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Abstract: Estimating blood pressure via combination analysis with electrocardiogram and photo-
plethysmography signals has attracted growing interest in continuous monitoring patients’ health
conditions. However, most wearable/portal monitoring devices generally acquire only one kind
of physiological signals due to the consideration of energy cost, device weight and size, etc. In
this study, a novel adaptive weight learning-based multitask deep learning framework based on
single lead electrocardiogram signals is proposed for continuous blood pressure estimation. Specif-
ically, the proposed method utilizes a 2-layer bidirectional long short-term memory network as
the sharing layer, followed by three identical architectures of 2-layer fully connected networks for
task-specific blood pressure estimation. To learn the importance of task-specific losses automatically,
an adaptive weight learning scheme based on the trend of validation loss is proposed. Extensive
experiment results on Physionet Multiparameter Intelligent Monitoring in Intensive Care (MIMIC) II
waveform database demonstrate that the proposed method using electrocardiogram signals obtains
estimating performance of 0.12± 10.83 mmHg, 0.13± 5.90 mmHg, and 0.08± 6.47 mmHg for systolic
blood pressure, diastolic blood pressure, and mean arterial pressure, respectively. It can meet the
requirements of the British Hypertension Society standard and US Association of Advancement of
Medical Instrumentation standard with a considerable margin. Combined with a wearable/portal
electrocardiogram device, the proposed model can be deployed to a healthcare system to provide a
long-term continuous blood pressure monitoring service, which would help to reduce the incidence
of malignant complications to hypertension.

Keywords: continuous blood pressure; multiple tasks; weights learning; electrocardiogram

1. Introduction

Hypertension is a common chronic cardiovascular disease, leading to health disorders
with potentially fatal complications such as stroke and heart failure [1]. According to
the World Health Organization (WHO) statistic report in 2015, the prevalence of global
hypertension is over 24% in the male and 20% in the female population, which shows a
rising trend in recent years [2]. Unfortunately, most of individuals with hypertension are
not aware of their health and the ability of this silent disease to harm them. Cuff-based
blood pressure (BP) monitoring devices, mercury sphygmomanometer and electronic
sphygmomanometer, are usually used to measure BP values precisely in hospital and at
home. However, they are just for point-BP measurement and quite inconvenient for use in
daily life, particularly for long-term continuous BP monitoring, due to the tedious repeated
operation of cuff inflation and deflation [3]. Herewith, a kind of BP measurement based
on physiological signals, which can be acquired by various daily used wearable/portal
monitoring devices, has great significance.
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Generally, BP indicators of systolic blood pressure (SBP), diastolic blood pressure
(DBP), and mean arterial pressure (MAP) are utilized to evaluate a person’s BP condi-
tions. In recent years, large amounts of continuous BP estimation methods based on
electrocardiograph (ECG) and photoplethysmography (PPG) signals have been proposed
to address the problem of continuous long-term BP monitoring in daily life [4,5]. Tra-
ditional BP estimation methods are based on the calculating parameters of pulse wave
transit time (PWTT) and pulse wave arrival time (PWAT) through a series of operations of
fiducial point determination and feature extraction [6–8]. For instance, literatures [6,8,9]
developed BP estimation frameworks based on parameters of PWAT and PWTT, with
additional vital signs, which achieved good BP estimation performance and had a consid-
erable margin to the British Hypertension Society standard (BHS) [4] and US Association
of Advancement of Medical Instrumentation standard (AAMI) [7]. Despite the advantages
of efficiency and high performance, there are still two apparent existing challenges for
the PWTT-based/PWAT-based methods. The first challenge is that the reliability of these
methods are high depended on accuracy of fiducial point determination, which is quite
sensitive to the quality of physiological signals. Another challenge is to extracting high
related features from physiological signals, which require domain expertise knowledge
for practitioners. To address these problems, many researchers shift their focus from
PWTT-based/PWAT-based methods to cutting-edge deep learning methods.

