20.0 2.5 3.125 (vi)
6 18.75 3.125 2453.15 3975.35 17.5 20.0 3.125 3.75 (v)
7 18.75 3.4375 2530.49 3875.48 17.5 20.0 3.4375 3.75 (v)
8 18.75 3.59375 2568.58 3831.08 17.5 20.0 3.4375 3.59375 (vi)
9 18.75 3.515625 2549.58 3854.70 17.5 20.0 3.515625 3.59375 (v)

10 18.75 3.5546875 2559.09 3842.87 17.5 20.0 3.5546875 3.59375 (v)

We further study the robustness of the proposed algorithm by varying the initial trial
toll in Case 1. Specifically, the following five different initial fare settings are tested: (1, 1),
(1, 3), (1, 5), (3, 1), and (5, 1). Figure 4 shows the evaluation process of travel demands and
the toll charge pattern which indicates that no matter what the initial state is, the proposed
algorithm could converge rapidly to the Pareto optimal solution after several iterations.
This phenomenon inspires us that considering the public acceptability, the initial toll can
be a small value. The toll pattern can be automatically raised according to the information
provided by the previous observations.

The above numerical experiments indicate that the trial-and-error can efficiently find
the Pareto optimal solution of the proposed bi-objective optimization problem. Given any
initial toll pattern, the proposed trial-and-error method is able to identify the infeasible
region based on the observation of the traveler’s response. According to the accumulated
observed information, the feasible region iteratively shrinks until the Pareto optimal
solution is found. The solution searched by the trial-and-error method provides the
optimal toll pattern so that a transport authority can implement the minimal amount of
fare to control the traffic congestion on congested channels.
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Figure 4. The progress of trial-and-error algorithm with various initial points.

6. Conclusions

This study considers the problem of congested river-crossing channels along a main/trunk
river in a megacity having serious congestions due to excessive river-crossing demands.
This study applies the methodology proposed by Wang, Zhang [3] to the field of the river-
crossing problem. The main idea of this method is to spread the peak demand over space.
By imposing additional tolls on congested channels, travelers who originally choose the
congested channels will shift to adjacent channels and alternative public transport modes.
The objective of this study is to optimally determine the toll pattern on congested channels
to control the travel demand to an acceptable level. Mathematically, this is a bi-objective
optimization problem, and the tolls on each congested channel are minimized in the Pareto
optimal solution. This model considers the fact that the explicit expression of demand
functions is hard to be preciously calibrated in practice. Therefore, this study applies the
trial-and-error method to deal with unknown demand functions. Numerical experiments
are conducted to validate the proposed model and test the effectiveness of the trial-and-
error scheme. The results show that the applied trail-and-error method can effectively
find the Pareto optimal solution. This study represents an initial study to address traffic
congestion on large river crossing channels. More general cases will be taken as future
research direction which has wider application fields.
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