Deep learning with the merits of end-to-end training and automatic feature engi-
neering has been largely investigated for physiological signal analysis and achieved a big
success [10–12]. It is also utilized for BP estimation based on physiological signals [13–17].
Based on ECG and PPG signals, various deep learning structures, such as back-propagation
neural network [13,18], deep recurrent neural network [14], and hybrid deep neural net-
work [17,19,20], are employed to estimate SBP, DBP, and MAP values. Experimental results
demonstrated that deep learning-based methods achieved promising BP estimation re-
sults. Concerning wearable/portal devices with limited energy capability to long-term
monitoring, most of them only acquiring a specific kind of physiological signals, such as
ECG [16,21], PPG [22], pressure pulse wave (PPW) [23], and impedance plethysmograph
(IPG) signals [24]. Even though these one-channel physiological signals can be utilized
to measure the BP values, there are still existing shortcomings in practical applications
of wearable/portable devices. PPG contains rich pulse fluctuation information, and the
extraction of PPG waveform features can indirectly reflect the information of vascular
elasticity. However, the shape of PPG waveform often has great differences between differ-
ent measurement locations and different individuals; it is not suitable for BP modeling to
general population. PPW directly reflects the pressure change of the outer wall of blood
vessels, but its amplitude is related to the external pressure from a wearable device. The BP
estimating method based on single-channel PPW signal needs to calibrate the external
pressure. This method is extremely sensitive to external disturbance. The BP estimating
method based on IPG arrays requires electrical sensors to be accurately placed in the
center of the artery and very sensitive to human movement. A small deviation of the
measurement position and human movement would lead to the instability of the accuracy
of blood pressure measurement. As for ECG signals, the QRS wave of ECG reflects the
information of heart ventricular contraction. With the QRS wave, the R-wave morphology
can reflect the intensity of ventricular contraction and then affect cardiac ejection. It means
that there would be a close correlation between ECG and BP values. Meanwhile, compared
with PPG, PPW, and IPG signals, it is easier to obtain ECG signals on wearable devices,
and the interference of daily activities is relatively small. Researchers [16,21,25] attempted
to develop BP estimation methods only based on one-channel ECG signals with deep
learning and achieved promising results. However, these methods estimate SPB, DBP, and
MAP values from ECG signals directly, either without considering the commonalities and
relationship among SPB, DBP and MAP estimation, or required an additional calibration
by means of golden-standard BP values.
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In this study, to take advantage of the commonalities and relationship among the SBP,
DBP, and MAP estimation, we propose a novel calibration-free adaptive weight learning-
based multitask deep learning framework, based on single lead ECG signals, to estimate
continuous BP values. It is well known that a multitask network has the capability with
born to share the knowledge among all the tasks. To be more specific, the proposed method
utilizes a 2-layer bidirectional long short-term memory network (BiLSTM) as the sharing
layer, followed by three identical task-specific 2-layer fully connected networks for SBP,
DBP, and MAP estimation. The proposed method is trained with a widely used training
technique called joint training. However, the BP estimation performance of the proposed
multitask is sensitive to the importance of task-specific losses. Traditionally, the opti-
mal task-specific importance is searched by a grid search method or intelligent heuristic
method [26]. However, both of them are time-consuming and high computing complex-
ity. Herewith, we proposed an adaptive weight method to determine the task-specific
importance degree based on the trend of validation loss. Extensive experiment results
demonstrate that the BP estimation performance of our proposed method meets the re-
quirements of the BHS and AAMI standards with a considerable margin. It means that
a healthcare system, with collecting ECG signals, deploying our proposed model can
provide a long-term continuous BP monitoring service. In general, our contributions can
be summarized as follows:

• To take advantage of the relationship among SBP, DBP, and MAP, we propose a novel
multitask deep learning framework based on single lead ECG signals to estimate
BP values.

• To conquer the problems of time-consuming and high computing complexity on tradi-
tional weight-searching methods, we propose an adaptive weight learning-based
method to determine the task-specific importance based on the trend of valida-
tion losses.

• Extensive experiment results demonstrate that the BP estimation performance of our
proposed method meets the requirements of the BHS and AAMI standards with a
considerable margin.

The remainder of this study is organized as follows: Section 2 describes the proposed
novel BP estimation method and reference methods in detail. Section 3 demonstrates
the experimental results and performance comparison with other cutting-edge methods.
Section 4 discusses the performance analysis of the proposed method. Finally, this paper is
concluded in Section 5.

2. Materials and Methods

As shown in Figure 1, BP estimation mainly includes signal preprocessing, extracting
ground truth BP values, and model building. In this section, the procedure of BP estimation
is described in detail as follows.

2.1. Problem Formulation

The task of this study is to regress the BP estimation performance based on ECG
signals. A multitask deep learning framework, with the merit of utilizing the relationship
among SBP, DBP, and MAP estimation in born, is employed to boost the BP performance.
Suppose that we have training ECG signals Xecg as the model inputs and corresponding
reference SBP Ys, DBP Yd, and MAP Ym values extracted from synchronous arterial blood
pressure (ABP) signals, the goal of each task is to learn a non-linear mapping function
Φ(·) from ECG signals to corresponding SBP Ŷs, DBP Ŷd, and MAP Ŷm values, which are
defined to be:

Ŷs = Φs(Xecg; Wshare, Ws) (1)

Ŷd = Φd(Xecg; Wshare, Wd) (2)

Ŷm = Φm(Xecg; Wshare, Wm) (3)



Sensors 2021, 21, 1595 4 of 18

where Wshare is the parameter in the sharing layer, Wi∈{s,d,m} is the parameter in the task-
specific network. The naive approach to combining multiple estimation losses of SBP, DBP,
and MAP would be to merely implement a weighted linear sum of the losses for each BP
estimation task:

Ltotal = ∑
i∈{s,d,m}

θi ∗ L(Yi, Ŷi) (4)

where L(·, ·) is the task-specific loss function, Ltotal denotes a total of BP estimation losses,
θi is the importance of the loss of task-specific BP estimation, and s, d, m refer to the SBP,
DBP, and MAP estimation task, respectively.

Figure 1. Pipeline of blood pressure estimation-based electrocardiograph (ECG) signals. The proposed multitask network is
iteratively updated in the training phase by computing the root mean square loss values between estimated BP values and
ground truth BP values. ABP means arterial blood pressure.

2.2. Preprocessing

In practice, signal preprocessing is a quite important and effective way to remove
noise contamination from ECG signals, which is helpful to the subsequent BP estimation
modeling. In this section, filtering with discrete wavelet transformation (DWT) [27],
segmentation, and extraction of ground truth BP values from ABP signals are described
as follows.

2.2.1. Filtering

In the field of biomedical engineering, wavelet transform is a widely used method to
remove noise from ECG signals. The wavelet transform, which has the ability to acquire
time-frequency information, is a convolution of a wavelet function ψ(t) with the input
signal x(t). To capture multi-resolution time-frequency information, parameters of scale σ
and translation τ are employed in the wavelet function. Herewith, the continuous wavelet
transform (CWT) can be defined to be:

Wψ

x(t) =
1

σ1/2

∫
x(t)ψ(

t− τ

σ
)dt (5)

where Wψ

x(t) is wavelet coefficients underlying input signal x(t) with the wavelet function
ψ. In practice, signals to be analyzed are discrete. Therefore, DWT, obtained from CWT by
utilizing discrete steps for scale and translation, is utilized to process such discrete signals.
The DWT can be defined by sampling at discrete intervals:
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Wψ

x(n) =
1

σ1/2 ∑ x(n)ψj,k(
n− kτ

σ
) (6)

where j refers to the level of resolution and k refers to the level of translation. In this study,
the wavelet function ψ, also called mother wavelet, utilizes Daubechies 8 (db8) [28]. A sig-
nal is decomposed by the DWT into two parts of low frequency and high frequency, which
are also known as approximate coefficients and detail coefficients. The low frequency signal
is continuously downsampled by a factor of two to acquire the successive approximation
coefficients, which is presented in Figure 2. Since the ECG signals analyzed in this study are
sampled at 125 Hz and the useful frequency range of ECG signals is from 0.5 Hz to 45 Hz
[29], it is reasonable to decompose the DWT into eight levels based on Nquist sampling
theorem [30]. The frequency of the last-layer approximate coefficients is in the range of
0 to 0.24 Hz. By setting zeros of the 8-th approximate coefficients and the first detail
coefficients, the ECG signals can be reconstructed by the inverse DWT, which removes the
high frequency noise and baseline wandering. Due to the frequency of reconstructed ECG
signals ranging from 0.24 Hz to 31.25 Hz, we downsample the reconstructed ECG signals
from 125 Hz to 100 Hz for more convenient configuration of the proposed network.

Figure 2. The structure of the discrete wavelet transformation (DWT) decomposition.

2.2.2. Segmentation

According to the requirement of the proposed method, every ECG signal has to be
cropped into segments with fixed length. Meanwhile, the corresponding synchronized
ABP signals are also cropped into segments with the same fixed length as ECG segments for
extraction of ground truth BP values. In this study, the fixed length of signals employs a time
duration of 10 s, which is widely employed in deep learning approaches [10,12]. To mitigate
the different amplitudes of ECG signals, the min-max normalization technology [31] is
utilized for ECG signals to map the amplitudes ranging from 0 to 1.
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2.2.3. Extraction of Ground Truth BP Values

As we know well, BP values can be extracted from the synchronized ABP signals. SBP
(Ys) and DBP (Yd) values are obtained by computing the maximum and minimum value of
a segmented ABP signal, respectively. Additionally, MAP (Ym) value is derived from SBP
and DBP values, which can be defined as follows:

Ym =
Ys + 2Yd

3
(7)

Meanwhile, the synchronized ABP signals are also with much artifact noise. It leads
to incorrect ground truth BP extraction, which would reduce the BP estimation of the
proposed method. Skewness, a widely used signal quality assessment tool, is utilized to
assess the quality of ABP signals [32]. To be more specific, skewness indexes of 1-s-long
ABP segment are calcuated on a 10-s-long ABP segment without overlapping. If any
skewness index is less than 0, the entire 10-s-long ABP segment will be discarded, as well
as the corresponding synchronized 10-s-long ECG signals.

2.3. Proposed Method

It is well known that ground truth SBP and DBP values are extracted from an identical
ABP segment by computing the maximum and minimum amplitude values, respectively.
Therefore, there exists a strong relationship between SBP and DBP values, let alone MAP
value, which is derived from SBP and DBP values. Multitask learning has the ability
to take advantage of commonality among different tasks to boost the entire classifica-
tion/estimation performance [33]. Herein, the proposed BP estimation method is based
on the multitask deep learning framework, which is comprised of a sharing network and
tree task-specific networks, which is shown in Figure 3. To be more specific, a two-layer
bidirectional long short-term memory network [34], with the merits of capturing signal in-
formation from both forward and backward directions, is employed as the sharing network.
As for the task-specific sub-networks, there are three identical two-layer fully connected
networks with rectified linear unit (ReLU) [35] as their activation functions to estimate
SBP, DBP, and MAP values. The detailed configuration of the proposed method refers to
Table 1.

Figure 3. The architecture of the proposed method. It was composed of sharing layers and task-
specific networks. FC means fully connected layer.



Sensors 2021, 21, 1595 7 of 18

Table 1. Configuration of The Adaptive Weight Learning-based Multitask Network.

Network Component Network Parameters Description

Sharing network layers

Backbone: BiLSTM
Bidirectional: true
Sequence length: 20
Time steps: 50
Size of hidden unit: 256
Number of layers: 2

Task-specific sub-network

Sub-network: FC network
Number of hidden layers: 2
Number of hidden units in 1st layer: 512
Number of hidden units in 2nd layer: 256
Activation function: ReLU

Furthermore, as described in Section 2.1, the proposed multitask deep network uti-
lizes a widely used joint training technique to optimize weighted objective loss function.
However, the performance of the multitask network is sensitive to the weights, θi∈{s,d,m},
of task-specific losses. Generally, previous methods tuning weights of task-specific losses
are usually grid search and heuristic technologies [26,33]. These kind of methods are
extremely time consuming, which often take many days to complete a training trial. In this
study, we propose an adaptive weight learning-based method via the estimation loss
trend on validation dataset, which is presented in Algorithm 1. Apparently, if the trend
of estimation error loss variation is less, it signifies that the optimized space of the task is
small. Meanwhile, the mean value and standard deviation of the task-specific estimation
error loss are also considered. If they are less on the specified task, it also suggests that
there is not much optimal space for it to improve its performance. Herewith, the weight
of the task-specific estimation error loss can be defined to be the product of the trend,
mean value, and standard deviation of task-specific estimation error. What’s more, all the
trend, mean value, and standard deviation of estimation errors are calculated based on
validation dataset, which is helpful to improve the generic performance. Specifically, train-
ing the proposed multitask network in each iterated epoch can be divided into two phases:
training phase and validation phase. In the training phase, the parameters of the proposed
network are updated by its forward and backward operation based on error losses formu-
lated in Equation (4). In the validation phase, the trained model is transferred on validation
dataset to obtain absolute mean estimation error losses Li∈{s,d,m} for all batches, which can
be utilized to compute mean value Li

mean and standard deviation Li
std of estimation error

losses. Based on them, the trend of mean value Ti
mean and standard deviation Ti

std of error
losses can be formulated by

Ti
mean =

∥∥Li
mean(k)− Li

mean(k− 1)
∥∥

1
Li

mean(k)
(8)

Ti
std =

∥∥Li
std(k)− Li

std(k− 1)
∥∥

1

Li
std(k)

(9)

where k is the k-th iterated epoch, and i is the specified BP estimation task. Suppose that
the task with bigger validation trend value has much more importance, the task-specific
weight θi can be formulated as follows:

θi =
θi

∑i θi , ∀i ∈ {s, d, m} (10)

where θi = Ti
mean ∗ Ti

std ∗ (Li
mean + Li

std). s refers to the SBP estimation task, d refers to the
DBP estimation task, and m refers to the MAP estimation task.
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Algorithm 1 Training the proposed adaptive weighted multitask network.

Require: Training ECG signals XECG
train, validation ECG signals XECG

val
Ensure: Multitask neural network model MODEL to BP estimation

1: Initialize task loss’ weight θi ← 1/3
2: Initialize multitask network weights including sharing weights Wshare and task-specific

weights Wi

3: Initialize maximum iterated epochs N
4: for k = 0→ N do
5: # Training phase
6: Load XECG

train
7: Update parameters of MODEL with loss function of Equation (4)
8: # Validation phase
9: Load XECG

val , dividing into M batches
10: Load trained MODEL and validate
11: Compute mean value Li

mean(k) and standard deviation Li
std(k) of losses of M batches

12: if k > 0 then
13: Compute trend of mean value of losses Ti

mean based on Equation (8)
14: Compute trend of standard deviation of losses Ti

std based on Equation (9)
15: Compute task-specific weight θi based on Equation (10)
16: end if
17: end for

2.4. Reference Methods

Besides the published paper using single-lead ECG signals [17], to the best of our
knowledge, to estimate BP values, we also implement popular machine learning meth-
ods, such as least absolute shrinkage and selection operator (Lasso) [36], random forests
(RF) [37], and support vector regression (SVR) [38], with feature extraction through linear
principle component analysis (PCA) [39] and non-linear kernel PCA (KernelPCA) [40] to
estimate BP values for comparison.

2.4.1. Feature Extraction Methods

• PCA: PCA is a common method of data analysis, widely used for dimensionality
reduction of high-dimensional data. The main idea of the PCA is to transform data
features from N-dimensions to K-dimensions. It should be noted that the dimension
size of K is far less than than of N. This is a new orthogonal feature, also known
as principal component (PC), which is a k-dimensional feature reconstructed on the
basis of the original N-dimensional features. To put it simply, PCA is essentially a
basis transformation that maximizes the variance of transformed data. In other words,
rotation of coordinate axes and translation of coordinate origin minimize the variance
between one of the axes (spindle) and data points. After coordinate transformation,
orthogonal axes with high variance are removed to obtain dimensionality reduction
data set.

• KernelPCA: as is well known for us, KernelPCA is an improved version of the
PCA. Compared with the PCA, KernelPCA transforms n-dimensional features to
k-dimensional features through kernel technology, which has the capability of trans-
forming data into high-dimensional space through non-linear mapping. Therefore,
KernelPCA can transform nonlinear separable data into a new low-dimensional sub-
space suitable for linear regression of alignment.

2.4.2. Traditional Machine Learning Methods

• Lasso: Lasso is a kind of linear estimation method by importing an additional l1
penalty function on the objective function to compress the coefficients in the estimation
model. That is, the sum of absolute values of mandatory coefficients is less than a
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fixed value; Some regression coefficients are set to zero. Thus, subset contraction is
retained as a biased estimation for data with complex collinsupport vector regression.

ŷ = WX + b (11)

where W refers to regression weights, b refers to regression bias, X is a input sample,
and ŷ is the corresponding output. A widely used method for training Lasso is to
minimize the l2 loss, following an additional penalty function defined as:

minimize‖ŷ− y‖2 + ‖W‖1 (12)

• RF: RF is a combinative classifier. Its main idea is to use bootstrap method to ran-
domly re-sample k samples from the original data set with the sample size of N.
Then, a decision tree, as the base classifier of the RF, is utilized to repeatedly build
models for new generated data sets. Finally, these decision tree models are combined
together to obtain the final classification results by major voting technique. The RF
has better classification performance and noise tolerance through random sampling,
tree building, and the collection of multiple trees. It has been widely used in all walks
of research domains and achieved comparative results.

• SVR: SVR is an important branch of support vector machine (SVM). Inheriting the prin-
ciple of SVM, SVR is also searching a regression hyper-plane and making all the data
in a training dataset closest to that plane. The principle of SVR determines that SVR
can achieve a rather good trade-off between the empirical error and complexity during
training phase [41]. What’s more, SVR maps the input data into a higher dimension
space by the kernel technology. Linear kernel, polynomial kernel, and gaussian radial
basis function are common used kernels in applications of SVM. In this study, we
employ the RBF kernel due to its capability of high non-linear transformation, since
RBF kernel can map input data from low dimension space into a infinite dimension
space with Gaussian function.

2.5. Deep Learning Methods

Apart from comparison with traditional machine learning methods, the Res2Net [42]
following three two-layer fully connected sub-neural networks, which is a representative
state-of-the-art deep learning network architecture, is implemented for BP measurement.
The Res2Net has the ability to achieve the multi-scale representation of fine-grained level
by classifying the residual connections in a single residual block, and at the same time,
improve the size of the receiver field in each layer of the network. In this study, specifically,
three models of Res2Net50, Res2Net101, and Res2Net152 are employed to capture the
multi-scale morphological feature information from ECG signals, the network architectures
of which are kept the same as [42], except convolutional filter kernels. The convolutional
filter kernels that this study used are one-dimensional, the size of which are set to be
the same with [42] as well. The configuration of three full connected neural networks
connected by Res2Net are identical to the proposed BP measurement method.

2.6. Performance Metrics

Mean error (MErr), mean absolute error (MAErr), and root square mean error (RSMErr)
are commonly used measurement tools for evaluating BP estimation models. These mea-
surement tools are formulated as follows:

MErr = ∑N
i=1(yi − ŷi)

N
(13)

MAErr = ∑N
i=1|yi − ŷi|

N
(14)
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RMSErr =

√
∑N

i=1(yi − ŷi)
2

N
(15)

where N refers to the number of input data, y refers to the ground truth BP values, and ŷ is
the BP value by the estimation model.

What’s more, the BHS and AAMI standards are more widely used measurement tools
to evaluate the performance of BP estimation models. A BP estimation method can pass
the AAMI standards when the MErr and MAErr are less than 5 mmHg and 8 mmHg,
respectively. Otherwise, the BP estimation method fails to pass the AAMI standard. As for
the BHS standard, a BP estimation method is graded as Level A, B, or C, by computing
the cumulative percentage (CP) of MErrs on the test dataset failing within ±5 mmHg,
±10 mmHg, and ±15 mmHg. In addition, the Bland–Altman method [43] is employed
as well for evaluating the difference between the ground truth BP values and estimated
BP values.

2.7. Data Source

Physionet (https://physionet.org/, accessed on 25 December 2020) freely provides
huge numbers of clinical and physiological signals for researchers. One of them, the
Physionet Multiparameter Intelligent Monitoring in Intensive Care (MIMIC II Version 3.0)
Waveform Database [44], which includes ECG signals and synchronized ABP signals, is
usually utilized for researching cuffless BP estimation methods. In this study, we also
utilize this waveform database for our proposed method’s training and evaluation. The
MIMIC II database has a total of 21,422 ECG and ABP signals, duration of which are
different with each other. They vary highly depending on the choice of data physicians
and nurses. ECG and ABP signals are with sampling frequency at 125 Hz. Lead II of ECG
signals is selected in this study due to its dominant percentage in the total amount of ECG
signals and obvious waveform patterns. Ground truth SBP, DBP, and MAP values can be
extracted from ABP signals described in preprocessing Section 2.2.3. Meanwhile, ECG
and synchronized ABP signals are randomly divided into three independent datasets of
training set, validation set, and testing set, the accounting percentages of which are 80%,
10%, and 10%, respectively.

2.8. Computing Environment

In this paper, experiments are performed on a computing server, which installs Ubuntu
16.04.6 LTS as its operation system. Since the proposed BP estimation method is a deep
network, a widely used deep learning framework, Pytorch 1.0.1, is deployed on the com-
puting server. Regarding hardware configuration of the computing server, it equips itself
with a 4-core Intel Xeon CPU at 2.90 Hz, 8 pieces of DDR4 memory cards with 8 GB, and
two 128-core NVIDIA GP104GL GPU cards at 1.73 Hz. The powerful computing hardware
is helpful to accelerate the speed of all experiments.

3. Results
3.1. Estimation Performance

In this study, to improve the convergence speed of the proposed BP measurement
model, all learned parameters of the weights and biases should be initialized with very
small random non-zero floating point values, which are from a uniform distribution of
U(−

√
d,
√

d) utilized, where d is the hidden size of 256. The entire BP measurement model
is optimized with the mini-batch SGD optimizer with momentum (momentum-SGD op-
timizer) in the training phase, which has the merits of speeding the convergence on big
dataset and depressing fluctuation of error losses [45]. At the beginning, the momentum-
SGD optimizer in this work uses a learning rate of 0.0008, mini-batch size of 128, and mo-
mentum of 0.9. Other parameters of the momentum-SGD optimizer are keeping default
values defined by the Pytorch framework. Furthermore, when it is found that the train-
ing error loss no longer decreases, the learning rate is reduced with a learning scheme

https://physionet.org/
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of ReduceLROnPlateau (https://pytorch.org/docs/stable/optim.html, accessed on 25
December 2020) with a factor of 0.9 and patience of 4, other parameters are kept by default
values. In order to improve the generalization ability of BP measurement performance, a
penalty term of the L2 loss with a factor of 0.1 are employed on the all the weights and biases
of the proposed BP model. A total of 500 epochs are set for the BP measurement model.

As shown in Table 2, we can observe that the proposed multitask network with the
weight-learning scheme obtains a promising BP estimation results. To be more specific,
our proposed method obtains performance of 0.12 ± 10.83 mmHg, 0.13 ± 5.90 mmHg,
and 0.08 ± 6.47 mmHg for estimating SBP, DPB, and MAP values, respectively. The pro-
posed method with promising BP estimation results can pass the AAMI standard and
obtain a quite good grade defined by the BHS standard. In addition, Bland-Altman plot is em-
ployed to evaluate BP measurement performance of the proposed method, which presents
in Figure 4. It can be observed that most of the estimation points of SBP, DBP, and MAP are
falling within the limits of 0.18± 21.22 mmHg, 0.13± 11.56 mmHg, and 0.08 ± 12.68 mmHg,
respectively. It indicates that the proposed BP estimation method has the ability to regress
BP values using ECG signals. On the other hand, it seems that some points in the Bland–
Altman plot have a linear relationship among them. The cause is that many ground truth
BP values are to be around a fixed value. For instance, the fixed values of SBP, DBP,
and MAP are around 120 mmHg, 60 mmHg, and 80 mmHg, respectively. According to the
principle of the Bland–Altman plot, its x-axis is the average BP values of estimated and
ground truth BP values and its y-axis is the difference between estimated and ground truth
BP values. Therefore, these points of differential BP values are varying along y-axis by
around a fixed point at x-axis, which is shown in a variant Bland–Altman plot in Figure 5.
The variant Bland–Altman plot has ground truth BP values as its x-axis instead of mean
values of estimated and ground truth BP values.

Table 2. Estimation Performance of The Proposed Method.

Index SBP DBP MAP

The proposed MErr (mmHg) 0.12 0.13 0.08
MAErr (mmHg) 7.69 4.36 4.76

AAMI [4] MErr ≤5 mmHg
MAErr ≤8 mmHg

CP of The proposed
≤5 mmHg 53.05% 71.52% 70.03%
≤10 mmHg 76.56% 89.56% 88.07%
≤15 mmHg 86.64% 95.03% 94.12%

Grade A B C

CP of BHS [7]
≤5 mmHg 60% 50% 40%
≤10 mmHg 85% 75% 65%
≤15 mmHg 95% 90% 85%

(a) (b) (c)

Figure 4. Bland–Altman analysis plots: (a) SBP, (b) DBP, (c) MAP.

https://pytorch.org/docs/stable/optim.html
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(a) (b) (c)

Figure 5. Variant Bland–Altman analysis plots: (a) systolic blood pressure (SBP), (b) diastolic blood pressure (DBP), (c)
mean arterial pressure (MAP).

3.2. Performance Comparison

In this section, the proposed method is compared with various BP measurement
methods, like the BiLSTM based single task method, BiLSTM based multitask method
without weight-learning scheme, reference and cutting-edge BP measurement methods,
which are described in detail as follows.

3.2.1. Compared with Single Task Method and Multitask Method without Weighting Scheme

In this study, to verify whether using a multitask scheme has the ability to boost its BP
measurement performance or not, a single task based two-layer BiLSTM is implemented
to measure BP values. The network configuration of the BiLSTM is set to be the same as
the sharing layer in the proposed network. The BP values are estimated by the BiLSTM
by concatenating the two ending output units from two opposite directions in the last
layer. What’s more, we train the backbone multitask network as the multitask method for
comparison. The backbone network also takes advantage of the joint training technology,
like the way in which the proposed method employs but with uniform task-specific weights.
Here, all the task-specific weights are assigned to be 1. As shown in Table 3, it can be
observed that the multitask method has achieved a considerable margin of BP estimation
performance to the BiLSTM-based single task method. It demonstrates that there exists
close relationship among SBP, DBP, and MAP estimation tasks, which is helpful to boost
BP estimation performance with the multitask method. Meanwhile, it is also noted that
the proposed method obtains much better BP estimation performance than the multitask
method under identical training configurations. It indicates that the weighting scheme can
enable the multitask network to improve its BP estimation performance.

Table 3. BP Estimation Performance for the Proposed Method with Different Neural Network
Architectures and Searching Scheme of Task-specific Importance.

Methods Index SBP DBP MAP

BiLSTM (Single task BP estimation method)
MAErr (mmHg) 9.35 5.25 5.21

RMSErr (mmHg) 13.88 7.93 9.35

Multitask method
(Multitask BP measurement methods

without weight searching scheme)

MAErr (mmHg) 8.39 4.49 4.92

RMSErr (mmHg) 12.77 6.94 7.32

The proposed
MAErr (mmHg) 7.69 4.36 4.76

RMSErr (mmHg) 10.83 5.90 6.47
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3.2.2. Compared with Reference and Cutting-Edge Deep Learning Methods

In this section, we implement popular machine learning regression methods, such
as Lasso, RF, and SVR. To reduce the dimension of ECG signals, PCA and KernelPCA are
employed to extract key features from ECG signals. Both reference regression methods and
feature extracting methods are described in detail in Section 2.4. Hyperparameters of the
reference methods are fine-tuning with the grid-search technology. Extensive experiment
results are shown in Table 4. One can observe that in most cases, machine learning meth-
ods with feature extraction by KernelPCA have much better BP estimation performance.
The cause may be that key features existing in ECG signals are non-linear and KernelPCA
with RBF kernel has the capability to extract non-linear information. Compared with refer-
ence BP estimation methods, our proposed method has achieved promising BP estimation
results with a considerable margin.

Table 4. Blood pressure (BP) Estimation Performance Comparison with Reference Machine Learn-
ing Methods.

Methods
(Feature + BP Model) Index SBP DBP MAP

PCA + Lasso MAErr (mmHg) 12.25 9.57 8.59
RMSErr (mmHg) 15.68 13.21 12.01

PCA + RF MAErr (mmHg) 12.14 10.08 8.18
RMSErr (mmHg) 15.66 13.38 11.34

PCA + SVR MAErr (mmHg) 11.85 8.84 7.27
RMSErr (mmHg) 15.23 12.59 11.44

KernelPCA + Lasso MAErr (mmHg) 12.24 8.95 7.98
RMSErr (mmHg) 15.44 12.52 11.4

KernelPCA + RF MAErr (mmHg) 14.14 10.00 14.37
RMSErr (mmHg) 17.51 13.32 11.51

KernelPCA + SVR MAErr (mmHg) 11.83 8.80 7.26
RMSErr (mmHg) 15.22 12.58 11.44

The proposed MAErr (mmHg) 7.69 4.36 4.76
RMSErr (mmHg) 12.30 6.88 7.52

Furthermore, the proposed method is also compared with deep learning based state-
of-the-art BP measurement methods using ECG signals [16,21,25]. Besides, we implement
a state-of-the-art deep neural network namely Res2Net [42], with few necessary modifica-
tions described in Section 2.5, to estimate BP values. As shown in Table 5, it is noted that our
proposed BP measurement method is superior to the deep learning-based BP measurement
methods of [16,42], but little inferior to the BP measurement methods of [21,25]. All of
the BP measurement methods of [21,25], and our proposed can meet the AAMI standard
and BHS standard. Compared with the BP measurement method [21], using the particle
swarm optimization (PSO) scheme searching the optimal task-specific importance, the
proposed method can compute the task-specific importance directly based on an adaptive
weight learning-based scheme, with the merit of requiring much less training time. Even
if the performance of the BP measurement method proposed by Miao et al. [25] seems
much better than ours, their proposed BP method requires additional patients’ previous
BP values to calibrate, while our proposed BP method is calibration-free.
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Table 5. BP Estimation Performance Comparison with Deep Learning methods.

Methods Index SBP DBP MAP

Res2Net50 [42] MAErr (mmHg) 10.79 6.58 7.50
RMSErr (mmHg) 14.28 8.18 9.40

Res2Net101 [42] MAErr (mmHg) 11.99 6.12 7.24
RMSErr (mmHg) 14.38 7.66 9.09

Res2Net152 [42] MAErr (mmHg) 10.21 6.63 7.07
RMSErr (mmHg) 13.45 8.26 8.88

Simjanoska et al. [16] MAErr (mmHg) 8.64 18.20 13.52
RMSErr (mmHg) 10.97 19.34 15.07

Fan et al. [21] MAErr (mmHg) 7.16 3.89 4.24
RMSErr (mmHg) 10.83 5.90 6.47

Miao et al. [25] MAErr (mmHg) 7.10 4.61 4.66
RMSErr (mmHg) 9.99 6.36 6.29

The proposed MAErr (mmHg) 7.69 4.36 4.76
RMSErr (mmHg) 12.30 6.88 7.52

4. Discussion
4.1. Difference of BP Measurement Performance

As shown in Table 2, it is not difficult to observe that there are greatly different
performances among SBP, DBP, and MAP measurement. DBP estimation achieves the best
performance while SBP estimation performance is the worst. The reason is likely to be that
the proposed BP measurement method is sensitive to the range of a specified BP values.
More specifically, as shown in Figure 6, BP estimated ranges are much different among
SBP, DBP, and MAP. SBP has the biggest BP estimated range, followed by MAP, and DBP
has the smallest one. It demonstrates that there exists a close relationship between the BP
estimation performance and BP estimated range.

Figure 6. The boxplot of ground truth BP values.

4.2. Model Parameters Tuning

The selection of number of layers in the BiLSTM, which is a quite important hyper
parameter in the proposed method, is discussed. As well known to us, the number of layers
of BiLSTM has much more impact on its performance. Herein, the numbers of BiLSTM
layers are set to be commonly used numbers; 1, 2, and 4. As shown in Table 6, it is noted
that the backbone network of the proposed method, which is a multitask network without



Sensors 2021, 21, 1595 15 of 18

a weighting scheme, achieves its best BP estimation performance when the number of
BiLSTM layers is set to be 2. Therefore, the proposed method selects a two-layer BiLSTM
as its sharing network.

Table 6. Comparison of the Number of BiLSTM layers in the Backbone Multitask Method.

BiLSTM Index SBP DBP MAP

1 layer MAErr (mmHg) 8.87 4.79 5.39
RMSErr (mmHg) 13.80 7.62 8.36

2 layers MAErr (mmHg) 8.39 4.49 4.92
RMSErr (mmHg) 12.77 6.94 7.32

4 layers MAE (mmHg) 11.64 6.21 6.87
RMSErr (mmHg) 16.94 8.55 9.97

Furthermore, the penalty factor of L2 is another important hyperparameter of the
proposed method that greatly affects the BP measurement performance. In this study,
the penalty factor is selected from 10−4 to 10 with a stride by a factor of 10. As shown
in Table 7, it is noted that the proposed method can obtain comparable BP measurement
performance when the penalty factor of L2 is selected among the set of 0.001, 0.01, and 0.1.
Particularly, as the penalty factor of L2 is selected as 0.1, the proposed method achieves
its best MAErr of 7.69 mmHg, 4.36 mmHg, and 4.76 mmHg for SBP, DBP, and MAP
measurement, as well as the best RMSErr of 12.30 mmHg and 6.88 mmHg for SBP and DP
measurement. The best RMSErr of MAP that the proposed methd achieved is 7.39 mmHg
when the penalty factor of L2 is set to 0.01, which surpasses the second optimal RMSErr,
the penalty factor L2 of 0.1, with 0.13 mmHg. Both of the top 2 optimal RMSErr fall in the
error limits of the AAMI standard. Therefore, the proposed BP method sets the penalty
factor of L2, to be 0.1 in this study.

Table 7. BP Measurement Performance of the Proposed Method with Different L2 penalty factors.

L2 Penalty Factor Index SBP DBP MAP

0.0001 MAErr (mmHg) 8.13 4.11 4.99
RMSErr (mmHg) 12.74 6.87 8.07

0.001 MAErr (mmHg) 8.04 4.85 4.89
RMSErr (mmHg) 12.90 7.48 7.61

0.01 MAErr (mmHg) 8.04 4.86 4.97
RMSErr (mmHg) 12.98 7.08 7.39

0.1 MAErr (mmHg) 7.69 4.36 4.76
RMSErr (mmHg) 12.30 6.88 7.52

1.0 MAErr (mmHg) 8.65 4.42 5.27
RMSErr (mmHg) 12.47 7.16 8.05

10 MAErr (mmHg) 11.16 7.31 7.63
RMSErr (mmHg) 14.60 9.93 10.14

5. Conclusions

In this study, a novel calibration-free adaptive weight-learning based multitask deep
learning framework via single lead ECG signals is proposed for long-term continuous BP
estimation. Specifically, the proposed method utilizes a 2-layer BiSLTM as the sharing
network, followed by three 2-layer fully connected networks for task-specific BP estimation.
To learn the importance of each task-specific loss automatically, an adaptive weight-learning
scheme based on the trend of validation loss is proposed. Extensive experiments on the
MIMIC II waveform database demonstrates that the proposed network obtains promising
results of 0.18 ± 10.83 mmHg, 0.13 ± 5.90 mmHg, and 0.08 ± 6.47 mmHg on SBP, DBP,
and MAP estimation, respectively. The proposed method can pass the AAMI standard
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and meet the requirements of the BHS standard. Meanwhile, the proposed method is also
compared with many popular cutting-edge methods using ECG signals. Our proposed
method outperforms them with a considerable margin. Our proposed method can be
deployed in a healthcare platform or/medical system to provide a BP-health protected
service combined with a wearable/portal ECG device. With the help of the BP-protected
service, the malignant complications of hypertension would be greatly reduced.
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PWTT pulse wave transit time
PWAT pulse wave arrival time
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PPG photoglethysmography
BHS British Hypertension Society
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BiLSTM bidirectional long short-term memory network
FC fully connected network
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KernelPCA kernel PCA
MErr mean error
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RSMErr root square mean error
CP cumulative percentage
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17. Şentürk, Ü.; Yücedağ, I.; Polat, K. Repetitive neural network (RNN) based blood pressure estimation using PPG and ECG signals.
In Proceedings of the 2018 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT),
Ankara, Turkey, 19–21 October 2018; pp. 1–4.
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